1
|
Kouamé KJEP, Falade EO, Zhu Y, Zheng Y, Ye X. Advances in innovative extraction techniques for polysaccharides, peptides, and polyphenols from distillery by-products: Common extraction techniques, emerging technologies, and AI-driven optimization. Food Chem 2025; 476:143326. [PMID: 39986087 DOI: 10.1016/j.foodchem.2025.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Distillery by-products, such as distillers' grains, stillage, and vinasse, are rich in organic compounds and offer immense potential for the recovery of bioactive substances, including polysaccharides, peptides, and polyphenols. The effective utilization of these by-products is critical for achieving long-term sustainability in the distillery sector. This review highlights advancements in extraction techniques, focusing on enzymatic, ultrasound-assisted, and microwave-assisted methods while also exploring emerging approaches such as supercritical fluid extraction, pressurized liquid extraction, pulse electric field, and synthetic biology. These innovative techniques address the limitations of traditional methods by improving extraction yields, reducing processing times, and enhancing sustainability. Additionally, the integration of machine learning and artificial intelligence is discussed as a promising avenue for optimizing extraction parameters and scaling up processes. By evaluating recent achievements and identifying new opportunities, this study aims to promote sustainable practices in the distillery industry, emphasizing economic feasibility, environmental impacts, and resource optimization for value-added product development.
Collapse
Affiliation(s)
- Kouadio Jean Eric-Parfait Kouamé
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ebenezer Ola Falade
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yanyun Zhu
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yunyun Zheng
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xingqian Ye
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
2
|
Liu Y, Ren Q, Qin H, Huang M, Mao J, Xi B, Zhang S. Comparative study on the anti-alcoholic liver disease efficiency of the ethanol- and water-soluble polysaccharides from Baijiu vinasses. Int J Biol Macromol 2025; 299:140087. [PMID: 39842569 DOI: 10.1016/j.ijbiomac.2025.140087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Ethanol- and water-soluble polysaccharides were extracted from Baijiu vinasses (EP and WP), respectively. EP was dominantly composed by arabinose, glucose and xylose with molar ratio of 8.81: 76.82: 6.9. While, WP was dominantly composed by galactose, glucose and mannose with molar ratio of 8.32: 56.05: 25.19. The molecular weights and reducing sugar contents in EP and WP were 6.2 kDa vs. 16.1 kDa and 24.52 ± 0.97 % vs. 19.77 ± 0.75 %, respectively. Alterations in activation of the Nrf2/HO-1 signalling pathway and increases in the abundance of Lachnospiraceae and Akkermansia and their associated metabolisms could be the general mechanism by which Baijiu vinasses (BV) polysaccharides alleviated alcohol-induced liver disease (ALD) in mice. Due to the different physicochemical characteristics, the ALD alleviation efficiency was different. EP exhibited higher efficiency in oxidative stress suppressing and lipid alternation by activating the peroxisome proliferators-activated receptors (PPAR) signalling pathway. WP exhibited higher efficiency in liver damage repairing with the controlment in tryptophan metabolism pathway. This study exhibited the potential biofunction of BV polysaccharides in ALD alleviation and could promote the BV upcycling.
Collapse
Affiliation(s)
- Yizhou Liu
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qingxi Ren
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hui Qin
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Mengyang Huang
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Jian Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Suyi Zhang
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Guo C, Ling N, Tian H, Wang Z, Gao M, Chen Y, Ji C. Comprehensive review of extraction, purification, structural characteristics, pharmacological activities, structure-activity relationship and application of seabuckthorn protein and peptides. Int J Biol Macromol 2025; 294:139447. [PMID: 39756720 DOI: 10.1016/j.ijbiomac.2024.139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Seabuckthorn (Hippophae rhamnoides) is an excellent plant that has the concomitant function of both medicine and foodstuff with high nutritional and health-promoting properties. As a pivotal bioactive component mainly existing in the seeds and leaves, seabuckthorn protein and its derived peptides have aroused wide attention owing to their multifaceted pharmacological activities, including anti-hypertensive, hypoglycemic, anti-obesity, anti-freeze, immunomodulatory, anti-inflammatory, sobriety, anti-oxidant and anti-neurodegenerative functions. Despite these promising attributes, the application of seabuckthorn peptides as functional food and medicines are impeded due to lack of a comprehensive understanding of pharmacological activities and intricate structure-activity relationship. Therefore, this review systematically summarizes the latest advancements in the extraction, purification, structural characteristics, pharmacological activities, digestion, absorption and transport, and application of seabuckthorn protein or peptides. Noteworthily, the structure-activity relationship is specifically delved into the hypoglycemic, anti-hypertensive, anti-obesity, anti-neurodegenerative and anti-oxidant peptides. Moreover, the shortcomings of current research and promising prospects are also highlighted. This comprehensive overview will provide a framework for future exploration and application of seabuckthorn protein or peptides in the realms of food and pharmaceuticals, offering a promising horizon for health benefits.
Collapse
Affiliation(s)
- Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Zihao Wang
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Yin Chen
- School of Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chenfeng Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
4
|
Wu Q, Tian S, Zhang X, Zhao Y, Yu Y. Identification of Oligopeptides in the Distillates from Various Rounds of Soy Sauce-Flavored Baijiu and Their Effect on the Ester-Acid-Alcohol Profile in Baijiu. Foods 2025; 14:287. [PMID: 39856954 PMCID: PMC11764888 DOI: 10.3390/foods14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Endogenous peptides in Baijiu have primarily focused on finished liquor research, with limited attention given to the peptides in base liquor prior to blending. Liquid chromatography-tandem mass spectrometry (LC-MS) was employed to identify endogenous peptides in the distillates from the first to seventh rounds of soy sauce-flavored Baijiu. Two hundred and five oligopeptides were identified from these distillates, all of which had molecular weights below 1000 Da and were composed of amino acid residues associated with flavor (sweet, sour, and bitter) and biological activity. Furthermore, full-wavelength scanning, content determination of the main compounds, and molecular docking were performed to analyze these oligopeptides' effect on the ester-acid-alcohol profile in Baijiu. This determination revealed a negative correlation between the peptide content and total ester content (r = -0.691), as well as the total acid content (r = -0.323), and a highly significant negative correlation with ethanol content (r = -0.916). Notably, the screened peptides (TRH, YHY, RQTQ, PLDLTSFVLHEAI, KHVS, LPQRHRMVYSLL, and NEWH) had specific interactions with the major flavor substances via hydrogen bonds, including esters (ethyl acetate, ethyl butanoate, ethyl hexanoate, and ethyl lactate), acids (acetate acid, butanoate acid, hexanoate acid, lactate acid), and alcohols (ethanol, 1-propanol, 1-butanol, and 1-hexanol). These findings elucidate the distribution and dynamic changes of endogenous peptides in the distillates from various rounds of soy sauce-flavored Baijiu, providing a theoretical foundation for further investigation into their interaction mechanisms associated with flavor compounds.
Collapse
Affiliation(s)
- Qiang Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoshui Road, Shaoyang 422000, China; (S.T.); (X.Z.); (Y.Z.); (Y.Y.)
- Hunan Province Key Laboratory of New Technology and Application of Ecological Baijiu Production, Shaoyang University, Shaoshui Road, Shaoyang 422000, China
| | - Shanlin Tian
- College of Food and Chemical Engineering, Shaoyang University, Shaoshui Road, Shaoyang 422000, China; (S.T.); (X.Z.); (Y.Z.); (Y.Y.)
- Hunan Province Key Laboratory of New Technology and Application of Ecological Baijiu Production, Shaoyang University, Shaoshui Road, Shaoyang 422000, China
| | - Xu Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoshui Road, Shaoyang 422000, China; (S.T.); (X.Z.); (Y.Z.); (Y.Y.)
- Hunan Province Key Laboratory of New Technology and Application of Ecological Baijiu Production, Shaoyang University, Shaoshui Road, Shaoyang 422000, China
| | - Yunhao Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoshui Road, Shaoyang 422000, China; (S.T.); (X.Z.); (Y.Z.); (Y.Y.)
- Hunan Province Key Laboratory of New Technology and Application of Ecological Baijiu Production, Shaoyang University, Shaoshui Road, Shaoyang 422000, China
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoshui Road, Shaoyang 422000, China; (S.T.); (X.Z.); (Y.Z.); (Y.Y.)
- Hunan Province Key Laboratory of New Technology and Application of Ecological Baijiu Production, Shaoyang University, Shaoshui Road, Shaoyang 422000, China
| |
Collapse
|
5
|
Jiang B, Liu J, Zhu Z, Fu L, Chang Y, Wang Y, Xue C. Establishment of a workflow for high-throughput identification of anti-inflammatory peptides from sea cucumbers. Food Res Int 2024; 197:115171. [PMID: 39593382 DOI: 10.1016/j.foodres.2024.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Developing an effective workflow for screening anti-inflammatory peptides is crucial for discovering novel food-derived anti-inflammatory peptides and optimizing the screening and identification process of bioactive peptides. Virtual screening identified three major yolk proteins as target precursor proteins for anti-inflammatory peptides in sea cucumbers. A portfolio of 170 peptides was identified from hydrolysates after 9 h of alcalase treatment by combining antioxidant activity determination and peptidomics analysis. Among these, 12 high-confidence anti-inflammatory peptides were identified through virtual screening. Three of these peptides were shown to effectively inhibit the production of NO and the release of pro-inflammatory cytokines in RAW264.7 cells. Molecular docking demonstrated that these three peptides exerted their anti-inflammatory effects primarily by binding to the active sites of cyclooxygenase-2 and inducible nitric oxide synthase through hydrophobic interactions. This study provided a reference workflow for screening anti-inflammatory peptides, facilitating the discovery of novel anti-inflammatory peptides and the high-value utilization of sea cucumber cooking liquid.
Collapse
Affiliation(s)
- Bingxue Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jinqiu Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Zhu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Linlan Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yanchao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
6
|
Tian Y, He Y, Xiong H, Sun Y. Rice Protein Peptides Alleviate Alcoholic Liver Disease via the PPARγ Signaling Pathway: Through Liver Metabolomics and Gut Microbiota Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23790-23803. [PMID: 39406388 DOI: 10.1021/acs.jafc.4c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alcoholic liver disease (ALD) is the predominant type of liver disease worldwide, resulting in significant mortality and a high disease burden. ALD damages multiple organs, including the liver, gut, and brain, causing inflammation, oxidative stress, and fat deposition. In this study, we investigated the effects of rice protein peptides (RPP) on ALD in mice with a primary focus on the gut microbiota and liver metabolites. The results showed that administration of RPP significantly alleviated the symptoms of ALD in mice including adiposity, oxidative stress, and inflammation. The KEGG pathway shows that RPP downregulates the liver metabolite of capric acid and the metabolism of fatty acid biosynthesis compared with the MOD group. Mechanistically, RPP downregulated the PPARγ signaling pathway and suppressed the expression of fatty acid biosynthesis genes (FASN, ACC1, ACSL1, and ACSL3). Furthermore, two active peptides (YLPTKQ and PKLPR) with potential therapeutic functions for ALD were screened by Caco-2 cell modeling and molecular docking techniques. In addition, RPP treatment alleviates gut microbiota dysbiosis by reversing the F/B ratio, increasing the relative abundance of Alloprevotella and Alistipes, and upregulating the level of short-chain fatty acids. In conclusion, RPP alleviates ALD steatosis through the PPARγ signaling pathway by YLPTKQ and PKLPR and regulates gut microbiota.
Collapse
Affiliation(s)
- Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi 330052, China
| |
Collapse
|
7
|
Guo H, Zang C, Zheng L, Ding L, Yang W, Shan Ren, Guan H. Novel Antioxidant Peptides from Fermented Whey Protein by Lactobacillus rhamnosus B2-1: Separation and Identification by in Vitro and in Silico Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23306-23319. [PMID: 39392363 PMCID: PMC11505895 DOI: 10.1021/acs.jafc.4c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Whey is a byproduct of the dairy industry and is rich in protein. To enhance the significance of such byproducts and find efficacious antioxidants for combating oxidative stress, this study reported on the preparation, purification, and identification of novel peptides with antioxidant activities from whey protein metabolites following fermentation by Lactobacillus rhamnosus B2-1. The isolation and identification processes involved macroporous adsorption resin column chromatography, gel filtration column chromatography, and liquid chromatography-tandem mass spectrometry. Therein, three novel antioxidant peptides (PKYPVEPF, LEASPEVI, and YPFPGPIHNS) were selected to be synthesized, and they demonstrated remarkable antioxidant activities in vitro chemical assays. PKYPVEPF, LEASPEVI, and YPFPGPIHNS (100 μg/mL) displayed a notable cytoprotective impact on HepG2 cells under oxidative stress induced by H2O2, increasing the cell viability from 49.02 ± 3.05% to 88.59 ± 10.49%, 82.38 ± 19.16%, and 85.15 ± 7.19%, respectively. Moreover, the peptides boosted the activities of catalase and superoxide dismutase in damaged cells and reduced reactive oxygen species levels. The molecular docking studies highlighted that these antioxidant peptides efficiently bound to key amino acids in the Kelch domain of Keap1, thereby preventing the interaction between Keap1 and Nrf2. In conclusion, PKYPVEPF, LEASPEVI, and YPFPGPIHNS demonstrated substantial antioxidant activity, suggesting their potential for widespread application as functional food additives and ingredients.
Collapse
Affiliation(s)
- Hao Guo
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Chuangang Zang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Long Zheng
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Lin Ding
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Wenqin Yang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Shan Ren
- Basic
Medical Science College, Qiqihar Medical
University, Qiqihar 161006, China
| | - Hong Guan
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
8
|
Wijatniko BD, Ishii Y, Hirayama M, Suzuki T. Novel Peptides LFLLP and DFFL from Jack Bean Protein Hydrolysates Suppress the Inflammatory Response in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Foods 2024; 13:3198. [PMID: 39410232 PMCID: PMC11482615 DOI: 10.3390/foods13193198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
The production of inflammatory cytokines such as tumor necrosis factor (TNF)-α by activated macrophage cells plays an important role in the development of intestinal inflammation. The present study investigated the anti-inflammatory effect of the protein hydrolysates prepared from the jack bean (JBPHs), Canavalia ensiformis (L.) DC, using the enzyme Alcalase, in a murine macrophage model, RAW 264.7 cells, which were stimulated by lipopolysaccharides. JBPHs reduced the TNF-α expression at the protein and mRNA levels through the downregulation of cellular signaling pathways involved in nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), and p38. A combination of mass spectrometry and in silico approaches identified 10 potential anti-inflammatory peptides in the JBPHs, including LFLLP and DFFL. Interestingly, while LFLLP targeted the NF-κB pathway, DFFL targeted p38 and ERK to suppress the TNF-α production in the RAW 264.7 cells. In addition, LFLLP and DFFL were localized in the cytosol of the cells. These results demonstrated that LFLLP and DFFL were incorporated by RAW 264.7 cells and, at least in part, contributed to the reduction in TNF-α by JBPHs. These peptides isolated from JBPHs may well be utilized as new alternatives to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Bambang Dwi Wijatniko
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yoshiki Ishii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan; (B.D.W.); (Y.I.); (M.H.)
| |
Collapse
|
9
|
Lin C, Lu P, Ma J, Kan T, Han X, Liu S, Ji Z, Mao J. Investigation into the Production of Melanin from By-Products of Huangjiu Brewing. Foods 2024; 13:3063. [PMID: 39410098 PMCID: PMC11475479 DOI: 10.3390/foods13193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Melanin is a high value bioproduct generated through the fermentation of Aureobasidium pullulans, playing a crucial role in various fields, including food, medicine, environmental protection, and materials science. However, its high production costs and low synthetic yields significantly limit its applications. Therefore, it is essential to identify high-yield strains, reduce production costs, and optimize fermentation strategies. In this study, a high melanin-yielding Aureobasidium pullulans 53LC7 was screened and identified, and the fermentation process was optimized based on melanin yield, color value, and pullulan yield. The results indicated that the melanin yield peaked at an initial pH of 6.0, temperature of 27 °C, fermentation time of 6.5 d, and inoculation quantity of 2.5%, achieving a melanin yield of 16.33 g/L. Subsequently, huangjiu lees, a byproduct of huangjiu production, was incorporated into the fermentation medium, resulting in a melanin yield of 5.91 g/L. This suggests that the Aureobasidium pullulans was not effectively utilizing huangjiu lees. To address this, we employed an adaptive evolution strategy, which increased the melanin yield to 8.72 g/L. The enhanced production was correlated with the expression of key genes, including FKS, PKS, and Cmr1. Finally, cellulase was utilized to convert the crude fibers in huangjiu lees, which were difficult to utilize, into usable substrates, while pullulanase was employed to minimize byproduct formation in the fermentation system, resulting in a melanin yield of 19.07 g/L. This study not only provides promising strains for further research but also offers valuable insights for resource production technologies.
Collapse
Affiliation(s)
- Congyu Lin
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Peiqi Lu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
| | - Jingqiu Ma
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Tao Kan
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Xiao Han
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
| | - Shuangping Liu
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Zhongwei Ji
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| | - Jian Mao
- School of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (C.L.); (P.L.); (X.H.); (S.L.); (Z.J.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China; (J.M.); (T.K.)
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 646000, China
| |
Collapse
|
10
|
Wijatniko BD, Yamamoto Y, Hirayama M, Suzuki T. Identification and Molecular Mechanism of Anti-inflammatory Peptides Isolated from Jack Bean Protein Hydrolysates: in vitro Studies with Human Intestinal Caco-2BBe Cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:624-631. [PMID: 38940894 PMCID: PMC11410891 DOI: 10.1007/s11130-024-01201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Jack bean (JB), Canavalia ensiformis (L.) DC, is a commonly cultivated legume in Indonesia. It is rich in protein, which can be hydrolyzed, making it potentially a good source of bioactive peptides. Intestinal inflammation is associated with several diseases, and the production of interleukin-8 (IL-8) in intestinal epithelial cells induced by tumor necrosis factor (TNF)-α has an important role in inflammatory reaction. The present study investigated the anti-inflammatory effects of peptides generated from enzymatic hydrolysis of JB protein on human intestinal Caco-2BBe cells. Additionally, in silico approaches were used to identify potential bioactive peptides. JB protein hydrolysate (JBPH) prepared using pepsin and pancreatin reduced the IL-8 expression at protein and mRNA levels in Caco-2BBe cells stimulated with TNF-α. Immunoblot analysis showed that the JBPH reduced the TNF-α-induced phosphorylation of c-Jun-NH(2)-terminal kinase, nuclear factor kappa B (NF-κB), and p38 proteins. Anti-inflammatory activity was observed in the 30% acetonitrile fraction of JBPH separated on a Sep-Pak C18 column. An ultrafiltration method revealed that relatively small peptides (< 3 kDa) had a potent inhibitory effect on the IL-8 production. Purification of the peptides by reversed-phase and anion-exchange high performance chromatography produced three peptide fractions with anti-inflammatory activities. A combination of mass spectrometry analysis and in silico approaches identified the potential anti-inflammatory peptides. Peptides derived from JB protein reduces the TNF-α-induced inflammatory response in Caco-2BBe cells via NF-κB and mitogen-activated protein kinase signaling pathways. Our results may lead to a novel therapeutic approach to promote intestinal health.
Collapse
Affiliation(s)
- Bambang Dwi Wijatniko
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan.
| |
Collapse
|
11
|
Lemus-Conejo A, Villanueva-Lazo A, Martin ME, Millan F, Millan-Linares MC. Sacha Inchi ( Plukenetia volubilis L.) Protein Hydrolysate as a New Ingredient of Functional Foods. Foods 2024; 13:2045. [PMID: 38998552 PMCID: PMC11241537 DOI: 10.3390/foods13132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) is an under-exploited crop with great potential due to its nutritional and medicinal characteristics. A Sacha inchi protein isolate (SII), obtained from defatted Sacha inchi flour (SIF), was hydrolyzed by Bioprotease LA 660 under specific conditions. The hydrolysates were characterized chemically, and their digestibility and antioxidant capacity were evaluated by in vitro cell-free experiments to select the hydrolysate with major antioxidant activity. Sacha inchi protein hydrolysate at 20 min (SIH20B) was selected, and the anti-inflammatory capacity was evaluated by RT-qPCR and ELISA techniques, using two different doses in monocytes THP-1 stimulated with lipopolysaccharide (LPS). The results obtained showed that the in vitro administration of SIH20B down-regulated the TNF-α gene and reduced the release of this cytokine, whereas the anti-inflammatory cytokines IL-10 and IL-4 were up-regulated in LPS-stimulated monocytes and co-administrated with SIH20B. The peptides contained in SIH20B were identified, and the 20 more relatively abundant peptides with a mass by 1 kDa were subjected to in silico analysis to hypothesize those that could be responsible for the bioactivity reported in the hydrolysate. From the identified peptides, the peptides AAGALKKFL and LGVKFKGGL, among others, are proposed as the most biologically actives. In conclusion, SIH20B is a novel, natural source of high-value-added biopeptides that could be used as an ingredient in formulations of food or nutraceutical compounds.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Foundation Centre for Research and Development of Functional Food-CIDAF, Avda del Conocimiento 37, 18100 Granade, Spain
| | - Alvaro Villanueva-Lazo
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Francisco Millan
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| | - Maria C Millan-Linares
- Food Protein and Immunonutrition Group, Department of Food and Health, Instituto de la Grasa, CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013 Seville, Spain
| |
Collapse
|
12
|
Jiang Y, Sun J, Chandrapala J, Majzoobi M, Brennan C, Zeng XA, Sun B. Current situation, trend, and prospects of research on functional components from by-products of baijiu production: A review. Food Res Int 2024; 180:114032. [PMID: 38395586 DOI: 10.1016/j.foodres.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| | - Jayani Chandrapala
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Charles Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Chen L, Chen S, Rong Y, Zeng W, Hu Z, Ma X, Feng S. Identification and evaluation of antioxidant peptides from highland barley distiller's grains protein hydrolysate assisted by molecular docking. Food Chem 2024; 434:137441. [PMID: 37769603 DOI: 10.1016/j.foodchem.2023.137441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
The aim of this study was to identify antioxidant peptides from highland barley distiller's grains and evaluate their antioxidant activity in vitro. The results showed that the enzymatic hydrolysate of highland barley distiller's grains prepared by ultrasonic assisted alkaline protease had antioxidant properties, aromatic amino acids accounted for 61.48% of the total free amino acids and acidic/basic amino acids accounted for 40.82% of the total hydrolyzed amino acids in enzymatic hydrolysate. Ultrafiltration component F1 (Mw < 1 kDa) had the highest DPPH, ABTS and hydroxyl radical scavenging activity and ferrous ion chelating activity, which were 93.92%, 69.59%, 50.27% and 0.71, respectively. Four peptides were identified and screened by LC-MS/MS and the P1 (SWDNFFR) and P4 (WDWVGGR) showed high scavenging ability of DPPH free radical (70.23%-62.84%) and ABTS free radical (30.87%-60.54%). Molecular docking showed that P1 and P4 formed multiple hydrogen bonds with central residues of MPO.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, China.
| | - Shaohua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, China.
| | - Yuzhi Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, China.
| | - Wenhua Zeng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, China.
| | - Zhenkang Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, China.
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No.100 Haiquan Road, Shanghai, China.
| | - Shengbao Feng
- Qinghai Huzhu Barley Wine Co., Ltd., Haidong 810500, China.
| |
Collapse
|
14
|
Li F, Zhang J, Liu D, Yu H, Li C, Liu Q, Chen Z, Song H. Engineering extracellular polymer substrates biosynthesis and carbon felt-carbon nanotube hybrid electrode to promote biofilm electroactivity and bioelectricity production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166595. [PMID: 37659546 DOI: 10.1016/j.scitotenv.2023.166595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Organic-rich thin stillage is a significant by-product of the liquor brewing industry, and its direct release into the environment can cause severe water pollution. Microbial fuel cells (MFCs) offer the possibility for converting organic matters in thin stillage into clean electricity. However, limited biofilm formation and conductivity are crucial bottlenecks in restricting the power harvest of MFCs. Here, to efficiently harvest electricity power from thin stillage of liquor industry, we adopted a modular engineering strategy to increase biofilm formation and conductivity of Shewanella oneidensis via enhancing the component biosynthesis of extracellular polymer substrates (EPS) matrix, regulating intracellular c-di-GMP level, and constructing of artificial hybrid system. The results showed that the constructed CNTs@CF-EnBF2 hybrid system with low charge-transfer resistance enabled a maximum output power density of 576.77 mW/m2 in lactate-fed MFCs. Also, to evaluate the capability of harvesting electricity from actual wastewater, the CNTs@CF-EnBF2 system was employed to treat actual thin stillage, obtaining a maximum output power density of 495.86 mW/m2, 3.3-fold higher than the wild-type strain. Our research suggested that engineering and regulating EPS biosynthesis effectively promoted bioelectricity harvest, providing a green and sustainable treatment strategy for thin stillage.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zheng Chen
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
He R, Yang Y, Li Y, Yang M, Kong L, Yang F. Recent Progress in Distiller's Grains: Chemical Compositions and Biological Activities. Molecules 2023; 28:7492. [PMID: 38005214 PMCID: PMC10673086 DOI: 10.3390/molecules28227492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Distiller's grains (DGs) are solid mixtures that remain after the production of alcoholic beverages. A large amount of DGs is produced each year during the brewing process. Currently, they are mostly used as a feedstock or substrate in the feed industry. However, the lack of a comprehensive understanding of the chemical composition of DGs is a major constraint on their further development and application for high-value-added usages. Some studies were published on the bioactive constituents of DGs in several different types of journals. Data were therefore collated to provide a comprehensive overview of these natural products. DGs are rich in phenols, phytosterols, and fatty acids, in addition to general lipid and protein constituents. These compounds and their related extracts possess diverse biological activities, including antioxidant, anti-inflammatory, and anti-hyperglycaemic effects. We hope that this review will provide research incentives for the further development and utilisation of DGs to develop high-value-added products.
Collapse
Affiliation(s)
- Ran He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (R.H.); (L.K.)
| | - Yubo Yang
- Kweichow Moutai Co., Ltd., Zunyi 564501, China
| | - Yongsu Li
- Kweichow Moutai Co., Ltd., Zunyi 564501, China
| | - Minghua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (R.H.); (L.K.)
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (R.H.); (L.K.)
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Zunyi 564501, China
| |
Collapse
|
16
|
Li J, Zhang Q, Sun B. Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food. Foods 2023; 12:2841. [PMID: 37569110 PMCID: PMC10417287 DOI: 10.3390/foods12152841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Baijiu is a traditional spirit with high reputation in the Chinese community, and whisky, on the other hand, is a renowned spirit in Western culture, with both contributing a major proportion to the consumption and revenue in the global spirit market. Interestingly, starting with similar raw materials, such as grains, diverse production methods lead to different organoleptic profiles. In addition, such enormous attention they attract renders them as a crucial part in food and the related industry. Therefore, great efforts are made in improving product quality and optimizing production processes, such as flavor enhancement, facility development, and deep utilization of byproducts. Given the huge impacts and great involvements of these spirits in the general food industry, research focusing on either spirit is of referential significance for other relevant fields. With the aim of facilitating such collaboration, this review discusses the current research status, in a comparative manner, of both spirits in respect to key production processes-oriented sensory and flavor analysis, deep utilization of byproducts, and spirit-derived functional food investigations. Finally, the internal correlations based on the abovementioned criteria are identified, with research prospects proposed.
Collapse
Affiliation(s)
- Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Q.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
17
|
Cheng YH, Liu BQ, Cui B, Wen L, Xu Z, Chen ML, Wu H. Alanine Substitution to Determine the Effect of LR5 and YR6 Rice Peptide Structure on Antioxidant and Anti-Inflammatory Activity. Nutrients 2023; 15:nu15102373. [PMID: 37242256 DOI: 10.3390/nu15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between the structure of peptides LR5 (LHKFR) and YR6 (YGLYPR) and their antioxidant and anti-inflammatory activity remains unclear. Herein, leucine, tyrosine, proline, and phenylalanine at different positions in the peptides were replaced by Alanine (Ala), and two new pentapeptides (AR5 and LAR5) and four hexapeptides (AGR6, YAR6, YLR6, and YGR6) were obtained. The effect of Ala replacement on the hydrophobicity, cytotoxicity, NO inhibition rate, and active oxygen radical scavenging ability of these peptides and their antioxidant and anti-inflammatory abilities were investigated. The results indicated that the hydrophobicity of the peptides was associated with their amino acid composition and their specific sequence. However, hydrophobicity had no significant effect on cytotoxicity. Ala replacement was shown to enhance hydrophobicity and consequently increased the antioxidant and anti-inflammatory activity of the peptides. The molecular docking studies indicated that the amino acid interactions of the peptide with the Keap1 protein influenced the hydrophobicity and thus affected the antioxidant activity of the peptide.
Collapse
Affiliation(s)
- Yun-Hui Cheng
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bu-Qing Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
18
|
Ren LK, Fan J, Yang Y, Liu XF, Wang B, Bian X, Wang DF, Xu Y, Liu BX, Zhu PY, Zhang N. Identification, in silico selection, and mechanism study of novel antioxidant peptides derived from the rice bran protein hydrolysates. Food Chem 2023; 408:135230. [PMID: 36549163 DOI: 10.1016/j.foodchem.2022.135230] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The work aimed to assess the antioxidant ability and obtain a new antioxidant peptide from rice bran protein. Rice bran protein was hydrolyzed by Alcalase, Neutral, Pepsin, Chymotrypsin, and Trypsin, separately. Trypsin hydrolysate (T-RBPH) showed high Fe2+ chelating activity (IC50, 2.271 ± 0.007 mg/mL), DPPH and hydroxyl radical scavenging ability (IC50, 0.191 ± 0.006 and 1.038 ± 0.034 mg/mL). Moreover, T-RBPH could alleviate the H2O2-induced oxidative damage in Caco-2. The T-RBPH was purified and identified by UF, GF, FPLC, and LC-MS/MS. Finally, 9-amino acid peptide-AFDEGPWPK with low molecular weight (1045.48 Da), high antioxidant activity, good safety, and solubility was screened by in silico method and chemical oxidation determination, and its interaction with Keap1 was also demonstrated. The ORAC and DPPH radical scavenging ability of AFDEGPWPK were 44.16 ± 0.79 and 28.38 ± 0.14 μmol TE/mM. Moreover, the Molecular docking and Western blot (WB) results showed that AFDEGPWPK could enter the binding pocket in the Kelch domain and activate Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Li-Kun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Jing Fan
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xiao-Fei Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Bing Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Dang-Feng Wang
- College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Xu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Bao-Xiang Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Peng-Yu Zhu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
19
|
Zhang J, Wu D, Zhao Y, Liu D, Guo X, Chen Y, Zhang C, Sun X, Guo J, Yuan D, Xiao D, Li F, Song H. Engineering Shewanella oneidensis to efficiently harvest electricity power by co-utilizing glucose and lactate in thin stillage of liquor industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158696. [PMID: 36108833 DOI: 10.1016/j.scitotenv.2022.158696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Thin stillage, rich in glucose and lactate, can seriously pollute water resources when directly discharged into the natural environment. Microbial fuel cells (MFC), as a green and sustainable technology, could utilize exoelectrogens to break down organics in wastewater and harvest electricity. Nevertheless, Shewanella oneidensis MR-1, cannot utilize thin stillage for efficient power generation. Here, to enable S. oneidensis to co-utilize glucose and lactate from thin stillage, an engineered S. oneidensis G7∆RSL1 was first created by constructing glucose metabolism pathway, promoting glucose and lactate co-utilization, and enhancing biofilm formation. Then, to enhance biofilm conductivity, we constructed a 3D self-assembled G7∆RSL1-rGO/CNT biohybrid with maximum power density of 560.4 mW m-2 and 373.7 mW m-2 in artificial and actual thin stillage, respectively, the highest among the reported genetically engineered S. oneidensis with thin stillage as carbon source. This study provides a new strategy to facilitate practical applications of MFC in wastewater remediation and efficient power recovery.
Collapse
Affiliation(s)
- Junqi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, PR China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China; Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Yakun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Qingdao Institute of Ocean Engineering, Tianjin University, Qingdao 266200, Shandong, China
| | - Dingyuan Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, PR China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Ju Guo
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Dezhi Yuan
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Feng Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, PR China; Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Qingdao Institute of Ocean Engineering, Tianjin University, Qingdao 266200, Shandong, China.
| |
Collapse
|
20
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
21
|
The Existing Recovery Approaches of the Huangjiu Lees and the Future Prospects: A Mini Review. Bioengineering (Basel) 2022; 9:bioengineering9110695. [DOI: 10.3390/bioengineering9110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Huangjiu lees (HL) is a byproduct in Chinese Huangjiu production with various nutrient and biological functional components. Without efficient treatment, it could cause environmental issues and bioresource wasting. Existing dominant recovery approaches focus on large-scale disposal, but they ignore the application of high-value components. This study discusses the advantages and limitations of existing resourcing approaches, such as feed, food and biogas biological production, considering the efficiency and value of HL resourcing. The extraction of functional components as a suggestion for HL cascade utilization is pointed out. This study is expected to promote the application of HL resourcing.
Collapse
|
22
|
Kumar D, Tarafdar A, Kumar Y, Dass SL, Pareek S, Badgujar PC. Production of functional spent hen protein hydrolysate powder and its fortification in food supplements: A waste to health strategy. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022; 14:nu14204400. [PMID: 36297084 PMCID: PMC9609859 DOI: 10.3390/nu14204400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.
Collapse
|
24
|
Yang W, Huang Z, Xiong H, Wang J, Zhang H, Guo F, Wang C, Sun Y. Rice Protein Peptides Alleviate Dextran Sulfate Sodium-Induced Colitis via the Keap1-Nrf2 Signaling Pathway and Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12469-12483. [PMID: 36148996 DOI: 10.1021/acs.jafc.2c04862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inflammatory bowel disease (IBD), with increasing incidence, causes a range of gastrointestinal symptoms and brings distress and impact on the health and lives of patients. The aim of this study was to explore the protective effects of industrially produced rice protein peptides (RPP) on dextran sulfate sodium (DSS)-induced acute colitis in mice and the potential mechanisms. The results showed that RPP treatment alleviated the symptoms of colitis in mice, including weight loss, colon shortening, and injury, decreased the level of disease activity index (DAI), regulated the balance of inflammatory factors and oxidation, activated Kelch-like ECH-associating protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) signaling pathway, regulated the expression of related antioxidant proteases, and promoted the expression of intestinal tight junction proteins. In addition, RPP maintained intestinal mucosal barrier function and alleviated acute colitis caused by DSS treatment in mice by increasing the value of F/B, increasing the relative abundance of beneficial bacteria such as Akkermansia, and regulating the level of short-chain fatty acids. In conclusion, RPP alleviated colitis symptoms through the Keap1-Nrf2 signaling pathway and regulating gut microbiota, which had the potential as dietary supplements or functional foods.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Jiaqi Wang
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410219, Hunan, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Chaoping Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
25
|
Zhao Y, Li J. Effect of varying pH and co-existing microcystin-LR on time- and concentration-dependent cadmium sorption by goethite-modified biochar derived from distillers' grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119490. [PMID: 35595000 DOI: 10.1016/j.envpol.2022.119490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one dangerous and widespread heavy metal that of great environmental concern. To cost-efficiently adsorb aqueous Cd under influence of various factors, this study succeeded in fabricating goethite-modified biochar (GBC) derived from distillers' grains (DGs) for Cd sorption of different concentrations (10-100 mg L-1) at pH of 3, 6 and 8 with and without microcystin-LR (MC-LR). Sorption kinetics and isotherms data revealed that Cd sorption capacity of GBC and unmodified BC increased as pH elevated from 3 to 6 but stabilized when pH further elevated to 8. Pseudo-second-order and Langmuir models more accurately fitted to sorption data for both BCs, implying monolayer chemisorption of Cd onto BCs. GBC exhibited more robust sorption for each Cd concentration than unmodified BC, with the maximum sorption capacity of around 28 mg g-1 at neutral and weak alkaline pH. Notably, goethite-modification obviously increased bulk polarity, specific surface area, porosity and surface oxygenic group abundance of BC, thus strongly enhancing Cd sorption by creating more sorption sites mainly via pore-filling, electrostatic attraction, and also via complexation and cation exchange. Co-existing MC-LR of 100 μg L-1 did not obviously affect Cd sorption by both BCs for most Cd levels at each pH, mostly because sorption mechanisms diverged between MC-LR and Cd to largely avoid their competition for sorption sties. Thus, goethite could modify DG-BC as promising and cost-efficient sorbent for Cd even with co-existing MC-LR, especially at neutral and weak alkaline pH that common in the nature. This study was greatly implicated in modifying and applying DG-BC for Cd immobilization in MC-LR laden waters with various pH circumstances.
Collapse
Affiliation(s)
- Yu Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Sharma S, Pradhan R, Manickavasagan A, Thimmanagari M, Dutta A. Corn distillers solubles as a novel bioresource of bioactive peptides with ACE and DPP IV inhibition activity: characterization, in silico evaluation, and molecular docking. Food Funct 2022; 13:8179-8203. [PMID: 35829682 DOI: 10.1039/d1fo04109f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the biological potential of underutilized and low-value corn distillers solubles, containing a unique unexplored blend of heat-treated corn and yeast proteins, from the bioethanol industries, by bioinformatic and biochemical approaches. Protein hydrolysates were produced by applying four commercially accessible proteases, among which alcalase provided the best results in terms of yield, degree of hydrolysis, molecular weight, number of proteins, bioactive peptides, and deactivation against anti-angiotensin I-converting enzyme (ACE) and anti-dipeptidyl peptidase IV (DPP IV). The optimal conditions to produce anti-ACE and anti-DPP IV peptides were using alcalase for 10.82 h and an enzyme : substrate ratio of 7.90 (%w/w), with inhibition values for ACE and DPP IV of 98.76 ± 1.28% and 34.99 ± 1.44%, respectively. Corn (α-zein) and yeast (glyceraldehyde-3-phosphate dehydrogenase) proteins were mainly suitable, upon enzymolysis, for the release of bioactive peptides. The peptides DPANLPWG, FDFFDNIN, WNGPPGVF, and TPPFHLPPP inhibited ACE more effectively as verified with binding energies of -11.3, -11.6, -10.5, and -11.6 kcal mol-1, respectively, as compared to captopril (-6.38 kcal mol-1). Compared with the binding energy of sitagliptin (-8.6 kcal mol-1), WNGPPGVF (-9.6 kcal mol-1), WPLPPFG (-9.8 kcal mol-1), LPPYLPS (-9.7 kcal mol-1), TPPFHLPPP (-10.1 kcal mol-1), and DPANLPWG peptides (-10.1 kcal mol-1) had greater inhibition potential against DPP IV. The peptides impeded ACE and DPP IV majorly via hydrophobic and hydrogen linkage interactions. The key amino acids TYR523, GLU384, and HIS353 were bound to the catalytic sites of ACE and GLN553, GLU206, PHE364, VAL303, and THR304 were bound to the DPP IV enzyme. The PHs can be used as ingredients in the feed or food industries with possible health advantages.
Collapse
Affiliation(s)
- Sonu Sharma
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - Ranjan Pradhan
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1. .,Shrimp Canada, 67 Watson Rd. S (Unit-2), Guelph, Ontario, N1L 1 E3, Canada
| | | | - Mahendra Thimmanagari
- Food and Rural Affairs, Ontario Ministry of Agriculture, 1 Stone Road West, Guelph N1G 4Y1, Ontario, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
27
|
Effect of extrusion on physicochemical properties and antioxidant potential of protein isolate derived from Baijiu vinasse. Food Chem 2022; 384:132527. [DOI: 10.1016/j.foodchem.2022.132527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
|
28
|
Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|
30
|
Amino acids imprinted ZIF-8s for the highly efficient and selective adsorption of antioxidant peptides from silkworm pupa protein. Food Res Int 2022; 157:111406. [DOI: 10.1016/j.foodres.2022.111406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022]
|
31
|
Effect of extrusion and autoclaving on the biological potential of proteins and naturally-occurring peptides from common beans: Antioxidant and vasorelaxant properties. Food Chem X 2022; 13:100259. [PMID: 35498981 PMCID: PMC9040038 DOI: 10.1016/j.fochx.2022.100259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023] Open
Abstract
Postharvest hardening did not definitively affect bioactivity of bean peptides. Peptides from hardened and non-hardened beans showed high vasorelaxant activity. Thermal treatment positively affected the biological potential of hardened beans.
Aiming to understand the impact of hardening on the biological potential of bean protein and peptides, we evaluated the antioxidant and vasorelaxant properties of common beans after and before hardening. It was also evaluated the effect of extrusion and autoclaving in the biological potential of hardened beans. In general, hardening caused a reduction from 13.5 to 39.6% on the antioxidant activity of the peptide-rich fractions. On the other hand, hardening did not strongly interfere with the vascular reactivity in thoracic aorta rings, being observed maximal relation varying from 801% to 84.7%. The thermal treatment caused a general increase in the antioxidant and vasorelaxant potential of these fractions, being observed EC50 values ranging from 0.22 mg mL−1 to 0.26 mg mL−1. We can conclude that hardening did not seem to affect definitively the bioactivity of the obtained peptide-rich fractions. Finally, this study allows suggesting practical applications of extrusion as a thermal process in the production of functional food ingredients, and as ready-to-eat products presenting nutraceutical potential. In addition, autoclaving can be used as a pre-treatment of the hardened grains aiming to use them as whole grains with potentialized benefits for human health.
Collapse
|
32
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
33
|
Hu Y, Yang J, He C, Wei H, Wu G, Xiong H, Ma Y. Fractionation and purification of antioxidant peptides from abalone viscera by a combination of Sephadex G‐15 and Toyopearl HW‐40F chromatography. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yaqin Hu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Jiahong Yang
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Haocheng Wei
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Guohong Wu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Ying Ma
- Fisheries College of Jimei University Xiamen 361021 China
| |
Collapse
|
34
|
Chen L, Li D, Zhu C, Rong Y, Zeng W. Characterisation of antioxidant peptides from enzymatic hydrolysate of golden melon seeds protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Chuchu Zhu
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| | - Wenhua Zeng
- School of Perfume and Aroma Technology Shanghai Institute of Technology No.100 Haiquan Road Shanghai China
| |
Collapse
|
35
|
Zhang S, Luo L, Sun X, Ma A. Bioactive Peptides: A Promising Alternative to Chemical Preservatives for Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12369-12384. [PMID: 34649436 DOI: 10.1021/acs.jafc.1c04020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioactive peptides used for food preservation can prolong the shelf life through bacteriostasis and antioxidation. On the one hand, bioactive peptides can inhibit lipid oxidation by scavenging free radicals, interacting with metal ions, and inhibiting lipid peroxidation. On the other hand, bioactive peptides can fundamentally inhibit the growth and reproduction of microorganisms by destroying their cell membranes or targeting intracellular components. Besides, bioactive peptides are biocompatible and biodegradable in vivo. Therefore, they are regarded as a promising alternative to chemical preservatives. However, bioactive peptides are easily affected by the external environment in practical application, which hinders their commercialization. Currently, the studies to overcome the weakness focus on encapsulation and chemical synthesis. Bioactive peptides have been applied to the preservation of various foods in experimental research, with good results. In the future, with the deepening understanding of their safety and structure-activity relationship, there may be more bioactive peptides as food preservatives.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
36
|
Qiao Z, Han L, Liu X, Dai H, Liu C, Yan M, Li W, Han W, Li X, Huang S, Gao B. Extraction, Radical Scavenging Activities, and Chemical Composition Identification of Flavonoids from Sunflower ( Helianthus annuus L.) Receptacles. Molecules 2021; 26:molecules26020403. [PMID: 33466694 PMCID: PMC7828773 DOI: 10.3390/molecules26020403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study was focused on extraction, radical scavenging activities, and chemical composition identification of total flavonoids in sunflower (Helianthus annuus L.) receptacles (TFSR). We investigated the optimal extract parameters of TFSR using response surface methodology. The highest yield of TFSR was 1.04% with the ethanol concentration 58%, the material-to-liquid ratio 1:20 (v/w), the extraction time 2.6 h, and the extraction temperature 67 °C. The results of radical scavenging activities showed that ethyl acetate fraction (EAF) was the strongest by using 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2’-azino-bis (3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS) and iron ion reducing analysis. The EAF had the highest flavonoids contents. Four fractions A, B, C and D were enrichment from EAF by polyamide resin. Fraction B had the highest flavonoids content. Thirteen chemical components of flavonoids in fraction B were first identified by Ultimate 3000 Nano LC System coupled to a Q Exactive HF benchtop Orbitrap mass spectrometer (UHPLC-HRMS/MS). Among of the thirteen chemical components, isoquercetin and daidzein were identified accurately by comparing with standard samples. Radical scavenging analysis showed that isoquercetin and EAF had strong activities. Therefore, sunflower receptacles can be used as a source of natural flavonoids. TFSR as a natural radical scavenger has potential applications in pharmaceutical industry.
Collapse
Affiliation(s)
- Zian Qiao
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Third-Level Laboratory of National Administration of Traditional Chinese Medicine, Jilin University, Changchun 130012, China
| | - Lu Han
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun 130012, China
| | - Xinsheng Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun 130012, China
| | - Huining Dai
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Changmin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Min Yan
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Wannan Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Weiwei Han
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun 130012, China
| | - Xinlu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Silu Huang
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Third-Level Laboratory of National Administration of Traditional Chinese Medicine, Jilin University, Changchun 130012, China
- Correspondence: ; Tel.: +86-131-3443-5290; Fax: +86-431-8515-5127
| |
Collapse
|