1
|
Deng H, Guo X, Zhang R, Sun C, Zhou X, Zhang B, Deng S, Chen J. Effects of cinnamon essential oil Pickering emulsion on the quality of refrigerated Hairtail (Trichiurus haumela). Food Res Int 2025; 209:116311. [PMID: 40253207 DOI: 10.1016/j.foodres.2025.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
The preservation of hairtail (Trichiurus haumela) under refrigerated conditions is notably difficult, as it is highly prone to spoilage caused by microbial activity and protein oxidation. This study investigated the effectiveness of a novel Zein-AG-CBO Pickering emulsion, enriched with cinnamon bark oil, in enhancing the shelf life and quality of hairtail. The emulsions, with different concentrations from 0MIC to 2MIC, were applied to evaluate its preservative effect on the hairtail in terms of physicochemical, microbiological and myofibrillar proteins over a 10-day storage period at 4 °C. The preservation effect on the hairtail was reflected through evaluations of total volatile basic nitrogen (TVB-N), water holding capacity (WHC), total bacterial count (TVC) and other parameters. Additionally, the impact of the Zein-AG-CBO Pickering emulsion on hairtail myofibrillar proteins was assessed primarily through measurements of total protein content, protein particle size, Ca2+-ATPase activity, sulfhydryl content, carbonyl content, and surface hydrophobicity. Results indicated that the emulsion could prolong the shelf life of hairtail from 6 days to 10 days at 4 °C by retarding the microbial growth and protein degradation. The highest concentration (2MIC) was particularly effective, showing superior retention of sensory attributes, markedly lower levels of TVB-N and microbial counts, more protective effect on hairtail myofibrillar proteins during storage, compared to lower concentrations and the control counterpart. The findings suggested that the Zein-AG-CBO Pickering emulsion is a promising natural preservative that effectively maintained the quality and extended the shelf life of hairtail, offering excellent alternative for the seafood.
Collapse
Affiliation(s)
- Haoyun Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xiaoxiao Guo
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ruihan Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chang Sun
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xinyi Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Sun R, Xia J, Jiang N, Zhang B, Yu R, Wang C, Liu Q. The combined effect of cold plasma and radio frequency on the preservation of cooked crayfish during refrigerated storage. Food Res Int 2025; 209:116314. [PMID: 40253156 DOI: 10.1016/j.foodres.2025.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
To improve the shelf life of crayfish, the preservation effects of cold plasma (CP) and radio frequency (RF) treatments were investigated in this study. The crayfish samples were treated by CP (130 kV, 3 min), RF (3.5 kW, 15 min) or their combinations and stored at 4 °C. Afterward, the quality attributes (microbial stability, physicochemical parameters, water distribution and protein structures) of the treated crayfish tails were measured during 12 days. According to the total viable count (TVC) and total volatile basic nitrogen (TVB-N) values, the CK samples became unacceptable during 3-6 days, while the RF + CP treatment extended the shelf-life to 9-12 days. Besides, the thiobarbituric acid reactive substances (TBARS) values for all the investigated crayfish samples were maintained within 11 mg/100 g throughout the whole storage period. Low-field nuclear magnetic resonance (LF-NMR) analysis indicated that the samples after RF treatments exhibited less free water contents than those without RF treatments, implying that RF treatments might restrict the water migration. Moreover, Fourier transform infrared (FTIR) spectroscopy analysis revealed that RF + CP treatments slightly reduced the α-helix contents and increased the contents of β-sheet and random coil in crayfish proteins, while these structural changes were not obvious at the later stage of storage. In addition, the RF + CP treatment effectively delayed the color and textural deterioration of crayfish during storage. Overall, this study showed that the combined treatments of RF and CP effectively extended the shelf life of crayfish and improved the storage quality.
Collapse
Affiliation(s)
- Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Jiangyue Xia
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Rongrong Yu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Qianyuan Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| |
Collapse
|
3
|
Hu J, Xie K, Zhu H, Giusti A, Li M, Zheng Y, Chen J, Armani A, Ying X, Deng S. Effects of atmospheric cold plasma treatment mode on muscle quality and bacterial community of red shrimp during cold storage. Food Res Int 2025; 207:116051. [PMID: 40086956 DOI: 10.1016/j.foodres.2025.116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Atmospheric cold plasma (ACP), known for its safety, non-thermal processing, and energy efficiency, is especially effective for preserving perishable items such as seafood. However, excessive use of ACP may cause oxidation and sensory quality deterioration, which limits its application in the seafood industry. Thus, optimizing ACP treatment modes to balance sterilization efficiency with minimal oxidative effects is essential. This study aims to explore the impact of different ACP treatment modes (cyclical and one-time treatment) on the muscle quality and bacterial community of red shrimp during cold storage. The results indicated that on day 0 of storage, compared to the blank group and the one-time treatment group, the cyclical treatment significantly reduced the total viable count in red shrimp (p < 0.05). However, no significant differences were observed in centrifugal loss, cooking loss, textural properties, total sulfhydryl content, or Ca2+-ATPase activity (p > 0.05). By day 8, both ACP treatment modes significantly improved the protein quality of red shrimp. Compared with the one-time treatment, cyclical treatment reduced the abundance of Aliivibrio (57.24 %), Pseudoalteromonas (97.34 %), and Psychrobacter (59.07 %) in the bacterial community and delayed bacterial succession (especially Aliivibrio salmonicida, Psychrobacter cibarius, and Pseudoalteromonas nigrifaciens), slowing down the degradation of protein quality. Specifically, in the cyclical treatment group, cooking loss was reduced by 7.01 %, and improvements were observed in hardness, total sulfhydryl content, and Ca2+-ATPase activity, which increased by 8.93 %, 17.54 %, and 5.63 %, respectively. Overall, this study demonstrates that the ACP cyclical treatment mode has greater potential in preserving the freshness of seafood.
Collapse
Affiliation(s)
- Jiajie Hu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, 56124, Italy
| | - Kai Xie
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Hangxin Zhu
- College of Agriculture, Food and Nature Resources, University of Missouri, Columbia, 65201, USA
| | - Alice Giusti
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, 56124, Italy
| | - Mingao Li
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yan Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jing Chen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Pisa, 56124, Italy.
| | - Xiaoguo Ying
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shanggui Deng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
4
|
Chen Y, Peng S, Hu J, Chen J, Zhou X, Yang H. Excellent quality acquisition of myofibrillar protein in red shrimp (Solenocera crassicornis) based on regulating the oxidation degree of atmospheric cold plasma treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2712-2721. [PMID: 39573906 DOI: 10.1002/jsfa.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Myofibrillar protein (MP) is essential for the texture and taste of shrimp surimi products. The reactive oxygen/nitrogen species (ROS/RNS) produced by atmospheric cold plasma (ACP) might cause oxidative modification of MP. In this study, the effect of different ACP treatment times on the properties of red shrimp MP was investigated in detail. RESULTS The mild oxidation induced by ACP treatment for 1 min (ACP-1 min) promoted the unfolding and refolding of the MP structure, which was manifested as a transition from α-helix to β-sheets. Compared with other groups, more hydrogen bonds and hydrophobic interactions in the ACP-1 min group might enhance the interactions between the myosin heavy chain and actin, which was conducive to the formation of a regular and dense three-dimensional network structure. Person correlation analysis revealed that ROS/RNS mediated the changes in the secondary and tertiary structure of MP. In addition, ACP-1 min has high Ca2+-ATPase activity, which reflected that MP maintained structural integrity. While excessive oxidation in the ACP treatments for 3 min and 5 min reduced MP robustness. The stable internal structure in ACP-1 min group gave the MP excellent texture profile (1.79 mJ of adhesiveness and 0.89 mm of springiness) and rheological characteristics (0.373 MPa of storage modulus). CONCLUSION Overall, the excellent quality of MP could be obtained by regulating the oxidation degree of ACP, which would provide valuable information for the in-depth and efficient processing of shrimp products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingyun Chen
- Department of Food Science and Engineering, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Siwei Peng
- Department of Food Science and Engineering, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jiajie Hu
- Department of Food Science and Engineering, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jing Chen
- Department of Food Science and Engineering, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Xinyi Zhou
- Department of Food Science and Engineering, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hongli Yang
- Department of Food Science and Engineering, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| |
Collapse
|
5
|
Hashempour-baltork F, Mirza Alizadeh A, Taghizadeh M, Hosseini H. Cold plasma technology: A cutting-edge approach for enhancing shrimp preservation. Heliyon 2024; 10:e40460. [PMID: 39669143 PMCID: PMC11636109 DOI: 10.1016/j.heliyon.2024.e40460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Cold plasma (CP) is an emerging technology employed to safeguard highly perishable food items, particularly aquatic products such as shrimp. Due to its significant amount of moisture, superior protein composition that contains important amino acids, and unsaturated fatty acid content, shrimp are susceptible to microbial deterioration and overall alterations in their physical and chemical characteristics. Such spoilage not only diminishes the nutritional value of shrimp but also has the potential to generate harmful substances, rendering it unsuitable for consumption. Recent observations have indicated a growing market demand for shrimp that maintains its quality and has a prolonged shelf life. Furthermore, there is a significant emphasis on the production of food items that undergo minimal processing or nonthermal preservation methods. Extensive documentation exists regarding the efficacy of CP technology in eliminating microorganisms from shrimp without inducing resistance or activating enzymes that contribute to shrimp spoilage. Therefore, CP can be mentioned as a slight processing interference to preserve shrimp quality. This chapter primarily explores the principles and methods of CP technology, as well as its impact on melanosis, physicochemical changes, microbial and sensory properties, and the preservation of shrimp quality.
Collapse
Affiliation(s)
- Fataneh Hashempour-baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansoureh Taghizadeh
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Shui S, Chen Y, Yan H, Song J, Liu S, Benjakul S, Zhang B. Comparative analyses of physicochemical and volatile flavor characteristics in hooked, trawl-net, and radar-net hairtail ( Trichiurus haumela) muscles during long-term cryopreservation at -18°C. Food Sci Nutr 2024; 12:8159-8170. [PMID: 39479670 PMCID: PMC11521657 DOI: 10.1002/fsn3.4381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 11/02/2024] Open
Abstract
Chemical analysis showed that pH, b* values, myosin turbidity, carbonyl content, and surface hydrophobicity elevated in hooked, trawl-net, and radar-net hairtail (Trichiurus haumela, HH, TH, and RH) muscles with the prolonged cryopreservation time (-18℃, 120 d). In contrast, L*, a* values, textural properties, and myosin solubility existed decreasing trends. Microstructural results showed that freezing resulted in disordered myofibrils, decreased collagen fibers, widened myofibrillar space, and increased fragmentation in hairtail muscles. Furthermore, volatile flavor analysis suggested that aldehydes, ketones, alcohols, and amines were the key factors for the overall flavor formation in hairtails during cold storage. Pearson correlation coefficient analysis revealed that the color, texture, and protein oxidation had close correlations with VOCs. Among the three different kinds of hairtail, fresh RH fillets exhibited an attractive aroma with high economic value, long-term frozen TH muscle tissues were prone to deterioration in texture, microstructure, and flavor, and the HH samples presented stable quality characteristics and storage performance.
Collapse
Affiliation(s)
- Shanshan Shui
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Yu Chen
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Hongbo Yan
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| | - Jia Song
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Shucheng Liu
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro‐IndustryPrince of Songkla UniversityHat YaiThailand
| | - Bin Zhang
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
7
|
Oh H, Lee J. Psychrotrophic Bacteria Threatening the Safety of Animal-Derived Foods: Characteristics, Contamination, and Control Strategies. Food Sci Anim Resour 2024; 44:1011-1027. [PMID: 39246535 PMCID: PMC11377203 DOI: 10.5851/kosfa.2024.e70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Animal-derived foods, such as meat and dairy products, are prone to spoilage by psychrotrophic bacteria due to their high-water activity and nutritional value. These bacteria can grow at refrigerated temperatures, posing significant concerns for food safety and quality. Psychrotrophic bacteria, including Pseudomonas, Listeria, and Yersinia, not only spoil food but can also produce heat-resistant enzymes and toxins, posing health risks. This review examines the characteristics and species composition of psychrotrophic bacteria in animal-derived foods, their impact on food spoilage and safety, and contamination patterns in various products. It explores several nonthermal techniques to combat bacterial contamination as alternatives to conventional thermal methods, which can affect food quality. This review highlights the importance of developing nonthermal technologies to control psychrotrophic bacteria that threaten the cold storage of animal-derived foods. By adopting these technologies, the food industry can better ensure the safety and quality of animal-derived foods for consumers.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeeyeon Lee
- Department of Food & Nutrition, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
8
|
Rout S, Srivastav PP. Modification of soy protein isolate and pea protein isolate by high voltage dielectric barrier discharge (DBD) atmospheric cold plasma: Comparative study on structural, rheological and techno-functional characteristics. Food Chem 2024; 447:138914. [PMID: 38460320 DOI: 10.1016/j.foodchem.2024.138914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The modification in structural, rheological, and techno-functional characteristics of soy and pea protein isolates (SPI and PPI) due to dielectric barrier discharge cold plasma (DBD-CP) were assessed. The increased carbonyl groups in both samples with cold plasma (CP) treatment led to a reduction in free sulfhydryl groups. Moreover, protein solubility of treated proteins exhibited significant improvements, reaching up to 59.07 % and 41.4 % for SPI and PPI, respectively, at 30 kV for 8 min. Rheological analyses indicated that storage modulus (G') was greater than loss modulus (G″) for CP-treated protein gels. Furthermore, in vitro protein digestibility of SPI exhibited a remarkable improvement (4.78 %) at 30 kV for 6 min compared to PPI (3.23 %). Spectroscopic analyses, including circular dichroism and Fourier Transform-Raman, indicated partial breakdown and loss of α-helix structure in both samples, leading to the aggregation of proteins. Thus, DBD-CP induces reactive oxygen species-mediated oxidation, modifying the secondary and tertiary structures of samples.
Collapse
Affiliation(s)
- Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
9
|
Tian F, Chen W, Gu X, Guan W, Cai L. Thawing of Frozen Hairtail ( Trichiurus lepturus) with Graphene Nanoparticles Combined with Radio Frequency: Variations in Protein Aggregation, Structural Characteristics, and Stability. Foods 2024; 13:1632. [PMID: 38890861 PMCID: PMC11171875 DOI: 10.3390/foods13111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Efficient thawing can preserve the quality of frozen hairtail (Trichiurus lepturus) close to that of fresh hairtail. In contrast to air thawing (AT) and radio-frequency thawing (RT), this study looked at how graphene oxide (GO) and graphene magnetic (GM) nanoparticles paired with RT affect the microstructure and protein conformation of hairtails after thawing. The results suggested that GM-RT can reduce the myofibrillar protein (MP) damage and be more effective than other thawing treatments, like AT, RT, and GO-RT, in maintaining the microstructure of hairtail. The particle size and zeta potential showed that GM-RT could reduce the aggregation of MP during the thawing process compared to other thawing methods. Moreover, the texture of the hairtail after GM-RT exhibited higher hardness (1185.25 g), elasticity (2.25 mm), and chewiness (5.75 mJ) values compared to other thawing treatments. Especially compared with RT, the GM-RT treatment displayed significant improvements in hardness (27.24%), a considerable increase in springiness (92.23%), and an increase in chewiness (57.96%). GO-RT and GM-RT significantly reduced the centrifugal loss. The scanning electron microscopy results demonstrated that the effect of GM-RT was more akin to that of a fresh sample (FS) and characterized by a well-organized microstructure. In conclusion, GM-RT effectively diminished the MP aggregation and improved the texture of thawed fish. It can be regarded as a viable alternative thawing technique to enhance MP stability, which is vital for preserving meat quality.
Collapse
Affiliation(s)
- Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
| | - Wenyuchu Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Xiaohan Gu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (F.T.); (W.C.); (X.G.)
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
| | - Weiliang Guan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China
- School of Chemical and Biological Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
10
|
Wang Y, Sang X, Cai Z, Zeng L, Deng W, Zhang J, Jiang Z, Wang J. Optimization of cold plasma combined treatment process and its effect on the quality of Asian sea bass (Lates calcarifer) during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2750-2760. [PMID: 37994167 DOI: 10.1002/jsfa.13159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Cold plasma exhibits broad applicability in the realm of fish sterilization and preservation. The combination process of plasma-activated water and dielectric barrier discharge (PAW-DBD) was optimized, and its disinfection effects on bass fillets were studied. RESULTS The best conditions for disinfection of PAW-DBD were as follows. Bass fillets were soaked in PAW for 150 s, and then treated by DBD system at 160 kV for 180 s. The total viable count (TVC) reduced by 1.68 log CFU g-1 . On the 15th day of refrigerated storage, TVC of PAW-DBD group was 7.01 log CFU g-1 , while the PAW and DBD group exhibited a TVC of 7.02 and 7.01 log CFU g-1 on day 12; the TVC of the control group was 7.13 log CFU g-1 on day 6. The sensory score, water-holding capacity, and 2-thiobarbituric acid reactive substance values of the PAW-DBD group were significantly higher than those of PAW and DBD group (P < 0.05), whereas the TVC, Pseudomonas spp. count, and pH of the group were significantly lower (P < 0.05) during refrigerated storage. CONCLUSION PAW-DBD treatment can enhance the disinfection effect, maintain good quality, and extend the storage period of bass fillets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhumao Jiang
- College of Life Sciences, Yantai University, Yantai, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood, Hainan University, Haikou, China
| |
Collapse
|
11
|
Ramezan Y, Kamkari A, Lashkari A, Moradi D, Tabrizi AN. A review on mechanisms and impacts of cold plasma treatment as a non-thermal technology on food pigments. Food Sci Nutr 2024; 12:1502-1527. [PMID: 38455202 PMCID: PMC10916563 DOI: 10.1002/fsn3.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Food characteristics like appearance and color, which are delicate parameters during food processing, are important determinants of product acceptance because of the growing trend toward more diverse and healthier diets worldwide, as well as the increase in population and its effects on food consumption. Cold plasma (CP), as a novel technology, has marked a new trend in agriculture and food processing due to the various advantages of meeting both the physicochemical and nutritional characteristics of food products with minimal changes in physical, chemical, nutritional, and sensorial properties. CP processing has a positive impact on food quality, including the preservation of natural food pigments. This article describes the influence of CP on natural food pigments and color changes in vegetables and fruits. Attributes of natural pigments, such as carotenoids, chlorophyll, anthocyanin, betalain, and myoglobin, are presented. In addition, the characteristics and mechanisms of CP processes were studied, and the effect of CP on mentioned pigments was investigated in recent literature, showing that the use of CP technology led to better preservation of pigments, improving their preservation and extraction yield. While certain modest and undesirable changes in color are documented, overall, the exposure of most food items to CP resulted in minor loss and even beneficial influence on color. More study is needed since not all elements of CP treatment are currently understood. The negative and positive effects of CP on natural food pigments in various products are discussed in this review.
Collapse
Affiliation(s)
- Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Amir Kamkari
- Department of Food Engineering, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Armita Lashkari
- Department of Food Science and TechnologyIslamic Azad University, Tehran North BranchTehranIran
| | - Donya Moradi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abbas Najafi Tabrizi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
12
|
Liu S, Cai X, Tang Z, Hu Z, Li Y, Hu Y. Ionic strength-mediated protein and flavor studies on thermally processed hairtail pieces. J Food Sci 2023; 88:4108-4121. [PMID: 37676095 DOI: 10.1111/1750-3841.16746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/16/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
This study aimed to investigate the impact of different ionic strengths on the texture, protein, and flavor of thermally processed hairtail pieces. Incorporating salt ions into the heat treatment process had a positive impact on the quality of the cooked hairtail pieces. The pieces treated with 2 M NaCl showed superior texture and sensory scores. The ionic strength had a significant positive correlation with the chewiness and cohesion of cooked hairtail (p < 0.01). Furthermore, the myofibrillar protein content and total sulfhydryl content increased significantly. Circular dichroism spectra analysis revealed a transition in the protein structure from a β-sheet structure to an α-helical structure as the ionic strength decreased. The ionic strength had a significant impact on the interaction between protein and flavor compounds. Specifically, it impacted the expression of certain volatile components (p < 0.05). Our study suggests that selecting the appropriate cooking method is crucial for both healthiness and sensory quality of processed hairtail products, and ionic strength mediation is superior in both aspects.
Collapse
Affiliation(s)
- Shuyu Liu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinya Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhixin Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhiheng Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yuan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, China
| |
Collapse
|
13
|
Xu J, Sun Q, Dong X, Gao J, Wang Z, Liu S. Insight into the microorganisms, quality, and protein structure of golden pompano ( Trachinotus ovatus) treated with cold plasma at different voltages. Food Chem X 2023; 18:100695. [PMID: 37234402 PMCID: PMC10206424 DOI: 10.1016/j.fochx.2023.100695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cold plasma (CP) is a non-thermal novel technology for the processing of heat-sensitive food products, but there is concern regarding its impact on food quality. Voltage is one of the most direct factors affecting the bacteriostatic effect of CP. Golden pompano (Trachinotus ovatus) was treated with CP at different voltages (10, 20, and 30 kV). The total viable count decreased as the CP voltage increased, reaching a maximum reduction of 1.54 lg CFU/g on golden pompano treated at 30 kV. No effects on water-holding capacity, pH, total volatile base nitrogen, and T2b relaxation time were observed, indicating that all CP treatments retained the freshness and bound water of the samples. However, as the CP voltage increased, peroxide value and thiobarbituric acid-reactive substances of golden pompano gradually increased, the protein tertiary structure unfolded, and α-helices converted to β-sheets, indicating inevitable lipid and protein oxidation caused by excessive CP voltage. Therefore, a suitable voltage of CP should be selected to inhibits the growth of microorganisms, which avoids deterioration of sea-foods quality.
Collapse
Affiliation(s)
- Jie Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
14
|
Situ H, Li Y, Gao J, Zhang C, Qin X, Cao W, Lin H, Chen Z. Effects of cold atmospheric plasma on endogenous enzyme activity and muscle protein oxidation in Trachinotus ovatus. Food Chem 2023; 407:135119. [PMID: 36512910 DOI: 10.1016/j.foodchem.2022.135119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the effects of cold atmospheric plasma (CAP) technology on endogenous enzyme characteristics and muscle protein properties of the golden pomfret (Trachinotus ovatus) under different treatment power and time conditions. Results showed that the enzymatic activity of cathepsin B, L, and calpain in crude protease extracts (CPE) decreased significantly as the treatment power and treatment time of CAP increased (p < 0.05). Oxidative degradation of the CPE after exposure to CAP resulted in significant changes in the structure, total sulfhydryl, and carbonyl content of the CPE (p < 0.05). CAP of an appropriate intensity resulted in significant improvements in the color parameters, hydration properties, and textural property parameters of muscle proteins (p < 0.05). These results suggest that CAP, as a non-thermophysical modification technique, can inhibit the activity of endogenous enzymes as well as alter the protein function in food.
Collapse
Affiliation(s)
- Huiyuan Situ
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yumei Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Yu M, Ding Y, Du Q, Liao Y, Miao W, Deng S, Cullen PJ, Zhou R. Efficacy of Chitosan Oligosaccharide Combined with Cold Atmospheric Plasma for Controlling Quality Deterioration and Spoilage Bacterial Growth of Chilled Pacific White Shrimp ( Litopenaeus vannamei). Foods 2023; 12:foods12091763. [PMID: 37174301 PMCID: PMC10178389 DOI: 10.3390/foods12091763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A novel food processing technique based on the combination of cold atmospheric plasma (CAP) and chitosan oligosaccharide treatment (COS) was developed to enhance antibacterial performance and extend the shelf life of Pacific white shrimp (Litopenaeus vannamei). Effects of different treatments on the microbial community composition, physicochemical properties, and post-storage behaviors of Pacific white shrimp were evaluated during chilled storage for up to 10 days. Results showed that the synergistic effects of COS and CAP could be obtained, largely inhibiting the growth of microorganisms. The content of total volatile basic nitrogen (TVB-N), total viable counts (TVC), and pH value in treated groups were lower than in the control group and the loss of moisture content, water activity, and sensory score were observed. Compared to the control group, shrimp was on the verge of spoilage on the 6th day of storage, while the COS-CAP-treated shrimp had a 4-day lag period. Moreover, the COS and CAP could effectively inhibit the growth of Aliivibrio, the predominant microbial group in the ultimate storage period. This study suggests that the combined utilization of COS and CAP could be a high-efficacy technique for extending the shelf-life of shrimp.
Collapse
Affiliation(s)
- Mijia Yu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yixuan Ding
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qi Du
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yueqin Liao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanggui Deng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Liao Y, Ding Y, Du Q, Wu Y, Lin H, Benjakul S, Zhang B. Changes in the lipid profiles of hairtail (Trichiurus lepturus) muscle during air-drying via liquid chromatography-mass spectrometry analysis. Food Chem X 2023; 17:100610. [PMID: 36974190 PMCID: PMC10039224 DOI: 10.1016/j.fochx.2023.100610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chemical and liquid chromatography-mass spectrometry (LC/MS)-based lipidomics analyses were performed to explore the alterations in lipid profiles in the hairtail muscle during air-drying. The peroxide value (POV) and carbonyl group value (CGV) in the air-dried hairtail (ADH) significantly increased with air-drying time. Lipidomics results revealed 1,326 lipids, which were grouped into 33 lipid categories, including 422 triglycerides (TGs), 170 phosphatidylcholines (PCs), 110 phosphatidylethanolamines (PEs), among others. In addition, ADH contained 131 and 201 differentially abundant lipids (DALs) at high and low levels, respectively. Among them, DALs, TGs, PCs, LPCs, and LPEs could be used to distinguish between ADH and FH samples. The apparent alterations in ADH and FH samples were attributed to lipid decomposition, side-chain modifications during oxidation, or oxygen- and salt-promoted lipid oxidation. Thus, this study provides a more comprehensive understanding of hairtail lipid profiles before and after air-drying which can be used as a guide for hairtail products.
Collapse
Affiliation(s)
- Yueqin Liao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Yixuan Ding
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Huimin Lin
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
- Pisa Marine Graduate School, Zhejiang Ocean University, PR China
- Corresponding authors at: No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, PR China.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
- Pisa Marine Graduate School, Zhejiang Ocean University, PR China
- Corresponding authors at: No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, PR China.
| |
Collapse
|
17
|
Evaluating the influence of cold plasma bubbling on protein structure and allergenicity in sesame milk. Allergol Immunopathol (Madr) 2023; 51:1-13. [PMID: 36924386 DOI: 10.15586/aei.v51isp1.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 03/16/2023]
Abstract
BACKGROUND Sesame is a traditional oilseed comprising essential amino acids. However, the presence of allergens in sesame is a significant problem in its consumption; thus, this study attempted to reduce these allergens in sesame oilseeds. OBJECTIVE The present study aimed to evaluate the effect of cold plasma processing on structural changes in proteins, and thereby the alteration of allergenicity in sesame milk. Method: Sesame milk (300 mL) was processed using atmospheric pressure plasma bubbling unit (dielectric barrier discharge, power: 200 V, and airflow rate: 16.6 mL/min) at different exposure times (10, 20, and 30 min). RESULTS The efficiency of plasma-bubbling unit as measured by electron paramagnetic resonance in terms of producing reactive hydroxyl (OH) radicals proved that generation of reactive species increased with exposure time. Further, the plasma-processed sesame milk subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetery analysis revealed that plasma bubbling increased the oxidation of proteins with respect to bubbling time. The structural analysis by Fourier transform infrared spectroscopy and circular dichroism revealed that the secondary structure of proteins was altered after plasma application. This change in the protein structure helped in changing the immunoglobulin E (IgE)-binding epitopes of the protein, which in turn reduced the allergen-binding capacity by 23% at 20-min plasma bubbling as determined by the sandwich-type enzyme-linked immunosorbent assay. However, 30-min plasma bubbling intended to increase allergenicity, possibly because of increase in IgE binding due to the generation of neo epitopes. CONCLUSION These changes proved that plasma bubbling is a promising technology in oxidizing protein structure, and thereby reducing the allergenicity of sesame milk. However, increase in binding at 30-min bubbling is to be studied to facilitate further reduction of the binding capacity of IgE antibodies.
Collapse
|
18
|
Zhang D, Liu J, Ruan J, Jiang Z, Gong F, Lei W, Wang X, Zhao J, Meng Q, Xu M, Tang J, Li H. Combination of millet pepper and garlic water extracts improves the antioxidant capability of myofibrillar protein under malondialdehyde-induced oxidative modification. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Paulsen P, Csadek I, Bauer A, Bak KH, Weidinger P, Schwaiger K, Nowotny N, Walsh J, Martines E, Smulders FJM. Treatment of Fresh Meat, Fish and Products Thereof with Cold Atmospheric Plasma to Inactivate Microbial Pathogens and Extend Shelf Life. Foods 2022; 11:3865. [PMID: 36496672 PMCID: PMC9740106 DOI: 10.3390/foods11233865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Assuring the safety of muscle foods and seafood is based on prerequisites and specific measures targeted against defined hazards. This concept is augmented by 'interventions', which are chemical or physical treatments, not genuinely part of the production process, but rather implemented in the framework of a safety assurance system. The present paper focuses on 'Cold Atmospheric pressure Plasma' (CAP) as an emerging non-thermal intervention for microbial decontamination. Over the past decade, a vast number of studies have explored the antimicrobial potential of different CAP systems against a plethora of different foodborne microorganisms. This contribution aims at providing a comprehensive reference and appraisal of the latest literature in the area, with a specific focus on the use of CAP for the treatment of fresh meat, fish and associated products to inactivate microbial pathogens and extend shelf life. Aspects such as changes to organoleptic and nutritional value alongside other matrix effects are considered, so as to provide the reader with a clear insight into the advantages and disadvantages of CAP-based decontamination strategies.
Collapse
Affiliation(s)
- Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Isabella Csadek
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | | | - Kathrine H. Bak
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - James Walsh
- Centre for Plasma Microbiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Emilio Martines
- Department of Physics “G. Occhialini”, University of Milano—Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Frans J. M. Smulders
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
20
|
Mol S, Akan T, Kartal S, Coşansu S, Tosun ŞY, Alakavuk DÜ, Ulusoy Ş, Doğruyol H, Bostan K. Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Assessment of the Effect of Cold Atmospheric Plasma (CAP) on the Hairtail ( Trichiurus lepturus) Quality under Cold Storage Conditions. Foods 2022; 11:foods11223683. [PMID: 36429278 PMCID: PMC9689270 DOI: 10.3390/foods11223683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Cold Atmospheric Plasma (CAP) is a novel non-thermal preservation method that extends the shelf-life of food. Therefore, this study investigated the effect of CAP on the quality parameters of hairtail (Trichiurus lepturus) during cold storage conditions (at 4 °C and RH range 45−55%). For that reason, different quality parameters including the total bacteria count (TBC), total volatile basic nitrogen (TVB-N), pH, thiobarbituric acid reacting substances value (TBARS), color, texture, and sensory evaluation have been measured. The hairtail was exposed to CAP at 50 kV voltage for 2, 3, 4, and 5 min. The results showed that the samples treated with CAP at 50 kV for 5 min had significantly lower (p < 0.05) TBC (7.04 ± 0.26 log CFU/g) compared with the control sample (8.69 ± 0.06 log CFU/g). Similar results were found concerning TVB-N, which strongly decreased in the treated samples (16.63 ± 0.03 mg N/100 g) in comparison with the control sample (22.79 ± 0.03 mg N/100 g). In addition, the CAP-treated samples had lower (p < 0.05) changes in color than those of the control group. With reference to the sensory evaluation, the shelf-life of CAP-treated samples (at 50 kV for 5 min) was longer than the untreated samples by about 6 days. These results led us to the conclusion that CAP can effectively delay spoilage and deterioration, slow the rise in pH, and maintain the sensory attributes of hairtail during cold storage conditions.
Collapse
|
22
|
Tong L, Tang H, Chen J, Sang S, Liang R, Zhang Z, Ou C. Origin of static magnetic field induced quality improvement in sea bass ( Lateolabrax japonicus) during cold storage: Microbial growth inhibition and protein structure stabilization. Front Nutr 2022; 9:1066964. [PMID: 36466411 PMCID: PMC9709135 DOI: 10.3389/fnut.2022.1066964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
To explore the potential application of static magnetic field (SMF) treatment in marine fish preservation, the sea bass (Lateolabrax japonicus) was exposed to SMF (5 mT) and its quality changes during cold storage were evaluated by total viable counts, water holding capacity, pH, color, and textural properties. Characteristics of the protein in the presence of SMF were investigated by measuring total sulfhydryl (SH) content, Ca2+-ATPase activity, secondary structure, and muscle microstructure. SMF treatment exhibited positive effects on fish quality, showing favorable performance on the most quality indicators, especially a significant reduction in the Microbial Counts. Furthermore, higher total SH content and Ca2+-ATPase activity were observed in SMF-treated samples, demonstrating that the oxidation and denaturation of myofibrillar protein (MP) were delayed due to SMF treatment. The transformation of α-helix to random coil was prevented in SMF-treated samples, indicating that the secondary structure of MP was stabilized by SMF treatment. The above changes in protein structures were accompanied by changes in muscle microstructure. More intact and compact structures were observed in SMF-treated samples, characterized by well-defined boundaries between myofibers. Therefore, our findings suggest that under the conditions of this article, SMF treatment could maintain the quality of fish mainly by inhibiting the growth of microorganisms and enhancing the stability of protein structures, and could be a promising auxiliary technology for preservation of aquatic products.
Collapse
Affiliation(s)
- Li Tong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Jingyi Chen
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ruiping Liang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhepeng Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Changrong Ou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Investigation of the changes in the lipid profiles in hairtail (Trichiurus haumela) muscle during frozen storage using chemical and LC/MS-based lipidomics analysis. Food Chem 2022; 390:133140. [DOI: 10.1016/j.foodchem.2022.133140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
24
|
Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022; 11:foods11182818. [PMID: 36140945 PMCID: PMC9497965 DOI: 10.3390/foods11182818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.
Collapse
Affiliation(s)
- Bo Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| |
Collapse
|
25
|
Wang J, Fu T, Wang Y, Zhang J. Effects of High-Voltage Atmospheric Cold Plasma Treatment on Microbiological and Quality Characters of Tilapia Fillets. Foods 2022; 11:2398. [PMID: 36010396 PMCID: PMC9407128 DOI: 10.3390/foods11162398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cold plasma (CP) has become an alternative to conventional thermal processing of food products. In this study, the effect of cold plasma treatment time on the inactivation and quality of tilapia fillets was investigated. The surfaces of tilapia fillets were inoculated with Salmonella enteritis (S. enteritis), Listeria monocytogenes (L. monocytogenes), and a mixture of both before being treated with cold plasma at 70 kV for 0, 60, 120, 180, 240, and 300 s. With the extension of treatment time, the number of colonies on the surface of the fillets decreased gradually; after 300 s of cold plasma treatment, S. enteritis and L. monocytogenes populations were reduced by 2.34 log CFU/g and 1.69 log CFU/g, respectively, and the a* value and immobile water content decreased significantly (p < 0.05), while the free water content increased significantly (p < 0.05). TBARS value increased significantly (p < 0.05) to 1.83 mg MDA/kg for 300 s treatment. The carbonyl value and sulfhydryl value of sarcoplasmic protein significantly (p < 0.05) increased and decreased, respectively, as treatment time extension, while no significant changes were found in myofibrillar protein. No significant differences were observed in pH, b* value, elasticity, chewiness, thiol value, and TVB-N value. The results showed that cold plasma had an inactivation effect on tilapia fillets and could preserve their original safety indicators. It was concluded that CP treatment could be used as an effective non-thermal method to maintain the quality of tilapia fillets and extend their shelf-life.
Collapse
Affiliation(s)
- Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tengfei Fu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Thirukumaran R, Anu Priya VK, Krishnamoorthy S, Ramakrishnan P, Moses JA, Anandharamakrishnan C. Resource recovery from fish waste: Prospects and the usage of intensified extraction technologies. CHEMOSPHERE 2022; 299:134361. [PMID: 35331747 DOI: 10.1016/j.chemosphere.2022.134361] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Globally, the valorization of fish biowaste as a feedstock to recover valuable components is an emerging research and commercial interest area to achieve the SDG goals by 2030. Fish waste-derived biomolecules are increasingly finding diverse applications in food and other biotechnological fields due to their excellent chemical, structural and functional properties. The focus of this review is to highlight the conventional valorization routes and recent advancements in extraction technologies for resource recovery applications, primarily focusing on green processes. Biointensified processes involving ultrasound, microwave, sub- and supercritical fluids, pulsed electric field, high-pressure processing, and cold plasma are extensively explored as sustainable technologies for valorizing fish discards and found numerous applications in the production of functional and commercially important biomaterials. With challenges in recovering intracellular bioactive compounds, selectivity, and energy requirement concerns, conventional approaches are being relooked continuously in the quest for process intensification and sustainable production practices. Nonetheless, in the context of 'zero waste' and 'biorefinery for high-value compounds', there is immense scope for technological upgradation in these emerging alternative approaches. This work details such attempts, providing insights into the immense untapped potential in this sector.
Collapse
Affiliation(s)
- R Thirukumaran
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - Vijay Kumar Anu Priya
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - Srinivasan Krishnamoorthy
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - Paranthaman Ramakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, 613005, Tamil Nadu, India.
| |
Collapse
|
27
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
28
|
Ke Z, Bai Y, Bai Y, Chu Y, Gu S, Xiang X, Ding Y, Zhou X. Cold plasma treated air improves the characteristic flavor of Dry-cured black carp through facilitating lipid oxidation. Food Chem 2022; 377:131932. [PMID: 34999450 DOI: 10.1016/j.foodchem.2021.131932] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
In this study, the main reactive oxygen/nitrogen species (ROS/RNS) in cold plasma treated air (CPTA) were determined, and their effects on lipid oxidation, fatty acid composition and volatile profile in dry-cured black carp were investigated. Results showed that ozone (O3) and nitrogen dioxide (NO2) were the main ROS/RNS, both of which were in a few mg/m3 to tens mg/m3. Increased peroxide value (POV), thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (HNE) level indicated CPTA promoted lipid oxidation in samples. The contents of unsaturated fatty acids (UFA) especially polyunsaturated fatty acids (PUFA) in samples after CPTA exposure were decreased significantly. Volatile analysis by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) showed that CPTA exposure promoted the formation of characteristic volatile flavor compounds in dry-cured black carp via facilitating the oxidation of UFA. This work provides new ideas for the application of cold plasma in food processing.
Collapse
Affiliation(s)
- Zhigang Ke
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yan Bai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yiwen Bai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yushan Chu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Saiqi Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
29
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
30
|
Hatab S, Koddy JK, Miao W, Tang L, Xu H, Deng S, Zheng B. Atmospheric cold plasma: a new approach to modify protein and lipid properties of myofibrillar protein isolate from hairtail (Trichiurus lepturus) fish. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2041-2049. [PMID: 34561868 DOI: 10.1002/jsfa.11543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Quite recently, considerable attention has been paid to atmospheric cold plasma (ACP) as an eco-friendly and highly efficient technology to modify the functional properties of foods. This study focuses on the effect of ACP on the myofibril protein and lipid quality of hairtail (Trichiurus lepturus) fish. In achieving this, the samples were treated with ACP at 50 kV for different times (30, 60, 120, 180, 240, 300 s). RESULTS The findings indicated slight changes in peroxide value and thiobarbituric acid reactive substances in the samples treated with ACP. A significant increase (P < 0.05) in the surface hydrophobicity (from 131.71 ± 0.81 μg to 146. 34 ± 0.81 μg), turbidity (from 0.13 ± 0.001 to 0.27 ± 0.01), and water-holding capacity (from 61.63% ± 5.7% to 64.86% ± 1.5%) were detected with treated samples. CONCLUSIONS We conclude that ACP treatment induces marked changes in the protein and lipid properties of myofibril protein isolated from hairtail fish, which strengthen the gel formation of hairtail fish. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaimaa Hatab
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
- Faculty of Environmental Agricultural Science, Arish University, 45516, North Sinai, Egypt
- Faculty of Organic Agriculture, Heliopolis University, 2834, Cairo, Egypt
| | - John K Koddy
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
- National Fish Quality Control Laboratory, Nyegezi, Box. 1392, Mwanza, Tanzania
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Lingling Tang
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Huiqian Xu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Shanggui Deng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Bin Zheng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022, Zhoushan, China
| |
Collapse
|
31
|
Non-migrating active antibacterial packaging and its application in grass carp fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Sruthi NU, Josna K, Pandiselvam R, Kothakota A, Gavahian M, Mousavi Khaneghah A. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem 2022; 368:130809. [PMID: 34450498 DOI: 10.1016/j.foodchem.2021.130809] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma processing is a technique that uses electricity and reactive carrier gases, such as oxygen, nitrogen, or helium, to inactivate enzymes, destroy microorganisms, preserve food, and maintain quality without employing chemical antimicrobial agents.The review collates the latest information on the interaction mechanism and impact of non-thermal plasma, as an emerging processing technology, on selected physical properties, low-molecular-weight functional components, and bioactive properties of food. Significant changes observed in the physicochemical and functional properties. For example, changes in pH, total soluble solids, water and oil absorption capacities, sensory properties such as color, aroma, and texture, bioactive components (e.g., polyphenols, flavonoids, and antioxidants), and food enzymes, antinutrients, and allergens were elaborated in the present manuscript. It was highlighted that the plasma reactive species result in both constructive and antagonistic outcomes on specific food components, and the associated mechanism was different in each case. However, the design's versatility, characteristic non-thermal nature, better economic standards, and safer environmental factors offer matchless benefits for cold plasma over conventional processing methods. Even so, a thorough insight on the impact of cold plasma on functional and bioactive food constituents is still a subject of imminent research and is imperative for its broad recognition as a modern non-conventional processing technique.
Collapse
Affiliation(s)
- N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - K Josna
- Processing and Food Engineering Department, Kelappaji College of Agricultural Engineering & Technology, Kerala Agricultural University, Malappuram 679573, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671 124, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
33
|
Characterization of the Flavor Profile of Bigeye Tuna Slices Treated by Cold Plasma Using E-Nose and GC-IMS. FISHES 2022. [DOI: 10.3390/fishes7010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To avoid heat, treatment induces numerous physicochemical changes under severe conditions in the tuna, cold plasma (CP), as a non-thermal technology, possess objective potential on tuna processing. The effect of cold plasma on the volatile flavor compounds of bigeye tuna (Thunnus obesus) sashimi has been evaluated using electronic nose (E-nose) and gas chromatography-ion mobility spectrometry (GC-IMS). GC–IMS results revealed a total of 33 volatile compounds in tuna slices. The effect of CP treatment on tuna flavor was not significant, furthermore CP could protect volatile freshness compounds such as 1-hexanol. Principal component analysis (PCA) of the E-nose and GC–IMS results could effectively differentiate the effect of storage to tuna sashimi. There was a high correlation between the E-nose and GC–IMS results, providing a theoretical basis for establishing the flavor fingerprint of tuna sashimi.
Collapse
|
34
|
Speranza B, Racioppo A, Bevilacqua A, Buzzo V, Marigliano P, Mocerino E, Scognamiglio R, Corbo MR, Scognamiglio G, Sinigaglia M. Innovative Preservation Methods Improving the Quality and Safety of Fish Products: Beneficial Effects and Limits. Foods 2021; 10:2854. [PMID: 34829142 PMCID: PMC8622261 DOI: 10.3390/foods10112854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Fish products are highly perishable, requiring proper processing to maintain their quality and safety during the entire storage. Different from traditional methods used to extend the shelf-life of these products (smoking, salting, marinating, icing, chilling, freezing, drying, boiling, steaming, etc.), in recent years, some alternative methods have been proposed as innovative processing technologies able to guarantee the extension of their shelf-life while minimally affecting their organoleptic properties. The present review aims to describe the primary mechanisms of some of these innovative methods applied to preserve quality and safety of fish products; namely, non-thermal atmospheric plasma (NTAP), pulsed electric fields (PEF), pulsed light (PL), ultrasounds (US) and electrolyzed water (EW) are analysed, focusing on the main results of the studies published over the last 10 years. The limits and the benefits of each method are addressed in order to provide a global overview about these promising emerging technologies and to facilitate their greater use at industrial level. In general, all the innovative methods analysed in this review have shown a good effectiveness to control microbial growth in fish products maintaining their organoleptic, nutritional and sensory characteristics. Most of the technologies have also shown the great advantage to have a lower energy consumption and shorter production times. In contrast, not all the methods are in the same development stage; thus, we suggest further investigations to develop one (or more) hurdle-like non-thermal method able to meet both food production requirements and the modern consumers' demand.
Collapse
Affiliation(s)
- Barbara Speranza
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Angela Racioppo
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Antonio Bevilacqua
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Veronica Buzzo
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Piera Marigliano
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Ester Mocerino
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Raffaella Scognamiglio
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Maria Rosaria Corbo
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Gennaro Scognamiglio
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Milena Sinigaglia
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| |
Collapse
|
35
|
Rathod NB, Kulawik P, Ozogul Y, Ozogul F, Bekhit AEA. Recent developments in non‐thermal processing for seafood and seafood products: cold plasma, pulsed electric field and high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest management of Meat, Poultry and Fish Post Graduate Institute of Post‐Harvest Management Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Roha, Raigad Maharashtra State 402116 India
| | - Piotr Kulawik
- Department of Animal Products Technology Faculty of Food Technology University of Agriculture Karakow Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | | |
Collapse
|
36
|
Rathod NB, Ranveer RC, Bhagwat PK, Ozogul F, Benjakul S, Pillai S, Annapure US. Cold plasma for the preservation of aquatic food products: An overview. Compr Rev Food Sci Food Saf 2021; 20:4407-4425. [PMID: 34355478 DOI: 10.1111/1541-4337.12815] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma (CP) is an upcoming technology implemented for the preservation of highly perishable foods, especially aquatic food products (AFPs). The high moisture content, high-quality protein with all essential amino acids and unsaturated fatty acids makes AFP more susceptible to microbial spoilage and oxidation of lipids and proteins. Spoilage lowers the nutritive value and could generate toxic components, making it unsafe for consumption. In recent times, the rising demand for food products of aquatic origin with preserved quality and extended shelf-life has been recorded. In addition, minimally or nonthermally processed and preserved foods are gaining great attention. CP technology has demonstrated an excellent ability to inactivate microorganisms without promoting their resistance and triggering some deteriorative enzymes, which are typical factors responsible for the spoilage of AFP. Consequently, CP could be recommended as a minimal processing intervention for preserving the quality of AFP. This review focuses on different mechanisms of fish spoilage, that is, by microorganisms and oxidation, their inhibition via the application of CP, and the retention of quality and shelf-life extension of AFP.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), Raigad, Maharashtra, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), Raigad, Maharashtra, India
| | - Prashant Kishor Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Sottawat Benjakul
- International Center for Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Uday Shriramrao Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
Liu J, Shao Y, Yuan C, Takaki K, Li Y, Ying Y, Hu Y. Eugenol-chitosan nanoemulsion as an edible coating: Its impact on physicochemical, microbiological and sensorial properties of hairtail (Trichiurus haumela) during storage at 4 °C. Int J Biol Macromol 2021; 183:2199-2204. [PMID: 34058208 DOI: 10.1016/j.ijbiomac.2021.05.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Effects of the eugenol-chitosan nanoemulsion as an edible coating on the quality of hairtail (Trichiurus haumela) during storage at 4 °C were evaluated. For all samples, such parameters as pH, thiobarbituric acid (TBA), total volatile basic nitrogen (TVB-N), water holding capacity (WHC), electrical conductivity (EC), total bacteria count (TVC) and sensory were examined periodically. The results demonstrated that eugenol-chitosan nanoemulsion coating showed better preservative effects than chitosan nanoemulsion alone. Therefore, a coating based on eugenol-chitosan nanoemulsion could be regarded as an effective food-grade biopreservative to maintain the quality of hairtail fish and prolong its shelf life during chilled storage.
Collapse
Affiliation(s)
- Jialin Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Ying Shao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Ueda 4-3-5, Morioka 020-8551, Japan
| | - Koichi Takaki
- Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551,Japan
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yubin Ying
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|