1
|
Qiu J, Xu W, Zhang T, Fang B, Cheng Y, Zhu H. Effect of dynamic high pressure microfluidization on pasting, gelling and rheological properties of starch composite with β-glucan both from highland barley. Int J Biol Macromol 2025; 295:139587. [PMID: 39788239 DOI: 10.1016/j.ijbiomac.2025.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The objective of this study was to investigate the effect of β-glucan on the pasting, gelling, rheological properties, and multi-level structures of the highland barley (HB) starch after dynamic high pressure microfluidization (DHPM) treatment, exploring the inhibition mechanisms of starch retrogradation by endogenous β-glucan after DHPM. DHPM treatment led to a decrease in the viscosity (K values from 161.1 to 54.4) of HB starch-β-glucan composite as the pressure increased from 0 to 120 MPa, while an increase in the viscosity was induced by DHPM treatment cycles from 1 to 3 at 120 MPa. Similar changes were also found in the relative crystallinity (RC) and degree of retrogradation (DR). The RC values decreased from 44.66 % to 25.53 %, and the DR values decreased from 53.4 % to 24.6 % as the DHPM pressure increased from 0 MPa to 120 MPa (p < 0.05). However, when number of DHPM cycles increased from 1 to 3 under 120 MPa, the RC value and DR value increased to 35.99 % and 31.9 %, respectively. Scanning electron microscopy images demonstrated that β-glucan formed a protective layer around HB starch granules after DHPM treatment at 120 MPa for one pass. Fourier transform infrared spectra and X-ray diffraction results indicated the intra- and intermolecular hydrogen bonds between HB starch and β-glucan were strengthened by DHPM. Endogenous β-glucan emerged as a strong candidate for inhibition of HB starch retrogradation. This study highlights an innovative and promising strategy for improving the properties of HB starch and facilitating its utilization.
Collapse
Affiliation(s)
- Ju Qiu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenjie Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Tianyu Zhang
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongqiang Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hong Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
2
|
Lu C, Guo J, Li P, Bai Z, Cui G, Li P. Physicochemical properties and in vitro digestion of quinoa starch induced by combination of ultrasound and konjac glucomannan. Food Chem 2025; 463:141380. [PMID: 39332370 DOI: 10.1016/j.foodchem.2024.141380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
This study investigated the effects of konjac glucomannan (KGM) and ultrasound on the solubility, pasting properties, rheological behavior, thermal properties, structural characteristics, and digestibility of quinoa starch. The results demonstrated significant improvements in starch properties with both ultrasound and KGM treatment, with the most pronounced effects observed in the combined ultrasound and KGM treatment. This combined treatment led to enhanced energy storage modulus and loss modulus, indicating improved rheological properties. Additionally, combined treatment improved solubility, thermal stability, and digestibility and resulted in a more ordered structure and increased paste enthalpy compared with ultrasound or KGM treatment. Scanning electron microscopy and particle size analysis revealed a more compact starch structure following the synergistic treatment. X-ray diffraction and Fourier transform infrared spectroscopy showed a more organized, complex structure. These findings offer valuable insights into the application of ultrasound and KGM to enhance the performance and quality of quinoa starch.
Collapse
Affiliation(s)
- Can Lu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Peiyao Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Guoting Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
3
|
Li S, Zheng Y, Chen Z, Xie W, Xiao L, Gao D, Zhao J. Effect of soluble dietary fiber from corn bran on pasting, retrogradation, and digestion characteristics of corn starch. Food Chem X 2024; 24:102013. [PMID: 39659676 PMCID: PMC11629195 DOI: 10.1016/j.fochx.2024.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
This study investigated the effect of twin-screw extruded-enzymatically prepared soluble dietary fibers (EESDF) on various properties of CS. Results showed that adding EESDF decreased the viscosity and crystallinity. Incorporating 10 % EESDF reduced the peak and final viscosities of CS by 323 cP and 380 cP, respectively. When stored for 14 d, EESDF reduced the relative crystallinity (RC) and enthalpy of retrogradation (ΔHr) of CS. The RC and the ΔHr were reduced by 4.83 % and 41.53 %, respectively, when adding 10 % EESDF. The resistant starch content was increased by 6.7 % when stored for 0 d with the addition of 10 % EESDF. The eGI value was decreased when adding 10 % EESDF. These findings showed that EESDF inhibited the retrogradation and digestion of CS. They will provide a basis for using EESDF as a quality control for starchy foods and for using starch in soft gels and foods for dysphagic categories.
Collapse
Affiliation(s)
- Sheng Li
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Yuqian Zheng
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Zhilong Chen
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Wenlong Xie
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Liping Xiao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Dengji Gao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
4
|
Luo D, Fan J, Jin M, Zhang X, Wang J, Rao H, Xue W. The influence mechanism of pH and polyphenol structures on the formation, structure, and digestibility of pea starch-polyphenol complexes via high-pressure homogenization. Food Res Int 2024; 194:114913. [PMID: 39232536 DOI: 10.1016/j.foodres.2024.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
The formation of starch-polyphenol complexes through high-pressure homogenization (HPH) is a promising method to reduce starch digestibility and control postprandial glycemic responses. This study investigated the combined effect of pH (5, 7, 9) and polyphenol structures (gallic acid, ferulic acid, quercetin, and tannic acid) on the formation, muti-scale structure, physicochemical properties, and digestibility of pea starch (PS)-polyphenol complexes prepared by HPH. Results revealed that reducing pH from 9 to 5 significantly strengthened the non-covalent binding between polyphenols and PS, achieving a maximum complex index of 13.89 %. This led to the formation of complexes with higher crystallinity and denser structures, promoting a robust network post-gelatinization with superior viscoelastic and thermal properties. These complexes showed increased resistance to enzymatic digestion, with the content of resistant starch increasing from 28.66 % to 42.00 %, rapidly digestible starch decreasing from 42.82 % to 21.88 %, and slowly digestible starch reducing from 71.34 % to 58.00 %. Gallic acid formed the strongest hydrogen bonds with PS, especially at pH 5, leading to the highest enzymatic resistance in PS-gallic acid complexes, with the content of resistant starch of 42.00 %, rapidly digestible starch of 23.35 % and slowly digestible starch of 58.00 %, and starch digestion rates at two digestive stages of 1.82 × 10-2 min-1 and 0.34 × 10-2 min-1. These insights advance our understanding of starch-polyphenol interactions and support the development of functional food products to improve metabolic health by mitigating rapid glucose release.
Collapse
Affiliation(s)
- Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Jiaxing Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Manqin Jin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Xuemei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Jianying Wang
- Shandong Yujie Flour Co. LTD, Binzhou, Shandong, 251805, PR China
| | - Huan Rao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Zhu H, Xu W, Zhang T, Jin T, Fang B, Qiu J. Improvement in Storage Stability and Physicochemical Properties of Whole-Grain Highland Barley Pulp Prepared by a Novel Industry-Scale Microfluidizer System in Comparison with Colloid Milling. Foods 2024; 13:2316. [PMID: 39123508 PMCID: PMC11311650 DOI: 10.3390/foods13152316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of this study was to assess the advantages of an industry-scale microfluidizer system (ISMS) to prepare whole-grain highland barley pulp (WHBP) compared with colloid milling. Storage stability was evaluated by particle size, gravity separation stability, and rheological properties, as well as the microstructure observation by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLMS). The results showed that colloid milling failed to effectively homogenize the material, while ISMS sample surfaces were compact and smooth at higher pressures according to visual observation and SEM. The Turbiscan stability index of WHBP by ISMS was much lower as a result of colloid milling, demonstrating ISMS can improve WHBP stability. WHBP by colloid milling displayed a three-peak particle size distribution pattern, while a single-peak pattern was evident after ISMS treatment. A higher shear rate decreased the apparent viscosity, suggesting that WHBP was a shear-thinning fluid. According to CLMS, ISMS can successfully improve homogenization by disrupting the structures of oil bodies, proteins, and starches. The WHBP prepared by ISMS exhibited a higher β-glucan level than that prepared by colloid milling, and showed a significant increase in β-glucan level with ISMS pressure. These findings indicate that using ISMS to produce WHBP is viable for enhancing its storage stability and nutritional value.
Collapse
Affiliation(s)
- Hong Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Wenjie Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China (B.F.)
| | - Tianyu Zhang
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Tao Jin
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850000, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China (B.F.)
| | - Ju Qiu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No.17 Tsinghua East Road, Haidian District, Beijing 100083, China (B.F.)
| |
Collapse
|
6
|
Jin Q, Feng Y, Cabana-Puig X, Chau TN, Difulvio R, Yu D, Hu A, Li S, Luo XM, Ogejo J, Lin F, Huang H. Combined dilute alkali and milling process enhances the functionality and gut microbiota fermentability of insoluble corn fiber. Food Chem 2024; 446:138815. [PMID: 38428087 DOI: 10.1016/j.foodchem.2024.138815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
In this study, we developed a process combining dilute alkali (NaOH or NaHCO3) and physical (disk milling and/or ball milling) treatments to improve the functionality and fermentability of corn fiber. The results showed that combining chemical with physical processes greatly improved the functionality and fermentability of corn fiber. Corn fiber treated with NaOH followed by disk milling (NaOH-DM-CF) had the highest water retention (19.5 g/g), water swelling (38.8 mL/g), and oil holding (15.5 g/g) capacities. Moreover, NaOH-DM-CF produced the largest amount (42.9 mM) of short-chain fatty acid (SCFA) during the 24-hr in vitro fermentation using porcine fecal inoculum. In addition, in vitro fermentation of NaOH-DM-CF led to a targeted microbial shifting to Prevotella (genus level), aligning with a higher fraction of propionic acid. The outstanding functionality and fermentability of NaOH-DM-CF were attributed to its thin and loose structure, decreased ester linkages and acetyl groups, and enriched structural carbohydrate exposure.
Collapse
Affiliation(s)
- Qing Jin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States; School of Food and Agriculture, University of Maine, Orono, ME 04469, United States
| | - Yiming Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Tran N Chau
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Ronnie Difulvio
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Dajun Yu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Anyang Hu
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Jactone Ogejo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Feng Lin
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| |
Collapse
|
7
|
Torres JD, Dueik V, Contardo I, Carré D, Bouchon P. Relationship between microstructure formation and in vitro starch digestibility in baked gluten-starch matrices. Food Chem X 2024; 22:101347. [PMID: 38623503 PMCID: PMC11016870 DOI: 10.1016/j.fochx.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Increased prevalence of diabetes prompts the development of foods with reduced starch digestibility. This study analyzed the impact of adding soluble dietary fiber (inulin-IN; polydextrose-PD) to baked gluten-starch matrices (7.5-13%) on microstructure formation and in vitro starch digestibility. IN and PD enhanced water-holding capacity, the hardness of baked matrices, and lowered water activity in the formulated matrices, potentially explaining the reduced starch gelatinization degree as IN or PD concentration increased. A maximum gelatinization decrease (26%) occurred in formulations with 13% IN. Micro-CT analysis showed a reduction in total and open porosity, which, along with the lower gelatinization degree, may account for the reduced in vitro starch digestibility. Samples with 13% IN exhibited a significantly lower rapidly available glucose fraction (8.56 g/100 g) and higher unavailable glucose fraction (87.76 g/100 g) compared to the control (34.85 g/100 g and 47.59 g/100 g, respectively). These findings suggest the potential for developing healthier, starch-rich baked foods with a reduced glycemic impact.
Collapse
Affiliation(s)
- José D. Torres
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, PO Box 306, Santiago 6904411, Chile
- School of Agroindustrial Engineering, Universidad del Sinú Cartagena, Sede Plaza Colón, Avenida El Bosque, Transversal 54 N° 30-729, Cartagena 130014, Colombia
| | - Verónica Dueik
- Comercial e Industrial SOLUTEC Ltda, Almirante Churruca 3130, Santiago 8370653, Chile
| | - Ingrid Contardo
- Biopolymer Research and Engineering Lab (BiopREL), School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Chile
- Centre for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Monseñor Álvaro del Portillo 12.455, Las Condes, Chile
| | - David Carré
- Comercial e Industrial SOLUTEC Ltda, Almirante Churruca 3130, Santiago 8370653, Chile
| | - Pedro Bouchon
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, PO Box 306, Santiago 6904411, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, PO Box 306, Santiago 6904411, Chile
| |
Collapse
|
8
|
Li C, An F, Sun S, Huang Q, He H, Song H. Micro-encapsulation of garlic oil using esterified-wheat porous starch and whey protein isolate: Physicochemical properties, release behavior during in vitro digestion. Int J Biol Macromol 2024; 272:132843. [PMID: 38830489 DOI: 10.1016/j.ijbiomac.2024.132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The study aimed to inhibit the stimulating impact of garlic oil (GO) on the stomach and attain high release in the intestine during digestion. So, wheat porous starch (WPS) was modified with octenyl succinic acid (OSA) and malic acid (MA) to obtain esterified WPS, OWPS and MWPS, respectively. The differences in physicochemical, encapsulation, and digestive properties of two GO microcapsules, WPI/OWPS/GO and WPI/MWPS/GO microcapsules produced by using OWPS and MWPS as variant carrier materials and whey protein isolate (WPI) as the same coating agent, were compared. The results found that OWPS had greater amphiphilicity, while MWPS had better hydrophobicity and anti-digestive ability than WPS. Encapsulation efficiency of WPI/OWPS/GO (94.67 %) was significantly greater than WPI/MWPS/GO (91.44 %). The digestion inhibition and low GO release (approximately 23 %) of WPI/OWPS/GO and WPI/MWPS/GO microcapsules in the gastric phase resulted from the protective effect of WPI combined with the good adsorption and lipophilicity of OWPS and MWPS. Especially, WPI/OWPS/GO microcapsule was relatively stable in the gastric phase and had sufficient GO release (67.24 %) in the intestinal phase, which was significantly higher than WPI/MWPS/GO microcapsule (56.03 %), benefiting from the adsorption and digestive properties of OWPS, and resulting in a total cumulative GO release rate of 90.86 %.
Collapse
Affiliation(s)
- Caini Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Shenzhen Boton Flavors and Fragrances Co., Ltd, Shenzhen, Guangdong 518000, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China
| | - Shuaihao Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hong He
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Sahil, Madhumita M, Prabhakar PK. Effect of dynamic high-pressure treatments on the multi-level structure of starch macromolecule and their techno-functional properties: A review. Int J Biol Macromol 2024; 268:131830. [PMID: 38663698 DOI: 10.1016/j.ijbiomac.2024.131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Over the past decades, dynamic high-pressure treatment (DHPT) executed by high-pressure homogenization (HPH) or microfluidization (DHPM) technology has received humongous research attention for starch macromolecule modification. However, the studies on starch multi-level structure alterations by DHPT have received inadequate attention. Furthermore, no review comprehensively covers all aspects of DHPT, explicitly addressing the combined effects of both technologies (HPH or DHPM) on starch's structural and functional characteristics. Hence, this review focused on recent advancements concerning the influences of DHPT on the starch multi-level structure and techno-functional properties. Intense mechanical actions induced by DHPT, such as high shear and impact forces, hydrodynamic cavitation, instantaneous pressure drops, and turbulence, altered the multi-level structure of starch for a short duration. The DHPT reduces the starch molecular weight and degree of branching, destroys short-range ordered and long-range crystalline structure, and degrades lamellar structure, resulting in partial gelatinization of starch granules. These structural changes influenced their techno-functional properties like swelling power and solubility, freeze-thaw stability, emulsifying properties, retrogradation rate, thermal properties, rheological and pasting, and digestibility. Processing conditions such as pressure level, the number of passes, inlet temperature, chamber geometry used, starch types, and their concentration may influence the above changes. Moreover, dynamic high-pressure treatment could form starch-fatty acids/polyphenol complexes. Finally, we discuss the food system applications of DHPT-treated starches and flours, and some limitations.
Collapse
Affiliation(s)
- Sahil
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, HR, India
| | - Mitali Madhumita
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, HR, India.
| |
Collapse
|
10
|
Dávila León R, González‐Vázquez M, Lima‐Villegas KE, Mora‐Escobedo R, Calderón‐Domínguez G. In vitro gastrointestinal digestion methods of carbohydrate-rich foods. Food Sci Nutr 2024; 12:722-733. [PMID: 38370076 PMCID: PMC10867469 DOI: 10.1002/fsn3.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
The trend toward healthier food products has led to an increase in the research of in vitro gastrointestinal digestion methods. Among the most used models, static models are the simplest. Most static models have three stages: oral, gastric, and intestinal, simulating the enzymatic, electrolyte, pH, temperature, and bile salt conditions. The studies that have taken the most notice are those related to antioxidant activity, followed by those dealing with proteins and carbohydrates using most of them static in vitro digestion models. The number of these studies has increased over the years, passing from 45 to 415 in a 10-year period (2012-2023) and showing an interest in knowing the impact of food on human health. Nevertheless, published papers report different methodologies and analytical approaches. This review discusses the similarities and differences between the published static in vitro gastrointestinal digestion methods, with a focus on carbohydrates, finding that the most used protocol is Infogest, but with differences, mainly in the type of enzymes and their activity. Regarding in vitro gastrointestinal digestion of carbohydrates, many of the published studies are related to food and biomacromolecules, being the oral phase the most omitted, while the intestinal phase in the most diverse. Other methodologies to study the intestinal phase have been recommended, but the number of in vitro digestion studies using these methodologies (RSIE and BBMV) is still scarce but could represent a good alternative to analyze carbohydrates foods when combining with Infogest. More studies are required in this area.
Collapse
Affiliation(s)
- Rebeca Dávila León
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | | | | - Rosalva Mora‐Escobedo
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | |
Collapse
|
11
|
Ji R, Zhang X, Liu C, Zhang W, Han X, Zhao H. Effects of extraction methods on the structure and functional properties of soluble dietary fiber from blue honeysuckle (Lonicera caerulea L.) berry. Food Chem 2024; 431:137135. [PMID: 37591145 DOI: 10.1016/j.foodchem.2023.137135] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The work within this study aimed to investigate and compare the effects of compound enzyme extraction (CE), ultrasonic chemical extraction (UC) and combined fermentation extraction (CF) on the physicochemical properties, microstructure, and functional properties of soluble dietary fiber (SDF) extracted from blue honeysuckle berries. The results showed that CE-SDF had higher crystallinity (32.41%). UC-SDF had the highest yield (13.32 ± 0.80 g/100 g). CF-SDF had the maximum inhibition of α-amylase (50.82 ± 0.76%) and α-glucosidase (54.87 ± 1.25%). The in vitro hypoglycemic activity of the three SDFs was observed in the order of CF > CE > UC. Meanwhile, the purity of SDF had a strong positive correlation with its antioxidant and in vitro hypoglycemic capacities. The crystallinity of SDF was found to be positively correlated with its molecular weight and thermal properties. Additionally, the sugar composition of SDF was found to be an important factor affecting its biological activity.
Collapse
Affiliation(s)
- Run Ji
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China.
| | - Chenghai Liu
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Xiaofeng Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Hengtian Zhao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang Province 150080, China.
| |
Collapse
|
12
|
Gan Z, Zhang M, Xu S, Li T, Zhang X, Wang J, Wang L. Comparison of quinoa and highland barley derived dietary fibers influence on the physicochemical properties and digestion of rice starch. Food Res Int 2023; 174:113549. [PMID: 37986428 DOI: 10.1016/j.foodres.2023.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the potential of highland barley and quinoa dietary fibers, rich in β-glucan and pectin respectively, as cost-effective and nutritionally valuable physical modifiers for rice starch (RS). HPAEC revealed differences between the monosaccharide composition of soluble and insoluble dietary fibers sourced from highland barley and quinoa (HSDF, HIDF, QSDF and QIDF). Results from both RVA and DSC analysis revealed that the addition of low amounts of dietary fiber significantly modified the pasting properties of RS. Notably, the addition of quinoa soluble dietary fiber (QSDF) significantly inhibits the formation of a stable gel network in rice starch, even at low concentrations (0.1 %), as confirmed by rheological measurements. Furthermore, the incorporation of QSDF effectively reduces the content of rapidly digestible starch in rice starch by 15.6 % and increases the content of slowly digestible starch, from 23.36 % ± 3.02 % to 31.07 % ± 3.98 %. By leveraging the compositional richness of these fibers, this research opens up novel opportunities for developing functional food products with improved nutritional profiles, as well as for improving texture and reducing glycemic index (GI) in starch-based foods.
Collapse
Affiliation(s)
- Zhicong Gan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Shunqian Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Junren Wang
- Institute of Modern Agriculture, Jiangsu Provincial Agricultural Reclamation and Development Co., Ltd., Nanjing 211800, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
13
|
Huang X, Li C, Xi J. Dynamic high pressure microfluidization-assisted extraction of plant active ingredients: a novel approach. Crit Rev Food Sci Nutr 2023; 63:12413-12421. [PMID: 35852173 DOI: 10.1080/10408398.2022.2101427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The extraction method has a great influence on the yield, quality, chemical structure, and biological activities of active ingredients. Safe and efficient extraction of active ingredients is one of the important problems facing the food and pharmaceutical industry. As a pretreatment approach for the extraction of active ingredients, dynamic high pressure microfluidization (DHPM) is a promising strategy that can not only effectively increase the yield of active ingredients but also strengthen the bioactivities of active ingredients, and take the advantages of mild operating temperature and environmental friendliness. In this review, the research progress of DHPM-assisted extraction of active ingredients from plant materials in recent ten years is overviewed. The DHPM equipment, strengthening mechanism, operating procedure, critical factors and application of DHPM-assisted extraction are introduced in detail, together with the advantages and disadvantages. Furthermore, its future development trend is discussed at the end. DHPM-assisted extraction is considered as the ideal technique of better homogenization effects, less solvent consumption, more reliable operation, and so on, making it a promising method to acquire active ingredients efficiently. Therefore, this technique is worthy of further theoretical research and experimental operation.
Collapse
Affiliation(s)
- Xinyi Huang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Chenyue Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zhang Y, Wu L, Zhang F, Zheng J. Sucrose ester alleviates the agglomeration behavior of bamboo shoot dietary fiber treated via high pressure homogenization: Influence on physicochemical, rheological, and structural properties. Food Chem 2023; 413:135609. [PMID: 36745942 DOI: 10.1016/j.foodchem.2023.135609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
High-pressure homogenization (HPH) is a physical modification method that can rapidly reduce the particle size of bamboo shoot dietary fiber (BSDF), but it can lead to agglomeration. Therefore, the effects of the addition of sucrose ester (SE) to alleviate the agglomeration of BSDF during HPH were investigated. Compared with BSDF without added SE, BSDF obtained the smallest particle size (276.5 nm) and highest ζ-Potential (53.6 mV) when SE was 5 g/L. Water-holding capacity, oil-holding capacity, swelling capacity, and b* increased, whereas L* and a* decreased significantly with the addition of SE. The shear stress and viscoelasticity of BSDF solution were minimized when 5 g/L SE was added. SE reduced relative crystallinity and thermal stability of BSDF. SE could effectively alleviate the aggregation of BSDF through the mechanism of electrostatic repulsion. This study highlights an innovative and promising strategy for alleviating the agglomeration behavior of BSDF during HPH treatment.
Collapse
Affiliation(s)
- Yijia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing 400715, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou 310012, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
15
|
Dong Y, Li Q, Zhao Y, Cao J. Effects of ultrasonic assisted high-temperature cooking method on the physicochemical structure characteristics and in vitro antioxidant capacities of dietary fiber from Dendrocalamus brandisii Munro shoots. ULTRASONICS SONOCHEMISTRY 2023; 97:106462. [PMID: 37285633 DOI: 10.1016/j.ultsonch.2023.106462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In this study, the ultrasonic assisted high-temperature cooking extraction method of soluble dietary fiber from bamboo shoots was optimized by response surface methodology, and the effects of ultrasonic assisted high-temperature cooking extraction on the structural characteristics, physicochemical properties and antioxidant activity of soluble dietary fiber (SDF) from bamboo shoots were evaluated. The yield of modified UH-SDF1 was significantly higher than that of untreated D-SDF2. FTIR and XRD confirmed that UH-SDF had more hydrophilic groups and higher crystallinity (28.73 %), resulting in better thermal stability. SEM observation showed that UH-SDF exhibited a more loose microstructure, and the particle size of UH-SDF (601.52 μm) was significantly smaller than that of D-SDF (242.59 μm), so UH-SDF had a larger specific surface area. In addition, UH-SDF has stronger water holding capacity, water swelling capacity and oil holding capacity than D-SDF. The DPPH radical and hydroxyl radical scavenging rates of UH-SDF were 8.91 % and 7.49 % higher than those of D-SDF. In addition, the reducing ability of UH-SDF was higher than that of D-SDF, which had better antioxidant activity. In summary, UH-SDF has the potential to be developed as an anti-inflammatory functional food.
Collapse
Affiliation(s)
- Yufan Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China; Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Qin Li
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yihe Zhao
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
16
|
Luo D, Xie Q, Chen C, Mu K, Wang Z, Gu S, Xue W. Increasing the pressure during high pressure homogenization regulates the starch digestion of the resulting pea starch-gallic acid complexes. Int J Biol Macromol 2023; 235:123820. [PMID: 36842741 DOI: 10.1016/j.ijbiomac.2023.123820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
The pea starch-gallic acid (PS-GA) complexes were prepared using high pressure homogenization (HPH), then the effect and underlying mechanism of pressure on multi-scale structure and digestibility of complexes were investigated. Results showed that HPH promoted the formation of PS-GA complexes, reaching the maximum complex index of 7.74 % at the pressure of 90 MPa, and the main driving force were hydrophobic interactions and hydrogen bonding. The interaction between PS and GA facilitated the formation of surface reticular structures to encapsulate gallic acid molecules, further entangled into bigger size aggregates. The enhancement of rearrangement and aggregation of starch chains during HPH developed a dense hierarchical structure of PS-GA complexes, including short-range ordered structure, V-type crystal structure, lamellar and fractal structure, thus increasing gelatinization temperature. The digestibility of PS-GA complexes substantially changed in reducing rapidly digestible starch content from 29.67 % to 17.07 %, increasing slowly digestible starch from 53.69 % to 56.25 % and resistant starch from 16.63 % to 26.67 %, respectively. Moreover, the resulting complexes exhibited slower digestion rates compared with native PS. Furthermore, the regulating mechanism of pressure during HPH on starch digestibility was the formation of ordered multi-scale structure and inhibition of GA on digestive enzymes.
Collapse
Affiliation(s)
- Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kaiyu Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhaomin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
17
|
Xiao W, He H, Dong Q, Huang Q, An F, Song H. Effects of high-speed shear and double-enzymatic hydrolysis on the structural and physicochemical properties of rice porous starch. Int J Biol Macromol 2023; 234:123692. [PMID: 36801279 DOI: 10.1016/j.ijbiomac.2023.123692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
This study aimed to investigate the physicochemical properties of the rice porous starch (HSS-ES) prepared by high-speed shear combined with double-enzymatic (α-amylase and glucoamylase) hydrolysis, and to reveal their mechanism. The analyses of 1H NMR and amylose content showed that high-speed shear changed the molecular structure of starch and increased the amylose content (up to 20.42 ± 0.04 %). FTIR, XRD and SAXS spectra indicated that high-speed shear did not change the starch crystal configuration but caused a decrease in short-range molecular order and relative crystallinity (24.42 ± 0.06 %), and a loose semi-crystalline lamellar, which were beneficial to the followed double-enzymatic hydrolysis. Therefore, the HSS-ES displayed a superior porous structure and larger specific surface area (2.962 ± 0.002 m2/g) compared with double-enzymatic hydrolyzed porous starch (ES), resulting in the increase of water and oil absorption from 130.79 ± 0.50 % and 109.63 ± 0.71 % to 154.79 ± 1.14 % and 138.40 ± 1.18 %, respectively. In vitro digestion analysis showed that the HSS-ES had good digestive resistance derived from the higher content of slowly digestible and resistant starch. The present study suggested that high-speed shear as an enzymatic hydrolysis pretreatment significantly enhanced the pore formation of rice starch.
Collapse
Affiliation(s)
- Wanying Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Hong He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Qingfei Dong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
18
|
Tuteja M, Nagpal K. Recent Advances and Prospects for Plant Gum-Based Drug Delivery Systems: A Comprehensive Review. Crit Rev Ther Drug Carrier Syst 2023; 40:83-124. [PMID: 36734914 DOI: 10.1615/critrevtherdrugcarriersyst.2022042252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work is an effort to first introduce plant-based gums and discussing their drug delivery applications. The composition of these plant gums and their major characteristics, which make them suitable as pharmaceutical excipients are also described in detail. The various modifications methods such as physical and chemical modifications of gums and polysaccharides have been discussed along with their applications in different fields. Consequently, plant-based gums modification such as etherification and grafting is attracting much scientific attention to satisfy industrial demand. The evaluation tests to characterize gum-based drug delivery systems have been summarized. The release behavior of drug from plant-gum-based drug delivery is being discussed. Thus, this review is an attempt to critically summarize different aspect of plant-gum-based polysaccharides to be utilized in drug delivery systems having potential industrial applications.
Collapse
Affiliation(s)
- Minkal Tuteja
- Gurugram Global College of Pharmacy, Farrukhnagar, Gurugram, Haryana, 122506, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
19
|
Wang Y, Guo J, Wang C, Li Y, Bai Z, Luo D, Hu Y, Chen S. Effects of konjac glucomannan and freezing on thermal properties, rheology, digestibility and microstructure of starch isolated from wheat dough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
20
|
Dong Y, Li Q, Guo Y, Zhao Y, Cao J. Comparison of physicochemical and in vitro hypoglycemic activity of bamboo shoot dietary fibers from different regions of Yunnan. Front Nutr 2023; 9:1102671. [PMID: 36712536 PMCID: PMC9879356 DOI: 10.3389/fnut.2022.1102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
In this study, the physicochemical properties, thermal characteristics, and in vitro hypoglycemic activity of dietary fibers extracted from four bamboo shoots were characterized and compared. The results showed that Dendrocalamus brandisii Munro (C-BSDF) had the highest dietary fiber content (6.1%) and the smallest particle size (222.21 μm). SEM observations found that C-BSDF exhibited a loose and porous microstructure, while FTIR and XRD confirmed that C-BSDF had a higher degree of decomposition of insoluble dietary fiber components and the highest crystallinity, resulting in a better microstructure. Furthermore, C-BSDF exhibited excellent physiochemical properties with the highest water hold capacity, water swelling capacity, and preferable oil holding capacity. Thermal analysis showed that C-BSDF had the lowest mass loss (64.25%) and the highest denaturation temperature (114.03°C). The hypoglycemic activity of dietary fibers from bamboo shoots were examined in vitro and followed this order of activity: C-BSDF>D-BSDF>A-BSDF>B-BSDF. The inhibition ratios of GAC, GDRI and α-amylase activity of C-BSDF were 21.57 mmol/g, 24.1, and 23.34%, respectively. In short, C-BSDF display excellent physicochemical and functional properties due to its high soluble dietary fiber content, small particle size with a high specific surface area, and loose microstructure. Thus, D. brandisii Munro can be considered a promising new source of dietary fiber for hypoglycemic health products.
Collapse
Affiliation(s)
- Yufan Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China,Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Qin Li
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yuhong Guo
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Yihe Zhao
- Institute of Forestry Industry, Yunnan Academy of Forestry and Grassland, Kunming, China,*Correspondence: Yihe Zhao,
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China,Jianxin Cao,
| |
Collapse
|
21
|
Synergistic effect of endogenous gluten and oleic acid on wheat starch digestion by forming ordered starch-fatty acid-protein complexes during thermal processing. Curr Res Food Sci 2023; 6:100422. [PMID: 36687172 PMCID: PMC9849868 DOI: 10.1016/j.crfs.2022.100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to understand the potential of endogenous gluten inhibiting the digestibility in vitro of wheat starch (WS) in starch-fatty acid-protein system. Therefore, the influences of gluten and whey protein isolate (WPI) on the properties, multi-scale structure and in vitro digestibility of WS in WS-oleic acid (OA)-protein system were compared. The results of digestibility in vitro indicated that the ternary system of starch-fatty acid-protein showed higher resistant starch (RS) content as well as lower rapidly digestible starch (RDS) content than the binary system of WS-OA, demonstrating protein decreased WS digestion of WS-OA system. The results of pasting properties showed that gluten and WPI both increased the viscosities of WS-OA system during the cooling period due to the formation of WS-OA-protein ternary complex. The results of swelling power and solubility analysis showed that gluten and WPI both decreased the swelling power and solubility of WS-OA binary system. Laser Confocal Raman and X-ray diffraction (XRD) studies indicated that gluten and WPI both increased the ordered degree of WS-OA binary system by decreasing the full width at half maximum (FWHM) of the peak at 480 cm-1 and increasing crystallinity degree. Strikingly, compared with WPI, gluten had greater effects on the digestibility in vitro, pasting properties and ordered degree of WS in WS-OA-protein system. Therefore, gluten as an endogenous protein has the potential application in reduction the enzymatic digestibility of WS by regulating the reassembly of starch and fatty acid during thermal processing.
Collapse
|
22
|
Using high-pressure homogenization as a potential method to pretreat soybean protein isolate: Effect on conformation changes and rheological properties of its acid-induced gel. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Physical barrier effects of dietary fibers on lowering starch digestibility. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Tang C, Wu L, Zhang F, Kan J, Zheng J. Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers. Food Chem 2022; 386:132642. [PMID: 35349899 DOI: 10.1016/j.foodchem.2022.132642] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
The effect of alkali extraction (AE), enzymatic extraction (EE), ultrasonic-assisted enzymatic extraction (UAEE), and shear homogeneous-assisted enzymatic extraction (SHAEE) on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers (BSDF) were investigated and compared. BSDF obtained by AE had the lowest protein content and crystallinity index. The lowest oil holding capacity (OHC) and highest protein content were observed in EE. BSDF generated highest OHC and glucose adsorption capacity by UAEE. SHAEE obtained the highest SDF content (17.89%), water-holding capacity (8.81 g/g), and α-amylase activity inhibition ratio (19.89%) and the smallest particle size (351.33 μm). BSDF extracted by SHAEE and UAEE presented a porous and loose structure. Furthermore, the in vitro hypoglycemic activity of the four BSDF samples generally followed the order of SHAEE > UAEE > EE > AE. Results show that SHAEE is an innovative and promising method to obtain BSDF with its excellent physicochemical and functional properties.
Collapse
Affiliation(s)
- Caidie Tang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou 310012, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China.
| |
Collapse
|
25
|
Jiang Z, Mu S, Ma C, Liu Y, Ma Y, Zhang M, Li H, Liu X, Hou J, Tian B. Consequences of ball milling combined with high-pressure homogenization on structure, physicochemical and rheological properties of citrus fiber. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Liu J, Wang Y, Li X, Jin Z, Svensson B, Bai Y. Effect of Starch Primers on the Fine Structure of Enzymatically Synthesized Glycogen-like Glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6202-6212. [PMID: 35549341 DOI: 10.1021/acs.jafc.2c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycogen-like glucan (GnG) is a unique hyperbranched polysaccharide nanoparticle which is drawing increasing attention due to its biodegradability and abundant short branches that can be functionalized. Because starch and GnG are both composed of glucose residues and have similar glucosidic bonds, GnG could be fabricated by sucrose phosphorylase, α-glucan phosphorylase, and branching enzymes from starch primers and sucrose. In this study, high-amylose starch, normal starch, and waxy corn starch were used as primers to synthesize GnG, and their impact on the fine structure of GnG was investigated. Structural analysis indicated that with increasing content of amylopectin in the starch primer, the proportion of short chains in GnG decreased, and the degree of β-amylolysis and α-amylolysis was enhanced. Amylose in the primer contributed to a compact and homogeneous structure of GnG, while amylopectin triggered the formation of branch points with a more open distribution. These findings provide a new strategy for regulating the fine structure of GnG.
Collapse
Affiliation(s)
- Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
27
|
Wang C, Qin K, Sun Q, Qiao X. Preparation of Natural Food-Grade Core-Shell Starch/Zein Microparticles by Antisolvent Exchange and Transglutaminase Crosslinking for Reduced Digestion of Starch. Front Nutr 2022; 9:879757. [PMID: 35495914 PMCID: PMC9053832 DOI: 10.3389/fnut.2022.879757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to slow down the digestibility of starch granules by encapsulating it in zein shells. Drop of the preformed swollen corn starch (CS) granule suspension into thermal-treated zein ethanolic solution enables antisolvent precipitation of thermal-treated zein on the surface of the preformed swollen CS granules, leading to the formation of core-shell starch/zein microparticles. Confocal laser scanning microscopy images showed that the preformed swollen CS granules were coated by thermal-treated zein shells with a thickness of 0.48–0.95 μm. The volume average particle diameter of core-shell starch/zein microparticles was 14.70 μm and reached 18.59–30.98 μm after crosslinking by transglutaminase. The results of X-ray diffraction and Fourier transform infrared spectroscopy demonstrated that an interaction occurred between the preformed swollen CS granules and the thermal-treated zein. The results for thermodynamic characteristics, pasting properties, and swelling power indicated that the compact network structure of core-shell starch/zein microparticles crosslinked by transglutaminase could improve starch granule thermal stability and resistance to shearing forces. Compared to native CS, the peak gelatinization temperatures of core-shell starch/zein microparticles increased significantly (p < 0.05), with a maximum value of 76.64°C. The breakdown values and the swelling power at 95°C of core-shell starch/zein microparticles significantly (p < 0.05) decreased by 52.83–85.66% and 0.11–0.28%, respectively. The in vitro digestibility test showed that the contents of slowly digestible starch and resistant starch in the core-shell starch/zein microparticles increased to ∼42.66 and ∼34.75%, respectively, compared to those of native CS (9.56 and 2.48%, respectively). Our research supports the application of food-grade core-shell starch/zein microparticles to formulate low-digestibility food products.
Collapse
Affiliation(s)
- Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Kaili Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China
| | - Qingjie Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
28
|
Li S, Liu H, Zheng Q, Hu N, Zheng M, Liu J. Effects of Soluble and Insoluble Dietary Fiber from Corn Bran on Pasting, Thermal, and Structural Properties of Corn Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng Li
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Huimin Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Qihang Zheng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Nannan Hu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Mingzhu Zheng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| | - Jingsheng Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 P.R.China
- National Engineering Laboratory of Wheat and Corn Deep Processing Jilin Agricultural University Changchun 130118 P.R. China
| |
Collapse
|
29
|
Li Y, Liang W, Huang M, Huang W, Feng J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct 2022; 13:170-185. [PMID: 34874372 DOI: 10.1039/d1fo02012a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, holocellulose nanocrystals (hCNCs) were isolated from burdock insoluble dietary fiber (IDF) by enzymatic hydrolysis and ultrasonic treatment and their inhibitory effects against α-amylase and α-glucosidase were investigated. The hydrodynamic diameter of hCNCs decreased from about 600 to 200 nm with increasing sonication time, accompanied by an improvement in cellulose and glucose contents. Steady-state fluorescence studies suggested that static complexes were formed between hCNCs and α-amylase or α-glucosidase via a spontaneous and endothermic approach, which was driven by both hydrophobic interactions and hydrogen bonding. The median inhibitory concentration (IC50) values of hCNCs against the tested enzymes were positively correlated with their size, and non-competitive and mixed types of inhibition were detected using the Lineweaver-Burk plots. During the simulated digestion, the inclusion of burdock hCNCs obviously retarded the starch hydrolysis in both dose- and size-dependent manners, suggesting their potential in blocking the postprandial serum glucose upsurge.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of food science and engineering, College of light industry and food engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
30
|
Li Y, Liang W, Huang W, Huang M, Feng J. Complexation between burdock holocellulose nanocrystals and corn starch: gelatinization properties, microstructure, and digestibility in vitro. Food Funct 2021; 13:548-560. [PMID: 34951438 DOI: 10.1039/d1fo03418a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Holocellulose nanocrystals (hCNCs), with hydrodynamic diameters (DZ) ranging from about 600 to 200 nm, were prepared by treating burdock insoluble dietary fiber (IDF) with enzymes and ultrasonic power. It was revealed that hCNCs improved the viscosity of corn starch (CS) during pasting and inhibited its short-term retrogradation. Besides, the crystallinity, short-range order of the double helix, viscoelastic properties, and microstructure compactness of CS gels improved remarkably in the presence of burdock hCNCs. These effects were both size- and dose-dependent, which primarily originated from the hydrogen bonding between hCNCs and amylopectin or leached amylose. In this regard, the digestion of CS gels containing hCNCs was remarkably retarded because of the reduced accessibility of digestive enzymes to the glycosidic bonds. Therefore, burdock hCNCs, prepared from natural resources using green techniques, hold potential applications in functional foods of a low glycemic index.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
31
|
Modifying the rheological properties, in vitro digestion, and structure of rice starch by extrusion assisted addition with bamboo shoot dietary fiber. Food Chem 2021; 375:131900. [PMID: 34959141 DOI: 10.1016/j.foodchem.2021.131900] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
Abstract
This paper investigated the effect of extrusion treatment on the rheological properties, in vitro digestibility, and multi-structure of starch with or without bamboo shoot dietary fiber (BSDF). The viscoelasticity and thixotropy decreased after extrusion treatment, however, they increased after BSDF addition, and decreased with increasing BSDF content. The starch granules became smooth and formed big lumps after extrusion treatment. The dense lumps became loose after the addition of BSDF. Extrusion treatment changed the movement and arrangement of starch chains and thus the relative crystallinity and branching degree decreased by 92.6% and 40.9%, respectively. The disruption of starch further increased rapid digestion starch (RDS) content by 10%. The decreased disruption of starch granules and increased entanglement between BSDF and starch decreased the RDS content. The addition of BSDF is a novelty method to enhance the nutritional properties and control the physicochemical properties of extruded starchy foods.
Collapse
|
32
|
Liu J, Bai Y, Ji H, Wang Y, Jin Z, Svensson B. Controlling the Fine Structure of Glycogen-like Glucan by Rational Enzymatic Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14951-14960. [PMID: 34847321 DOI: 10.1021/acs.jafc.1c06531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycogen-like glucan (GnG), a hyperbranched glucose polymer, has been receiving increasing attention to generate synthetic polymers and nanoparticles. Importantly, different branching patterns strongly influence the functionality of GnG. To uncover ways of obtaining different GnG branching patterns, a series of GnG with radius from 22.03 to 27.06 nm were synthesized using sucrose phosphorylase, α-glucan phosphorylase (GP), and branching enzyme (BE). Adjusting the relative activity ratio of GP and BE (GP/BE) made the molecular weight (MW) distribution of intermediate GnG products follow two different paths. At a low GP/BE, the GnG developed from "small to large" during the synthetic process, with the MW increasing from 6.15 × 106 to 1.21 × 107 g/mol, and possessed a compact structure. By contrast, a high GP/BE caused the "large to small" model, with the MW reduction of GnG from 1.62 × 107 to 1.21 × 107 g/mol, and created a loose external structure. The higher GP activity promoted the elongation of external chains and restrained chain transfer by the BE to the inner zone of GnG, which would modulate the loose-tight structure of GnG. These findings provide new useful insights into the construction of structurally well-defined nanoparticles.
Collapse
Affiliation(s)
- Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
33
|
Comprehensive review on potential applications of microfluidization in food processing. Food Sci Biotechnol 2021; 31:17-36. [DOI: 10.1007/s10068-021-01010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023] Open
|
34
|
Rong L, Shen M, Wen H, Ren Y, Xiao W, Xie J. Preparation and characterization of hyacinth bean starch film incorporated with TiO 2 nanoparticles and Mesona chinensis Benth polysaccharide. Int J Biol Macromol 2021; 190:151-158. [PMID: 34481850 DOI: 10.1016/j.ijbiomac.2021.08.180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Hyacinth bean starch (HBS) was used to prepare nanocomposite films with the reinforcement agent of nanotitanium oxide (TiO2-N) and Mesona chinensis Benth polysaccharide (MCP). The effects of TiO2-N and MCP on the moisture combination, rheological properties of film-forming solutions (FFS) and physiochemical properties of films were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) revealed that HBS, TiO2-N and MCP had good compatibility, while no novel absorption peak in FTIR spectra, and characteristic peaks of TiO2-N were found in XRD patterns of composite films. Contact angle of HBS/TiO2-N/M3 film increased from 65.6° to 90.9°, which illustrated that TiO2-N and MCP effectively enhanced hydrophobicity of films. TiO2-N and MCP positively affected anti-UV light ability of HBS films by resisting most of invisible light. Furthermore, stable and compact network structures were formed by the synergistic effect of TiO2-N and MCP, thereby elongation to break was increased from 17.123% to 28.603% significantly, and heat resistance was enhanced clearly. This study prepared a nanocomposite HBS-based films based TiO2-N and MCP, which had guiding significance for development of functional films and combination of polysaccharides and metallic oxide.
Collapse
Affiliation(s)
- Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yanming Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
35
|
Structure and physicochemical properties of starch affected by dynamic pressure treatments: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
RunHong M, Cheng J, Tang F, Yue J, Li Z, Ni Z. Heavy metals in bamboo shoots from Southeastern China and risk assessment. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:264-270. [PMID: 34236284 DOI: 10.1080/19393210.2021.1947900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bamboo shoot is an indispensable vegetable in Southeastern China, so a survey of heavy metals in bamboo shoots is a relevant topic of interest. The present study sought to analyse the content of seven heavy metals (As, Cd, Cr, Cu, Mn, Pb and Zn) in six bamboo shoot species from Southeastern China. Percentages of 3.8% (Cd) and 8.9% (Pb) of the samples exceeded the maximum limits as established by the Chinese legislation. Further health risk assessment exhibited that the Cd intake contribution of these samples could not be negligible. The hazard index (HI) at average exposure was less than one. The average HI values in moso bamboo shoot were significantly higher than those of other bamboo shoot species. Overall, the results indicated that the intake of bamboo shoots is safe for consumers in Southeastern China.
Collapse
Affiliation(s)
- Mo RunHong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P. R. China
| | - Junyong Cheng
- Non-timber Institutute, Hubei Academy of Forestry, Wuhan, Hubei, P. R. China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P. R. China
| | - JinJun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P. R. China
| | - Zhengxiang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, P. R. China
| | | |
Collapse
|
37
|
Ozturk OK, Turasan H. Latest developments in the applications of microfluidization to modify the structure of macromolecules leading to improved physicochemical and functional properties. Crit Rev Food Sci Nutr 2021; 62:4481-4503. [PMID: 33492179 DOI: 10.1080/10408398.2021.1875981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microfluidization is a unique high-pressure homogenization technique combining various forces such as high-velocity impact, high-frequency vibration, instantaneous pressure drop, intense shear rate, and hydrodynamic cavitation. Even though it is mainly used on emulsion-based systems and known for its effects on particle size and surface area, it also significantly alters physicochemical and functional properties of macromolecules including hydration properties, solubility, viscosity, cation-exchange capacity, rheological properties, and bioavailability. Besides, the transformation of structure and conformation due to the combined effects of microfluidization modifies the material characteristics that can be a base for new innovative food formulations. Therefore, microfluidization is being commonly used in the food industry for various purposes including the formation of micro- and nano-sized emulsions, encapsulation of easily degradable bioactive compounds, and improvement in functional properties of proteins, polysaccharides, and dietary fibers. Although the extent of modification through microfluidization depends on processing conditions (e.g., pressure, number of passes, solvent), the nature of the material to be processed also changes the outcomes significantly. Therefore, it is important to understand the effects of microfluidization on each food component. Overall, this review paper provides an overview of microfluidization treatment, summarizes the applications on macromolecules with specific examples, and presents the existing problems.
Collapse
Affiliation(s)
- Oguz Kaan Ozturk
- Whistler Carbohydrate Research Center, Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| | - Hazal Turasan
- Whistler Carbohydrate Research Center, Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|