1
|
Gawlik U, Habza-Kowalska E, Piwowarczyk K, Czyż J, Złotek U. Oatmeal and wheat flour as the sources of thyroid peroxidase and proinflammatory enzymes modulators in the prevention of thyroid diseases. Sci Rep 2025; 15:1525. [PMID: 39789123 PMCID: PMC11718250 DOI: 10.1038/s41598-025-85848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro. Bioaccessible oatmeal (OM) and wheat flour (WF) compounds activated TPO while inhibiting LOX and XO's in vitro activity. OM extracts also inhibited COX-2 activity. Isobolographic and combination index studies revealed cooperation of compounds from OM and WF. However, the relatively strong inhibitory activity of bioaccessible OM compounds on LOX activity correlated with their mildly cytostatic and relatively distinct pro-invasive effects in the thyroid cancer model in vitro. Collectively, the application of OM and WF products for the prophylactics of inflammatory thyroid diseases should be considered with care, especially in the context of the oncological status of the patient.
Collapse
Affiliation(s)
- Urszula Gawlik
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland
| | - Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, Cracow, 30-387, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, Cracow, 30-387, Poland
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, Lublin, 20-704, Poland.
| |
Collapse
|
2
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Wronkowska M, Zieliński H, Bączek N, Honke J, Topolska J. Retention of bioactive compounds during technological steps of the production of bread enriched with roasted buckwheat hulls. Food Chem 2024; 460:140645. [PMID: 39094339 DOI: 10.1016/j.foodchem.2024.140645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The retention of bioactive compounds in the blend of wheat and rye flours and 4% roasted buckwheat hulls, dough before and after fermentation, and obtained bread were determined. In parallel, the content of Maillard reaction products (MRPs) and antioxidant capacity (AC) during technological steps of bread production were studied. The dough formation and fermentation process increased the content of phenolic acids and flavonoids and reduced the content of tocopherols, and no changes in glutathione as compared to the blend were noted. Moreover, the increased level of available lysine and AC were observed after dough fermentation. The baking process resulted in further increased phenolic acids, and flavonoids and decreased the tocopherols and glutathione contents. The bread was characterized by the highest values of parameters related to MRPs, such as the content of fluorescent intermediary compounds and final browning index compared to other analyzed steps.
Collapse
Affiliation(s)
- Małgorzata Wronkowska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Natalia Bączek
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Honke
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Topolska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
4
|
Tang Y, Huang Y, Li M, Zhu W, Zhang W, Luo S, Zhang Y, Ma J, Jiang Y. Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns. Food Res Int 2024; 195:114984. [PMID: 39277245 DOI: 10.1016/j.foodres.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the impact of processing temperatures (190 °C, 210 °C, and 230 °C) and durations (7 min, 10 min, and 14 min) on the formation of Maillard reaction products (MRPs) and antioxidant activities in pan baked buns. Key Maillard reaction indicators, including glyoxal (GO), methylglyoxal (MGO), 5-hydroxymethylfurfural (5-HMF), melanoidins, and fluorescent advanced glycation end products (AGEs) were quantified. The results demonstrated significant increases in GO, MGO, 5-HMF contents (p < 0.05), and antioxidant activities (p < 0.05) when the buns were baked at 210 °C for 14 min, 230 °C for 10 min and 14 min. However, the interior MRPs of baked buns were minimally affected by the baking temperature and duration. Prolonged heating temperatures and durations exacerbated MRPs production (43.8 %-1038 %) in the bottom crust. Nonetheless, this process promoted the release of bound phenolic compounds and enhanced the antioxidant activity. Heating induces the thermal degradation of macromolecules in food, such as proteins and polysaccharides, which releases bound phenolic compounds by disrupting their chemical bonds within the food matrix. Appropriate selections of baking parameters can effectively reduce the formation of MRPs while simultaneously improve sensory quality and health benefit of the pan baked buns. Considering the balance between higher antioxidant properties and lower MRPs, the optimal thermal parameters for pan baked buns were 210 °C for 10 min. Furthermore, a normalized analysis revealed a consistent trend for GO, MGO, 5-HMF, fluorescent AGEs, and melanoidins. Moreover, MRPs were positively correlated with total contents of phenolic compounds, ferric-reducing antioxidant power (FRAP), and color, but negatively correlated with moisture contents and reducing sugars. Additionally, the interaction between baking conditions and Maillard reactions probably contributed to enhanced primary flavors in the final product. This study highlights the importance of optimizing baking parameters to achieve desirable MRPs levels, higher antioxidant activity, and optimal sensory attributes in baked buns.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sha Luo
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
| | - Jie Ma
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Ma S, Bao Y, Xu M, Yu X, Jiang H. Effect of 3D printing and traditional molding on phenolic compounds and antioxidant activity in steamed bread. Food Chem 2024; 454:139699. [PMID: 38797101 DOI: 10.1016/j.foodchem.2024.139699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
The production process of fermented black wheat steamed bread is closely related to the overall quality and nutritional content. In this study, we investigated the accuracy, product texture profile and antioxidant activity of fermented black wheat steamed bread samples produced by piston and spiral three-dimensional (3D) printers. The steaming process generally increased the total phenolic content and flavonoid content of the samples. The spiral 3D printer obtained samples with higher accuracy, total phenolic content up to 1960.43 Mg GAE/kg, and higher cellular antioxidant activity (CAA) content. The samples printed by the piston 3D printer showed higher total flavonoid content (575.75 Mg QE/kg), 2, 2'-azobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) values and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) values. This study shows that antioxidant-rich health foods can be prepared using 3D printed black wheat flour. The choice of 3D printing method affects the overall quality and nutritional content of the final product.
Collapse
Affiliation(s)
- Shu Ma
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Yanru Bao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Ming Xu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hao Jiang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
6
|
Pyrzynska K. Ferulic Acid—A Brief Review of Its Extraction, Bioavailability and Biological Activity. SEPARATIONS 2024; 11:204. [DOI: 10.3390/separations11070204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Ferulic acid is a widespread phenolic compound that occurs in seeds and leaves, both in its free form and conjugated to polysaccharides, carbohydrates, glycoproteins and lignins in the plant cell walls. It exhibits various biological activities, like antioxidant, anticarcinogenic, anti-inflammatory, hepatoprotective, antimicrobial, and antiviral activity, and it modulates enzyme activity. Given these wide potential health benefits, ferulic acid has attracted considerable research interest and may be considered a biomolecule with strong prospects as a functional food ingredient. Great attempts have been made to enhance its extraction process and recovery from natural matrices and agro-industrial wastes for its various applications relating to human health and nutrition. This review presents the recently available information on the extraction methods for quantifying ferulic acid in different samples, along with its bioavailability and stability in processing foods and biological activities.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Nishitsuji Y, Whitney K, Hayakawa K, Simsek S. Dynamic changes in ferulic acid and diferulic acids in wheat flour doughs during the breadmaking process. Food Chem 2024; 443:138524. [PMID: 38295571 DOI: 10.1016/j.foodchem.2024.138524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Ferulic acid (FA), a phytochemical concentrated in wheat bran, influences structural characteristics of arabinoxylan (AX) and rheological properties of wheat dough. This study investigates the dynamic changes in FA and diferulic acids, closely associated with AX molecular weight, during the breadmaking process. FA predominantly exists in a tightly bound state within the arabinoxylan matrix, with a substantial increase in free FA content observed during the initial fermentation phase. Furthermore, this research identified four specific wheat-derived diferulic acids: 8-5'-DFA, 5-5'-DFA, 8-O-4'-DFA, and 8-5'-DFA (benzofuran form), tracking their variations throughout breadmaking. The notable upsurge in diferulic acid levels in the early fermentation stages suggests that the cleavage of ferulic acid moieties may not be the primary factor contributing to the reduction in AX molecular weight. Future investigations into the effects of FA and diferulic acids on arabinoxylan and wheat dough properties promise to enhance understanding of the intricacies of the breadmaking process.
Collapse
Affiliation(s)
- Yasuyuki Nishitsuji
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan.
| | - Kristin Whitney
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Senay Simsek
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Moisa C, Brata AM, Muresan IC, Dragan F, Ratiu I, Cadar O, Becze A, Carbunar M, Brata VD, Teusdea AC. Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process. PLANTS (BASEL, SWITZERLAND) 2024; 13:1037. [PMID: 38611566 PMCID: PMC11013170 DOI: 10.3390/plants13071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Cereals, as the world's most consumed food, face challenges related to nutrient quality due to climate change and increased production impacting soil health. In this study, we investigated the vitamin and mineral content, polyphenols, and antioxidant activity in cereals from Western Romania, analyzing whole and hulled wheat, rye, oat, and soybeans before and after heat treatment. Samples from 2022 crops were processed into dough and subjected to 220 °C for 30 min. The results reveal that, despite efforts to optimize nutrient content, cereals, particularly after heat processing, exhibited lower vitamin and mineral levels than the recommended daily intake. The decrease in polyphenols and antioxidant capacity was notable, with rye flour experiencing the largest decline (15%). Mineral analysis showed copper levels in decorticated wheat decreased by 82.5%, while iron in rye decreased by 5.63%. Soy flour consistently displayed the highest calcium, magnesium, and potassium levels, whereas oat flour had the highest zinc and copper levels before and after heat processing. The study highlights the concerningly low vitamins and minerals contents in cereals, as well as in the final products reaching consumers in the Western part of Romania, and contributes to the assessment of measures that are meant to improve the contents of these minerals.
Collapse
Affiliation(s)
- Corina Moisa
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Anca Monica Brata
- Department of Engineering of Food Products, Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania
| | - Iulia C. Muresan
- Department of Economic Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Felicia Dragan
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Ioana Ratiu
- Department of Medicine, Medicine and Pharmacy Faculty, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Oana Cadar
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Anca Becze
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Mihai Carbunar
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| | - Vlad Dumitru Brata
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
| | - Alin Cristian Teusdea
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| |
Collapse
|
9
|
Monsierra L, Mansilla PS, Pérez GT. Whole Flour of Purple Maize as a Functional Ingredient of Gluten-Free Bread: Effect of In Vitro Digestion on Starch and Bioaccessibility of Bioactive Compounds. Foods 2024; 13:194. [PMID: 38254495 PMCID: PMC10813994 DOI: 10.3390/foods13020194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The growing demand for gluten-free products requires the study of alternatives to produce nutritionally and technologically favorable foods. The aim was to evaluate the content and antioxidant capacity of gluten-free bread enriched with whole flour of purple maize (PM) and how starch and bioaccessibility of antioxidant compounds were modified during in vitro digestion. Gluten-free bread was prepared with the addition of 34%, 50%, and 70% PM, and white maize bread served as control. The content of total polyphenols, anthocyanins, and antioxidant capacity through FRAP and TEAC was measured. Specific volume, crumb texture, and starch digestibility were determined in the breads. Simultaneously, in vitro digestion and dialysis by membrane were performed to evaluate the bioaccessible and potentially bioavailable fraction. Bread with 34% PM had a similar specific volume and crumb texture to the control, but higher content of polyphenols (52.91 mg AG/100 g), anthocyanins (23.13 mg c3-GE/100 g), and antioxidant capacity (3.55 and 5.12 µmol tr/g for FRAP and TEAC, respectively). The PM breads had a higher antioxidant content and capacity and higher slowly digestible and resistant starch than the control. These parameters increased as the PM proportion rose. After digestion, anthocyanins were degraded, polyphenols and antioxidant capacity decreased, but they remained potentially bioavailable, although to a lesser extent. Bread with 34% shows acceptable technological parameters, lower starch digestibility, and contribution of bioactive compounds with antioxidant capacity. This indicates that purple maize flour represents a potential ingredient to produce gluten-free bread with an improved nutritional profile.
Collapse
Affiliation(s)
- Luisina Monsierra
- Facultad de Ciencias Agropecuarias (FCA), Departamento de Agroalimentos, Universidad Nacional de Cordoba (UNC), Ing. Agr. Felix Aldo Marrone 746, Cordoba 5000, Argentina; (L.M.); (P.S.M.)
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), CONICET-UNC, Avenida Filloy s/n, Cordoba 5000, Argentina
| | - Pablo Sebastián Mansilla
- Facultad de Ciencias Agropecuarias (FCA), Departamento de Agroalimentos, Universidad Nacional de Cordoba (UNC), Ing. Agr. Felix Aldo Marrone 746, Cordoba 5000, Argentina; (L.M.); (P.S.M.)
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), CONICET-UNC, Avenida Filloy s/n, Cordoba 5000, Argentina
| | - Gabriela Teresa Pérez
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC), CONICET-UNC, Avenida Filloy s/n, Cordoba 5000, Argentina
- Facultad de Ciencias Agropecuarias (FCA), Cátedra de Química Biológica, Departamento de Fundamentación Biológica, Universidad Nacional de Cordoba (UNC), Ing. Agr. Felix Aldo Marrone 746, Cordoba 5000, Argentina
| |
Collapse
|
10
|
Wu T, Wang P, Zhang Y, Zhan P, Zhao Y, Tian H, He W. Identification of muttony-related compounds in cooked mutton tallows and their flavor intensities subjected to phenolic extract from thyme (Thymus vulgaris L.). Food Chem 2023; 427:136666. [PMID: 37364310 DOI: 10.1016/j.foodchem.2023.136666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Mutton possesses a typical flavor, known as "muttony" or "goaty", which significantly limits consumers' acceptability and its further popularization. Generally, this unpleasant flavor originates from mutton tallow. Thus, we first characterized the key volatiles of the cooked mutton tallow (CMT) via gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and odor activity value (OAV). Combined with aroma recombination and omission tests, eleven compounds, involving 4-methyloctanoic acid, 4-methynonanoic acid, octanoic acid, decanoic acid, hexanal, heptanal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal, 2-nonanone and 2-penty-furan, were screened out to be responsible for the "muttony" flavor. The objective of this study was to investigate the sensory property and acceptability of CMTs, elaborated with 4 different levels of thyme phenolic extract (TPE), through descriptive sensory analysis and key muttony-related compounds identification. The results showed that, of different TPEs employed, CMT plus TPE3 was the most effective strategy to control the key "muttony" contributors, thereby to improve flavor profile of CMT.
Collapse
Affiliation(s)
- Tianle Wu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuyu Zhang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Wanying He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
11
|
Wronkowska M, Bączek N, Honke J, Topolska J, Wiczkowski W, Zieliński H. Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds. Molecules 2023; 28:molecules28114565. [PMID: 37299040 DOI: 10.3390/molecules28114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Wheat roll enhanced by buckwheat hull was used as a model for determining the retention of bioactive compounds during technological steps. The research included analysis of the formation of Maillard reaction products (MRPs) and retention of bioactive compounds such as tocopherols, glutathione, or antioxidant capacity. About a 30% decrease in the content of available lysine in the roll was observed compared to the value obtained for fermented dough. Free FIC, FAST index, and browning index were highest for the final products. The increase of analyzed tocopherols (α-, β-,γ-, and δ-T) was noticed during the technological steps, with the highest values found for the roll with 3% of buckwheat hull. A significant reduction in GSH and GSSG content occurred during the baking process. The observed increase in the value of the antioxidant capacity after the baking process may be the result of the formation of new antioxidant compounds.
Collapse
Affiliation(s)
- Małgorzata Wronkowska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Natalia Bączek
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Honke
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Topolska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
12
|
Guan W, Zhang D, Tan B. Effect of Layered Debranning Processing on the Proximate Composition, Polyphenol Content, and Antioxidant Activity of Whole Grain Wheat. J FOOD PROCESS PRES 2023. [DOI: 10.1155/2023/1083867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Layered debranning processing (LDP) of whole grain wheat (WGW) could not only retain more bioactive compounds but also contributes to grain saving policy as compared with the refined wheat flour (WF). In this study, effect of different debranning rates from 0 to 13.37% on the proximate composition, polyphenol content, and the antioxidant activity were analyzed. As debranning rates increased from 0 to 13.37%, the insoluble dietary fiber content decreased from 9.94% to 6.47%, whereas the soluble dietary fiber contents increased from 3.06% to 3.98%. The free phenolic content decreased by 62.72%, while the free flavonoid content increased by 4.68% with debranning rates increasing. For the phenolic acids, protocatechuic acid and ferulic acid dominated the free and bound phenolic acid in WGW, which showed the highest contents at 6.95% and 4.45% debranning rates, respectively. As for flavonoids, naringenin (the free-state phenolic) and rutin (the bound state phenolic) in WGW had the greatest level at 4.45% debranning rate. As compared to WGW and WF, LDP significantly improved the DPPH, ABTS·+ radical scavenging activities and total antioxidant activities. In conclusion, 4.45% and 6.95% were the best debranning rates to retain polyphenol contents and antioxidant activities.
Collapse
Affiliation(s)
- Wenwen Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Duqin Zhang
- Institute of Cereal & Oil Science and Technology, Academy of State Administration of Grain, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of State Administration of Grain, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China
| |
Collapse
|
13
|
Domínguez-Hernández E, Gutiérrez-Uribe JA, Domínguez-Hernández ME, Loarca-Piña GF, Gaytán-Martínez M. In search of better snacks: ohmic-heating nixtamalized flour and amaranth addition increase the nutraceutical and nutritional potential of vegetable-enriched tortilla chips. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2773-2785. [PMID: 36598243 DOI: 10.1002/jsfa.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nixtamalized flour snacks such as tortilla chips are widely consumed across the world, but they are nutritionally poor and contribute to obesity and other non-communicable diseases. The production of healthy versions of such snacks, by incorporating vegetables and improving the quality of the flours used in their formulation, could help address these nutritional challenges. This study compared the fortification of baked tortilla chips with vegetable leaf powders (kale and wild amaranth at 0%, 4%, 8%, and 16% w/w) and using two types of nixtamalized flour: traditional (TNF) and with ohmic heating (OHF). RESULTS Overall, the use of OHF increased 1.88 times the fibre in enriched and non-enriched snacks with respect to TNF, but the latter had 1.85 times more protein. Addition of 16% of vegetable powders increased protein (kale = 1.4-fold; amaranth = 1.3-fold) and dietary fibre (kale = 1.52-fold; amaranth = 1.7-fold). Amaranth enrichment improved total phenolic content (TPC) and total flavonoid content (TFC) of chips at least 1.2 and 1.63 times, respectively. OHF chips also had higher bound TPC than TNF ones, regardless of vegetable addition. Combinations of OHF with 16% amaranth produced chips 1.74-fold higher in antioxidant capacity than non-enriched ones, due to increased content of phenolics such as ferulic acid. CONCLUSION This work showed that tortilla chips made using nixtamalized flour produced with assisted ohmic heating, alone or in combination with wild amaranth leaf powder, could be used in the production of healthy maize snacks to enhance their prospective antioxidant activity and nutritional value. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Domínguez-Hernández
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Universidad Autónoma de Querétaro, Querétaro, Mexico
- Department of Agricultural Science, Faculty of Higher Studies Cuautitlan, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Martha E Domínguez-Hernández
- Department of Agricultural Science, Faculty of Higher Studies Cuautitlan, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe F Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
14
|
Ciurzynska A, Trusinska M, Rybak K, Wiktor A, Nowacka M. The Influence of Pulsed Electric Field and Air Temperature on the Course of Hot-Air Drying and the Bioactive Compounds of Apple Tissue. Molecules 2023; 28:molecules28072970. [PMID: 37049733 PMCID: PMC10096262 DOI: 10.3390/molecules28072970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Drying is one of the oldest methods of obtaining a product with a long shelf-life. Recently, this process has been modified and accelerated by the application of pulsed electric field (PEF); however, PEF pretreatment has an effect on different properties—physical as well as chemical. Thus, the aim of this study was to investigate the effect of pulsed electric field pretreatment and air temperature on the course of hot air drying and selected chemical properties of the apple tissue of Gloster variety apples. The dried apple tissue samples were obtained using a combination of PEF pretreatment with electric field intensity levels of 1, 3.5, and 6 kJ/kg and subsequent hot air drying at 60, 70, and 80 °C. It was found that a higher pulsed electric field intensity facilitated the removal of water from the apple tissue while reducing the drying time. The study results showed that PEF pretreatment influenced the degradation of bioactive compounds such as polyphenols, flavonoids, and ascorbic acid. The degradation of vitamin C was higher with an increase in PEF pretreatment intensity level. PEF pretreatment did not influence the total sugar and sorbitol contents of the dried apple tissue as well as the FTIR spectra. According to the optimization process and statistical profiles of approximated values, the optimal parameters to achieve high-quality dried apple tissue in a short drying time are PEF pretreatment application with an intensity of 3.5 kJ/kg and hot air drying at a temperature of 70 °C.
Collapse
|
15
|
The Influence of Flavonoid Dihydroquercetin on the Enzymatic Processes of Dough Ripening and the Antioxidant Properties of Bread. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Bread is an integral part of the diet of the world population. Development of bread enriched with biologically active substances, including antioxidants, could be good nutritional support for human health. Among well-studied antioxidants, we can highlight dihydroquercetin, a flavonoid with outstanding antioxidant properties, such as anti-inflammatory activity, immunostimulatory properties, anti-cancer properties, and others. At the same time, the technology of bread enrichment must consider the possible negative effects of the additive on the technological processes and properties of the final product. The present work was carried out to evaluate the effect of dihydroquercetin on the enzymatic processes occurring during dough maturation and the antioxidant properties of the finished bread. Dihydroquercetin was added in amounts of 0.05 g, 0.07 g, and 0.1 g per 100 g of wheat flour and fermented with commercial baker’s yeast (Saccharomyces cerevisiae). The kinetics of pH and total titratable acidity (TTA) during dough fermentation showed that dihydroquercetin caused slight slowing of enzymatic processes. However, the dosage of dihydroquercetin did not cause statistically significant changes in the yeast concentration, which reached a level of 108 KOU/g after 2 h in all dough samples. Loss of dihydroquercetin during fermentation was established at a level of 20–25%. At the same time, an increase in the total amount of flavonoids in the dough after 2 h of fermentation and an increase in values of antioxidant activity were noted. The antioxidant properties of the bread also increased when it was enriched with dihydroquercetin (about 3.5–4 times) despite the fact that the total quantitative loss of antioxidant in the technological process was considerable (about 40%). A protective effect of the bread matrix on flavonoids during digestion was shown. Dihydroquercetin loss was about 25% regardless of the amount applied. This work clearly showed that addition of dihydroquercetin to a bread formulation represents a promising strategy for increasing the antioxidant properties of bread.
Collapse
|
16
|
Baiano A, la Gatta B, Rutigliano M, Fiore A. Functional Bread Produced in a Circular Economy Perspective: The Use of Brewers' Spent Grain. Foods 2023; 12:foods12040834. [PMID: 36832911 PMCID: PMC9957138 DOI: 10.3390/foods12040834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Brewers' spent grain (BSG) is the main by-product of the brewing industry, corresponding to ~85% of its solid residues. The attention of food technologists towards BSG is due to its content in nutraceutical compounds and its suitability to be dried, ground, and used for bakery products. This work was aimed to investigate the use of BSG as a functional ingredient in bread-making. BSGs were characterised for formulation (three mixtures of malted barley and unmalted durum (Da), soft (Ri), or emmer (Em) wheats) and origin (two cereal cultivation places). The breads enriched with two different percentages of each BSG flour and gluten were analysed to evaluate the effects of replacements on their overall quality and functional characteristics. Principal Component Analysis homogeneously grouped BSGs by type and origin and breads into three sets: the control bread, with high values of crumb development, a specific volume, a minimum and maximum height, and cohesiveness; Em breads, with high values of IDF, TPC, crispiness, porosity, fibrousness, and wheat smell; and the group of Ri and Da breads, which have high values of overall smell intensity, toasty smell, pore size, crust thickness, overall quality, a darker crumb colour, and intermediate TPC. Based on these results, Em breads had the highest concentrations of nutraceuticals but the lowest overall quality. Ri and Da breads were the best choice (intermediate phenolic and fibre contents and overall quality comparable to that of control bread). Practical applications: the transformation of breweries into biorefineries capable of turning BSG into high-value, low-perishable ingredients; the extensive use of BSGs to increase the production of food commodities; and the study of food formulations marketable with health claims.
Collapse
|
17
|
Han H, Dye L, Mackie A. The impact of processing on the release and antioxidant capacity of ferulic acid from wheat: A systematic review. Food Res Int 2023; 164:112371. [PMID: 36737957 DOI: 10.1016/j.foodres.2022.112371] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The antioxidant capacity and bioaccessibility of ferulic acid (FA)1 in wheat are highly limited by the lack of free ferulic acid (FFA).2 However, many studies claim that wheat processing can efficiently increase FFA content and ultimately influence the overall antioxidant capacity. Hence, this systematic review investigated changes in FFA content, antioxidant capacity and bioaccessibility of wheat after different processing treatments. A literature search of two databases (PubMed and Web of Science) was undertaken covering the last 20 years, yielding 1148 articles. Studies which employed bioprocessing, thermal processing and milling of wheat were considered. After exclusion criteria were applied, 36 articles were included. These covered single processing methods (n = 25, bioprocessing: n = 9, thermal processing: n = 9, milling n = 7) and combined processing methods (n = 11, bioprocessing & thermal processing = 7, bioprocessing, thermal processing & milling = 2, thermal processing & milling = 2). The total ferulic acid (TFA)3 content, degree of covalent bond hydrolysis and the percentage of FFA degraded or transformed to other compounds dominated the final changes in FFA content, antioxidant capacity and bioaccessibility. This systematic review is the first to comprehensively summarize the best efficient processing method for releasing FA and increasing antioxidant capacity and or bioaccessibility in wheat. The combination of particle size reduction, pre-hydrolysis thermal processing (except at high temperature and extended duration) and enzymatic hydrolysis (ferulic acid esterase (FAE)4 or fermentation) has the highest potential of releasing FA. However, the literature on the bioaccessibility of FA in wheat is limited and more work is required to demonstrate the link between the release of FA by processing and the consequent health benefits.
Collapse
Affiliation(s)
- Haizhen Han
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT Leeds, United Kingdom.
| | - Louise Dye
- School of Psychology, Faculty of Medicine and Health, University of Leeds, LS2 9JT Leeds, United Kingdom.
| | - Alan Mackie
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT Leeds, United Kingdom.
| |
Collapse
|
18
|
Li C, Tilley M, Chen R, Siliveru K, Li Y. Effect of bran particle size on rheology properties and baking quality of whole wheat flour from four different varieties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Lee H, Yeong Yang J, Eun Ra J, Ahn HJ, Ja Lee M, Young Kim H, Song SY, Hyun Kim D, Hwan Lee J, Duck Seo W. Elucidation of phenolic metabolites in wheat seedlings ( Triticum aestivum L.) by NMR and HPLC-Q-Orbitrap-MS/MS: Changes in isolated phenolics and antioxidant effects through diverse growth times. Food Chem X 2022; 17:100557. [PMID: 36845481 PMCID: PMC9943761 DOI: 10.1016/j.fochx.2022.100557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The current research was characterized on phenolic metabolite profile including six chemical structures (phenolic acid, luteolin, orientin, apigenin, isoscoparin, and tricin) in wheat seedlings using HPLC-Q-Orbitrap-MS/MS and NMR techniques. Our study was also was the first to demonstrate fluctuations of isolated nine phenolic contents and antioxidant properties in various cultivars of this species with different growth times. The antioxidant abilities differed significantly in the 80 % methanol extracts (600 μg/mL) according to cultivar and growth time, with the highest average activities (DPPH: 82 %; ABTS: 87 %) observed after 7 days. The isolated nine compositions exhibited considerable differences in cultivars and growth times, specifically, isoorientin (6) and isochaftoside (8) were observed the most abundant average contents (99.3; 64.3 mg/100 g), representing approximately 28.3 and 18.3 % (total content: 350.8 mg/100 g). Their total phenolics showed the highest rates (420.8 mg/100 g) at 7 days, followed by 9 → 5 → 12 → 14 days with 374.6 → 366.7 → 350.7 → 241.1 mg/100 g, as the rank orders of antioxidant effects. These findings suggest that wheat seedlings may be a potent source of functional agents.
Collapse
Affiliation(s)
- HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Ji Yeong Yang
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Ji Eun Ra
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Hyung-Jae Ahn
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Mi Ja Lee
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Hyun Young Kim
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Seung-Yeob Song
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Du Hyun Kim
- Department of Life Resources Industry, Dong-A University, Busan 49315, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resources Industry, Dong-A University, Busan 49315, Republic of Korea,Corresponding authors.
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea,Corresponding authors.
| |
Collapse
|
20
|
Insights into the effects of extractable phenolic compounds and Maillard reaction products on the antioxidant activity of roasted wheat flours with different maturities. Food Chem X 2022; 17:100548. [PMID: 36845526 PMCID: PMC9943760 DOI: 10.1016/j.fochx.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Experiments were performed to determine the effect of roasting whole wheat flours at 80 °C, 100 °C and 120 °C for 30 min on four forms of phenolics, Maillard reaction products (MRPs), and the DPPH scavenging activity (DSA) at 15, 30 and 45 days after flowering (15-DAF, 30-DAF, and 45-DAF). Roasting increased the phenolic content and antioxidant activity of the wheat flours, which were the dominant contributions to the formation of Maillard reaction products. The highest total phenolic content (TPC) and total phenolic DSA (TDSA) were determined in the DAF-15 flours at 120 °C/30 min. The DAF-15 flours exhibited the highest browning index and fluorescence of free intermediate compounds and advanced MRPs, suggesting that a substantial quantity of MRPs were formed. Four forms of phenolic compounds were detected with significantly different DSAs in the roasted wheat flours. The insoluble-bound phenolic compounds exhibited the highest DSA, followed by the glycosylated phenolic compounds.
Collapse
|
21
|
Kewuyemi YO, Kesa H, Meijboom R, Alimi OA, Adebo OA. Comparison of nutritional quality, phenolic compounds, and antioxidant activity of conventional and 3D printed biscuits from wholegrain and multigrain flours. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Raczyk M, Kruszewski B, Zachariasz E. Effect of Tomato, Beetroot and Carrot Juice Addition on Physicochemical, Antioxidant and Texture Properties of Wheat Bread. Antioxidants (Basel) 2022; 11:2178. [PMID: 36358548 PMCID: PMC9687052 DOI: 10.3390/antiox11112178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bakery products, including bread, are important components of the diet of people all over the world. One of the food industry's goals is to improve its quality in the context of healthiness and physical parameters. Consumers' perception of sensory quality is an important aspect of food choice. Thus, the study aimed to enhance nutritional parameters (antioxidant capacity, content of phenolic compounds) together with maintaining or increasing bread quality (texture, color, volume and sensory properties). Among vegetable juices, tomato, beetroot and carrot were selected, as they are easily accessible in Europe and are inexpensive. At the same time, those juices are known to be high in antioxidants. In this study, the effect of substituting recipe water with tomato, beetroot and carrot juices (replacement level: 15, 30, 50% v/v) was evaluated in terms of the specific volume, texture, color, acidity, polyphenol contents, antioxidant and sensory properties. It was concluded that juice content had a significant positive impact on physicochemical parameters such as volume, color, acidity, as well as the antioxidant activity of breads. The carrot and beetroot juices were the most efficient in terms of shaping wheat bread properties, especially in terms of antioxidant activity.
Collapse
Affiliation(s)
- Marianna Raczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Bartosz Kruszewski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Ewa Zachariasz
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
23
|
Liu Y, Zhang H, Brennan M, Brennan C, Qin Y, Cheng G, Liu Y. Physical, chemical, sensorial properties and in vitro digestibility of wheat bread enriched with yunnan commercial and wild edible mushrooms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Soster Santetti G, Ribeiro da Silva Lima L, Biduski B, Cristina Barros Santos M, Thomaz dos Santos D'Almeida C, Claudio Cameron L, Carlos Gutkoski L, Simões Larraz Ferreira M, Dias de Mello Castanho Amboni R. Untargeted metabolomics analysis reveals improved phenolic profile in whole wheat bread with yerba mate and the effects of the bread-making process. Food Res Int 2022; 159:111635. [DOI: 10.1016/j.foodres.2022.111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
25
|
Abstract
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. This review addresses the production of high-value-added compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant and antimicrobial agents, as well as structured lipids that offer specific functional properties that do not exist in nature, with important applications in different food products, and pharmaceuticals. In addition, the most recent successful cases of reactions with lipases to produce modified compounds for food and nutraceuticals are reported.
Collapse
|
26
|
Zhang GL, Zhou PC, Gong YL, Li XM, Yan Y, Rasheed A, Ibba MI, Gou JY. Boosting the antioxidant potential of pasta by a premature stop mutation in wheat keto-acythiolase-2. Food Chem 2022; 385:132634. [PMID: 35278737 DOI: 10.1016/j.foodchem.2022.132634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
Phenolics are a class of chemical compounds possessing antioxidant activity, which are mainly located in the wheat (Triticum aestivum) bran. Different approaches have been used in food industry to increase the availability of phenolics. Compared to these methods, however, genetic improvement of the wheat antioxidant potential, is a cost-effective, easier and safer approach. Here, we showed a single premature stop mutation in the keto-acythiolase-2 (kat-2b) gene, which significantly improved the antioxidant potential of pasta by a 60 ± 16% increase in its antioxidant potential by increasing the accumulation of ferulic acid. These changes are likely determined by the increased transcription (46% higher) and activity (120% higher) of the phenylalanine lyase genes observed in the mutated line compared to the control. Even if more studies will need to be done, overall, this study suggested that the kat-2b mutant could represent an excellent genetic resource to improve wheat's antioxidant and health-promoting potential.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Peng-Cheng Zhou
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yi-Lin Gong
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Ming Li
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Yan
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Awais Rasheed
- Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS 12 Zhongguancun South Street, Beijing 100081, China
| | - Maria Itria Ibba
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco C.P. 56237, Mexico
| | - Jin-Ying Gou
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
27
|
Grain phenolics: critical role in quality, storage stability and effects of processing in major grain crops—a concise review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Tian W, Zheng Y, Wang W, Wang D, Tilley M, Zhang G, He Z, Li Y. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Compr Rev Food Sci Food Saf 2022; 21:2274-2308. [PMID: 35438252 DOI: 10.1111/1541-4337.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
The health benefits of whole wheat consumption can be partially attributed to wheat's phytochemicals, including phenolic acids, flavonoids, alkylresorcinols, carotenoids, phytosterols, tocopherols, and tocotrienols. It is of increasing interest to produce whole wheat products that are rich in bioactive phytochemicals. This review provides the fundamentals of the chemistry, extraction, and occurrence of wheat phytochemicals and includes critical discussion of several long-lasting issues: (1) the commonly used nomenclature on distribution of wheat phenolic acids, namely, soluble-free, soluble-conjugated, and insoluble-bound phenolic acids; (2) different extraction protocols for wheat phytochemicals; and (3) the chemistry and application of in vitro antioxidant assays. This review further discusses recent advances on the effects of genotypes, environments, field management, and processing techniques including ultrafine grinding, germination, fermentation, enzymatic treatments, thermal treatments, and food processing. These results need to be interpreted with care due to varied sample preparation protocols and limitations of in vitro assays. The bioaccessibility, bioavailability, metabolism, and potential health benefits of wheat phytochemicals are also reviewed. This comprehensive and critical review will benefit scientific researchers in the field of bioactive compounds of cereal grains and also those in the cereal food industry to produce high-quality functional foods.
Collapse
Affiliation(s)
- Wenfei Tian
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas, USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Michael Tilley
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays, Kansas, USA
| | - Zhonghu He
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
29
|
Tian W, Jaenisch B, Gui Y, Hu R, Chen G, Lollato RP, Li Y. Effect of environment and field management strategies on phenolic acid profiles of hard red winter wheat genotypes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2424-2431. [PMID: 34632585 DOI: 10.1002/jsfa.11581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Integrated wheat management strategies can affect grain yield and flour end-use properties. However, the effect of integrated management and its interaction with environmental factors on the phenolic acid profiles of wheat has not been reported. The phenolic acid profile has become another parameter for the evaluation of wheat quality due to its potential health benefits. RESULTS Year × location × management and year × management × genotype interactions were significant for the total phenolic content (TPC) of wheat samples. The year × location × management × genotype interaction was significant for the concentration of trans-ferulic acid and several other phenolic acids. Field management practices with no fungicide application (e.g., farmer's practice, enhanced fertility) may lead to increased accumulation of phenolic compounds, especially for WB4458, which is more susceptible to fungi infection. However, this effect was also related to growing year and location. Higher soil nitrogen content at sowing also seems to affect the TPC and phenolic acid concentration positively. CONCLUSION Wheat phenolic acid profiles are affected by genotype, field management, environment, and their interactions. Intensified field management, in particular, may lead to decreased concentration of wheat phytochemicals. The level of naturally occurring nitrogen in the soil may also affect the accumulation of wheat phytochemicals. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfei Tian
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Brent Jaenisch
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Yijie Gui
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ruijia Hu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Gengjun Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Romulo P Lollato
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
30
|
Evolutionary Wheat Populations in High-Quality Breadmaking as a Tool to Preserve Agri-Food Biodiversity. Foods 2022; 11:foods11040495. [PMID: 35205972 PMCID: PMC8871435 DOI: 10.3390/foods11040495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plant biodiversity preservation is one of the most important priorities of today’s agriculture. Wheat (Triticum spp. L.) is widely cultivated worldwide, mostly under a conventional and monovarietal farming method, leading to progressive biodiversity erosion. On the contrary, the evolutionary population (EP) cultivation technique is characterized by mixing and sowing together as many wheat genotypes as possible to allow the crop to genetically adapt over the years in relation to specific pedoclimatic conditions. The objective of this study was to assess the nutritional, chemical and sensory qualities of three different breads obtained using different organic EP flours, produced following a traditional sourdough process and compared to a commercial wheat cultivar bread. Technological parameters, B-complex vitamins, microelements, dietary fibre and phenolic acids were determined in raw materials and final products. Flours obtained by EPs showed similar characteristics to the commercial wheat cultivar flour. However, significant differences on grain technological quality were found. The breads were comparable with respect to chemical and nutritional qualities. Overall, the sensory panellists rated the tasted breads positively assigning the highest score to those produced with EPs flours (6.75–7.02) as compared to commercial wheat cultivar-produced bread (cv. Bologna, 6.36).
Collapse
|
31
|
Multivariate assessment for predicting antioxidant activity from clove and pomegranate extracts by MCR-ALS and PLS models combined to IR spectroscopy. Food Chem 2022; 384:132321. [PMID: 35219232 DOI: 10.1016/j.foodchem.2022.132321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022]
Abstract
This study evaluated the feasibility of infrared (MIR/NIR) spectroscopy coupled to chemometrics as an alternative method for determining the antioxidant activity (AA%) of pomegranate (Punica granatum) and clove (Syzygium aromaticum) alcoholic extracts versus the conventional DPPH method. Multivariate curve resolution with alternating least squares (MCR-ALS) and Partial least squares (PLS) regression were efficient to predict the AA%, thus providing good accuracy and low residuals compared to the standard method. The MCR-ALS combined with NIR data stood out among the other models with R2 ≥ 0.962 and RMSEP ≤ 3.38 %; furthermore, this technique presents the great feature of recovering the pure spectral profile of the analytes and identifying interferents in the sample. The application of chemometrics tools to predict the antioxidant activity of natural extracts resulted in a greener, low-cost and efficient process for the food industry.
Collapse
|
32
|
Cui R, Zhu F. Changes in structure and phenolic profiles during processing of steamed bread enriched with purple sweetpotato flour. Food Chem 2022; 369:130578. [PMID: 34479007 DOI: 10.1016/j.foodchem.2021.130578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Purple-fleshed sweetpotato is a rich source of antioxidants such as polyphenols. Chinese steamed bread (CSB) is a popular food product for many people. The effect of CSB making process on the structure and phenolic profiles of CSB enriched with purple sweetpotato flour (PSPF) at different concentrations was investigated. The mixing process greatly reduced the gluten strength due to the incorporation of PSPF. The addition of PSPF induced extensive structural modification on CSB due to the starch-polyphenol and protein-polyphenol interactions. The total phenolic contents, in vitro antioxidant activity, and the contents of hydroxycinnamic acid derivatives were decreased by fermentation and proofing, but they were increased after steaming and storage. The anthocyanins were significantly degraded during the CSB making process. The textural and structural properties of CSB were significantly affected by the PSPF substitutions. The results of this study are useful to develop functional CSB with improved nutritional quality and phenolic profiles.
Collapse
Affiliation(s)
- Rongbin Cui
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
33
|
Ma D, Wang C, Feng J, Xu B. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6167-6185. [PMID: 34312865 DOI: 10.1002/jsfa.11428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is a widely cultivated crop and one of the most commonly consumed food grains in the world. It possesses several nutritional elements. Increasing attention to wheat grain phenolics bioactivity is due to the increasing demand for foods with natural antioxidants. To provide a comprehensive understanding of phenolics in wheat grain, this review first summarizes the phenolics' form and distribution and the phenolic components identified in wheat grain. In particular, the biosynthesis path for phenolics is discussed, identifying some candidate genes involved in the biosynthesis of phenolic acids and flavonoids. After discussing the methods for determining antioxidant activity, the effect of genotypes, environmental conditions, and cultivation systems on grain phenolic component content are explored. Finally, the bioavailability of phenolics under different food processing method are reported and discussed. Future research is recommended to increase wheat grain phenolic content by genetic engineering, and to improve its bioavailability through proper food processing. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
34
|
Effects of Different Pilot-Scale Milling Methods on Bioactive Components and End-Use Properties of Whole Wheat Flour. Foods 2021; 10:foods10112857. [PMID: 34829138 PMCID: PMC8623663 DOI: 10.3390/foods10112857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
The health benefits from consumption of whole wheat products are widely recognized. This study investigated the effects of different pilot-scale milling methods on physicochemical properties, bioactive components, Chinese steamed bread (CSB), and Chinese leavened pancakes (CLP) qualities of whole wheat flour (WWF). The results indicated that WWF-1 from the reconstitution of brans processed by a hammer mill had the best CSB and CLP quality overall. WWF from entire grain grinding by a jet mill (65 Hz) contained the highest concentration of bioactive components including dietary fibers (DF) and phenolic acids. A finer particle size did not necessarily result in a higher content of phenolic antioxidants in WWF. DF contents and damaged starch were negatively correlated with CSB and CLP quality. Compromised reduced quality observed in CLP made from WWF indicated its potentially higher acceptance as a whole-grain product.
Collapse
|
35
|
Schefer S, Oest M, Rohn S. Interactions between Phenolic Acids, Proteins, and Carbohydrates-Influence on Dough and Bread Properties. Foods 2021; 10:2798. [PMID: 34829079 PMCID: PMC8624349 DOI: 10.3390/foods10112798] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The understanding of interactions between proteins, carbohydrates, and phenolic compounds is becoming increasingly important in food science, as these interactions might significantly affect the functionality of foods. So far, research has focused predominantly on protein-phenolic or carbohydrate-phenolic interactions, separately, but these components might also form other combinations. In plant-based foods, all three components are highly abundant; phenolic acids are the most important phenolic compound subclass. However, their interactions and influences are not yet fully understood. Especially in cereal products, such as bread, being a nutritional basic in human nutrition, interactions of the mentioned compounds are possible and their characterization seems to be a worthwhile target, as the functionality of each of the components might be affected. This review presents the basics of such interactions, with special emphasis on ferulic acid, as the most abundant phenolic acid in nature, and tries to illustrate the possibility of ternary interactions with regard to dough and bread properties. One of the phenomena assigned to such interactions is so-called dry-baking, which is very often observed in rye bread.
Collapse
Affiliation(s)
- Simone Schefer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.S.); (M.O.)
| | - Marie Oest
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.S.); (M.O.)
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.S.); (M.O.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
36
|
Bento-Silva A, Duarte N, Belo M, Mecha E, Carbas B, Brites C, Vaz Patto MC, Bronze MR. Shedding Light on the Volatile Composition of Broa, a Traditional Portuguese Maize Bread. Biomolecules 2021; 11:biom11101396. [PMID: 34680029 PMCID: PMC8533067 DOI: 10.3390/biom11101396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
In Portugal, maize has been used for centuries to produce an ethnic bread called broa, employing traditional maize varieties, which are preferred by the consumers in detriment of commercial hybrids. In order to evaluate the maize volatiles that can influence consumers’ acceptance of broas, twelve broas were prepared from twelve maize varieties (eleven traditional and one commercial hybrid), following a traditional recipe. All maize flours and broas were analyzed by HS-SPME-GC-MS (headspace solid-phase microextraction) and broas were appraised by a consumer sensory panel. In addition, the major soluble phenolics and total carotenoids contents were quantitated in order to evaluate their influence as precursors or inhibitors of volatile compounds. Results showed that the major volatiles detected in maize flours and broas were aldehydes and alcohols, derived from lipid oxidation, and some ketones derived from carotenoids’ oxidation. Both lipid and carotenoids’ oxidation reactions appeared to be inhibited by soluble phenolics. In contrast, phenolic compounds appeared to increase browning reactions during bread making and, consequently, the production of pyranones. Traditional samples, especially those with higher contents in pyranones and lower contents in aldehydes, were preferred by the consumer sensory panel. These findings suggest that, without awareness, consumers prefer broas prepared from traditional maize flours with higher contents in health-promoting phenolic compounds, reinforcing the importance of preserving these valuable genetic resources.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- FCT NOVA, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Noélia Duarte
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Maria Belo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Elsa Mecha
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Bruna Carbas
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (C.B.)
| | - Carla Brites
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (C.B.)
| | - Maria Carlota Vaz Patto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.B.); (E.M.); (M.C.V.P.)
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
37
|
The addition of yerba mate leaves on bread dough has influences on fermentation time and the availability of phenolic compounds? Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Tian W, Hu R, Chen G, Zhang Y, Wang W, Li Y. Potential bioaccessibility of phenolic acids in whole wheat products during in vitro gastrointestinal digestion and probiotic fermentation. Food Chem 2021; 362:130135. [PMID: 34077856 DOI: 10.1016/j.foodchem.2021.130135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
Health benefits of whole wheat products are partially attributed by their unique phenolic compounds. This study investigated effect of simulated gastrointestinal digestion and probiotic fermentation on releasing of phenolic acids from whole wheat foods (bread, cookie, and pasta). Kinetics results showed that more phenolic acids were released within the first hour of gastric and intestinal digestions compared to the prolonged digestion. Lactobacillus rhamnosus GG, a common probiotic strain, released additional phenolic acids from the digestive residues during fermentation. Simulated digestion released more soluble trans-ferulic acid than chemical extraction in breads (17.69 to 102.71 µg/g), cookie (15.81 to 54.43 µg/g), and pasta (4.88 to 28.39 µg/g). Phenolic acid composition of whole wheat products appeared to be better estimated by digestion methods than the chemical extraction method. The unique insoluble-bound nature and fermentability of wheat phenolic acids may lead to a mechanistic understanding of whole grain consumption for potential colorectal cancer prevention.
Collapse
Affiliation(s)
- Wenfei Tian
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Ruijia Hu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Gengjun Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yiqin Zhang
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
39
|
Tian W, Wilson TL, Chen G, Guttieri MJ, Nelson NO, Fritz A, Smith G, Li Y. Effects of environment, nitrogen, and sulfur on total phenolic content and phenolic acid composition of winter wheat grain. Cereal Chem 2021. [DOI: 10.1002/cche.10432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenfei Tian
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Tara L. Wilson
- USDA Agricultural Research ServiceHard Winter Wheat Genetics Research Unit Manhattan KS USA
| | - Gengjun Chen
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Mary J. Guttieri
- USDA Agricultural Research ServiceHard Winter Wheat Genetics Research Unit Manhattan KS USA
| | | | - Allan Fritz
- Department of Agronomy Kansas State University Manhattan KS USA
| | - Gordon Smith
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| | - Yonghui Li
- Department of Grain Science and Industry Kansas State University Manhattan KS USA
| |
Collapse
|