1
|
Yang R, Cui Y, Cheng L, Hu M, Guan M, Fu Y, Zhang Y. Exposure to polyethylene terephthalate microplastics induces reprogramming of flavonoids metabolism and gene regulatory networks in Capsicum annuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118022. [PMID: 40088606 DOI: 10.1016/j.ecoenv.2025.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Micro/Nano-plastics (M/NPs) have emerged as a globally concerning pollutant. However, research on the phytotoxicity of M/NPs on plant secondary metabolism and the underlying molecular mechanisms is still limited. Pepper, a widely cultivated vegetable, is rich in flavonoids, which are a class of important secondary metabolites found throughout the plant kingdom with multiple biological functions. In this study, we conducted a detailed assessment of the physiological toxicity of Polyethylene Terephthalate microplastics (PET-MPs) on the growth of pepper seedlings. Results showed that PET-MPs significantly inhibited pepper growth, particularly root development. Moreover, PET-MPs exposure resulted in a burst of ROS, causing oxidative damage. KEGG pathways analysis illustrated that PET-MPs significantly altered the flavonoid biosynthesis and phenylpropanoid biosynthesis pathways at both the metabolome and transcriptome levels. Weighted gene correlation network analysis (WGCNA) identified ten structural genes and nine transcription factor genes that play pivotal roles in regulating flavonoid biosynthesis. In summary, this study elucidates the alterations in the flavonoid composition, along with the underlying gene regulatory network governing flavonoid metabolism under PET-MPs exposure in pepper. These findings enhance our comprehension of MPs pollution and provide valuable insights for the development of sustainable agro-ecosystems and food security in the future.
Collapse
Affiliation(s)
- Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yilan Cui
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingzhu Guan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youyang Fu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Feng G, Li J, Liu J, Tan R. Examining the effects of processing techniques on the quality of hawk tea through liquid chromatography-tandem mass spectrometry and two-dimensional gas chromatography-time-of-flight mass spectrometry. Food Chem 2025; 465:142012. [PMID: 39546994 DOI: 10.1016/j.foodchem.2024.142012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Processing techniques are critical factors influencing the quality of hawk tea, yet systematic studies on their effects are limited. This study investigates the impact of four key processing procedures-fixation, reddening, fermentation, and compressing-using sensory evaluation, LC-MS/MS, and GC × GC-TOF-MS. Analysis identified 6951 non-volatile metabolites, including 107 marker metabolites, primarily in flavonoid synthesis and degradation pathways. Fermentation increased sweetness and richness by enhancing sugars and amino acid content, while significantly reducing flavonoid levels. Reddening improved flavor, color, and retained more beneficial flavonoids. Volatile analysis detected over 1800 compounds, including 398 volatile marker metabolites. Fermentation increased alcohols and heterocyclic compounds, reducing hydrocarbons and ketones. Additionally, 26 camphoraceous and 12 pungent aroma compounds characteristic of hawk tea were identified, and an aroma-flavor correlation map was established. By elucidating the impact of processing methods on its chemical and sensory properties, this study lays the groundwork for targeted quality control of hawk tea.
Collapse
Affiliation(s)
- Gong Feng
- Hangzhou Tea Research Institute, China Coop, Hangzhou 310016, China; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resource, Hangzhou 310016, China
| | - Jiacheng Li
- Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Jun Liu
- Hangzhou Tea Research Institute, China Coop, Hangzhou 310016, China; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resource, Hangzhou 310016, China
| | - Rong Tan
- Hangzhou Tea Research Institute, China Coop, Hangzhou 310016, China; Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resource, Hangzhou 310016, China.
| |
Collapse
|
3
|
Zhang F, Wang Y, Wang M, Tan C, Huang S, Mou H, Wu K, Peng L, Fang Z, Tian Y, Sheng J, Zhao C. Structural characteristics and nonvolatile metabolites of theabrownins and their impact on intestinal microbiota in high-fat-diet-fed mice. Food Chem 2025; 463:141317. [PMID: 39332361 DOI: 10.1016/j.foodchem.2024.141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
This study prepared enzymatic theabrownins (TBs-e), alkaline theabrownins (TBs-a), and Pu-erh tea theabrownins (TBs-f), and investigated whether different preparation processes affected the structures, nonvolatile metabolites, and biofunctional activities of TBs. Structural characterization revealed that TBs were polymeric phenolic compounds rich in hydroxyl and carboxyl groups. Nontargeted metabolomics revealed that amino acids were the primary nonvolatile metabolites in TBs-e and TBs-a, accounting for over 70 % of the total nonvolatile content. TBs-f contained more polyphenols, caffeine, and flavonoids, accounting for 14.2 %, 3.9 %, and 0.8 % of total nonvolatile content, respectively. In vivo, at 560 mg/kg body weight, TBs-f were associated with regulation of blood glucose and lipid concentrations in mice. Moreover, 16S rRNA indicated that at 1120 mg/kg body weight, TBs-a were associated with increased numbers of microbiota linked with hypolipidemic activity. This study explores the impacts of different preparation processes on TBs and provides a theoretical foundation for the understanding of TBs.
Collapse
Affiliation(s)
- Feng Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ya Wang
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunlei Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Si Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongyu Mou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kuan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhongqi Fang
- Boao Yiling Life Care Center, Qionghai 571400, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; PuEr University, PuEr 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
4
|
Xiao J, Sun T, Jiang S, Xiao Z, Shan Y, Li T, Pan Z, Li Q, Fu F. Antioxidant Effects and Potential Mechanisms of Citrus reticulata 'Chachi' Components: An Integrated Approach of Network Pharmacology and Metabolomics. Foods 2024; 13:4018. [PMID: 39766961 PMCID: PMC11675786 DOI: 10.3390/foods13244018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Citrus reticulata 'Chachi' (CRC), recognized for its considerable edible and medicinal significance, is a valuable source of metabolites beneficial to human health. This research investigates the metabolic distinctions and antioxidant properties across four different parts of CRC, using multivariate statistical analysis to interpret metabolomic data and network pharmacology to identify potential antioxidant targets and relevant signaling pathways. The results indicate considerable metabolic differences in different parts of the sample, with 1622 metabolites showing differential expression, including 816 secondary metabolites, primarily consisting of terpenoids (31.02%) and flavonoids (25.22%). The dried mature citrus peel (CP) section demonstrates the highest level of total phenolics (6.8 mg/g), followed by the pulp without seed (PU) (4.52 mg/g), pulp with seed (PWS) (4.26 mg/g), and the seed (SE) (2.16 mg/g). Interestingly, targeted high-performance liquid chromatography of flavonoids reveals the highest level of nobiletin and tangeretin in CP, whereas PU has the highest level of hesperidin, narirutin, and didymin. Furthermore, all four sections of CRC exhibit robust antioxidant properties in in vitro assessments (CP > PU > PWS > SE). Lastly, the network pharmacology uncovered potential antioxidant mechanisms in CRC. This research offers deeper insights into the development and utilization of byproducts in the CRC processing industry.
Collapse
Affiliation(s)
- Jiahao Xiao
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Tian Sun
- Zheng Gan Hui (Jiang Men Xin Hui) Dried Tangerine Peel, Ltd., Jiangmen 529100, China
| | - Shengyu Jiang
- Zheng Gan Hui (Jiang Men Xin Hui) Dried Tangerine Peel, Ltd., Jiangmen 529100, China
| | - Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yang Shan
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Tao Li
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Zhaoping Pan
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Qili Li
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
5
|
Moreira J, Aryal J, Guidry L, Adhikari A, Chen Y, Sriwattana S, Prinyawiwatkul W. Tea Quality: An Overview of the Analytical Methods and Sensory Analyses Used in the Most Recent Studies. Foods 2024; 13:3580. [PMID: 39593996 PMCID: PMC11593154 DOI: 10.3390/foods13223580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Tea, one of the world's most consumed beverages, has a rich variety of sensory qualities such as appearance, aroma, mouthfeel and flavor. This review paper summarizes the chemical and volatile compositions and sensory qualities of different tea infusions including black, green, oolong, dark, yellow, and white teas based on published data over the past 4 years (between 2021 and 2024), largely focusing on the methodologies. This review highlights the relationships among the different processing methods of tea and their resulting chemical and sensory profiles. Environmental and handling factors during processing, such as fermentation, roasting, and drying are known to play pivotal roles in shaping the unique flavors and aromas of different types of tea, each containing a wide variety of compounds enhancing specific sensory characteristics like umami, astringency, sweetness, and fruity or floral notes, which may correlate with certain groups of chemical compositions. The integration of advanced analytical methods, such as high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), with traditional sensory analysis techniques was found to be essential in the evaluation of the chemical composition and sensory attributes of teas. Additionally, emerging approaches like near-infrared spectroscopy (NIRS) and electronic sensory methods show potential in modern tea evaluation. The complexity of tea sensory characteristics necessitates the development of combined approaches using both analytical methods and human sensory analysis for a comprehensive and better understanding of tea quality.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Jyoti Aryal
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Luca Guidry
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| | - Yan Chen
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (L.G.); (Y.C.)
| | - Sujinda Sriwattana
- Product Development Technology Division, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.M.); (J.A.); (A.A.)
| |
Collapse
|
6
|
Zhang J, Xin W, Zou Y, Yan J, Tang W, Ji Y, Li W. Dynamic changes and correlation analysis of microorganisms and flavonoids/ amino acids during white tea storage. Food Chem 2024; 455:139932. [PMID: 38843719 DOI: 10.1016/j.foodchem.2024.139932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
White tea stored for various times have different flavors. However, the mechanism of flavor conversion remains elusive. Flavonoids and amino acids are two typical flavor components in tea. Herein, the contents of 46 flavonoids and 40 amino acids were measured in white tea (Shoumei) stored for 1, 3, 5 and 7 years, respectively. L-tryptophan, L-ornithine and L-theanine contribute to the refreshing taste of Shoumei 1 and 3. Quercetin, rutin and hesperidin contribute to aging charm and grain aroma of Shoumei 5 and 7. 306 bacterial OTUs and 268 fungal OTUs core microbiota existed in all samples. Interestingly, white teas contained higher richness of fungi than bacteria. The correlation analysis showed that the cooperation with bacteria and fungi may result in the flavonoids and amino acids composition changes in white teas during storage. Overall, this study provides new insights into flavor conversion of white tea during storage.
Collapse
Affiliation(s)
- Jianming Zhang
- Research Management Service, Wuyi University, Wuyishan 354300, China
| | - Wei Xin
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenxin Tang
- Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Song X, Wu Z, Liang Q, Ma C, Cai P. Prediction of storage years of Wuyi rock tea Shuixian by metabolites analysis. Food Sci Nutr 2024; 12:7166-7176. [PMID: 39479628 PMCID: PMC11521635 DOI: 10.1002/fsn3.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/02/2024] Open
Abstract
Wuyi rock teas of different storage duration have different flavor, bioactivity, and market value, Shuixian is a main variety of Wuyi rock tea. In this study, metabolites composition of Shuixian with different storage years were analyzed using Ultrahigh Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). A total of 1201 compounds were identified, and 104 differential compounds (VIP > 1.5) were determined. Furthermore, the results showed that five compounds exhibited a positive correlation with storage time, such as alpha-terpineol formate, carnosol, 2-phenethyl-D-glucopyranoside, Ellagic acid, and D-ribosyl nicotinic acid, while 24 compounds showed a negative correlation, such as Ethyl linoleate, leucocyanidin, cis-3-hexenyl acetate. In total, 29 signature compounds significantly correlated with storage time. These findings shed light on the patterns and mechanisms of changes in the composition of Wuyi rock tea during storage and provide a theoretical foundation for distinguishing the storage years.
Collapse
Affiliation(s)
- Xiaoyue Song
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Zhifeng Wu
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Quanming Liang
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Chunhua Ma
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Pumo Cai
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| |
Collapse
|
8
|
He M, Tang CY, Wang T, Xiao MJ, Li YL, Li XZ. Analysis of Metabolic Profiles and Antioxidant Activity of Chinese Cordyceps, Ophiocordyceps sinensis, and Paecilomyces hepiali Based on Untargeted Metabolomics. BIOLOGY 2024; 13:683. [PMID: 39336110 PMCID: PMC11428516 DOI: 10.3390/biology13090683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Chinese cordyceps (GL) is a traditional medicinal fungus, with Ophiocordyceps sinensis (O. sinensis, BL) and Paecilomyces hepiali (P. hepiali, JSB) being fungi isolated from wild Chinese cordyceps. These three species share similar chemical composition and pharmacological effects. Existing studies have primarily compared the metabolites of Chinese cordyceps and O. sinensis, overlooking the assessment of antioxidant capacity in Chinese cordyceps, P. hepiali, and O. sinensis. In this study, LC-MS/MS was employed to analyze metabolites in GL, JSB, and BL. Utilizing principal component analysis (PCA), supervised orthogonal partial least squares discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), it was observed that the majority of differential metabolites (DMs) primarily accumulated in organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. Antioxidant activity analysis indicated that GL exhibited the higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability (DPPH•, scavenging rate is 81.87 ± 0.97%), hydroxyl free radical scavenging capacity (•OH, scavenging rate is 98.10 ± 0.60%), and superoxide anion radical scavenging capacity (O2•-, scavenging rate is 69.74 ± 4.36%), while JSB demonstrated the higher FRAP total antioxidant capacity of 8.26 μmol Trolox/g (p < 0.05). Correlation analysis revealed a positive correlation between DMs (fatty acyls and amino acids) and DPPH•, FRAP, •OH, and O2•- (p < 0.05). Additionally, glycerophospholipid DMs were found to be positively correlated with FRAP (p < 0.05). Through KEGG pathway analysis, it was determined that the accumulation of DMs in pathways such as cutin, suberine and wax biosynthesis has a higher impact on influencing the antioxidant activity of the samples. These results shed light on the antioxidant capacity and metabolic characteristics of Chinese cordyceps and its substitutes and offer valuable insights into how different DMs impact the strength of antioxidant activity, aiding in the advancement and application of Chinese cordyceps and its substitutes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (C.-Y.T.); (T.W.); (M.-J.X.); (Y.-L.L.)
| |
Collapse
|
9
|
Li ZQ, Yin XL, Gu HW, Peng ZX, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Discrimination and prediction of Qingzhuan tea storage year using quantitative chemical profile combined with multivariate analysis: Advantages of MRM HR based targeted quantification metabolomics. Food Chem 2024; 448:139088. [PMID: 38547707 DOI: 10.1016/j.foodchem.2024.139088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024]
Abstract
The duration of storage significantly influences the quality and market value of Qingzhuan tea (QZT). Herein, a high-resolution multiple reaction monitoring (MRMHR) quantitative method for markers of QZT storage year was developed. Quantitative data alongside multivariate analysis were employed to discriminate and predict the storage year of QZT. Furthermore, the content of the main biochemical ingredients, catechins and alkaloids, and free amino acids (FAA) were assessed for this purpose. The results show that targeted marker-based models exhibited superior discrimination and prediction performance among four datasets. The R2Xcum, R2Ycum and Q2cum of orthogonal projection to latent structure-discriminant analysis discrimination model were close to 1. The correlation coefficient (R2) and the root mean square error of prediction of the QZT storage year prediction model were 0.9906 and 0.63, respectively. This study provides valuable insights into tea storage quality and highlights the potential application of targeted markers in food quality evaluation.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhi-Xin Peng
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Su S, Long P, Zhang Q, Wen M, Han Z, Zhou F, Ke J, Wan X, Ho CT, Zhang L. Chemical, sensory and biological variations of black tea under different drying temperatures. Food Chem 2024; 446:138827. [PMID: 38402772 DOI: 10.1016/j.foodchem.2024.138827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As the final processing step, drying temperature between 90 and 140 ℃ is usually applied to terminate enzymatic activities and improve sensory characteristics of black tea. Liquid chromatography tandem mass spectrometry (LC-MS) based non-targeted and targeted metabolomics analyses combined in vitro biological assays were adopted to investigate the chemical and biological variations after drying. Fifty-nine differentially expressed metabolites including several hydroxycinnamic acid derivatives and pyroglutamic acid-glucose Amadori rearrangement products (ARPs) were identified, the latter of which was correspondingly accumulated with increasing temperature. The levels of theaflavins (TFs), thearubigins (TRs), monosaccharides and free amino acids gradually decreased with increasing temperature. Furthermore, the bioassays of black tea showed that drying under 110 ℃ provided the highest antioxidant capacities, but the inhibitory effects on α-glucosidase and α-amylase were decreasing along with increasing drying temperature. These results are valuable for optimizing drying process to obtain superior sensory properties and preserve bioactivities of black tea.
Collapse
Affiliation(s)
- Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qing Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Zhou H, Liu Y, Wu Q, Zhang X, Wang H, Lei P. The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature. Food Chem X 2024; 22:101371. [PMID: 38633742 PMCID: PMC11021834 DOI: 10.1016/j.fochx.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Hundreds of green tea products are available on the tea market and exhibit different characteristics. In the present study, seven types of green tea were processed, and their nonvolatile profiles were analyzed by liquid chromatography-mass spectrometry. Non-spreading green tea contained higher concentrations of catechins and flavonoid glycosides, but lower concentrations of amino acids, caffeine, and theaflavins. Non-rolling green teas with a straight appearance contained higher concentrations of flavonoid glycosides and theaflavins. In contrast, leaf-rolling green teas contained much lower concentrations of flavonoid glycosides and catechins. These seven green tea qualities all decreased following prolonged storage, concurrent with increasing concentrations of proanthocyanidins, catechins dimers, theaflavins, and organic acids. The leaf-rolling green teas exhibited reduced levels of deterioration during storage in terms of their nonvolatile profile and sensory quality. Findings show that moderate destruction on tea leaves during green tea processing is beneficial to both tea flavor and quality maintenance during storage.
Collapse
Affiliation(s)
- Hanchen Zhou
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Yaqin Liu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Qiong Wu
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Xiaolei Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Hui Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Pandeng Lei
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| |
Collapse
|
12
|
Dong H, Li Y, Lai X, Hao M, Sun L, Li Q, Chen R, Li Q, Sun S, Wang B, Zhang Z, Liu X. Effects of fermentation duration on the flavour quality of large leaf black tea based on metabolomics. Food Chem 2024; 444:138680. [PMID: 38325077 DOI: 10.1016/j.foodchem.2024.138680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Fermentation durations are crucial in determining the quality of black tea flavour. The mechanism underlying the degradation of black tea flavour caused by inappropriate fermentation duration remains unclear. In this study, the taste of black teas with different fermentation durations (BTFs) was analysed using sensory evaluation, electronic tongue, and metabolomics. The results revealed significant differences in 46 flavour profile components within the BTFs. Notably, metabolites such as gallocatechin gallate, gallocatechin, and epigallocatechin were found to be primarily reduced during fermentation, leading to a reduction in the astringency of black tea. Conversely, an increase in d-mandelic acid and guanine among others was observed to enhance the bitter flavour of black tea, while 3-Hydroxy-5-methylphenol nucleotides were found to contribute to sweetness. Furthermore, succinic acid and cyclic-3',5'-adenine nucleotides were associated with diminished freshness. This study offers a theoretical foundation for the regulation of flavour quality in large leaf black tea.
Collapse
Affiliation(s)
- Haiyu Dong
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| | - Yonghui Li
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Mengjiao Hao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Baijuan Wang
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| |
Collapse
|
13
|
Xie Z, Zhang D, Zhu J, Luo Q, Liu J, Zhou J, Wang X, Chen Y, Yu Z, Ni D. Mechanism of aroma enhancement methods in accelerating Congou black tea acidification subjected to room temperature storage. Food Chem 2024; 438:137837. [PMID: 37979270 DOI: 10.1016/j.foodchem.2023.137837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/20/2023]
Abstract
Acidification of aroma-enhanced black tea during storage was studied. UPLC-Q-TOF/MS (Ultra Performance Liquid Chromatography and Quadrupole-Time of Flight Mass Spectrometer) and HPLC (High-Performance Liquid Chromatography) analysis of non-volatile substances and organic acids revealed a decrease of soluble sugars and amino acids in aroma-enhanced black tea, while an increase in organic acids such as oxalic acid, malic acid and quinic acid. Further in vitro experiments indicated that the acidification of aroma-enhanced tea during storage can be attributed to decomposition of sugars and amino acids by heating, oxidation of aromatic aldehydes. Meanwhile, the amino acids, catechins, soluble sugars and flavonoids that constitute the taste of black tea are further reduced, changing the taste composition of tea infusion and further increasing its acidity. This study revealed the reasons for black tea acidification during aroma enhancement and storage and provided a theoretical basis for improving black tea quality.
Collapse
Affiliation(s)
- Zixuan Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Junyu Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xiaoyong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China.
| |
Collapse
|
14
|
Ren ZW, Pan HJ, Hu C, Le MM, Long YH, Xu Q, Xie ZW, Ling TJ. Rolling forms the diversities of small molecular nonvolatile metabolite profile and consequently shapes the bacterial community structure for Keemun black tea. Food Res Int 2024; 181:114094. [PMID: 38448096 DOI: 10.1016/j.foodres.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.
Collapse
Affiliation(s)
- Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Hong-Jing Pan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Cheng Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China
| | - Qian Xu
- Sunriver Tea Co., Ltd, Huangshan 245600, Anhui, PR China
| | - Zhong-Wen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China.
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, Anhui, PR China.
| |
Collapse
|
15
|
Li J, Han S, Mei X, Wang M, Han B. Changes in profiles of volatile compounds and prediction of the storage year of organic green tea during the long-term storage. Food Chem 2024; 437:137831. [PMID: 37897818 DOI: 10.1016/j.foodchem.2023.137831] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
In the present study, the volatile compounds in organic green tea with a continuous storage period (ranging from 1 to 16 years) were comprehensively analyzed and compared through SDE-GC-MS and chemometrics. The results revealed that the total of 124 volatiles were identified, and their total amount was increased with the prolongation of the storage years. Ketones, alcohols, esters, and aromatic hydrocarbons were the main types of volatiles in organic green tea, among which 26 volatile compounds were significantly correlated with storage years, and six volatile compounds that were most seriously affected by the storage years. The results of the support vector machine classification combined with multiple linear regression analysis showed that the content-period prediction model for the six volatile compounds can accurately predict the storage years of organic green tea. Therefore, this study offers novel insights into volatile compounds changes during the storage of green tea.
Collapse
Affiliation(s)
- Jia Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Hangzhou Tea & Chrysanthemum Technology Co. Ltd., Hangzhou 310018, China
| | - Xianshan Mei
- Zhejiang Meifeng Tea Industry Co., Ltd., Lishui 323000, China
| | - Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
16
|
Jin S, Li M, Liu Z, Liu R, Li Y, Zhu Y, Yuan Y, Li P, Li P, Chen C, Sun Y. Study on the correlation between color and taste of beauty tea infusion and the pivotal contributing compounds based on UV-visible spectroscopy, taste equivalent quantification and metabolite analysis. Food Chem X 2024; 21:101192. [PMID: 38389575 PMCID: PMC10881530 DOI: 10.1016/j.fochx.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
This study utilized a colorimeter to determine the color values of 23 beauty tea (BT) samples, the color and the taste characteristics were also quantitatively described through ultraviolet-visible (UV-Vis) spectroscopy and taste equivalent quantification. Furthermore, metabolomic analysis was conducted by using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). Correlation analysis was employed to preliminarily identify the compounds that contribute to the color and taste of BT infusion. Finally, the contributing compounds were further determined through verification experiment. The results showed that within a certain range, as the color of BT infusion deepened, the taste became stronger, more bitter and astringent, while on the contrary, it became sweeter and mellower. Theaflavins, kaempferol, astragalin, and 5-p-coumaroylquinic acid influenced both the color and taste of the BT infusion. Gallic acid was also determined as a contributor to the color. This study provides new insights into research on tea quality in infusion color and taste aspects.
Collapse
Affiliation(s)
- Shan Jin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjin Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziqiong Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruihua Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanchao Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyu Zhu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuwei Yuan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengchun Li
- Fujian Jiangshan Beauty Tea Co., Ltd., Sanming 366100, China
| | - Pengming Li
- Fujian Jiangshan Beauty Tea Co., Ltd., Sanming 366100, China
| | - Chunmei Chen
- Fujian Fengyuan Tea Industry Co., Ltd., Sanming 366100, China
| | - Yun Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Long P, Su S, Han Z, Granato D, Hu W, Ke J, Zhang L. The effects of tea plant age on the color, taste, and chemical characteristics of Yunnan Congou black tea by multi-spectral omics insight. Food Chem X 2024; 21:101190. [PMID: 38357378 PMCID: PMC10864201 DOI: 10.1016/j.fochx.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The present study comprehensively used integrated multi-spectral omics combined with sensory evaluation analysis to investigate the quality of three types of Yunnan Congou black teas from different tree ages (decades, DB; hundreds, HB; a thousand years, TB). TB infusion presented the highest scores of sweetness and umami, higher brightness, and yellow hue. Eighty-four marker metabolites were identified, including Amadori rearrangement products, catechin oxidation products, flavonoid glycosides, and organic acids, which are simultaneously related to tea infusions' color and taste. Moreover, the content of some characteristic flavonoid glycosides and organic acids was determined. Our finding implied trans-4-O-p-coumaroylquinic acid and quercetin 3-O-rutinoside contributed to bitterness and astringency, while dehydro theanine-glucose Amadori product and xylopyranosyl-glucopyranose resulted in umami and sweetness. These results provided quantitative and qualitative information for deciphering differences among black teas with different tea plant ages, conducing to the further utilization of ancient tea plants in Southwest China.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Daniel Granato
- Bioactivity and Applications Laboratory, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wei Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jiaping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
Wei L, Hu Q, He L, Li G, Zhang J, Chen Y. Diversity in storage age enables discrepancy in quality attributes and metabolic profile of Citrus grandis "Tomentosa" in China. J Food Sci 2024; 89:1454-1472. [PMID: 38258880 DOI: 10.1111/1750-3841.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
The folk proverb "the older, the better" is usually used to describe the quality of Citrus grandis "Tomentosa" (CGT) in China. In this study, CGT aged for 6-, 12-, 16-, and 19-years were collected for the investigation of infusion color, main bioactive components, antioxidant activity, metabolic composition, and pathway. The results found that infusion color, the total phenolic and flavonoid, and antioxidant activity of CGT were obviously changed by aging process. Through untargeted metabolomics, 55 critical metabolites were identified to in discrimination of CGT with different storage ages, mainly including phenylpropanoids, lipids, and organic oxygen compounds. Twenty compounds that showed good linear relationships with storage ages could be used for year prediction of CGT. Kyoto encyclopedia of genes and genomes enrichment pathway analysis uncovered important metabolic pathways related to the accumulation of naringin, kaempferol, and choline as well as the degradation of benzenoids, thus supporting that aged CGT might be more beneficial to health. Correlation analysis provided that some key metabolites with bitter taste and biological activity were involved in the darkening and reddening of CGT infusion during aging, and total phenolic and flavonoid were more strongly associated with the antioxidant activity of CGT. This study systematically revealed the quality changes and key metabolic pathways during CGT aging at first time. PRACTICAL APPLICATION: This study reveals the differences in quality attributes and metabolic profile between CGT with different storage ages, providing guidance for consumers' consumption, and also providing more scientific basis for the quality evaluation and improvement of CGT.
Collapse
Affiliation(s)
- Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
- School of Biotechnology and Food Engineering, Anhui Polytechnic University, Wuhu, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| |
Collapse
|
19
|
Wen X, Han S, Wang J, Zhang Y, Tan L, Chen C, Han B, Wang M. The Flavor Characteristics, Antioxidant Capability, and Storage Year Discrimination Based on Backpropagation Neural Network of Organic Green Tea ( Camellia sinensis) during Long-Term Storage. Foods 2024; 13:753. [PMID: 38472869 DOI: 10.3390/foods13050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The storage period of tea is a major factor affecting tea quality. However, the effect of storage years on the non-volatile major functional components and quality of green tea remains largely unknown. In this study, a comparative analysis of organic green teas with varying storage years (1-16 years) was conducted by quantifying 47 functional components, using electronic tongue and chromatic aberration technology, alongside an evaluation of antioxidative capacity. The results indicated a significant negative correlation between the storage years and levels of tea polyphenols, total amino acids, soluble sugars, two phenolic acids, four flavonols, three tea pigments, umami amino acids, and sweet amino acids. The multivariate statistical analysis revealed that 10 functional components were identified as effective in distinguishing organic green teas with different storage years. Electronic tongue technology categorized organic green teas with different storage years into three classes. The backpropagation neural network (BPNN) analysis demonstrated that the classification predictive ability of the model based on the electronic tongue was superior to the one based on color difference values and 10 functional components. The combined analysis of antioxidative activity and functional components suggested that organic green teas with shorter storage periods exhibited stronger abilities to suppress superoxide anion radicals and hydroxyl radicals and reduce iron ions due to the higher content of eight components. Long-term-stored organic green teas, with a higher content of substances like L-serine and theabrownins, demonstrated stronger antioxidative capabilities in clearing both lipid-soluble and water-soluble free radicals. Therefore, this study provided a theoretical basis for the quality assessment of green tea and prediction of green tea storage periods.
Collapse
Affiliation(s)
- Xiaomei Wen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Hangzhou Tea & Chrysanthemum Technology, Co., Ltd., Hangzhou 310018, China
| | - Jiahui Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanxia Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lining Tan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chen Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
20
|
Wang X, He C, Cui L, Liu Z, Liang J. Effects of Different Expansion Temperatures on the Non-Volatile Qualities of Tea Stems. Foods 2024; 13:398. [PMID: 38338533 PMCID: PMC10855559 DOI: 10.3390/foods13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Tea stems are a type of tea by-product, and a considerable amount of them is discarded during picking, with their value often being overlooked. To enhance the utilization of tea stems, we investigated the effects of different expansion temperatures on the non-volatile compounds of tea stems. The results showed that the contents of EC, EGC, EGCG, tea polyphenols, and amino acids all decreased with the expansion temperature, while the contents of GA and C increased. The best effect was observed at 220 °C for 20 s. Additionally, as the temperature increased, the umami and aftertaste of astringency values of tea stems decreased, and the value of bitterness increased. Meanwhile, the value of sweetness decreased first and then increased. EGC was identified as the key differential compound of tea stems at different temperatures. In this investigation, determining the optimum expansion temperature was deemed advantageous for enhancing the flavor quality of tea stems, consequently elevating the utilization efficacy of tea stems and tea by-products.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
21
|
Zhang S, Wu S, Yu Q, Shan X, Chen L, Deng Y, Hua J, Zhu J, Zhou Q, Jiang Y, Yuan H, Li J. The influence of rolling pressure on the changes in non-volatile compounds and sensory quality of congou black tea: The combination of metabolomics, E-tongue, and chromatic differences analyses. Food Chem X 2023; 20:100989. [PMID: 38144743 PMCID: PMC10740076 DOI: 10.1016/j.fochx.2023.100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023] Open
Abstract
Rolling represents an essential stage in congou black tea processing. However, the influence of rolling pressure on tea flavor and non-volatile compounds remains unclear. Herein, a combination of untargeted metabolomics, tea pigments quantification, E-tongue, colorimeter and sensory evaluation was used to evaluate the effect of rolling pressure on black tea quality. As the rolling pressure increased, theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs) significantly elevated. The tea metabolic profiles fluctuated and 47 metabolites were identified as key differential metabolites including flavan-3-ols, flavonol/flavone glycosides, phenolic acids, amino acids. These substances altered possibly due to the variations in enzymatic oxidation of tea phenolics and amino acids. Overall, black tea with moderate rolling pressure presented higher sweetness, lower bitterness, and higher quality index (10 TFs + TRs)/TBs. The results were verified by a validation batch. This study provided new insights into the regulation of rolling pressure and a guidance for black tea processing.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Shimin Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinyan Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xujiang Shan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Le Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
22
|
Zhang S, Sun L, Wen S, Chen R, Sun S, Lai X, Li Q, Zhang Z, Lai Z, Li Z, Li Q, Chen Z, Cao J. Analysis of aroma quality changes of large-leaf black tea in different storage years based on HS-SPME and GC-MS. Food Chem X 2023; 20:100991. [PMID: 38144858 PMCID: PMC10739856 DOI: 10.1016/j.fochx.2023.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
The reasons for the change in volatile metabolites and aroma of black tea during storage remain unclear. Therefore, we used HS-SPME and GC-MS methods to analyze the aroma compounds of new tea (2021) versus aged tea groups (2015, 2017, and 2019). A total of 109 volatile components were identified. During storage, 36 metabolites mainly with floral and fruity aromas decreased significantly, while 18 volatile components with spicy, sour, and woody aromas increased significantly. Linalool and beta-ionone mainly contributed to sweet and floral aromas of freshly-processed and aged black tea, respectively. Isovaleric acid and hexanoic acid mainly caused sour odor of aged black tea. The monoterpene biosynthesis and secondary metabolic biosynthesis pathways might be key metabolic pathways leading to changes in the relative content of metabolites during storage of black tea. Our study provides theoretical support for fully understanding the changes in the aroma quality of black tea during storage.
Collapse
Affiliation(s)
- Suwan Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
23
|
Aaqil M, Peng C, Kamal A, Nawaz T, Zhang F, Gong J. Tea Harvesting and Processing Techniques and Its Effect on Phytochemical Profile and Final Quality of Black Tea: A Review. Foods 2023; 12:4467. [PMID: 38137271 PMCID: PMC10743253 DOI: 10.3390/foods12244467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Tea (Camellia sinensis) has grown for over 300 years and is recognized worldwide as among other well-renowned crops. The quality of black tea depends on plucking (method, standard, season, and intervals), withering and rolling (time and temperature), fermentation (time, temperature, and RH), drying (temperature and method), and storage conditions, which have a high influence on the final quality of black tea. At the rolling stage, the oxidation process is initiated and ends at the early drying stage until the enzymes that transform tea polyphenols into thearubigins (TRs) and theaflavins (TFs) are denatured by heat. By increasing fermentation time, TRs increased, and TF decreased. Each is liable for black tea's brightness, taste, and color. The amino acids and essential oils also grant a distinctive taste and aroma to black tea. Throughout withering, rolling, and fermentation, increases were found in essential oil content, but during drying, a decrease was observed. However, the Maillard reaction, which occurs when amino acids react with sugar during drying, reimburses for this decrease and enhances the flavor and color of black tea. As compared to normal conditions, accelerated storage showed a slight decrease in the total color, TF, and TRs. It is concluded that including plucking, each processing step (adopted technique) and storage system has a remarkable impact on black tea's final quality. To maintain the quality, an advanced mechanism is needed to optimize such factors to produce high-quality black tea, and an objective setting technique should be devised to attain the desirable quality characteristics.
Collapse
Affiliation(s)
- Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.A.); (F.Z.)
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Ayesha Kamal
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Taufiq Nawaz
- College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Fei Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.A.); (F.Z.)
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.A.); (F.Z.)
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| |
Collapse
|
24
|
Li ZQ, Yin XL, Gu HW, Zou D, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Revealing the chemical differences and their application in the storage year prediction of Qingzhuan tea by SWATH-MS based metabolomics analysis. Food Res Int 2023; 173:113238. [PMID: 37803551 DOI: 10.1016/j.foodres.2023.113238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
It's generally believed that the longer the storage, the better the quality of dark tea, but the chemical differences of Qingzhuan tea (QZT) with different storage years is still unclear. Herein, in this work, an untargeted metabolomic approach based on SWATH-MS was established to investigate the differential compounds of QZT with 0-9 years' storage time. These QZT samples were roughly divided into two categories by principal component analysis (PCA). After orthogonal projections to latent structures discriminant analysis (OPLS-DA), 18 differential compounds were putatively identified as chemical markers for the storage year variation of QZT. Heatmap visualization showed that the contents of catechins, fatty acids, and some phenolic acids significantly reduced, flavonoid glycosides, triterpenoids, and 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased with the increase of storage time. Furthermore, these chemical markers were verified by the peak areas corresponding to MS2 ions from SWATH-MS. Based on the extraction chromatographic peak areas of MS and MS2 ions, a duration time prediction model was built for QZT with correlation coefficient R2 of 0.9080 and 0.9701, and RMSEP value of 0.85 and 1.24, respectively. This study reveals the chemical differences of QZT with different storage years and provides a theoretical basis for the quality evaluation of stored dark tea.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
25
|
Qin X, Zhou J, He C, Qiu L, Zhang D, Yu Z, Wang Y, Ni D, Chen Y. Non-targeted metabolomics characterization of flavor formation of Lichuan black tea processed from different cultivars in Enshi. Food Chem X 2023; 19:100809. [PMID: 37780350 PMCID: PMC10534183 DOI: 10.1016/j.fochx.2023.100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023] Open
Abstract
Nine tea cultivars planted in Enshi were selected and processed into "Lichuan black tea". Sensory evaluation showed that cultivar had the greatest influence on taste and aroma quality, including sweetness, umami and concentration of taste, as well as sweet and floral fragrances of aroma. The non-volatile and volatile components were identified by UPLC-Q-TOF/MS and GC-MS, and PCA analysis showed good separation between cultivars, which could cause the difference in quality. Baiyaqilan, Meizhan and Echa 10 had a floral aroma, with obvious difference in their aromatic composition from other cultivars. Moreover, Echa 10 also had a strong sweet aroma. The key aroma components in Echa 10 (with the largest cultivation area) were further investigated by GC-O-MS combined with odor activity value (OAV) analysis, included β-damascenone, phenylethylaldehyde, nonenal, geraniol, linalool, jasmonone, (E)-2-nonenal, β-cyclocitral, (E)-β-ocimene, methyl salicylate, β-ionone, 2,6,10,10-tetramethyl-1-oxaspiro[4.5]dec-6-ene, citral, β-myrcene, nerol, phenethyl alcohol, benzaldehyde, hexanal, nonanoic acid, and jasmin lactone.
Collapse
Affiliation(s)
- Xinxue Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Chang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Li Qiu
- Lichuan Xingdoushan Black Tea Co., Ltd, Lichuan, Hubei 445000, People’s Republic of China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
26
|
Wu Y, Li Q, Cao J, Fan F, Gan L, Wu R, Jin J, Chen R, Sun L, Zhang Z, Lai X, Wong WL, Sun S, Li D. Aged black tea alleviates constipation in mice by modulating intestinal neurotransmitters and decreasing AQP3 and AQP9 expression. Food Nutr Res 2023; 67:9513. [PMID: 39917391 PMCID: PMC11801384 DOI: 10.29219/fnr.v67.9513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 02/09/2025] Open
Abstract
Background Black tea is fully fermented tea with abundant functional components that benefit the gastrointestinal tract. But whether black tea extract relieves constipation is unknown. Therefore, we used loperamide to induce constipation in mice to assess the therapeutical effect of extracts from aged black tea with different storage times. Design Sixty-three C57BL/6J male mice were randomly divided into Control group (Con), Model group (Mod), Positive group (Pos), aged 6 years group (15Y), aged 4 years group (17Y), aged 2 years group (19Y), and unaged group (21Y). Mice were given loperamide (20 mg/kg, twice a day) to induce constipation for 10 days, and black tea extracts (500 mg/kg) were intragastrically given for 7 days while continuing modeling. Results The results showed that black tea extracts relieved constipation symptoms by improving defecation weight, fecal water content, and gastrointestinal transit rate. Black tea extracts can also protect colon tissue, regulate serum neurotransmitters, increase the levels of excitatory neurotransmitters motilin (MTL) and substance P (SP), and decrease the levels of inhibitory neurotransmitters vasoactive intestinal peptide (VIP) and nitric oxide (NO). Immunohistochemistry (IHC) showed that black tea extracts were able to reduce AQP3 and AQP9 expression in the colon of constipated mice. In addition, Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that black tea extracts could decrease AQP3 and AQP9 mRNA expression. The relief effect of aged black tea (15Y) with the longest storage was better than that of other years, which may be due to the role of active ingredients such as thearubigins (TRs), soluble sugar, tea polysaccharide (TPS), gallic acid (GA), and catechin gallate (CG) in aged black tea. Conclusions Based on these results, we believe that regular consumption of black tea is effective in relieving constipation, and that black tea is more effective in relieving constipation as the storage time increases.
Collapse
Affiliation(s)
- Yu Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Fenling Fan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| |
Collapse
|
27
|
Sun L, Su Y, Hu K, Li D, Guo H, Xie Z. Microbial-Transferred Metabolites of Black Tea Theaflavins by Human Gut Microbiota and Their Impact on Antioxidant Capacity. Molecules 2023; 28:5871. [PMID: 37570841 PMCID: PMC10420933 DOI: 10.3390/molecules28155871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Theaflavins (TFs), the primary bioactive components in black tea, are poorly absorbed in the small intestine. However, the biological activity of TFs does not match their low bioavailability, which suggests that the gut microbiota plays a crucial role in their biotransformation and activities. In this study, we aimed to investigate the biotransferred metabolites of TFs produced by the human gut microbiota and these metabolites' function. We profiled the microbial metabolites of TFs by in vitro anaerobic human gut microbiota fermentation using liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. A total of 17 microbial metabolites were identified, and their corresponding metabolic pathways were proposed. Moreover, full-length 16S rRNA gene sequence analysis revealed that the TFs altered the gut microbiota diversity and increased the relative abundance of specific members of the microbiota involved in the catabolism of the TFs, including Flavonifractor_plautii, Bacteroides_uniformis, Eubacterium_ramulus, etc. Notably, the antioxidant capacity of the TF sample increased after fermentation compared to the initial sample. In conclusion, the results contribute to a more comprehensive understanding of the microbial metabolites and antioxidant capacity of TFs.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.S.); (K.H.)
| | - You Su
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.S.); (K.H.)
| | - Kaiyin Hu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (Y.S.); (K.H.)
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
| | - Huimin Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
- Center for Biotechnology, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China; (L.S.); (D.L.); (H.G.)
| |
Collapse
|
28
|
Ding S, Zhang H, Zhou C, Bao Y, Xu X, Chen Y, Shen Z, Chen C. Transcriptomic, epigenomic and physiological comparisons reveal key factors for different manganese tolerances in three Chenopodium ambrosioides L. populations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107883. [PMID: 37442049 DOI: 10.1016/j.plaphy.2023.107883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Chenopodium ambrosioides is a manganese (Mn) hyperaccumulator that can be used for Mn-polluted soil phytoremediation. However, the mechanism of Mn tolerance of C. ambrosioides remains largely unknown. In this study, the key factors for Mn tolerance of C. ambrosioides was investigated from the aspects of DNA methylation pattern, gene expression regulation and physiological function. We found that the two genotypes of C. ambrosioides populations have differentiated tolerance to Mn stress (Mn-tolerant: CS and XC, Mn-sensitive: WH). Although there was no difference in Mn accumulation between two types under excess Mn, the biomass and photosynthetic systems were more severely inhibited in Mn-sensitive type, as well as suffering more serious oxidative damage. More differentially expressed genes (DEGs) were downregulated in the Mn-tolerant type, indicating that the Mn-tolerant type tends to inhibit gene expression to cope with Mn stress. DEGs related to metal transport, antioxidant system, phytohormone and transcription factors contribute to the tolerance of C. ambrosioides to Mn, and account for difference in Mn stress sensitivities between the Mn-sensitive and tolerant types. We also found that DNA methylation variation may help to cope with Mn stress. The global DNA methylation level in C. ambrosioides increased under Mn stress, especially in the Mn-sensitive type. Dozens of methylated loci were significantly associated with the Mn accumulation trait of C. ambrosioides, and some critical DEGs were regulated by DNA methylation. Our study comprehensively demonstrated the Mn tolerance mechanism of C. ambrosioides for the first time, and highlighted the roles of epigenetic modification in C. ambrosioides response to Mn stress. Our findings may contribute to elucidating the adaptation mechanism of hyperaccumulator to the heavy metal toxicity.
Collapse
Affiliation(s)
- Shifeng Ding
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Hanchao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Changwei Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yiqiong Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
29
|
Zhang S, Li Q, Wen S, Sun L, Chen R, Zhang Z, Cao J, Lai Z, Li Z, Lai X, Wu P, Sun S, Chen Z. Metabolomics reveals the effects of different storage times on the acidity quality and metabolites of large-leaf black tea. Food Chem 2023; 426:136601. [PMID: 37329793 DOI: 10.1016/j.foodchem.2023.136601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Most aged tea has superior sensory qualities and good health benefits. The content of organic acids determines of the quality and biological effects of aged tea, but there are no reports of the effect of storage on the composition and relative proportion of acidic compounds in black tea. This study analyzed and compared the sourness and metabolite profile of black tea produced in 2015, 2017, 2019 and 2021 using pH determination and UPLC-MS/MS. In total, 28 acidic substances were detected, with 17 organic acids predominating. The pH of black tea decreased significantly during storage from pH 4.64 to pH 4.25 with significantly increased in l-ascorbic acid, salicylic acid, benzoic acid and 4-hydroxybenzoic acid. The metabolic pathways ascorbate biosynthesis, salicylate degradation, toluene degradation, etc. were mainly enriched. These findings provide a theoretical basis to regulate the acidity of aged black tea.
Collapse
Affiliation(s)
- Suwan Zhang
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ping Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Jia W, Wu X, Liu N, Xia Z, Shi L. Quantitative fusion omics reveals that refrigeration drives methionine degradation through perturbing 5-methyltetrahydropteroyltriglutamate-homocysteine activity. Food Chem 2023; 409:135322. [PMID: 36584532 DOI: 10.1016/j.foodchem.2022.135322] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Postharvest senescence and quality deterioration of fresh tea leaves occurred due to the limitation of processing capacity. Refrigerated storage prolongs the shelf life of fresh tea. In this study, quantitative fusion omics delineated the translational landscape of metabolites and proteins in time-series (0-12 days) refrigerated tea by UHPLC-Q-Orbitrap HRMS. Accurate quantification results showed the content of amino acids, especially l-theanine, decreased with the lengthening of the storage duration (15.57 mg g-1 to 7.65 mg g-1) driven by theanine synthetase. Downregulation of enzyme 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase expression led to methionine degradation (6.29 µg g-1 to 1.78 µg g-1). Refrigerated storage inhibited serine carboxypeptidase-like acyltransferases activity (59.49 % reduction in 12 days) and induced the polymerization of epicatechin and epigallocatechin and generation of procyanidin dimer and δ-type dehydrodicatechin, causing the manifestation of color deterioration. A predictive model incorporating zero-order reaction and Arrhenius equation was constructed to forecast the storage time of green tea.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Zengrun Xia
- Ankang Research and Development Center for Se-enriched Products, Ankang 725000, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
31
|
Improving flavor of summer Keemun black tea by solid-state fermentation using Cordyceps militaris revealed by LC/MS-based metabolomics and GC/MS analysis. Food Chem 2023; 407:135172. [PMID: 36508871 DOI: 10.1016/j.foodchem.2022.135172] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cordyceps militaris (C. militaris) has been approved and widely used in healthy food. The present study aimed to improve the flavor of summer Keemun black tea (KBT) using C. militaris solid-state fermentation. Combined with sensory evaluation, the volatile and non-volatile components of solid-state fermentation of KBT (SSF-KBT) and KBT were analyzed. The results showed that after the solid-state fermentation, the contents of total polyphenol, total flavonoid, and total free amino acids were significantly reduced. Further non-targeted metabolomics analysis revealed that the contents of non-galloylated catechins and d-mannitol increased, while the galloylated catechins and flavonoid glycosides decreased as did the bitterness and astringency of KBT. Dihydro-β-ionone and β-ionone (OAV = 59321.97 and 8154.17) were the aroma-active compounds imparting woody and floral odors in SSF-KBT, respectively. Current study provides a new avenue to develop summer-autumn KBT.
Collapse
|
32
|
Li YN, Luo Y, Lu ZM, Dong YL, Chai LJ, Shi JS, Zhang XJ, Xu ZH. Metabolomic analysis of the effects of a mixed culture of Saccharomyces cerevisiae and Lactiplantibacillus plantarum on the physicochemical and quality characteristics of apple cider vinegar. Front Nutr 2023; 10:1142517. [PMID: 36998906 PMCID: PMC10043408 DOI: 10.3389/fnut.2023.1142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionThis study compared differences in physicochemical characteristics of the vinegar made by a mixed culture (MC) of Saccharomyces cerevisiae and Lactiplantibacillus plantarum and a pure culture (PC) of Saccharomyces cerevisiae.MethodsThe fermentation process was monitored, and metabolomics analysis by Liquid Chromagraphy-Mass Spectrometry (LC-MS) was applied to the compositional differences between PC and MC vinegars, combined with quantification of organic acids, amino acids and B vitamins.ResultsA total of 71 differential metabolites including amino acids, organic acids and carbohydrates, and six possible key metabolic pathways were identified. MC enhanced the malic acid utilization and pyruvate acid metabolism during fermentation, increasing substrate-level phosphorylation, and supplying more energy for cellular metabolism. Higher acidity at the beginning of acetic acid fermentation, resulting from lactic acid production by Lactiplantibacillus plantarum in MC, suppressed the cellular metabolism and growth of Acetobacter pasteurianus, but enhanced its alcohol metabolism and acetic acid production in MC. MC vinegar contained more vitamin B, total flavonoids, total organic acids, amino acids and had a higher antioxidant capacity. MC enhanced the volatile substances, particularly ethyl lactate, ethyl caprate and ethyl caproate, which contributed to a stronger fruity aroma.DiscussionThese results indicated the mixed culture in alcoholic fermentation can effectively enhance the flavor and quality of apple cider vinegar.
Collapse
Affiliation(s)
- Ya-Nan Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yue Luo
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Zhen-Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yan-Lin Dong
- Apple Cider Vinegar Engineering and Technology Research Center of Yantai, Lvjie Co., Ltd., Yantai, China
| | - Li-Juan Chai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiao-Juan Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Xiao-Juan Zhang,
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Zheng-Hong Xu,
| |
Collapse
|
33
|
Zhang X, Huang H, Sun S, Li D, Sun L, Li Q, Chen R, Lai X, Zhang Z, Zheng X, Wong WL, Wen S. Induction of Apoptosis via Inactivating PI3K/AKT Pathway in Colorectal Cancer Cells Using Aged Chinese Hakka Stir-Fried Green Tea Extract. Molecules 2022; 27:molecules27238272. [PMID: 36500365 PMCID: PMC9737789 DOI: 10.3390/molecules27238272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiying Huang
- Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China
| | - Shili Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (W.-L.W.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (W.-L.W.); (S.W.)
| |
Collapse
|
34
|
Li Y, Zhang Y, Wang Y, Li X, Zhou L, Yang J, Guo L. Metabolites and chemometric study of Perilla (
Perilla frutescens
) from different varieties and geographical origins. J Food Sci 2022; 87:5240-5251. [DOI: 10.1111/1750-3841.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yuan Li
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
- School of Traditional Chinese Medicine Guangdong Pharmaceutical University Guangzhou PR China
| | - Yue Zhang
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
- College of Traditional Chinese Medicine Yunnan University of Chinese Medicine Kunming PR China
| | - Youyou Wang
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Xiang Li
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
- School of Traditional Chinese Medicine Guangdong Pharmaceutical University Guangzhou PR China
| |
Collapse
|
35
|
Shi MZ, Yu YL, Zhu SC, Cao J, Ye LH. Nontargeted metabonomics-assisted two-dimensional ion mobility mass spectrometry point imaging to identify plant teas. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
36
|
Yaqun L, Hanxu L, Wanling L, Yingzhu X, Mouquan L, Yuzhong Z, Lei H, Yingkai Y, Yidong C. SPME-GC-MS combined with chemometrics to assess the impact of fermentation time on the components, flavor, and function of Laoxianghuang. Front Nutr 2022; 9:915776. [PMID: 35983487 PMCID: PMC9378830 DOI: 10.3389/fnut.2022.915776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Laoxianghuang, fermented from Citrus medica L. var. Sarcodactylis Swingle of the Rutaceae family, is a medicinal food. The volatiles of Laoxianghuang fermented in different years were obtained by solid-phase microextraction combined with gas chromatography–mass spectrometry (SPME-GC–MS). Meanwhile, the evolution of its component-flavor function during the fermentation process was explored in depth by combining chemometrics and performance analyses. To extract the volatile compounds from Laoxianghuang, the fiber coating, extraction time, and desorption temperature were optimized in terms of the number and area of peaks. A polydimethylsiloxane/divinylbenzene (PDMS/DVB) with a thickness of 65 μm fiber, extraction time of 30 min, and desorption temperature of 200 °C were shown to be the optimal conditions. There were 42, 44, 52, 53, 53, and 52 volatiles identified in the 3rd, 5th, 8th, 10th, 15th, and 20th years of fermentation of Laoxianghuang, respectively. The relative contents were 97.87%, 98.50%, 98.77%, 98.85%, 99.08%, and 98.36%, respectively. Terpenes (mainly limonene, γ-terpinene and cymene) displayed the highest relative content and were positively correlated with the year of fermentation, followed by alcohols (mainly α-terpineol, β-terpinenol, and γ-terpineol), ketones (mainly cyclohexanone, D(+)-carvone and β-ionone), aldehydes (2-furaldehyde, 5-methylfurfural, and 1-nonanal), phenols (thymol, chlorothymol, and eugenol), esters (bornyl formate, citronellyl acetate, and neryl acetate), and ethers (n-octyl ether and anethole). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed a closer relationship between the composition of Laoxianghuang with similar fermentation years of the same gradient (3rd-5th, 8th-10th, and 15th-20th). Partial least squares discriminant analysis (PLS-DA) VIP scores and PCA-biplot showed that α-terpineol, γ-terpinene, cymene, and limonene were the differential candidate biomarkers. Flavor analysis revealed that Laoxianghuang exhibited wood odor from the 3rd to the 10th year of fermentation, while herb odor appeared in the 15th and the 20th year. This study analyzed the changing pattern of the flavor and function of Laoxianghuang through the evolution of the composition, which provided a theoretical basis for further research on subsequent fermentation.
Collapse
Affiliation(s)
- Liu Yaqun
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Liu Hanxu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Lin Wanling
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Xue Yingzhu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, China
| | - Liu Mouquan
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Zheng Yuzhong
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Hu Lei
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Yang Yingkai
- Guangdong Jigong Healthy Food Co., Ltd, Chaozhou, China
| | - Chen Yidong
- Guangdong Jigong Healthy Food Co., Ltd, Chaozhou, China
| |
Collapse
|
37
|
Exploring the Quality and Application Potential of the Remaining Tea Stems after the Postharvest Tea Leaves: The Example of Lu'an Guapian Tea ( Camellia sinensis L.). Foods 2022; 11:foods11152357. [PMID: 35954125 PMCID: PMC9368606 DOI: 10.3390/foods11152357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Lu’an Guapian tea is produced through the processing of only leaves, with the stems and buds discarded, but stems constitute a large proportion of the tea harvest. To test the usability of tea stems, we compared the physicochemical properties of tea leaves and stems from the same growth period as well as the taste of their infusions. The leaves contained higher concentrations of polyphenols and caffeine and had a stronger taste. The tea stems contained higher concentrations of free amino acids and soluble sugars and were richer in umami and sweet flavors. In addition, more tender tea stems had higher concentrations of polyphenols, caffeine, and free amino acids, and their infusions had more refreshing and sweeter tastes. Furthermore, crude fiber content increased as stem tenderness decreased. In summary, tea stems are rich in phytochemical components and flavor, and these properties increased with tenderness. This provides a theoretical basis for the high-value utilization of tea stems.
Collapse
|
38
|
Peng CY, Ren YF, Ye ZH, Zhu HY, Liu XQ, Chen XT, Hou RY, Granato D, Cai HM. A comparative UHPLC-Q/TOF-MS-based metabolomics approach coupled with machine learning algorithms to differentiate Keemun black teas from narrow-geographic origins. Food Res Int 2022; 158:111512. [DOI: 10.1016/j.foodres.2022.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
|
39
|
Liu L, Shi J, Yuan Y, Yue T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res Int 2022; 158:111428. [DOI: 10.1016/j.foodres.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
40
|
Targeted and untargeted metabolomic analyses and biological activity of Tibetan tea. Food Chem 2022; 384:132517. [PMID: 35228002 DOI: 10.1016/j.foodchem.2022.132517] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
Tibetan tea is not only a national product of geographical identity, but also a traditional beverage inherits Chinese tradition. This study evaluated the metabolic profiles and biological activity in four Tibetan teas. 83 non-volatile metabolites were identified as differentially expressed metabolites, including amino acids and their derivatives, phenolic acids, flavonoids, nucleotides and their derivatives, terpenes, alkaloids, organic acids, lipids and others. CC and 131 were rich in terpenoids and lipids. MZ contained the highest contents of amino acids and their derivatives, phenolic acids and flavonoids. 26 key volatile compounds were considered as odor-active compounds. MZ showed the highest level of antioxidant and hypoglycemic activity. Statistics analysis indicated that polyphenols, flavonoids and catechins were significantly correlated (|r| ≥ 0.7, P < 0.05) with biological activities. This study indicated significant differences in the metabolic profiles of various types of Tibetan tea, which provided a clear database for quality detection of Tibetan tea.
Collapse
|
41
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
42
|
Qin C, Lian L, Xu W, Jiang Z, Wen M, Han Z, Zhang L. Comparison of the chemical composition and antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion. Food Funct 2022; 13:6139-6151. [PMID: 35579412 DOI: 10.1039/d2fo00707j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tea cream is a kind of turbid substance commonly existing in tea infusion and tea beverage upon cooling. Herein, a comparative study was conducted on the supernatant and cream from black tea infusion in terms of antioxidant, anti-inflammatory and enzyme inhibitory activities, and chemical composition. Ultraviolet-visible (UV-vis) spectrometry and high-performance liquid chromatography (HPLC) analysis showed that the contents of protein, polyphenols, theaflavins, thearubigins, theabrownins, and caffeine in cream were significantly higher than those in the supernatant. The contents of Al, Ca, Cu, and Fe elements in cream were higher than those in the supernatant. However, higher levels of monosaccharides and free amino acids were detected in the supernatant compared with cream. The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) based metabolomics analysis revealed that the main marker compounds between the supernatant and the cream were organic acids, phenolic acids, and flavan-3-ols and their oxidation products, flavonol glycosides and amino acids. The cream showed better antioxidant and anti-inflammatory, as well as α-amylase and α-glycosidase inhibitory activities than the supernatant, because it contained higher contents of polyphenols than the supernatant. The present study expanded the new vision towards the cream of black tea infusion.
Collapse
Affiliation(s)
- Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Li Lian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Wen Xu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Zisheng Han
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
43
|
Shen S, Chen X, Zhuo Q, Ma Y, Wang J, Wang L, Gong Z, Huo J. Integrating untargeted metabolites and targeted analysis for discrimination of kiwifruits from different cultivars. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Zha M, Lian L, Wen M, Ercisli S, Ren Y, Jiang Z, Ho CT, Zhang L. The Oxidation Mechanism of Flavan-3-ols by an Enzymatic Reaction Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics Combined with Captured o-Quinone Intermediates of Flavan-3-ols by o-Phenylenediamine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5715-5727. [PMID: 35475606 DOI: 10.1021/acs.jafc.2c01416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During the enzymatic oxidation of black tea, flavan-3-ols undergo a complicated chemical transformation and generate theaflavins and thearubigins. So far, the oxidation mechanism of flavan-3-ols has not been clarified. Liquid chromatography-tandem mass spectrometry-based metabolomics combined with o-quinone intermediates captured by o-phenylenediamine was developed and successfully applied in the liquid incubation of fresh tea homogenates. During the oxidation, the contents of catechins continuously decreased, while theaflavins increased first but decreased subsequently at the end of incubation. Meanwhile, the content of thearubigins greatly increased at the late stage of incubation. Dehydrotheasinensins were accumulated at the end of oxidation along with the decrease of theasinensins. Through o-phenylenediamine derivation, several adducts of (-)-epigallocatechin gallate, (-)-epigallocatechin, theasinensins A, B, C, and D, and corresponding dehydrotheasinensins were identified, which were considered as the substrates of thearubigins. These results suggested that theaflavins and these oxidation products contributed to the formation of thearubigins.
Collapse
Affiliation(s)
- Minyu Zha
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Li Lian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Yiyu Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
45
|
Lai G, Cui Y, Granato D, Wen M, Han Z, Zhang L. Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing. Food Res Int 2022; 155:111041. [DOI: 10.1016/j.foodres.2022.111041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
|
46
|
Ye JH, Ye Y, Yin JF, Jin J, Liang YR, Liu RY, Tang P, Xu YQ. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
48
|
Yang Z, Li L, Chen CH, Zhang YY, Yang Y, Zhang P, Bao GH. Chemical composition and antibacterial activity of 12 medicinal plant ethyl acetate extracts using LC-MS feature-based molecular networking. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:473-489. [PMID: 35042282 DOI: 10.1002/pca.3103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Widespread use of antibiotics has led to an increase in bacterial multiple drug resistance, thereby searching for natural antimicrobial agents from plants becomes an effective and alternative approach. In the present study, we selected six foodborne bacteria to evaluate the antibacterial activities of 12 medicinal plants ethyl acetate (EA) extracts. OBJECTIVE This study aims to search for natural antibiotic substitutes from plant extracts. The antibacterial components were further discussed through chemometric and mass spectroscopic analyses. METHODOLOGY Agar well diffusion and the microdilution methods were used to test the antibacterial activity. Total phenolic content (TPC) and total flavonoid content (TFC) were used to judge the active phytochemicals. To further characterise the potential antibacterial components, an ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) coupled with Pearson correlation and feature-based molecular network (FBMN) were proposed. RESULTS Most of the plant extracts possessed antibacterial activity against Bacillus subtilis and Salmonella typhi. Toona sinensis shoots and Firmiana simplex barks showed high inhibitory activities against Staphylococcus aureus, Shigella dysenteriae, and Escherichia coli strains with minimum inhibitory concentrations (MICs) of 1.56, 0.78, and 0.39 mg/mL, respectively. Salmonella typhi was highly sensitive to Firmiana simplex barks with an inhibitory diameter up to 21.67 ± 0.95 mm, and MIC at 0.78 mg/mL. Moreover, Toona sinensis shoots and Firmiana simplex barks had the highest TPCs. CONCLUSION Our results indicated that Toona sinensis shoots, Koelreuteria paniculate seeds, and Firmiana simplex barks could be supplied as potential sources of antimicrobial agents. Furthermore, 36 potential bioactive compounds were identified mainly as polyphenols, glycosides, and terpenoids.
Collapse
Affiliation(s)
- Zi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, P. R. China
| | - Li Li
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, P. R. China
| | - Chen-Hui Chen
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, P. R. China
| | - Yuan-Yuan Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, P. R. China
| | - Yi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, P. R. China
| | - Peng Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, P. R. China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
49
|
Jiang Z, Zhang H, Han Z, Zhai X, Qin C, Wen M, Lai G, Ho CT, Zhang L, Wan X. Study on In Vitro Preparation and Taste Properties of N-Ethyl-2-Pyrrolidinone-Substituted Flavan-3-Ols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3832-3841. [PMID: 35289174 DOI: 10.1021/acs.jafc.2c00798] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) were prepared by an in vitro model reaction, and the taste thresholds of EPSFs and their dose-over-threshold factors in large-leaf yellow tea (LYT) were investigated. The effects of initial reactant ratios, reaction temperatures and time, pH values, and water addition on the yield of EPSFs were explored. The contents of EPSFs during roasting were determined by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). When the initial ratio of (-)-epigallocatechin gallate (EGCG) to theanine was 1:2 and roasted under 120 °C for 120 min, the contents of EPSFs were the highest. The bitterness and astringency thresholds of four EPSF isomers were measured by the half-tongue method, of which EPSF2 and EPSF3 had higher thresholds than EGCG. In LYT, four EPSFs had lower bitterness and astringency dose-over-threshold factors than EGCG. This study suggested that the reduction of bitterness and astringency of tea after roasting may be mainly due to the formation of EPSFs.
Collapse
Affiliation(s)
- Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
50
|
Wang Y, Nie S, Li C, Xiang H, Zhao Y, Chen S, Li L, Wu Y. Application of Untargeted Metabolomics to Reveal the Taste-Related Metabolite Profiles during Mandarin Fish (Siniperca chuatsi) Fermentation. Foods 2022; 11:foods11070944. [PMID: 35407031 PMCID: PMC8998124 DOI: 10.3390/foods11070944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Spontaneous fermentation is a critical processing step that determines the taste quality of fermented mandarin fish (Siniperca chuatsi). Here, untargeted metabolomics using ultra-high-performance liquid chromatography coupled with Q Exactive tandem mass spectrometry was employed to characterize the taste-related metabolite profiles during the fermentation of mandarin fish. The results demonstrated that the taste profiles of mandarin fish at different stages of fermentation could be distinguished using an electronic tongue technique. Sixty-two metabolites, including amino acids, small peptides, fatty acids, alkaloids, and organic acids, were identified in fermented mandarin fish samples. Additional quantitative analysis of amino acids revealed glutamic acid and aspartic acid as significant contributors to the fresh flavor. Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that amino acid metabolism was the dominant pathway throughout the fermentation process. This study provides a scientific and theoretical reference for the targeted regulation of the quality of fermented mandarin fish.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shi Nie
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-20-89108346; Fax: +86-20-84451442
| |
Collapse
|