1
|
Fan Y, Zhang K, Liu Q, Chen Q, Xia X, Sun F, Kong B. Mechanism, application, and prospect of bioprotective cultures in meat and meat products. Food Chem 2025; 476:143474. [PMID: 39987808 DOI: 10.1016/j.foodchem.2025.143474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Physical, chemical, and biological methods are often used to prevent meat spoilage and food-borne diseases. Bioprotective cultures and antimicrobial products are the basis of biological protection, especially lactic acid bacteria, which have been widely used in meat and meat products. In addition to effective inhibition of spoilage and pathogenic bacteria, some bioprotective cultures can also improve product quality. Bioprotective cultures are often combined with other technologies in practical applications, including packaging and processing technologies. Additionally, genetic engineering offers significant potential for modifying bioprotective cultures. This study examines the mechanism of action underlying bioprotection, focusing on bioprotective cultures, and subsequently analyses their effect on meat and meat products. On this basis, the current application status of bioprotective cultures in various meat products is outlined, followed by a discussion on research prospects and development trends in this field.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kaida Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Abdelshafy AM, Mahmoud AR, Abdelrahman TM, Mustafa MA, Atta OM, Abdelmegiud MH, Al-Asmari F. Biodegradation of chemical contamination by lactic acid bacteria: A biological tool for food safety. Food Chem 2024; 460:140732. [PMID: 39106807 DOI: 10.1016/j.foodchem.2024.140732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Ahmed Rashad Mahmoud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Talat M Abdelrahman
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt.
| | - Mustafa Abdelmoneim Mustafa
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mahmoud H Abdelmegiud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
3
|
Carneiro KO, Campos GZ, Scafuro Lima JM, Rocha RDS, Vaz-Velho M, Todorov SD. The Role of Lactic Acid Bacteria in Meat Products, Not Just as Starter Cultures. Foods 2024; 13:3170. [PMID: 39410205 PMCID: PMC11475535 DOI: 10.3390/foods13193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Lactic acid bacteria (LABs) are microorganisms of significant scientific and industrial importance and have great potential for application in meat and meat products. This comprehensive review addresses the main characteristics of LABs, their nutritional, functional, and technological benefits, and especially their importance not only as starter cultures. LABs produce several metabolites during their fermentation process, which include bioactive compounds, such as peptides with antimicrobial, antidiabetic, antihypertensive, and immunomodulatory properties. These metabolites present several benefits as health promoters but are also important from a technological point of view. For example, bacteriocins, organic acids, and other compounds are of great importance, whether from a sensory or product quality or a safety point of view. With the production of GABA, exopolysaccharides, antioxidants, and vitamins are beneficial metabolites that influence safety, technological processes, and even health-promoting consumer benefits. Despite the benefits, this review also highlights that some LABs may present virulence properties, requiring critical evaluation for using specific strains in food formulations. Overall, this review hopes to contribute to the scientific literature by increasing knowledge of the various benefits of LABs in meat and meat products.
Collapse
Affiliation(s)
- Kayque Ordonho Carneiro
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Gabriela Zampieri Campos
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - João Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Ramon da Silva Rocha
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Manuela Vaz-Velho
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| |
Collapse
|
4
|
Klementaviciute J, Zavistanaviciute P, Klupsaite D, Rocha JM, Gruzauskas R, Viskelis P, El Aouad N, Bartkiene E. Valorization of Dairy and Fruit/Berry Industry By-Products to Sustainable Marinades for Broilers' Wooden Breast Meat Quality Improvement. Foods 2024; 13:1367. [PMID: 38731738 PMCID: PMC11083194 DOI: 10.3390/foods13091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The study aims to improve the quality of wooden breast meat (WBM) via the use of newly developed marinades based on selected strains of lactic acid bacteria (LAB) in combination with the by-products of the dairy and fruit/berry industries. Six distinct marinades were produced based on milk permeate (MP) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu) with the addition of apple (ApBp) and blackcurrant (BcBp) processing by-products. The microbiological and acidity parameters of the fermented marinades were evaluated. The effects of marinades on the microbiological, technical, and physicochemical properties of meat were assessed following 24 and 48 h of WBM treatment. It was established that LAB viable counts in marinades were higher than 7.00 log10 colony-forming units (CFU)/mL and, after 48 h of marination, enterobacteria and molds/yeasts in WBM were absent. Marinated (24 and 48 h) WBM showed lower dry-matter and protein content, as well as water holding capacity, and exhibited higher drip loss (by 8.76%) and cooking loss (by 12.3%) in comparison with controls. After WBM treatment, biogenic amines decreased; besides, the absence of spermidine and phenylethylamine was observed in meat marinated for 48 h with a marinade prepared with Lu. Overall, this study highlights the potential advantages of the developed sustainable marinades in enhancing the safety and quality attributes of WBM.
Collapse
Affiliation(s)
- Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Romas Gruzauskas
- Artificial Intelligence Centre, Kaunas University of Technology, K. Donelaicio Str. 73, LT-44249 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy, Route de rabat km 15 Gzenaya BP 365 Tanger, University Abdelmalek Essaâdi, Tetouan 92000, Morocco;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
5
|
Zavistanaviciute P, Ruzauskas M, Antanaitis R, Televicius M, Lele V, Santini A, Bartkiene E. Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals (Basel) 2023; 13:3345. [PMID: 37958101 PMCID: PMC10648343 DOI: 10.3390/ani13213345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to evaluate the influence of in acid whey (AW) multiplied Lactiplantibacillus plantarum LUHS135 (L.pl135), Lacticaseibacillus paracasei LUHS244 (L.pc244), and their biomass combination on newborn calves' feces and blood parameters. Additionally, the antimicrobial and mycotoxin-reducing properties and the resistance to antibiotics of the tested lactic acid bacteria (LAB) strains were analyzed. In order to ensure effective biomass growth in AW, technological parameters for the supplement preparation were selected. Control calves were fed with a standard milk replacer (SMR) and treated groups (from the 2nd day of life until the 14th day) were supplemented with 50 mL of AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 (25 mL AWL.pl135 + 25 mL AWL.pc244) in addition to SMR. It was established that L.pl135 and L.pc244 possess broad antimicrobial activities, are non-resistant to the tested antibiotics, and reduce mycotoxin concentrations in vitro. The optimal duration established for biomass growth was 48 h (LAB count higher than 7.00 log10 CFU mL-1 was found after 48 h of AW fermentation). It was established that additional feeding of newborn calves with AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 increased lactobacilli (on average by 7.4%), and AWL.pl135 and AWL.pc244 reduced the numbers of Enterobacteriaceae in calves' feces. The tested supplements also reduced the lactate concentration (on average, by 42.5%) in calves' blood. Finally, the tested supplements had a positive influence on certain health parameters of newborn calves; however, further research is needed to validate the mechanisms of the beneficial effects.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ramunas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Mindaugas Televicius
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Vita Lele
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
6
|
Inhibitory effect of coriander (Coriandrum sativum L.) extract marinades on the formation of polycyclic aromatic hydrocarbons in roasted duck wings. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Merugu NK, Manapuram S, Chakraborty T, Karanam SK, Imandi SB. Mutagens in commercial food processing and its microbial transformation. Food Sci Biotechnol 2023; 32:599-620. [PMID: 37009045 PMCID: PMC10050501 DOI: 10.1007/s10068-022-01240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mutagens are chemical molecules that have the ability to damage DNA. Mutagens can enter into our body upon consumption of improperly cooked or processed food products such as high temperature or prolonged cooking duration. Mutagens are found in the food products can be classified into N-nitroso derivatives, polycyclic aromatic hydrocarbons, and heterocyclic aromatic amines. Food products with high fat and protein content are more prone to mutagenic formation. Microorganisms were found to be a potent weapon in the fight against various mutagens through biotransformation. Therefore, searching for the microorganisms which have the ability to transform mutagens and the development of techniques for the identification as well as detection of mutagens in food products is much needed. In the future, methods for the identification and detection of these mutagens as well as the identification of new and more potent microorganisms which can transform mutagens into non-mutagens are much needed.
Collapse
Affiliation(s)
- Narendra Kishore Merugu
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530 045 India
| | - Saikumar Manapuram
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530 045 India
- Department of Genetic Toxicology, Vipragen Biosciences Private Limited, No. 67B, Hootagalli Industrial Area, Mysuru, Karnataka 570 018 India
| | - Tanushree Chakraborty
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530 045 India
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530 045 India
| | - Sita Kumari Karanam
- Maharajah’s College of Pharmacy, Phool Baugh, Vizianagaram, Andhra Pradesh 535 002 India
| | - Sarat Babu Imandi
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530 045 India
| |
Collapse
|
8
|
Zavistanaviciute P, Klementaviciute J, Klupsaite D, Zokaityte E, Ruzauskas M, Buckiuniene V, Viskelis P, Bartkiene E. Effects of Marinades Prepared from Food Industry By-Products on Quality and Biosafety Parameters of Lamb Meat. Foods 2023; 12:foods12071391. [PMID: 37048209 PMCID: PMC10093910 DOI: 10.3390/foods12071391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to develop marinade formulas based on by-products from the dairy, berry, and fruit industries and apply them to lamb meat (LM) treatments to improve the safety and quality characteristics of the meat. To fulfil this aim, six marinade (M) formulations were created based on acid whey (AW) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu), either alone or combined with freeze-dried apple (AP) or blackcurrant (BC) pomace. The most appropriate fermentation times for the marinades were selected according to the lower pH values and higher viable LAB counts in the samples. Additionally, the antimicrobial activity of the selected marinades against pathogenic and opportunistic bacterial strains was tested. The characteristics of the LM were analysed after 24 and 48 h of treatment, including physicochemical, technological, and microbiological parameters, as well as overall acceptability. It was established that, after 48 h of fermentation, all of the tested marinades, except M-AWLuBC, had lactic acid bacterial counts > 8.0 log10 CFU·mL−1 and pH values < 3.74. The broadest spectra of pathogen inhibition were observed in the M-AWLuAP and M-AWLuBC marinades. The latter formulations improved the water holding capacity (WHC) and overall acceptability of the LM, while, in the LM-AWLcAP samples, histamine, cadaverine, putrescine, tryptamine, and phenylethylamine were not formed. Lastly, LM treatment with the M-AWLcAP and M-AWLuAP formulas for 48 h achieved the highest overall acceptability (9.04 and 9.43), tenderness (1.53 and 1.47 kg·cm−2) and WHC (2.95% and 3.5%) compared to the control samples.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-655-06461
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Vilija Buckiuniene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
9
|
Dutta K, Shityakov S, Zhu W, Khalifa I. High-risk meat and fish cooking methods of polycyclic aromatic hydrocarbons formation and its avoidance strategies. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Bovine serum albumin plays an important role in the removal of acrylamide by us strains. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Singh L, Agarwal T, Simal-Gandara J. Summarizing minimization of polycyclic aromatic hydrocarbons in thermally processed foods by different strategies. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Binding and removal of polycyclic aromatic hydrocarbons in cold smoked sausage and beef using probiotic strains. Food Res Int 2022; 161:111793. [DOI: 10.1016/j.foodres.2022.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/09/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
|
13
|
Zhu Z, Xu Y, Huang T, Yu Y, Bassey AP, Huang M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Madjirebaye P, Xiao M, Mahamat B, Xiong S, Mueed A, Wei B, Huang T, Peng F, Xiong T, Peng Z. In vitro characteristics of lactic acid bacteria probiotics performance and antioxidant effect of fermented soymilk. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Yousefi M, Khorshidian N, Hosseini H. In Vitro PAH-Binding Ability of Lactobacillus brevis TD4. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1889624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kamiloğlu A. Functional and technological characterization of lactic acid bacteria isolated from Turkish dry-fermented sausage (sucuk). Braz J Microbiol 2022; 53:959-968. [PMID: 35171497 PMCID: PMC9151968 DOI: 10.1007/s42770-022-00708-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, 10 lactic acid bacteria were isolated from Turkish fermented sausage (sucuk) and identified as 5 Lactobacillus plantarum, 1 Pediococcus acidilactici, 1 Weissella hellenica, 1 Lactobacillus pentosus, and 2 Lactobacillus sakei. PCR screening of genes encoding plantaricin A and pediocin showed the presence of plantaricin A gene in 9 and pediocin gene in 3 of strains. All isolates showed antibacterial and antifungal effect on most of the tested microorganisms. gad gene, encoding glutamic acid decarboxylase enzyme, was detected in all isolates except Weisella hellenica KS-24. Eight of isolates were determined as gamma-amino butyric acid (GABA) producer in the presence of 53 mM mono sodium glutamate (MSG) by HPLC and TLC analysis. DPPH scavenging activity was observed for all isolates. Additionally, isolates were able to produce exopolysaccharide in the presence of sucrose. The best exopolysaccharide (EPS) production was achieved with L. plantarum KS-11 and L. pentosus KS-27. As a result, this study characterized some techno-functional properties of LAB isolates from sucuk. It was concluded that the isolates studied have the potential to be used in obtaining functional products in meat industry, as well as strain selection may be effective in providing the desired properties in the product.
Collapse
Affiliation(s)
- Aybike Kamiloğlu
- Food Engineering Department, Faculty of Engineering, Bayburt University, 69000, Bayburt, Turkey.
| |
Collapse
|
17
|
Karslıoğlu B, Kolsarıcı N. The Effects of Fat Content and Cooking Procedures on the PAH Content of Beef Doner Kebabs. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2067879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Betül Karslıoğlu
- Republic of Turkey Ministry of Industry and Technology, Turkish Standards Institution, Ankara, Turkey
| | - Nuray Kolsarıcı
- Faculty of Engineering, Department of Food Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Bread Sourdough Lactic Acid Bacteria—Technological, Antimicrobial, Toxin-Degrading, Immune System-, and Faecal Microbiota-Modelling Biological Agents for the Preparation of Food, Nutraceuticals and Feed. Foods 2022; 11:foods11030452. [PMID: 35159602 PMCID: PMC8834576 DOI: 10.3390/foods11030452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
This review intends to highlight the fact that bread sourdough is a very promising source of technological, antimicrobial, toxin-degrading, immune system-, and faecal microbiota-modelling biological agents for the preparation of food, nutraceuticals, and feed, which has great potential at industrial biotechnology scale. There are many applications of sourdough lactic acid bacteria (LAB), which are the main microorganisms in spontaneous sourdough. In addition to their application as pure technological strains in the food and feed industries, taking into consideration the specific properties of these microorganisms (antimicrobial, antifungal, immuno-, and microbiota-modulating, etc.), they are used as valuable ingredients in higher-value food as well as nutraceutical formulations. Additionally, a very promising application of LAB is their use in combination with plant- and/or animal-based ingredients to increase the functional properties of the whole combination due to different mechanisms of action, as well as desirable symbiotic activity. In addition to traditional foods prepared using sourdough microorganisms (bread, biscuits, meat products, dairy, beverages, etc.), they could find application in the preparation of added-value ingredients for the food, nutraceutical, and feed industries. Finally, this mini-review gives a brief introduction to the possible applications of sourdough LAB in the food, feed, and nutraceutical industries.
Collapse
|
19
|
Zhou X, Liu Z, Xie L, Li L, Zhou W, Zhao L. The Correlation Mechanism between Dominant Bacteria and Primary Metabolites during Fermentation of Red Sour Soup. Foods 2022; 11:341. [PMID: 35159491 PMCID: PMC8833966 DOI: 10.3390/foods11030341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Chinese red sour soup is a traditional fermented product famous in the southwestern part of China owing to its distinguished sour and spicy flavor. In the present study, the effect of inoculation of lactic acid bacteria (LAB) on the microbial communities and metabolite contents of the Chinese red sour soup was investigated. Traditional red sour soup was made with tomato and red chilli pepper and a live count (108 CFU/mL) of five bacterial strains (including Clostridium intestinalis: Lacticaseibacillus rhamnosus: Lactiplantibacillus plantarum: Lacticaseibacillus casei: Lactobacillus paracei) was added and fermented for 30 days in an incubator at 37 °C. Three replicates were randomly taken at 0 d, 5 d, 10 d, 15 d, 20 d, 25 d and 30 d of fermentation, with a total of 21 sour soup samples. Metabolomic analysis and 16S-rDNA amplicon sequencing of soup samples were performed to determine microbial diversity and metabolite contents. Results revealed that fermentation resulted in the depletion of native bacterial strains as LAB dominated over other microbes, resulting in differences in the relative abundance of bacteria, and types or contents of metabolites. A decrease (p < 0.01) in Shannon and Simpson indices was observed at different fermentation times. The metabolomic analyses revealed a significant increase in the relative content of 10 metabolites (particularly lactic acid, thymine, and ascorbic acid) in fermented samples as compared to the control. The correlation network revealed a positive association of Lacticaseibacillus rhamnosus with differentially enriched metabolites including lactic acid, ascorbic acid, and chlorogenic acid, which can desirably contribute to the flavor and quality of the red sour soup.
Collapse
Affiliation(s)
- Xiaojie Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.Z.); (L.X.); (L.L.)
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China;
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| | - Zhiqi Liu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China;
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| | - Le Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.Z.); (L.X.); (L.L.)
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China;
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| | - Liangyi Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.Z.); (L.X.); (L.L.)
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Wenhua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.Z.); (L.X.); (L.L.)
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China;
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| |
Collapse
|
20
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Reduction strategies for polycyclic aromatic hydrocarbons in processed foods. Compr Rev Food Sci Food Saf 2022; 21:1598-1626. [DOI: 10.1111/1541-4337.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Zun Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| |
Collapse
|
21
|
The Effect of Catabolic Transformations of Proteins and Fats on the Quality and Nutritional Value of Raw Ripened Products from Zlotnicka Spotted and Zlotnicka White Meat. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to compare the advancement of the ripening as well as catabolic changes in proteins and fats of Zlotnicka Spotted (ZS) and Zlotnicka White (ZW) meat and their impact on the quality and nutritional value of ready-to-eat products. The meat of the breeds ZS and ZW differed not only in the basic chemical composition but also in the susceptibility to catabolic transformations of proteins and lipids, which translated into a separate technological and nutritional quality as well as the profile of volatile odor compounds. Loins due to their compact histological structure, low pH (5.4) and decreased water activity (0.92–0.93) were characterized by a lower number of coagulase-negative cocci (3.3 log cfu/g) compared to hams. The products of both breeds differed in the content of selected neutral glucogenic amino acids with a pI in the range of 5.6–6.1 mainly. The content of biogenic amines was therefore completely dependent on the metabolic potential of acidifying bacteria. Larger number of lactic acid bacilli (7.5–7.7 log cfu/g) and lactic acid cocci (7.9–8.3 log cfu/g), as well as a higher content of saturated (55.2–53.7%) and polyunsaturated fatty acids (6.4–7.0%) shaped the final pH of hams (5.3). Presence of aldehydes, ketones and alcohols indicated existing fat oxidation despite the small values of the TBA index of hams (1.1 mg/kg) and loins (0.4–0.6 mg/kg). The volatile compounds that differentiated products of ZS and ZW formed by the oxidation and microbial activity, were, primarily: octanal, 1-hydroxypropan- 2-one, 3-methylpentan-2-one, propane-1,2-diol, 2,5-dimethylfuran and 3-hydroxybutan- 2-one, butane-2,3-dione, butane-1,2-diol, respectively.
Collapse
|
22
|
Impact of Thyme Microcapsules on Histamine Production by Proteus bacillus in Xinjiang Smoked Horsemeat Sausage. Foods 2021; 10:foods10102491. [PMID: 34681540 PMCID: PMC8535949 DOI: 10.3390/foods10102491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we explored the influences of thyme microcapsules on the growth, gene expression, and histamine accumulation by Proteus bacillus isolated from smoked horsemeat sausage. RT-qPCR was employed to evaluate the gene expression level of histidine decarboxylase (HDC) cascade-associated genes. We used HPLC to monitor histamine concentration both in pure culture as well as in the processing of smoked horsemeat sausage. Results showed that histamine accumulation was suppressed by thyme microcapsule inhibitory effect on the histamine-producing bacteria and the reduction in the transcription of hdcA and hdcP genes. Besides, compared with thyme essential oil (EO), thyme microcapsules exhibited higher antibacterial activity and had a higher score for overall acceptance. Therefore, the addition of thyme microcapsules in Xinjiang smoked horsemeat sausage inhibits histamine accumulation.
Collapse
|
23
|
Nutraceutical Chewing Candy Formulations Based on Acetic, Alcoholic, and Lactofermented Apple Juice Products. Foods 2021; 10:foods10102329. [PMID: 34681378 PMCID: PMC8535157 DOI: 10.3390/foods10102329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to develop nutraceutical chewing candy (NCC) formulations based on acetic, alcoholic, and lactofermented apple juice (AJ) products. In addition, different texture-forming (gelatin, pectin) and sweetening (stevia, xylitol) agents were tested. To implement the aim of this study, combinations based on AJ, prepared from fresh and frozen apples, apple cider (C) samples (No.1, No.2, No.3, and No.4), and apple vinegar (V) were used. First, the most appropriate combination was selected by evaluating overall acceptability (OA) and emotions induced for consumers (EIC). In addition, the volatile compound (VC) profile, and physicochemical and antimicrobial characteristics of the developed combinations were analyzed. For AJ fermentation, lactic acid bacteria (LAB) strains possessing antimicrobial properties (LUHS122—L. plantarum and LUHS210—L. casei) were used. AJ prepared from frozen apples had 11.1% higher OA and 45.9%, 50.4%, and 33.3% higher fructose, glucose, and saccharose concentrations, respectively. All the tested C samples inhibited Bacillus subtilis and had an average OA of 6.6 points. Very strong positive correlations were found between AJ and C OA and the emotion ‘happy’; comparing lactofermented AJ, the highest OA was obtained for AJ fermented for 48 h with LUHS122, and a moderate positive correlation was found between AJ OA and the emotion ‘happy’ (r = 0.7617). This sample also showed the highest viable LAB count (7.59 log10 CFU mL−1) and the broadest spectrum of pathogen inhibition (inhibited 6 out of 10 tested pathogens). Further, acetic, alcoholic, and lactofermented AJ product combinations were tested. For the preparation of NCC, the combination consisting of 50 mL of AJ fermented with LUHS122 for 48 h + 50 mL C-No.3 + 2 mL V was selected because it showed the highest OA, induced a high intensity of the emotion ‘happy’ for the judges, and inhibited 8 out of 10 tested pathogens. Finally, the OA of the prepared NCC was, on average, 9.03 points. The combination of acetic, alcoholic, and lactofermented AJ products leads to the formation of a specific VC profile and increases the OA and antimicrobial activity of the products which could be successfully applied in the food and nutraceutical industries.
Collapse
|
24
|
Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Li C, Zhao Y, Wang Y, Li L, Yang X, Chen S, Zhao Y, Zhou W. Microbial community changes induced by Pediococcus pentosaceus improve the physicochemical properties and safety in fermented tilapia sausage. Food Res Int 2021; 147:110476. [PMID: 34399472 DOI: 10.1016/j.foodres.2021.110476] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
Amine-negative lactic acid bacteria can prevent excess biogenic amines from accumulating in sausage. In this study, the amine-negative Pediococcus pentosaceus 30-7 and 30-15 with good fermentation properties and biogenic amine removal ability were isolated for tilapia sausage production. P. pentosaceus 30-7 improved the physical characteristics such as gel strength and hardness in tilapia sausage, while P. pentosaceus 30-15 significantly enhanced the contents of umami and sweet free amino acids. The microbial metabolic network revealed that the dominant microbial community in the fermentation process including Pediococcus and Lactococcus contributed to the physicochemical formation of sausage. The significant decrease of biogenic amine contents after addition of P. pentosaceus strains mainly resulted from their ability to remove biogenic amines and to inhibit the growth of amine-producing Enterobacter, Citrobacter, and Streptococcus. This study provides an effective method for directionally improving the physicochemical properties and safety in fermented tilapia sausage.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yue Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wenguo Zhou
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, PR China; Fu Jian Anjoy Foods Co., Ltd., Xiamen 361022, PR China.
| |
Collapse
|
26
|
Zhou J, Yan B, Wu Y, Zhu H, Lian H, Zhao J, Zhang H, Chen W, Fan D. Effects of sourdough addition on the textural and physiochemical attributes of microwaved steamed-cake. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Wang Y, Liu Y, Huang X, Xiao Z, Yang Y, Yu Q, Chen S, He L, Liu A, Liu S, Zou L, Yang Y. A Review on Mechanistic Overview on the Formation of Toxic Substances during the Traditional Fermented Food Processing. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1933021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yilun Wang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Yuxuan Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Xiaohong Huang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Zihan Xiao
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Yifang Yang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Qinxin Yu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| |
Collapse
|
28
|
Hamoud NEH, Sifour M. Biodegradation of chlorpyrifos by a Weissella confusa strain and evaluation of some probiotic traits. Arch Microbiol 2021; 203:3615-3621. [PMID: 33978770 DOI: 10.1007/s00203-021-02353-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023]
Abstract
Pesticides play an important role in agriculture; however, their excessive use causes several problems such as pollution of ecosystems and risks to human health. The presence of microorganisms able to degrade these pollutants can reduce their negative effect. The objective of this study was to test the capacity of Weissella confusa Lb.Con to tolerate or to degrade the chlorpyrifos pesticide. The results showed the capacity of the strain to tolerate a concentration of 200 μg/ml of chlorpyrifos. The strain Lb.Con has a remarkable capacity to grow in glucose-free MRS medium which contains different concentrations of chlorpyrifos. HPLC analysis showed that this strain was able to remove about 25% of chlorpyrifos. The evaluation of some probiotic properties showed that the strain Lb.Con had a remarkable resistance to the gastrointestinal conditions and a good antibacterial activity towards the pathogenic bacteria. The probiotic potential was evaluated to verify the possible use of W. confusa Lb.Con to detoxify harmful chlorpyrifos contained in food.
Collapse
Affiliation(s)
- Nour-El-Houda Hamoud
- Department of Environmental and Agricultural Sciences, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Jijel, Algeria.
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Jijel, Algeria
| |
Collapse
|
29
|
Sivamaruthi BS, Kesika P, Chaiyasut C. A narrative review on biogenic amines in fermented fish and meat products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1623-1639. [PMID: 33897002 PMCID: PMC8021659 DOI: 10.1007/s13197-020-04686-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Abstract
Biogenic amines (BAs) are organic nitrogenous compounds, formed mostly by decarboxylation of corresponding amino acids. BAs are responsible for several biological events. However, if the concentration of BAs reached the threshold level, it causes mild to serious health problems in human. The objective of this manuscript was to summarize the prevalence and prevention of Bas formation, detection methods and factors affecting the BAs formation in fermented fish and meat products. Meat sausages are the fermented meat product that contains high BAs. Fish sauces are reported to have high BAs compared to other fish products. Several chemosensors and chromatography methods are available to screen and detect BAs in foods. The prevention measures are vital to avoid toxic outbreaks. The use of starter culture, application of physical factors, control of environmental factors, and use of polyphenols could prevent or diminish the formation of BAs in fermented foods. The literature survey warrants that the development of potent starter with desirable characters, maintenance of hygienic food production and regular monitoring of commercial products are necessary to ensure the quality and safety of fermented fish and meat product.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
30
|
Li B, Wang Y, Xue L, Lu S. Heterologous Expression and Application of Multicopper Oxidases from Enterococcus spp. for Degradation of Biogenic Amines. Protein Pept Lett 2021; 28:183-194. [PMID: 32543357 DOI: 10.2174/0929866527666200616160859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Biogenic amines are harmful to human health at a certain extent. As a kind of biogenic amine oxidase, multicopper oxidase can be used to degrade them. Currently, the literature about enzyme from Enterococcus spp. are limited, and recombinant multicopper oxidase might be an effective way to degrade biogenic amines. OBJECTIVE (i) Select and identify strains that can degrade biogenic amines, (ii) overexpress enzyme from Enterococcus spp., (iii) measure gene expression and probe amine-degradation differences among strains (native, E. coli DH5α, and L. delbruckii), and (iv) examine the biochemical properties of recombinant multicopper oxidase, (v) apply the recombinant enzyme into smoked horsemeat sausage. METHODS Reverse transcription PCR and high-performance liquid chromatography were performed to examine gene expression and amine degradation rate. RESULTS The results demonstrated that target enzymes were successfully overexpressed, accompanied by increased amine-degrading activity (P <0.05). Gene from E. faecalis M5B was expressed in L. delbrueckii resulted in degradation rates for phenylethylamine, putrescine, histamine and tyramine of 54%, 52%, 70% and 40%, respectively, significantly higher than achieved by other recombinant strains. CONCLUSION In this work, gene expression levels were higher in recombinant M5B than recombinant M2B, regardless of host. E. coli is more stable to express multicopper oxidase. Besides, the amine-degrading ability was markedly increased in the two recombinant strains. After prolonged incubation, the recombinant enzyme could degrade three amines, and it displayed high alkali resistance and thermostability.
Collapse
Affiliation(s)
- Binbin Li
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Yuan Wang
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Linlin Xue
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Shiling Lu
- College of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
31
|
Shao X, Xu B, Chen C, Li P, Luo H. The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food: a review. Crit Rev Food Sci Nutr 2021; 62:5950-5963. [PMID: 33683156 DOI: 10.1080/10408398.2021.1895059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
N-nitrosamines, heterocyclic amines, polycyclic aromatic hydrocarbons, biogenic amines, and acrylamide are widely distributed and some of the most toxic substances detected in foods. Hence, reduction of these substances has attracted worldwide attention. Lactic acid bacteria (LAB) inoculation has been found to be an effective way to reduce these toxic substances. In this paper, the reduction of toxic substances by LAB and its underlying mechanisms have been described through the review of recent studies. LAB aids this reduction via different mechanisms. First, it can directly decrease these harmful substances through adsorption or degradation. Peptidoglycans on the cell wall of LAB can bind to heterocyclic amines, acrylamide, and polycyclic aromatic hydrocarbons. Second, LAB can indirectly decrease the content of toxic substances by reducing their precursors. Third, antioxidant properties of LAB also contribute to the reduction in toxic substances. Finally, LAB can suppress the growth of amino acid decarboxylase-positive bacteria, thus reducing the accumulation of biogenic amines and N-nitrosamines. Therefore, LAB can contribute to the decrease in toxic substances in food and improve food safety. Further research on increasing the reduction efficiency of LAB and deciphering the mechanisms at a molecular level needs to be carried out to obtain the complete picture.
Collapse
Affiliation(s)
- Xuefei Shao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peijun Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huiting Luo
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
32
|
García-Díez J, Saraiva C. Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2544. [PMID: 33806611 PMCID: PMC7967642 DOI: 10.3390/ijerph18052544] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/30/2023]
Abstract
Starter cultures can be defined as preparations with a large number of cells that include a single type or a mixture of two or more microorganisms that are added to foods in order to take advantage of the compounds or products derived from their metabolism or enzymatic activity. In foods from animal origin, starter cultures are widely used in the dairy industry for cheese, yogurt and other fermented dairy products, in the meat industry, mainly for sausage manufacture, and in the fishery industry for fermented fish products. Usually, microorganisms selected as starter culture are isolated from the native microbiota of traditional products since they are well adapted to the environmental conditions of food processing and are responsible to confer specific appearance, texture, aroma and flavour characteristics. The main function of starter cultures used in food from animal origin, mainly represented by lactic acid bacteria, consists in the rapid production of lactic acid, which causes a reduction in pH, inhibiting the growth of pathogenic and spoilage microorganisms, increasing the shelf-life of fermented foods. Also, production of other metabolites (e.g., lactic acid, acetic acid, propionic acid, benzoic acid, hydrogen peroxide or bacteriocins) improves the safety of foods. Since starter cultures have become the predominant microbiota, it allows food processors to control the fermentation processes, excluding the undesirable flora and decreasing hygienic and manufacturing risks due to deficiencies of microbial origin. Also, stater cultures play an important role in the chemical safety of fermented foods by reduction of biogenic amine and polycyclic aromatic hydrocarbons contents. The present review discusses how starter cultures contribute to improve the microbiological and chemical safety in products of animal origin, namely meat, dairy and fishery products.
Collapse
Affiliation(s)
- Juan García-Díez
- CECAV—Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Cristina Saraiva
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
| |
Collapse
|
33
|
Qi T, Wang S, Deng L, Yi L, Zeng K. Controlling pepper soft rot by Lactobacillus paracasei WX322 and identification of multiple bacteriocins by complete genome sequencing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
35
|
Motta GE, Molognoni L, Daguer H, Angonese M, da Silva Correa Lemos AL, Dafre AL, De Dea Lindner J. The potential of bacterial cultures to degrade the mutagen 2-methyl-1,4-dinitro-pyrrole in a processed meat model. Food Res Int 2020; 136:109441. [PMID: 32846544 DOI: 10.1016/j.foodres.2020.109441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Processed meats are classified by the International Agency for Research on Cancer as category 1 because their consumption increase the incidence of colorectal and stomach cancers. Meat processing widely employs nitrite and sorbate as preservatives. When these preservatives are concomitantly used in non-compliant processes, they may react and produce the mutagen 2-methyl-1,4-dinitro-pyrrole (DNMP). This study aimed to evaluate the ability of different bacteria isolated from food matrices to biodegrade DNMP in in vitro reactions and in a processed meat model. A possible mechanism of biodegradation was also tested. In vitro experiments were performed in two steps. In the first one, only one strain out of 13 different species did not interact with DNMP. In the following step, an empirical conversion factor was calculated to assess the conversion of DNMP to 4-amino-2-methyl-1-nitro-pyrrole by the strains. The most efficient strains were Staphylococcus xylosus LYOCARNI SXH-01, Lactobacillus fermentum LB-UFSC 0017, and Lactobacillus casei LB-UFSC 0019, which yielded conversion factors of 0.62, 0.60, and 0.43, respectively. Thus, such strains were individually added to the processed meat model and completely degraded the DNMP. Moreover, S. xylosus degraded DNMP in less than 30 min. The enzymatic mechanism was evaluated using its cell-free extract. It showed that, in the aerobic system, reduction rates were 30.321 and 22.411 nmol/mg of protein/min using NADH and NADPH, respectively. A DNMP reductase was assigned to the extract and a potential presence of an oxygen insensitive nitroreductase type I B was considered. Thus, biotechnological processes may be an efficient strategy to eliminate the DNMP from meat products and to increase food safety.
Collapse
Affiliation(s)
- Gabriel Emiliano Motta
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC 88034-001, Brazil
| | - Luciano Molognoni
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC 88034-001, Brazil; Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária (SLAV/SC/LANAGRO/RS), São José, SC 88102-600, Brazil; Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC 88034-001, Brazil
| | - Heitor Daguer
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária (SLAV/SC/LANAGRO/RS), São José, SC 88102-600, Brazil
| | - Mariana Angonese
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC 88034-001, Brazil
| | - Ana Lucia da Silva Correa Lemos
- Secretaria da Agricultura e do Abastecimento do Estado de São Paulo, Instituto de Tecnologia de Alimentos (ITAL), Centro de Tecnologia de Carnes, Campinas, SP 13073-001, Brazil
| | - Alcir Luiz Dafre
- UFSC, Departamento de Bioquímica, Florianópolis, SC 88034-001, Brazil
| | - Juliano De Dea Lindner
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC 88034-001, Brazil.
| |
Collapse
|
36
|
Yu Y, Wang G, Luo Y, Pu Y, Ge C, Liao G. Effect of natural spices on precursor substances and volatile flavor compounds of boiled Wuding chicken during processing. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuanrui Yu
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Guiying Wang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Yuting Luo
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Yuehong Pu
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
| |
Collapse
|
37
|
Zhang Y, Hu P, Xie Y, Wang X. Co-fermentation with Lactobacillus curvatus LAB26 and Pediococcus pentosaceus SWU73571 for improving quality and safety of sour meat. Meat Sci 2020; 170:108240. [PMID: 32795815 DOI: 10.1016/j.meatsci.2020.108240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/19/2023]
Abstract
Lactic acid bacteria of Lactobacillus curvatus LAB26 and Pediococcus pentosaceus SWU73571 isolated from traditional sour meat were prepared to a double-starter culture for sour meat processing. The results showed that the counts of total bacteria and lactic acid bacteria in inoculating group reached 9.37 ± 0.11 log cfu/g and 8.73 ± 0.14 log cfu/g on the 30th day, and were higher than those in natural fermentation (7.02 ± 0.11 log cfu/g and 6.93 ± 0.17 log cfu/g). Compared to natural fermentation, the double-starter culture increased the L* and a*values, amino nitrogen content, free amino acid content of sour meat significantly, and lowered the b* value, restrained the coliform count, nitrite, biogenic amines, total volatile basic nitrogen and malondialdehyde in sour meat. Moreover, the pH and water activity were reduced to 3.91 ± 0.01 and 0.831 ± 0.002, respectively. These results proved that the inoculation of double-starter culture could improve the quality and safety of sour meat. This double-starter culture has great potential for application to the manufacture of fermented meat.
Collapse
Affiliation(s)
- Yulong Zhang
- School of Liquor and Food Engineering, Guizhou University, China.
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, China.
| | - Yaoyao Xie
- School of Liquor and Food Engineering, Guizhou University, China
| | - Xiaoyu Wang
- College of Life Science, Guizhou University, China
| |
Collapse
|
38
|
Wang X, Zhang Y, Sun J, Pan P, Liu Y, Tian T. Effects of starter culture inoculation on microbial community diversity and food safety of Chinese Cantonese sausages by high-throughput sequencing. Journal of Food Science and Technology 2020; 58:931-939. [PMID: 33678876 DOI: 10.1007/s13197-020-04607-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
Effects of starter culture composed of Lactobacillus sakei, Pediococcus pentosaceus, Staphylococcus xylosus and Staphylococcus carnosus at the ratios (w/w) of 1:1:1:1 on bacterial community diversity and food safety of Chinese Cantonese sausages were demonstrated by high-throughput sequencing technology. At genus level, spoilage organisms and pathogenic bacteria such as Vibrio spp., Acinetobacter spp., Enterobacter spp., Yersinia spp. accounted for 54.13%, 10.01%, 6.94% and 5.35% of bacterial in the initial fermentation of spontaneous sausage, and the dominant bacteria of Lactobacillus spp. reached 84.61% on day 20. Accordingly, the total proportion of Pediococcus spp., Lactobacillus spp. and Staphylococcus spp. were present higher than 98% during fermentation in fermented sausage by starter culture inoculation, and Pediococcus spp. was dominant genus and increased from 53.53 to 74.09% during whole fermentation process. Moreover, the histamine accumulation was lower 84.17% in sausage fermented by starter culture inoculation than that of spontaneous sausage, suggesting that starter culture could decrease histamine accumulation of sausages significantly (P < 0.01). These results revealed that the starter culture inoculation was conducive to improve the microbial quality and food safety of Chinese Cantonese sausages.
Collapse
Affiliation(s)
- Xinhui Wang
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Yalin Zhang
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China.,Ministry of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000 Sichuan Province China
| | - Jinsong Sun
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Pan Pan
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Yang Liu
- Meat-Processing Application Key Laboratory of Sichuan Province, Chengdu University, Chengdu, 610106 Sichuan Province China
| | - Tian Tian
- Chengdu Agricultural College, Chengdu, 611130 Sichuan Province China
| |
Collapse
|
39
|
Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr 2020; 61:1787-1803. [PMID: 32410512 DOI: 10.1080/10408398.2020.1765310] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence of colorectal cancer (CRC) has been rising expeditiously and anticipated that 2.4 million new occasions of CRC will be detected yearly around the world until the year 2035. Due to some side-effects and complications of conventional CRC therapies, bioactive components such as microbial-derived biomolecules (postbiotics) have been attaining great significance by researchers for adjuvant therapy in CRC patients. The term 'postbiotics' encompasses an extensive range of complex micro- and macro-molecules (<50, 50-100, and 100< kDa) such as inactivated microbial cells, cell fractions or metabolites, which confer various physiological health benefits to the host when administered in adequate amounts. Postbiotics modulate the composition of the gut microbiota and the functionality of the immune system, as well as promote the CRC treatment effectiveness and reduces its side-effects in CRC patients due to possessing anti-oxidant, anti-proliferative, anti-inflammatory, and anti-cancer activities. Presently scientific literature confirms that postbiotics with their unique characteristics in terms of clinical (safe origin), technological (stability), and economic (low production costs) aspects can be used as promising tools for both prevent and adjuvant treat strategies in CRC patients without any serious undesirable side-effects. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Shoukat S. Potential anti-carcinogenic effect of probiotic and lactic acid bacteria in detoxification of benzo[a]pyrene: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Insight about methods used for polycyclic aromatic hydrocarbons reduction in smoked or grilled fishery and meat products for future re-engineering: A systematic review. Food Chem Toxicol 2020; 141:111372. [PMID: 32334111 DOI: 10.1016/j.fct.2020.111372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Abstract
This paper presents methods of reduction of polycyclic aromatic hydrocarbons (PAHs) in grilled or smoked meat and fishery products. Using keywords such as "smoking", "grilling", "processing", "roasting", "barbecue", "curing", "reduction", "decrease", "polycyclic aromatic hydrocarbon", "benzo(a)pyrene", "removal", 1191 references were collected from databases. After sorting, only 37 appeared to be relevant to the topic of the review. These 37 papers were coded with one or two keywords representing methods of PAHs reduction using R-based Qualitative Data Analysis library. The results showed that PAHs reduction strategies can be applied either before (or during) grilling or smoking (barrier methods) or after grilling or smoking (removal methods). Before grilling or smoking, use of marinade, preheating of products, appropriate fuel (poor in lignin), filter, collection system of juice and fat (to avoid them dripping into embers) are the main strategies which can be applied. After grilling or smoking, the methods consist of washing the surface of smoked or grilled products with hot water (60 °C) or storing smoked products packed into low density or high density polyethylene. A flowchart regrouping methods which can be used individually or in combination for PAHs reduction in smoked meat and fishery products is suggested.
Collapse
|
42
|
Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods 2020; 9:foods9040433. [PMID: 32260398 PMCID: PMC7230466 DOI: 10.3390/foods9040433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, nutraceuticals based on antimicrobial ingredients (Artemisia absinthium water extract and essential oil (EO), Lactobacillus uvarum LUHS245 strain cultivated in a whey media, and blackcurrants juice (BCJ) preparation by-products were developed. In addition, two texture forming agents for nutraceutical preparations were tested (gelatin and agar). The developed nutraceutical ingredients showed antimicrobial properties: Artemisia absinthium EO (concentration 0.1%) inhibited methicillin-resistant Staphylococcus aureus, Enterococcus faecium, Bacillus cereus, Streptococcus mutans, Staphylococcus epidermidis, and Pasteurella multocida; LUHS245 strain inhibited 14 from the 15 tested pathogenic strains; and BCP inhibited 13 from the 15 tested pathogenic strains. The best formulation consisted of the Artemisia absinthium EO, LUHS245, and BCP immobilised in agar and this formulation showed higher TPC content (by 2.1% higher), as well as higher overall acceptability (by 17.7% higher), compared with the formulation prepared using gelatin.
Collapse
|
43
|
Molaei R, Tajik H, Moradi M, Forough M. Application of novel Fe3O4-g-GO-g-RAFT agent nanoabsorbents for D-SPME of biogenic amines in smoked fish. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Bartkiene E, Lele V, Ruzauskas M, Domig KJ, Starkute V, Zavistanaviciute P, Bartkevics V, Pugajeva I, Klupsaite D, Juodeikiene G, Mickiene R, Rocha JM. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2019; 8:E64. [PMID: 31905993 PMCID: PMC7023352 DOI: 10.3390/microorganisms8010064] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
This research effort aimed at isolating and phenotypically characterizing lactic acid bacteria (LAB) isolates from a spontaneous rye sourdough manufactured following traditional protocols, as well as at evaluating their antimicrobial and antifungal properties as key features for future industrial applications. Thirteen LAB strains of potential industrial interest were isolated and identified to species-level via PCR. Most of the sourdough isolates showed versatile carbohydrate metabolisms. The Leuconostoc mesenteroides No. 242 and Lactobacillus brevis No. 173 demonstrated to be gas producers; thus, revealing their heterofermenter or facultative homofermenter features. Viable counts higher than 7.0 log10 (CFU/mL) were observed for Lactobacillus paracasei No. 244, Lactobacillus casei No. 210, L. brevis No. 173, Lactobacillus farraginis No. 206, Pediococcus pentosaceus No. 183, Lactobacillus uvarum No. 245 and Lactobacillus plantarum No. 135 strains, after exposure at pH 2.5 for 2 h. Moreover, L. plantarum No. 122, L. casei No. 210, Lactobacillus curvatus No. 51, L. paracasei No. 244, and L. coryniformins No. 71 showed growth inhibition properties against all the tested fifteen pathogenic strains. Finally, all LAB isolates showed antifungal activities against Aspergillus nidulans, Penicillium funiculosum, and Fusarium poae. These results unveiled the exceptionality of spontaneous sourdough as a source of LAB with effective potential to be considered in the design of novel commercial microbial single/mixed starter cultures, intended for application in a wide range of agri-food industries, where the antimicrobial and antifungal properties are often sought and necessary. In addition, metabolites therefrom may also be considered as important functional and bioactive compounds with high potential to be employed in food and feed, as well as cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Vita Lele
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Modestas Ruzauskas
- Microbiology and Virology Institute, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania
| | - Konrad J. Domig
- Institute of Food Science, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria;
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Vadims Bartkevics
- Department of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia; (V.B.); (I.P.)
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupesiela 3, LV-1076 Riga, Latvia
| | - Iveta Pugajeva
- Department of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia; (V.B.); (I.P.)
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu str. 19, LT-50254 Kaunas, Lithuania;
| | - Ruta Mickiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| |
Collapse
|
45
|
Molognoni L, Motta GE, Daguer H, De Dea Lindner J. Microbial biotransformation of N-nitro-, C-nitro-, and C-nitrous-type mutagens by Lactobacillus delbrueckii subsp. bulgaricus in meat products. Food Chem Toxicol 2019; 136:110964. [PMID: 31730879 DOI: 10.1016/j.fct.2019.110964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Abstract
Processed meats are classified by the International Agency for Research on Cancer (IARC) as carcinogenic to humans. However, information on the responsible agents and the influence of industrial processing on the increased risk of cancer is still lacking. This study aimed to use cultures of Lactobacillus delbrueckii subsp. bulgaricus LB-UFSC 01 to biodegrade harmful C-nitrous, N-nitro, and C-nitro compounds in processed meat matrix. Firstly, positive results for ethylnitrolic acid (ENA) (>5.00 μg kg-1) and 2-methyl-1,4-dinitro-pyrrole (DNMP) (>12.0 μg kg-1) were obtained in mortadellas produced under different experimental conditions employing preservatives and antioxidants. Mortadellas containing nitrite and sorbate in the ratio of 8:1 (w/w) yielded the highest concentrations of mutagens. However, the treatment with the LB-UFSC 01 culture was able to modulate the harmful compounds in the mortadella samples. Several analytical methods employing liquid chromatography coupled to mass spectrometry and statistical models were employed to identify the metabolites and reaction routes during microbial biotransformation. For the first time, relevant information regarding the formation and degradation of ENA and DNMP in a processed meat model simulating real conditions was presented.
Collapse
Affiliation(s)
- Luciano Molognoni
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC, 88034-001, Brazil; Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina, São José, SC, 88102-600, Brazil; Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC, 88034-000, Brazil
| | - Gabriel Emiliano Motta
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC, 88034-001, Brazil
| | - Heitor Daguer
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina, São José, SC, 88102-600, Brazil
| | - Juliano De Dea Lindner
- Universidade Federal de Santa Catarina (UFSC), Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
46
|
Lv J, Li C, Li S, Liang H, Ji C, Zhu B, Lin X. Effects of temperature on microbial succession and quality of sour meat during fermentation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Interactions of preservatives in meat processing: Formation of carcinogenic compounds, analytical methods, and inhibitory agents. Food Res Int 2019; 125:108608. [DOI: 10.1016/j.foodres.2019.108608] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/11/2022]
|
48
|
Shoukat S, Aslam MZ, Rehman A, Zhang B. Screening of
Bifidobacterium
strains to bind with Benzo[a]pyrene under food stress factors and the mechanism of the process. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sana Shoukat
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Muhammad Zohaib Aslam
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Abdul Rehman
- School of Mathematics and Physics University of Science and Technology Beijing Beijing China
| | - Bolin Zhang
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
- Key Laboratory of Forest Food Processing and Safety Beijing China
| |
Collapse
|
49
|
Bartkiene E, Bartkevics V, Mozuriene E, Lele V, Zadeike D, Juodeikiene G. The Safety, Technological, Nutritional, and Sensory Challenges Associated With Lacto-Fermentation of Meat and Meat Products by Using Pure Lactic Acid Bacteria Strains and Plant-Lactic Acid Bacteria Bioproducts. Front Microbiol 2019; 10:1036. [PMID: 31139167 PMCID: PMC6519301 DOI: 10.3389/fmicb.2019.01036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/24/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Laboratory of Food and Environmental Investigations, Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,Department of Chemistry, University of Latvia, Riga, Latvia
| | - Erika Mozuriene
- Department of Food Safety and Quality, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vita Lele
- Department of Food Safety and Quality, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
50
|
Huang WY, Ngo HH, Lin C, Vu CT, Kaewlaoyoong A, Boonsong T, Tran HT, Bui XT, Vo TDH, Chen JR. Aerobic co-composting degradation of highly PCDD/F-contaminated field soil. A study of bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:595-602. [PMID: 30641388 DOI: 10.1016/j.scitotenv.2018.12.312] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
This study investigated bacterial communities during aerobic food waste co-composting degradation of highly PCDD/F-contaminated field soil. The total initial toxic equivalent quantity (TEQ) of the soil was 16,004 ng-TEQ kg-1 dry weight. After 42-day composting and bioactivity-enhanced monitored natural attenuation (MNA), the final compost product's TEQ reduced to 1916 ng-TEQ kg-1 dry weight (approximately 75% degradation) with a degradation rate of 136.33 ng-TEQ kg-1 day-1. Variations in bacterial communities and PCDD/F degraders were identified by next-generation sequencing (NGS). Thermophilic conditions of the co-composting process resulted in fewer observed bacteria and PCDD/F concentrations. Numerous organic compound degraders were identified by NGS, supporting the conclusion that PCDD/Fs were degraded during food waste co-composting. Bacterial communities of the composting process were defined by four phyla (Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes). At the genus level, Bacillus (Firmicutes) emerged as the most dominant phylotype. Further studies on specific roles of these bacterial strains are needed, especially for the thermophiles which contributed to the high degradation rate of the co-co-composting treatment's first 14 days.
Collapse
Affiliation(s)
- Wen-Yen Huang
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Chitsan Lin
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chi-Thanh Vu
- Civil and Environmental Engineering Department, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Acharee Kaewlaoyoong
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan
| | - Totsaporn Boonsong
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Huu-Tuan Tran
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh City, Vietnam
| | - Thi-Dieu-Hien Vo
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jenq-Renn Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan
| |
Collapse
|