1
|
Shangguan Y, Yang D, Zhao L, Rao L, Liao X. High-pressure-induced viable but non-culturable lactic acid bacteria inhibit its post-acidification. BIORESOURCE TECHNOLOGY 2025; 422:132221. [PMID: 39956520 DOI: 10.1016/j.biortech.2025.132221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Inhibiting post-acidification while preserving viable probiotics in lactic acid bacteria (LAB) fermentation is pivotal to preserving quality and probiotic benefits. In this study, following high-pressure processing (HPP) at 400 and 500 MPa for 600 s, Lactiplantibacillus plantarum entered the viable but non-culturable (VBNC) state. Resuscitation curves, pH levels, acid generation, and glucose metabolism were monitored at 4 °C. VBNC L. plantarum began resuscitation on Day 6 and reached stationary phase by Days 24-27. Glucose metabolism decreased significantly, with no detectable pH drop or acid production, indicating post-acidification was delayed by at least 24 days. Mechanistic insights revealed that post-acidification inhibition was due to HPP-disrupted riboflavin metabolism, related to the cellular respiratory chain and downgraded ATP-depended biosynthesis of NADH, a key coenzyme for lactic acid production. Ultimately, HPP-induced VBNC L. plantarum effectively prevented post-acidification and preserved alive L. plantarum in fermented tomato sauce, verified its ability in real foods.
Collapse
Affiliation(s)
- Yiran Shangguan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| |
Collapse
|
2
|
Serrano S, Grujović MŽ, Marković KG, Barreto-Crespo MT, Semedo-Lemsaddek T. From Dormancy to Eradication: Strategies for Controlling Bacterial Persisters in Food Settings. Foods 2025; 14:1075. [PMID: 40232118 PMCID: PMC11942268 DOI: 10.3390/foods14061075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial persistence, a dormant state that enables microorganisms to survive harsh conditions, is a significant concern in food-industry settings, where traditional antimicrobial treatments often fail to eliminate these resilient cells. This article goes beyond conventional review by compiling critical information aimed at providing practical solutions to combat bacterial persisters in food production environments. This review explores the primary mechanisms behind persister cell formation, including toxin-antitoxin systems, the alarmone guanosine tetraphosphate (ppGpp), stochastic processes (in which persistence occurs as a random event), and the SOS response. Given the serious implications for food safety and quality, the authors also report a range of physical, chemical, and biological methods for targeting and eradicating persister cells. The strategies discussed, whether applied individually or in combination, offer varying levels of availability and applicability within the industry and can serve as a guide for implementing microbial contamination control plans. While significant progress has been achieved, further research is crucial to fully understand the complex mechanisms underlying bacterial persistence in food and to develop effective and targeted strategies for its eradication in food-industry settings. Overall, the translation of these insights into practical applications aims to support the food industry in overcoming this persistent challenge, ensuring safer, more sustainable food production.
Collapse
Affiliation(s)
- Susana Serrano
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
| | - Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Maria Teresa Barreto-Crespo
- iBET, Institute of Experimental Biology and Technology, 2781-901 Oeiras, Portugal;
- ITQB, Institute of Chemical and Biological Technology António Xavier, Nova University of Lisbon, Republic Avenue, 2780-157 Oeiras, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 500-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Osaili TM, Dhanasekaran DK, Hasan F, Obaid RS, Al-Nabulsi AA, Olaimat AN, Ismail LC, Hasan H, Ayyash M, Bamigbade GB, Ortiz J, Holley R. High pressure processing of hummus: Enhancing microbial safety and stability, and reducing lipid oxidation. Heliyon 2025; 11:e42590. [PMID: 40040972 PMCID: PMC11876884 DOI: 10.1016/j.heliyon.2025.e42590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
Hummus provides an ideal environment for microbial growth. The objectives of this study were to evaluate the effect of high-pressure processing (HPP) on i) microbial safety/quality, ii) physical/chemical properties, and iii) sensory characteristics of hummus. Uninoculated and hummus inoculated with Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes were subjected to HPP at 350 MPa for 1-5 min. After treatment, the D-value of the pathogens was calculated and uninoculated samples were stored for up to 28 d at 4 and 10 °C and total microbial counts (TMC) were enumerated. Thiobarbituric acid reactive substances (TBARS), colour, textural and rheological properties and sensory characteristics of hummus were also analysed. The D10-value for Salmonella spp., E. coli O157:H7 spp. and L. monocytogenes were 2.10 ± 0.13, 1.48 ± 0.08, and 3.77 ± 0.36 min, respectively. As compared to the control, HPP for 1, 2, 3, 4, and 5 min instantly decreased TMC on average by 0.7, 1.2, 1.6, 1.4 and 1.8 log cfu/g, respectively. The shelf life of hummus in this study after an HPP treatment of 350 MPa for 2-5 min was 28 d at 4oC and one week at 10 °C, while it was 14 d and 7 d in the control samples, respectively. HPP decreased TBARS but did not significantly change hummus lightness, greenness, and yellowness. HPP enhanced the gel strength and viscoelastic properties of hummus without compromising its sensory qualities. Thereby, HPP at 350 MPa for 1-5 min can be effective and adopted by producers.
Collapse
Affiliation(s)
- Tareq M. Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Dinesh Kumar Dhanasekaran
- Research Institute of Medical & Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Fayeza Hasan
- Research Institute of Medical & Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Reyad S. Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Department of Women's and Reproductive Health, University of Oxford, Oxford, OX39DU, UK
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), United Arab Emirates
| | - Gafar Babatunde Bamigbade
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), United Arab Emirates
| | - John Ortiz
- Smartfood Solutions FZCO, Dubai Silicon Oasis, P.O. Box 341147, Dubai, United Arab Emirates
| | - Richard Holley
- Department of Food Science and Human Nutrition, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
4
|
Sibley J, Kafle R, Chowdhury S, Fouladkhah AC. Synergetic Effect of Elevated Hydrostatic Pressure, Mild Heat, and Carvacrol on Inactivation of Nontyphoidal Salmonella Serovars in Buffered Environment. Microorganisms 2025; 13:498. [PMID: 40142391 PMCID: PMC11944622 DOI: 10.3390/microorganisms13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
A four-strain mixture of nontyphoidal Salmonella and a strain of Salmonella Tennessee were exposed to elevated hydrostatic pressures of 350 and 650 MPa for 0 (control), 3, 5, and 10 min at temperatures of 4.4 and 60.0 °C with and without 0.2% carvacrol. Treatments were conducted in PULSE tubes inside the chamber of the Hub880 Barocycler unit. In addition to microbial counts and for better assimilation of synergism of selected extrinsic factors of the study, linear (D-value) and non-linear (kmax) inactivation indices were calculated. A combination of mild heat, a low concentration of carvacrol, and mild pressure resulted in >5.0 log CFU/mL reduction (p < 0.05) in Salmonella serovars, surpassing the log reductions obtained by the current high-pressure processing industry standard. Salmonella Tennessee and the selected strain mixture exhibited comparable (p ≥ 0.05) sensitivity to pressure-based treatments, with D-values (350 MPa/4.4 °C) of 9.43 and 8.22 min, respectively. These values were reduced (p < 0.05) to 4.37 and 4.15 min, respectively, with the addition of 0.2% carvacrol to the pressure-based treatment. The application of mild heat at 60.0 °C and a low concentration of carvacrol showed microbiologically important synergism for augmenting the decontamination efficacy of high-pressure processing against nontyphoidal Salmonella serovars.
Collapse
Affiliation(s)
- Junice Sibley
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
| | - Ranju Kafle
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
| | - Shahid Chowdhury
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA
- Public Health Microbiology Foundation, Nashville, TN 37209, USA
| |
Collapse
|
5
|
D’Arrigo M, Delgado-Adámez J, García-Parra JJ, Palacios I, López-Parra M, Andrés AI, Ramírez-Bernabé MR. Enhancing Shelf Life and Nutritional Quality of Lamb Burgers with Brassica By-Products: A Synergistic Approach Using High Hydrostatic Pressure. Foods 2025; 14:594. [PMID: 40002038 PMCID: PMC11853784 DOI: 10.3390/foods14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the effects of incorporating broccoli and cauliflower by-products (leaves, stems and inflorescences) like puree ingredients and applying high hydrostatic pressure (HHP) treatment on the quality, safety, and shelf life of lamb burgers. Broccoli and cauliflower by-products were valorized like rich bioactive ingredients, especially in phenol compounds. The valorized ingredients were added to lamb burgers (5% w/w), and 120 burgers were produced for the experiment: three formulations (lamb, lamb with broccoli, and lamb with cauliflower) × four pressure treatments (untreated, 400 MPa, 500 MPa, 600 MPa) × five replicates per formulation and pressure treatment × two storage times (day 1 and day 14). The interactions between composition and pressure were also investigated. The results indicated that while Brassica by-products contributed to slight changes in moisture content and fatty acid composition, they did not independently provide strong antimicrobial effects, likely due to their high moisture content and minimal impact on pH reduction. However, combining these ingredients with HHP treatment (600 MPa for 60 s) significantly improved microbial stability. HHP treatment effectively reduced microbial counts, which were maintained during refrigerated storage, supporting its role as a valuable non-thermal intervention for enhancing meat safety. In terms of oxidative stability, the inclusion of Brassica ingredients, particularly with HHP, reduced lipid (TBA-RS ≤ 1.47 MDA mg kg-1) and protein oxidation (≤5.05 Nmol mg-1 proteins) over time, thereby enhancing product stability during storage. Sensory evaluation and affective testing revealed no significant differences in appearance, odor, taste, texture, or overall acceptability between treated and untreated samples, with high acceptance scores. This suggests that HHP treatment, in combination with Brassica by-products, can improve safety and oxidative stability without compromising the sensory quality of meat products. Overall, this study presents a sustainable and effective approach for producing high-quality and safe meat products with extended shelf life.
Collapse
Affiliation(s)
- Matilde D’Arrigo
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Jonathan Delgado-Adámez
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Jesús J. García-Parra
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Irene Palacios
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Montaña López-Parra
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| | - Ana Isabel Andrés
- Food Technology Department, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain;
| | - María Rosario Ramírez-Bernabé
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Instituto Tecnológico Agroalimentario (INTAEX), 06187 Badajoz, Spain; (M.D.); (J.D.-A.); (J.J.G.-P.); (I.P.); (M.L.-P.)
| |
Collapse
|
6
|
Chaudhary K, Khalid S, Altemimi AB, Abrar S, Ansar S, Aslam N, Hussain M, Aadil RM. Advances in non-thermal technologies: A revolutionary approach to controlling microbial deterioration, enzymatic activity, and maintaining other quality parameters of fresh stone fruits and their processed products. Food Chem 2025; 464:141825. [PMID: 39504893 DOI: 10.1016/j.foodchem.2024.141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Stone fruits and their processed products are highly valued in the whole world for their flavor, aroma, rich nutritional contents, and various health benefits. While large quantities of stone fruits are produced globally, significant losses occur due to improper handling and storage, from production to consumption. This review focuses on the application of advanced non-thermal treatment techniques for whole fresh stone fruits and their processed products. It provides a comprehensive assessment of the factors contributing to spoilage, along with the mechanisms, applications, and limitations of non-thermal techniques in reducing spoilage. Compared to traditional preservation methods, such as the use of artificial food additives, chemicals, thermal treatments, and low-temperature storage, these novel techniques demonstrate better results in minimizing spoilage. Moreover, non-thermal techniques are most sustainable and eco-friendly, as they reduce energy consumption, minimize chemical use, and generate less waste than traditional methods.
Collapse
Affiliation(s)
- Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Saqib Abrar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| |
Collapse
|
7
|
Osaili TM, Dhanasekaran DK, Hasan F, Obaid RS, Al-Nabulsi AA, Olaimat AN, Ismail LC, Alkalbani N, Ayyash M, Bamigbade GB, Holley R, Cheema AS, Bani Odeh WA, Mohd KA, Kamal AKH. Changes in Microbial Safety and Quality of High-Pressure Processed Camel Milk. Foods 2025; 14:320. [PMID: 39856987 PMCID: PMC11765231 DOI: 10.3390/foods14020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP on total plate count (TPC), yeasts and molds (YM), and lactic acid bacteria (LAB) in camel milk; (iii) investigate the behavior of several spoilage-causing bacteria during storage at 4 °C and 10 °C for up to 10 d post-HPP treatment; and (iv) assess the effect of HPP on the protein degradation of camel milk. The D-values for L. monocytogenes, E. coli O157:H7, and Salmonella spp. were 3.77 ± 0.36 min, 1.48 ± 0.08 min, and 2.10 ± 0.13 min, respectively. The HPP treatment decreased pathogenic microorganisms by up to 2 to 3 log cfu/mL (depending on treatment conditions). However, HPP reduced TPC, YM, and LAB by <1 log cfu/mL, regardless of the length of pressure exposure. HPP treatment, even at extended holding times, did not significantly alter either the proteolytic activity or casein micelle structure in camel milk. This study highlights HPP as a promising non-thermal technique for enhancing the microbiological safety of camel milk.
Collapse
Affiliation(s)
- Tareq M. Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.S.O.); (L.C.I.); (N.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (D.K.D.); (F.H.); (A.S.C.)
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Dinesh Kumar Dhanasekaran
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (D.K.D.); (F.H.); (A.S.C.)
| | - Fayeza Hasan
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (D.K.D.); (F.H.); (A.S.C.)
| | - Reyad S. Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.S.O.); (L.C.I.); (N.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (D.K.D.); (F.H.); (A.S.C.)
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.S.O.); (L.C.I.); (N.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (D.K.D.); (F.H.); (A.S.C.)
- Department of Women’s and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Nadia Alkalbani
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.S.O.); (L.C.I.); (N.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (D.K.D.); (F.H.); (A.S.C.)
| | - Mutamed Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Abu Dhabi P.O. Box 15551, United Arab Emirates; (M.A.); (G.B.B.)
| | - Gafar Babatunde Bamigbade
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Abu Dhabi P.O. Box 15551, United Arab Emirates; (M.A.); (G.B.B.)
| | - Richard Holley
- Department of Food Science and Human Nutrition, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Adan Shahzadi Cheema
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (D.K.D.); (F.H.); (A.S.C.)
- Food Quality and Food Safety Department, University of Bayreuth, 95447 Bayreuth, Germany
| | - Wael Ahmad Bani Odeh
- Food Studies and Policies Section, Food Safety Department, Dubai Municipality, Dubai P.O. Box 330127, United Arab Emirates; (W.A.B.O.); (A.K.H.K.)
| | - Khalid Abdulla Mohd
- Food Inspection Section, Food Safety Department, Dubai Municipality, Dubai P.O. Box 330127, United Arab Emirates;
| | - Ayesha Khalid Haji Kamal
- Food Studies and Policies Section, Food Safety Department, Dubai Municipality, Dubai P.O. Box 330127, United Arab Emirates; (W.A.B.O.); (A.K.H.K.)
| |
Collapse
|
8
|
Yu DSX, Hui CK, Ismail-Fitry MR, Koirala P, Nirmal N, Nor-Khaizura MAR. High-pressure processing and heat treatment of Murrah buffalo milk: Comparative study on microbial changes during refrigerated storage. Int J Food Microbiol 2025; 426:110926. [PMID: 39368122 DOI: 10.1016/j.ijfoodmicro.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study aims to evaluate the effect of high-pressure processing (HPP) (500 and 600 MPa for 3 min and 5 min) on the microbial changes of Murrah buffalo milk in comparison to heat treatment (72 °C for 15 s of holding time) during refrigerated storage of 28 days. The results indicated that the total plate count (TPC) of raw milk at day 0 was 5.5 ± 0.6 log10 CFU/mL. At day 0, heat treatment lowered TPC to 3.9 ± 0.6, while HPP treatment was in the range of 4.1 ± 0.3 to 4.8 ± 0.6 log10 CFU/mL. Similarly, lowered yeast and mold count and lactic acid bacteria were noted in heat- and HPP-treated milk samples compared to the control sample during refrigerated storage. There were no Staphylococcus aureus and Escherichia coli detected in heat and HPP-treated samples. Heat or HPP treatment at 600 MPa for 5 min significantly extended the shelf-life of Murrah buffalo milk for three weeks at the refrigerated storage. In addition, HPP treatment did not alter the pH, lightness (L* value), protein, or fat content of Murrah buffalo milk during refrigerated storage. Hence HPP at 600 MPa for 5 min could be a suitable alternative to conventional heat treatment.
Collapse
Affiliation(s)
- Darren Sim Xuan Yu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chong Kah Hui
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agricultural and Food Security Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Shankar S, Mohanty AK, DeEll JR, Carter K, Lenz R, Misra M. Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. NPJ SUSTAINABLE AGRICULTURE 2024; 2:25. [PMID: 39759422 PMCID: PMC11698397 DOI: 10.1038/s44264-024-00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/08/2024] [Indexed: 01/07/2025]
Abstract
This review will provide new ideas for preserving fruits and decreasing fruit waste. This review outlines and evaluates research concerning postharvest fruit preservation employing antimicrobial strategies, which involve the integration of biological control alongside physical or chemical methods. The concurrent deployment of two or three of these techniques, particularly biological approaches, has demonstrated enhanced and synergistic antimicrobial outcomes in practical scenarios.
Collapse
Affiliation(s)
- Shiv Shankar
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Kathryn Carter
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Ruben Lenz
- Advanced Micro Polymers Inc., Steeles Ave E, Milton, ON Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| |
Collapse
|
10
|
Conboy-Stephenson R, Ross RP, Kelly AL, Stanton C. Donor human milk: the influence of processing technologies on its nutritional and microbial composition. Front Nutr 2024; 11:1468886. [PMID: 39555198 PMCID: PMC11563987 DOI: 10.3389/fnut.2024.1468886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Human milk is regarded as the gold standard nutrition for newborn infants, providing all nutrients required for adequate growth and development from birth to 6 months. In addition, human milk is host to an array of bioactive factors that confer immune protection to the newborn infant. For this reason, the supply of human milk is crucial for premature, seriously ill, or low birth weight infants (<1,500 g). When a mother's own milk is unavailable, donor human milk is the recommended alternative by the World Health Organization. Prior to consumption, donor human milk undergoes pasteurization to ensure the eradication of bacterial agents and prevent the transfer of potentially pathogenic organisms. Currently, Holder Pasteurization, a heat-based treatment, is the widely adopted pasteurization technique used by milk banks. Holder pasteurization has demonstrated degradative effects on some of milk's biologically active factors, thus depleting critical bioactive agents with known functional, protective, and beneficial properties, ultimately reducing the immunoprotective value of donor human milk. As a result, alternative strategies for the processing of donor human milk have garnered much interest. These include thermal and non-thermal techniques. In the current review, we describe the effects of Holder pasteurization and alternative milk processing technologies on the nutritional and bioactive properties of milk. In addition, the capacity of each technique to ensure microbial inactivation of milk is summarized. These include the most extensively studied, high-temperature short-time and high-pressure processing, the emerging yet promising techniques, microwave heating and UV-C irradiation, and the lesser studied technologies, thermoultrasonication, retort processing, pulsed electric field, and gamma irradiation. Herein, we collate the findings of studies, to date, to allow for greater insight into the existing gaps in scientific knowledge. It is apparent that the lack of a cohesive standardized approach to human milk processing has resulted in contrasting findings, preventing a direct comparative analysis of the research. We conclude that donor human milk is a unique and valuable resource to the health sector, and although substantial research has been completed, persistent data disparities must be overcome to ensure optimal nutrition for the vulnerable newborn preterm infant group, in particular.
Collapse
Affiliation(s)
- Ruth Conboy-Stephenson
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Alan L. Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Baek UB, Kim HY. Current Status of Non-Thermal Sterilization by Pet Food Raw Ingredients. Food Sci Anim Resour 2024; 44:967-987. [PMID: 39246541 PMCID: PMC11377211 DOI: 10.5851/kosfa.2024.e63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, as the concept of pet food that satisfies both nutritional needs and the five senses has evolved, so too has the demand for effective pet food non-thermal sterilization methods. Prominent non-thermal technologies include high-pressure processing, plasma, and radiation, which are favored for their ability to preserve nutrients, avoid residues, and minimize compositional changes, thereby maintaining quality and sensory properties. However, to assess their effectiveness on pet food, it is essential to optimize operational parameters such as pressure levels, plasma intensity, radiation dosage, and temperature. Further studies are needed to evaluate microbial sterilization efficacy and sensory attributes. This exploration is expected to lay the groundwork for preventing zoonotic diseases and improving the production of high-quality pet food.
Collapse
Affiliation(s)
- Ui-Bin Baek
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
12
|
Bento de Carvalho T, Silva BN, Tomé E, Teixeira P. Preventing Fungal Spoilage from Raw Materials to Final Product: Innovative Preservation Techniques for Fruit Fillings. Foods 2024; 13:2669. [PMID: 39272437 PMCID: PMC11394069 DOI: 10.3390/foods13172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Spoilage fungi are a significant cause of financial loss in the food and beverage industry each year. These fungi thrive in challenging environments characterized by low acidity, low water activity and high sugar content, all of which are common in fruit fillings used in pastry products. Fruit fillings are therefore highly susceptible to fungal spoilage. Fungal growth can cause sensory defects in foods, such as changes in appearance, odor, flavor or texture, and can pose health risks due to the production of mycotoxins by certain mold species. To reduce food loss and waste and extend product shelf-life, it is critical that we prevent fungal spoilage. Synthetic chemicals such as sorbic acid and potassium sorbate are commonly used as preservatives to prevent fungal spoilage. However, with consumer demand for 'natural' and 'chemical-free' foods, research into clean-label preservative alternatives to replace chemical preservatives has increased. The objectives of this review are (i) to provide an overview of the sources of fungal contamination in fruit filling production systems, from pre-harvest of raw materials to storage of the final product, and to identify key control factors; and (ii) to discuss preservation techniques (both conventional and novel) that can prevent fungal growth and extend the shelf-life of fruit fillings.
Collapse
Affiliation(s)
- Teresa Bento de Carvalho
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Beatriz Nunes Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Elisabetta Tomé
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
13
|
Mundassery A, Ramaswamy J, Natarajan T, Haridas S, Nedungadi P. Modern and conventional processing technologies and their impact on the quality of different millets. Food Sci Biotechnol 2024; 33:2441-2460. [PMID: 39144204 PMCID: PMC11319574 DOI: 10.1007/s10068-024-01579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 08/16/2024] Open
Abstract
Millet, the highly sustainable crop for farming and combating hunger, has recently regained a resurgence in popularity as people seek more sustainable and nutrient-dense alternatives. International organizations and research institutions have advocated for increased millet production and consumption by introducing novel technologies and machinery in response to global food security and climate change challenges. This review aims to identify the impact of modern and conventional processing technologies on the quality of different millets. A comprehensive analysis of research reviews reveals that double-stage and tabletop centrifugal dehullers, infrared roasting, pulsed light, ultrasound, high-pressure processing methods, fortification, and encapsulation are optimal for nutrient retention in various millets. Extrusion technology application in millet processing has created a diverse range of value-added products with extended shelf stability. Emphasis is needed to develop robust promotion and distribution channels and establish an export promotion forum involving all stakeholders to promote and diversify millet-based products and technologies.
Collapse
Affiliation(s)
- Athira Mundassery
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Jancirani Ramaswamy
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Tharanidevi Natarajan
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Soorya Haridas
- Department of Food Science and Nutrition, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu 641112 India
| | - Prema Nedungadi
- Amrita Create, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525 India
| |
Collapse
|
14
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
15
|
Scepankova H, Majtan J, Estevinho LM, Saraiva JA. The High Pressure Preservation of Honey: A Comparative Study on Quality Changes during Storage. Foods 2024; 13:989. [PMID: 38611294 PMCID: PMC11011302 DOI: 10.3390/foods13070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In commercially available honey, the application of a heat treatment to prevent spoilage can potentially compromise its beneficial properties and quality, and these effects worsen with extended storage. The high-pressure processing (HPP) of honey is being explored, but its long-term impact on honey quality has not been characterised yet. This study evaluated the effects of HPP and thermal processing on the microbial load, physicochemical quality (i.e., hydroxymethylfurfural content and diastase activity), and antioxidant capacity of honey after treatment and following extended storage (6, 12, and 24 months) at 20 °C. Pasteurization (78 °C/6 min) effectively eliminated the microorganisms in honey but compromised its physicochemical quality and antioxidant activity. HPP initially showed sublethal inactivation, but storage accelerated the decrease in yeasts/moulds and aerobic mesophiles in honey (being <1 log CFU/g after 24 months of storage) compared to unprocessed honey and honey thermally treated under mild conditions (55 °C/15 min). The physicochemical characteristics of the quality of HPP-treated honey and raw unprocessed honey did change after long-term storage (24 months) but remained within regulatory standards. In conclusion, HPP emerged as a more suitable and safe preservation method for Apis mellifera honey, with a minimal risk of a loss of antioxidant activity compared to traditional industrial honey pasteurization.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (J.A.S.)
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus de Santa Apolonia, 5300-252 Bragança, Portugal
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia;
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Leticia M. Estevinho
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus de Santa Apolonia, 5300-252 Bragança, Portugal
- SusTEC, Associate Laboratory for Sustainability and Technology in Mountains Regions, Polytechnic Institute of Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (J.A.S.)
| |
Collapse
|
16
|
Wang W, Lin H, Guan W, Song Y, He X, Zhang D. Effect of static magnetic field-assisted thawing on the quality, water status, and myofibrillar protein characteristics of frozen beef steaks. Food Chem 2024; 436:137709. [PMID: 37857201 DOI: 10.1016/j.foodchem.2023.137709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of static magnetic field-assisted thawing (SMAT) at varying intensities (0, 1, 2, and 3 mT) on the quality, water status, and myofibrillar protein (MP) characteristics of frozen beef steaks. The thawing times of SMAT-1, 2, and 3 treatments could be shortened by approximately 10.9 %, 20.0 %, and 8.5 %, respectively, compared to the control. The results indicated that SMAT treatment significantly decreased thawing loss, maintained color stability, and reduced the degree of lipid oxidation in beef steaks compared to the control group (P < 0.05). Low-field nuclear magnetic resonance results confirmed that SMAT treatment enhanced the water-holding capacity of muscle. Furthermore, SMAT-2 treatment protected the muscle microstructure, decreased carbonyl content, and increased total sulfhydryl content (P < 0.05) compared to the control group. In conclusion, SMAT treatment effectively improved the beef quality and the characteristics of MP after thawing, especially in 2 mT.
Collapse
Affiliation(s)
- Wenxin Wang
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yu Song
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Shigematsu T, Kuwabara T, Asama Y, Suzuki R, Ikezaki M, Nomura K, Hori S, Iguchi A. Importance of Intracellular Energy Status on High-Hydrostatic-Pressure Inactivation of sake Yeast Saccharomyces cerevisiae. Foods 2024; 13:770. [PMID: 38472883 DOI: 10.3390/foods13050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The HHP inactivation behaviors of Niigata sake yeast Saccharomyces cerevisiae strain S9arg and its aerobic respiratory-deficient mutant strains were investigated after cultivating them in a YPD media containing 2% to 15% glucose, as well as in moromi mash, in a laboratory-scale sake brewing process. The piezotolerance of strain S9arg, shown after cultivation in a YPD medium containing 2% glucose, decreased to become piezosensitive with increasing glucose concentrations in YPD media. In contrast, the piezosensitivity of a mutant strain UV1, shown after cultivation in the YPD medium containing 2% glucose, decreased to become piezotolerant with increasing glucose concentrations in the YPD medium. The intracellular ATP concentrations were analyzed for an S. cerevisiae strain with intact aerobic respiratory ability, as well as for strain UV1. The higher concentration of ATP after cultivation suggested a higher energy status and may be closely related to higher piezotolerance for the yeast strains. The decreased piezotolerance of strain S9arg observed after a laboratory-scale sake brewing test may be due to a lower energy status resulting from a high glucose concentration in moromi mash during the early period of brewing, as well as a lower aeration efficiency during the brewing process, compared with cultivation in a YPD medium containing 2% glucose.
Collapse
Affiliation(s)
- Toru Shigematsu
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Taisei Kuwabara
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Yuki Asama
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Rinta Suzuki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Minami Ikezaki
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Kazuki Nomura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi 921-8501, Japan
| | - Saori Hori
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Akinori Iguchi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
- Graduate School of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| |
Collapse
|
18
|
He L, Han L, Yu Q, Wang X, Li Y, Han G. High pressure-assisted enzymatic hydrolysis promotes the release of a bi-functional peptide from cowhide gelatin with dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant activities. Food Chem 2024; 435:137546. [PMID: 37748255 DOI: 10.1016/j.foodchem.2023.137546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The process of generating functional peptides from cowhide gelatin is challenged by inefficient enzymatic hydrolysis. In this study, the researchers attempted to enhance the hydrolysis and potential functional properties of the peptides by subjecting the cowhide gelatin to high-pressure treatment (200, 300, and 400 MPa) for 20 min, followed by enzymatic hydrolysis. The highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2' azinobis(3 ethylbenzothiazoline 6 sulfonic acid) (ABTS) radical scavenging activity, and DPP-IV inhibitory activity of the hydrolysate were obtained at 200 MPa, accompanied with an increase in the content of hydrophobic, acidic, and basic amino acids (P < 0.05). Correspondingly, the high-pressure pretreatment (200 MPa) reduced the thermal stability, particle size, and morphological integrity of cowhide gelatin, with a corresponding increase in the exposure of hydrophobic regions. Altogether, these results indicated that appropriate high-pressure-assisted enzymatic hydrolysis reinforced the release of bi-functional peptides by modifying the structure of cowhide gelatin.
Collapse
Affiliation(s)
- Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xinyue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | | |
Collapse
|
19
|
Gutiérrez ÁL, Rico D, Ronda F, Caballero PA, Martín-Diana AB. The Application of High-Hydrostatic-Pressure Processing to Improve the Quality of Baked Products: A Review. Foods 2023; 13:130. [PMID: 38201159 PMCID: PMC10778925 DOI: 10.3390/foods13010130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The current trend in the food industry is towards "clean label" products with high sensory and nutritional quality. However, the inclusion of nutrient-rich ingredients in recipes often leads to sensory deficiencies in baked goods. To meet these requirements, physically modified flours are receiving more and more attention from bakery product developers. There are various findings in the literature on high hydrostatic pressure (HHP) technology, which can be used to modify various matrices so that they can be used as ingredients in the baking industry. HHP treatments can change the functionality of starches and proteins due to cold gelatinization and protein unfolding. As a result, the resulting ingredients are more suitable for nutrient-rich bakery formulations. This review describes the information available in the literature on HHP treatment conditions for ingredients used in the production of bakery products and analyses the changes in the techno-functional properties of these matrices, in particular their ability to act as structuring agents. The impact of HHP-treated ingredients on the quality of dough and bakery products and the effects on some nutritional properties of the treated matrices have been also analysed. The findings presented in this paper could be of particular interest to the bakery industry as they could be very useful in promoting the industrial application of HHP technology.
Collapse
Affiliation(s)
- Ángel L. Gutiérrez
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (Á.L.G.); (F.R.)
| | - Daniel Rico
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (A.B.M.-D.)
| | - Felicidad Ronda
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (Á.L.G.); (F.R.)
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (Á.L.G.); (F.R.)
| | - Ana Belén Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (A.B.M.-D.)
| |
Collapse
|
20
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes-An Overview of Challenges and Responses. Foods 2023; 13:14. [PMID: 38201041 PMCID: PMC10778341 DOI: 10.3390/foods13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors-pressure values (100-600 MPa), time of operation (a few-several minutes), and temperature of operation (room temperature or lower)-using a liquid medium responsible for pressure transfer. The combination of these three factors results in the inactivation of microorganisms, thus extending food shelf life and improving the food's microbiological safety. HPP can provide high value for the sensory and quality characteristics of products and reduce the population of pathogenic microorganisms such as L. monocytogenes to the required safety level. Nevertheless, the technology is not without impact on the cellular response of pathogens. L. monocytogenes cells surviving the HPP treatment may have multiple damages, which may impact the activation of mechanisms involved in the repair of cellular damage, increased virulence, or antibiotic resistance, as well as an increased expression of genes encoding pathogenicity and antibiotic resistance. This review has demonstrated that HPP is a technology that can reduce L. monocytogenes cells to below detection levels, thus indicating the potential to provide the desired level of safety. However, problems have been noted related to the possibilities of cell recovery during storage and changes in virulence and antibiotic resistance due to the activation of gene expression mechanisms, and the lack of a sufficient number of studies explaining these changes has been reported.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (W.C.-W.); (A.Z.)
| | | | | |
Collapse
|
21
|
Koo A, Ghate V, Zhou W. Acid adaptation increased the resistance of Escherichia coli O157:H7 in bok choy ( Brassica rapa subsp. chinensis) juice to high-pressure processing. Appl Environ Microbiol 2023; 89:e0060223. [PMID: 37874288 PMCID: PMC10686058 DOI: 10.1128/aem.00602-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Based on the U.S. Food and Drug Administration regulations, E. coli O157:H7 is a pertinent pathogen in high acid juices that needs to be inactivated during the pasteurization process. The results of this study suggest that the effect of acid adaptation should be considered in the selection of HPP parameters for E. coli O157:H7 inactivation to ensure that pasteurization objectives are achieved.
Collapse
Affiliation(s)
- Andrea Koo
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Kent Ridge, Singapore
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| | - Vinayak Ghate
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| | - Weibiao Zhou
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Kent Ridge, Singapore
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
22
|
Helstad A, Marefati A, Ahlström C, Rayner M, Purhagen J, Östbring K. High-Pressure Pasteurization of Oat Okara. Foods 2023; 12:4070. [PMID: 38002127 PMCID: PMC10670329 DOI: 10.3390/foods12224070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The issue of the short microbiological shelf life of residues from the plant-based beverage industry creates a large food waste problem. Today, the oat beverage residue, in this study referred to as oat okara, is generally converted to energy or used as animal feed. High-pressure pasteurization (200 MPa, 400 MPa, and 600 MPa) was applied to oat okara to investigate the effect on shelf life and microbiological activity. A 4-week microbiological storage study was performed and thermal properties, viscosity, and water and oil holding capacities were analyzed. The total aerobic count, including yeast and mold, was significantly reduced (p < 0.05) by 600 MPa after four weeks of storage at 4 °C. The content of lactic acid bacteria after four weeks of storage was low for untreated oat okara (3.2 log CFU/g) but, for 600 MPa, the content remained at the detection limit (2.3 log CFU/g). Conversely, the treatments of 200 MPa and 400 MPa increased the microbial content of the total aerobic count significantly (p < 0.05) after two weeks in comparison to untreated oat okara. The thermal properties of untreated and high-pressure-treated oat okara demonstrated an increase in protein denaturation of the 12S globulin, avenalin, when higher pressure was applied (400-600 MPa). This was also confirmed in the viscosity measurements where a viscosity peak for avenalin was only present for untreated and 200 MPa treated oat okara. The water holding capacity did not change as a function of high-pressure treatment (3.5-3.8 mL/g) except for the treatment at 200 MPa, which was reduced (2.7 mL/g). The oil holding capacity was constant (1.2-1.3 mL/g) after all treatments. High-pressure pasteurization of 600 MPa reduced the microbial content in oat okara resulting in a shelf life of 2-4 weeks. However, more research is required to identify the microorganisms in oat okara to achieve a microbiologically safe product that can be used for food applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Karolina Östbring
- Department of Food Technology Engineering and Nutrition, Lund University, Naturvetarvägen 12, 223 62 Lund, Sweden; (A.H.)
| |
Collapse
|
23
|
Ciafardini G, Zullo BA. A New Natural Processing System Based on Slight Carbon Dioxide Pressure for Producing Black Table Olives with Low Salt Content. Foods 2023; 12:3950. [PMID: 37959072 PMCID: PMC10648354 DOI: 10.3390/foods12213950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Naturally fermented black table olives are usually processed in brine with low pH and high NaCl content. Because salt is responsible for several cardiovascular problems, methods are needed to decrease the salt (NaCl) content in olive pulp. This study investigated a new natural processing system wherein microorganism growth is inhibited by slight pressure of CO2 (spCO2), in addition to low pH and NaCl, in brine with decreased salt content. The fermentation performed under spCO2 with a low-salt brine with 6% (w v-1) NaCl and 0.5% (w v-1) citric acid, unlike the traditional system, inhibited the growth of bacteria and fungi and decreased the concentration of yeasts. Processing tests with spCO2 in the presence of different salt and citric acid concentrations indicated a slight decrease in yeasts in brines containing 6% (w v-1) NaCl and 0.6% (w v-1) citric acid but not after inoculation of the same brines with Saccharomyces cerevisiae. In contrast, in the presence of 11% (w v-1) NaCl and 0.3% or 0.6% (w v-1) citric acid, the inhibitory effect of brines was greater compared to those with low-salt and it was also confirmed in the same brines inoculated with S. cerevisiae.
Collapse
Affiliation(s)
| | - Biagi Angelo Zullo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via de Sanctis, I-86100 Campobasso, Italy;
| |
Collapse
|
24
|
Youssef S, Custódio L, Rodrigues MJ, Pereira CG, Calhelha RC, Jekő J, Cziáky Z, Ben Hamed K. Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile. PLANTS (BASEL, SWITZERLAND) 2023; 12:3391. [PMID: 37836131 PMCID: PMC10574883 DOI: 10.3390/plants12193391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
This study assessed the halophyte species Limonium spathulatum (Desf.) as a possible source of natural ingredients with the capacity to inhibit enzymes related to relevant human health disorders and food browning. Extracts using food-grade solvents such as water and ethanol were prepared by maceration from dried L. spathulatum leaves. They were evaluated for in vitro inhibition activity of enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), α-glucosidase, tyrosinase and lipase, related to Alzheimer's disease, type-2-diabetes mellitus, skin hyperpigmentation, and obesity, respectively. These extracts were also appraised for in vitro acute toxicity on tumoral and non-tumoral cell lines and their chemical composition by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were more effective towards BChE than AChE. The best results were obtained with the hydroethanolic and water extracts, with IC50 values of 0.03 mg/mL and 0.06 mg/mL, respectively. The hydroethanolic extract had the highest capacity to inhibit α-glucosidase (IC50: 0.04 mg/mL), higher than the positive control used (acarbose, IC50 = 3.14 mg/mL). The ethanol extract displayed the best inhibitory activity against tyrosinase (IC50 = 0.34 mg/mL). The tested samples did not inhibit lipase and exhibited low to moderate cytotoxic activity against the tested cell lines. The hydroethanolic extract had a higher diversity of compounds, followed by the ethanol and water samples. Similar molecules were identified in all the extracts and were mainly hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. Taken together, these results suggest that L. spathulatum should be further explored as a source of bioactive ingredients for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Seria Youssef
- Laboratory of Extremophile Plants, Center of Biotechnology of BorjCedria, Hammam-Lif 2050, Tunisia;
| | - Luisa Custódio
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.C.); (M.J.R.); (C.G.P.)
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.C.); (M.J.R.); (C.G.P.)
| | - Catarina G. Pereira
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.C.); (M.J.R.); (C.G.P.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4405 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4405 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Karim Ben Hamed
- Laboratory of Extremophile Plants, Center of Biotechnology of BorjCedria, Hammam-Lif 2050, Tunisia;
| |
Collapse
|
25
|
Expósito-Almellón X, Duque-Soto C, López-Salas L, Quirantes-Piné R, de Menezes CR, Borrás-Linares I, Lozano-Sánchez J. Non-Digestible Carbohydrates: Green Extraction from Food By-Products and Assessment of Their Effect on Microbiota Modulation. Nutrients 2023; 15:3880. [PMID: 37764662 PMCID: PMC10538179 DOI: 10.3390/nu15183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The nature and composition of the waste produced by food industrial processing make its abundance and accumulation an environmental problem. Since these by-products may present a high potential for revalorization and may be used to obtain added-value compounds, the main goals of the technological advancements have been targeted at reducing the environmental impact and benefiting from the retrieval of active compounds with technological and health properties. Among the added-value substances, nondigestible carbohydrates have demonstrated promise. In addition to their well-known technological properties, they have been discovered to modify the gut microbiota and enhance immune function, including the stimulation of immune cells and the control of inflammatory reactions. Furthermore, the combination of these compounds with other substances such us phenols could improve their biological effect on different noncommunicable diseases through microbiota modulation. In order to gain insight into the implementation of this combined strategy, a broader focus concerning different aspects is needed. This review is focused on the optimized green and advanced extraction system applied to obtain added-value nondigestible carbohydrates, the combined administration with phenols and their beneficial effects on microbiota modulation intended for health and/or illness prevention, with particular emphasis on noncommunicable diseases. The isolation of nondigestible carbohydrates from by-products as well as in combination with other bioactive substances could provide an affordable and sustainable source of immunomodulatory chemicals.
Collapse
Affiliation(s)
- Xavier Expósito-Almellón
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Lucía López-Salas
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain;
| | | | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva s/n, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario s/n, 18071 Granada, Spain (C.D.-S.); (L.L.-S.); (J.L.-S.)
| |
Collapse
|
26
|
Latoch A, Moczkowska-Wyrwisz M, Sałek P, Czarniecka-Skubina E. Effect of Marinating in Dairy-Fermented Products and Sous-Vide Cooking on the Protein Profile and Sensory Quality of Pork Longissimus Muscle. Foods 2023; 12:3257. [PMID: 37685190 PMCID: PMC10486606 DOI: 10.3390/foods12173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the study was to evaluate the effect of marinating (3 or 6 days) in kefir (KE), yogurt (YO) and buttermilk (BM) and sous-vide cooking (SV) at 60 or 80 °C on changes in the protein profile of pork in relation to its sensory quality. In the marinated raw meat, an increased share of some fractions of myofibrillar and cytoskeletal proteins and calpains were found. The greatest degradation of proteins, regardless of time, was caused by marinating in YO and KE and cooking SV at 80 °C. The lowest processing losses were in samples marinated in KE and YO and cooked SV at 60 °C, with marinating time having no significant effect. The odor, flavor, tenderness and juiciness of meat marinated in BM was better than in KE and YO. Meat marinated and cooked SV at 60 °C was rated better by the panelists. Changes in proteins significantly affect the formation of meat texture, tenderness and juiciness, which confirms the correlations. This is also reflected in the sensory evaluation. During the process of marinating and cooking meat, protein degradation should be taken into account, which can be a good tool for shaping the sensory quality of cooked pork.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| |
Collapse
|
27
|
Gokul Nath K, Pandiselvam R, Sunil C. High-pressure processing: Effect on textural properties of food- A review. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
28
|
Atmaca B, Demiray M, Akdemir Evrendilek G, Bulut N, Uzuner S. High-Pressure Processing of Traditional Hardaliye Drink: Effect on Quality and Shelf-Life Extension. Foods 2023; 12:2876. [PMID: 37569147 PMCID: PMC10417461 DOI: 10.3390/foods12152876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Hardaliye, as one of the oldest and lesser known traditional beverages, is produced using red grape pomace from wine production. This drink production is achieved through lactic acid fermentation, with the addition of sour cherry leaves and mustard seeds-either heat-treated, grinded, or whole-in various concentrations. Hardaliye has a very short shelf life; thus, efforts have recently been made to process hardaliye with novel processing technologies in order to achieve shelf-life extension. Therefore, the high-hydrostatic-pressure (HHP) processing of hardaliye was performed to determine its impact on important properties, including in microbial inactivation and shelf-life extension, with respect to a Box-Behnken experimental design. Maximum log reductions of 5.38 ± 0.6, 5.10 ± 0.0, 5.05 ± 0.2, and 4.21 ± 0.0 with HHP were obtained for Brettanomyces bruxellensis, total mesophilic aerobic bacteria, Lactobacillus brevis, and total mold and yeast, respectively. The processing parameters of 490 MPa and 29 °C for 15 min were found as the optimal conditions, with the response variables of an optical density at 520 nm and the inactivation of L. brevis. The samples processed at the optimal conditions were stored at both 4 and 22 °C for 228 d. While the non-treated control samples at 4 and 22 °C were spoiled at 15 and 3 d, the HHP-treated samples were spoiled after 228 and 108 d at 4 and 22 °C, respectively.
Collapse
Affiliation(s)
- Bahar Atmaca
- Center Research Laboratory Application and Research Center, Mardin Artuklu University, 47420 Mardin, Türkiye;
| | - Merve Demiray
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Golkoy Campus, 14030 Bolu, Türkiye; (M.D.); (N.B.)
| | - Gulsun Akdemir Evrendilek
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Golkoy Campus, 14030 Bolu, Türkiye; (M.D.); (N.B.)
| | - Nurullah Bulut
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Golkoy Campus, 14030 Bolu, Türkiye; (M.D.); (N.B.)
| | - Sibel Uzuner
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, 35420 Izmir, Türkiye;
| |
Collapse
|
29
|
Murali AP, Trząskowska M, Trafialek J. Microorganisms in Organic Food-Issues to Be Addressed. Microorganisms 2023; 11:1557. [PMID: 37375059 DOI: 10.3390/microorganisms11061557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The review aimed to analyse the latest data on microorganisms present in organic food, both beneficial and unwanted. In conclusion, organic food's microbial quality is generally similar to that of conventionally produced food. However, some studies suggest that organic food may contain fewer pathogens, such as antibiotic-resistant strains, due to the absence of antibiotic use in organic farming practices. However, there is little discussion and data regarding the importance of some methods used in organic farming and the risk of food pathogens presence. Concerning data gaps, it is necessary to plan and perform detailed studies of the microbiological safety of organic food, including foodborne viruses and parasites and factors related to this method of cultivation and specific processing requirements. Such knowledge is essential for more effective management of the safety of this food. The use of beneficial bacteria in organic food production has not yet been widely addressed in the scientific literature. This is particularly desirable due to the properties of the separately researched probiotics and the organic food matrix. The microbiological quality of organic food and its potential impact on human health is worth further research to confirm its safety and to assess the beneficial properties resulting from the addition of probiotics.
Collapse
Affiliation(s)
- Aparna P Murali
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Joanna Trafialek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
30
|
Inguglia ES, Song Z, Kerry JP, O'Sullivan MG, Hamill RM. Addressing Clean Label Trends in Commercial Meat Processing: Strategies, Challenges and Insights from Consumer Perspectives. Foods 2023; 12:foods12102062. [PMID: 37238880 DOI: 10.3390/foods12102062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The concept of a clean label is difficult to define, even in common language, as the interpretation of what a "clean" food is differs from one person to another and from one organisation to another. The lack of a unique definition and regulations of what the term "clean" means, along with the growing consumer demand for more "natural" and healthier foods, is posing new challenges for manufacturers and ingredient producers. The meat industry, in particular, has been affected by this new movement owing to negative attitudes and feelings consumers associate with consuming processed meat products. Scope and approach: The review scope is to describe attributes and associations around the "clean" label term by analysing the most recent ingredients, additives and processing methods currently available for meat manufacturers. Their application in meat, plant-based alternatives and hybrid meat/plant products, current limitations and challenges presented in consumer perception, safety and potential impacts on product quality are also presented. KEY FINDINGS AND CONCLUSIONS The availability of a growing number of "clean" label ingredients provides a new suite of approaches that are available for application by meat processors to help overcome some of the negative connotations associated with processed meat products and also support plant-based meat alternatives and hybrids.
Collapse
Affiliation(s)
| | - Zuo Song
- Teagasc Food Research Centre, D15 DY05 Dublin, Ireland
- School of Food and Nutritional Sciences, University College Cork, T12 E138 Cork, Ireland
| | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, T12 E138 Cork, Ireland
| | - Maurice G O'Sullivan
- School of Food and Nutritional Sciences, University College Cork, T12 E138 Cork, Ireland
| | - Ruth M Hamill
- Teagasc Food Research Centre, D15 DY05 Dublin, Ireland
| |
Collapse
|
31
|
Nawawi NIM, Ijod G, Senevirathna SSJ, Aadil RM, Yusof NL, Yusoff MM, Adzahan NM, Azman EM. Comparison of high pressure and thermal pasteurization on the quality parameters of strawberry products: a review. Food Sci Biotechnol 2023; 32:729-747. [PMID: 37041805 PMCID: PMC10082863 DOI: 10.1007/s10068-023-01276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Strawberry (Fragaria ananassa) is rich in bioactive compounds with high antioxidant activity. High pressure processing (HPP) is an efficient alternative to preserve these bioactive compounds in terms of microbial inactivation and shelf-life stability. This review compares the effects of pasteurization methods using high pressure or thermal pasteurization (TP) on the quality parameters of various strawberry-based products. To summarize, most of the high pressure-treated products are microbiologically stable and showed minimum degradation of thermolabile compounds than TP-treated ones. However, some studies reported that high pressure did not have an advantage over TP especially in the preservation of phenolic phytochemicals during storage. The insufficient enzyme inactivation and high residual activity of enzymes after high pressure treatment could cause anthocyanins degradation thus affecting the product quality. Overall, this review could be valuable to potential processors in evaluating the effective commercialization of high pressure-treated strawberry products.
Collapse
Affiliation(s)
- Nur Izzati Mohamed Nawawi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Giroon Ijod
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Sri Sampath Janaka Senevirathna
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Department of Agriculture, P.O. Box. 01, Peradeniya, 20400 Sri Lanka
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Noor Liyana Yusof
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Masni Mat Yusoff
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
32
|
Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W, Adamski P. High-pressure processing effect on conjugal antibiotic resistance genes transfer in vitro and in the food matrix among strains from starter cultures. Int J Food Microbiol 2023; 388:110104. [PMID: 36706580 DOI: 10.1016/j.ijfoodmicro.2023.110104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
This study analyzed the effect of high-pressure processing (HPP) on the frequency of conjugal gene transfer of antibiotic resistance genes among strains obtained from starter cultures. Gene transfer ability was analyzed in vitro and in situ in the food matrix. It was found that the transfer of aminoglycoside resistance genes did not occur after high-pressure treatment, either in vitro or in situ. After exposure to HPP, the transfer frequencies of tetracycline, ampicillin and chloramphenicol resistance genes increased significantly compared to the control sample, both in vitro and in situ. The frequency of resistance genes transfer in the food matrix in the pressurized samples did not differ significantly from the in vitro transfer rate. Minimum Inhibitory Concentrations (MICs) for these antibiotics determined for transconjugants were lower or equal to MICs determined for the donors. No significant differences were observed between the MIC values determined for the transconjugants obtained in vitro and in situ. The results suggest that HPP may contribute to the spread of antibiotic resistance. This points to the need to verify starter cultures strains for their antibiotic resistance and pressurization parameters to avoid spreading antibiotic resistance genes.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Patryk Adamski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| |
Collapse
|
33
|
Wu S, Yang R. Effect of high-pressure processing on polyphenol oxidase, melanosis and quality in ready-to-eat crabs during storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
34
|
Gayán E, Wang Z, Salvador M, Gänzle MG, Aertsen A. Dynamics of high hydrostatic pressure resistance development in RpoS-deficient Escherichia coli. Food Res Int 2023; 164:112280. [PMID: 36737893 DOI: 10.1016/j.foodres.2022.112280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
High hydrostatic pressure (HHP) treatment is one of the most widely accepted non-thermal food processing methods, but HHP-resistance development in pathogenic or spoilage bacteria might compromise the safety and stability of HHP-treated foods. Charting the possible routes and mechanisms of HHP resistance development in foodborne bacteria is therefore essential to anticipate or prevent the appearance of resistant variants. While upregulation of the RpoS-governed general stress response is a well-established route for increased HHP resistance in Escherichia coli, previous work revealed that mutations causing attenuated cAMP/CRP activity or aggregation-prone TnaA variants can evolve to overcome the HHP-hypersensitivity of an E. coli ΔrpoS mutant. In this study, further directed evolution and genetic analysis approaches allowed us to demonstrate that both kinds of mutants tend to co-emerge and compete with each other in E. coli ΔrpoS populations evolving towards HHP resistance, because of the higher HHP resistance of cAMP/CRP mutants and the faster growth rate of the TnaA mutants. Moreover, closer scrutiny of evolving populations revealed RpoS, cAMP/CRP and TnaA independent routes of HHP resistance development, based on downregulation of YegW or RppH activity.
Collapse
Affiliation(s)
- Elisa Gayán
- Department of Microbial and Molecular Systems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Maika Salvador
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| |
Collapse
|
35
|
Effect of citric acid/ pomelo essential oil nanoemulsion combined with high hydrostatic pressure on the quality of banana puree. Food Chem X 2023; 17:100614. [PMID: 36974176 PMCID: PMC10039262 DOI: 10.1016/j.fochx.2023.100614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
In this work, the influence of citric acid & pomelo essential oil nanoemulsion (CA&PEN) assisted with HHP on microbial counts, oxidative enzyme activity and related quality of banana puree were examined. The total aerobic bacteria (TAB) counts of all groups decreased to 1.2 ∼ 2.52 lg CFU/g from 3.97 lg CFU/g, except the CA&PEN group, which was still below the detection level. CA&PEN combined with HHP (500 or 600 MPa, 5 min) succeeded in keeping TAB counts of banana puree below the detection limit for 3 months of cold storage. During 90 days of cold storage, the color, total phenolics, DPPH and ABTS antioxidant capacities were better conserved in acidified groups than non-acidified groups. In conclusion, CA&PEN assisted with HHP can be utilized to promote the inhibition of enzymatic browning and maintain the quality of banana puree, due to its reduced oxidative enzyme activity, low pH, strong antioxidant capacity and excellent color retention.
Collapse
|
36
|
Separation of α-Lactalbumin Enriched Fraction from Bovine Native Whey Concentrate by Combining Membrane and High-Pressure Processing. Foods 2023; 12:foods12030480. [PMID: 36766009 PMCID: PMC9914712 DOI: 10.3390/foods12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Whey exhibits interesting nutritional properties, but its high β-Lactoglobulin (β-Lg) content could be a concern in infant food applications. In this study, high-pressure processing (HPP) was assessed as a β-Lg removal strategy to generate an enriched α-Lactalbumin (α-La) fraction from bovine native whey concentrate. Different HPP treatment parameters were considered: initial pH (physiological and acidified), sample temperature (7-35 °C), pressure (0-600 MPa) and processing time (0-490 s). The conditions providing the best α-La yield and α-La purification degree balance (46.16% and 80.21%, respectively) were 4 min (600 MPa, 23 °C), despite the significant decrease of the surface hydrophobicity and the total thiol content indexes in the α-La-enriched fraction. Under our working conditions, the general effects of HPP on α-La and β-Lg agreed with results reported in other studies of cow milk or whey. Notwithstanding, our results also indicated that the use of native whey concentrate could improve the β-Lg precipitation degree and the α-La purification degree, in comparison to raw milk or whey. Future studies should include further characterization of the α-La-enriched fraction and the implementation of membrane concentration and HPP treatment to valorize cheese whey.
Collapse
|
37
|
The Role of Emergent Processing Technologies in Beer Production. BEVERAGES 2023. [DOI: 10.3390/beverages9010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The brewing industry is regarded as a fiercely competitive and insatiable sector of activity, driven by the significant technological improvements observed in recent years and the most recent consumer trends pointing to a sharp demand for sensory enhanced beers. Some emergent and sustainable technologies regarding food processing such as pulsed electric fields (PEF), ultrasound (US), thermosonication (TS), high-pressure processing (HPP), and ohmic heating (OH) have shown the potential to contribute to the development of currently employed brewing methodologies by both enhancing the quality of beer and contributing to processing efficiency with a promise of being more environmentally friendly. Some of these technologies have not yet found their way into the industrial brewing process but already show potential to be embedded in continuous thermal and non-thermal unit operations such as pasteurization, boiling and sterilization, resulting in beer with improved organoleptic properties. This review article aims to explore the potential of different advanced processing technologies for industrial application in several key stages of brewing, with particular emphasis on continuous beer production.
Collapse
|
38
|
Sensory quality and consumer perception of high pressure processed orange juice and apple juice. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Wu CP, Wu SM, Lin YH, Wu YH, Huang BC, Huang HW, Wang CY. High pressure processing-based hurdle strategy for microbial shelf life of packed food in the Cold Chain. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Gabrić D, Kurek M, Ščetar M, Brnčić M, Galić K. Effect of Non-Thermal Food Processing Techniques on Selected Packaging Materials. Polymers (Basel) 2022; 14:polym14235069. [PMID: 36501462 PMCID: PMC9741052 DOI: 10.3390/polym14235069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
In the last decade both scientific and industrial community focuses on food with the highest nutritional and organoleptic quality, together with appropriate safety. Accordingly, strong efforts have been made in finding appropriate emerging technologies for food processing and packaging. Parallel to this, an enormous effort is also made to decrease the negative impact of synthetic polymers not only on food products (migration issues) but on the entire environment (pollution). The science of packaging is also subjected to changes, resulting in development of novel biomaterials, biodegradable or not, with active, smart, edible and intelligent properties. Combining non-thermal processing with new materials opens completely new interdisciplinary area of interest for both food and material scientists. The aim of this review article is to give an insight in the latest research data about synergies between non-thermal processing technologies and selected packaging materials/concepts.
Collapse
|
41
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
42
|
Kiprotich SS, Aldrich CG. A review of food additives to control the proliferation and transmission of pathogenic microorganisms with emphasis on applications to raw meat-based diets for companion animals. Front Vet Sci 2022; 9:1049731. [PMID: 36439354 PMCID: PMC9686358 DOI: 10.3389/fvets.2022.1049731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
Raw meat-based diets (RMBDs) or sometimes described as biologically appropriate raw food (BARFs) are gaining in popularity amongst dog and cat owners. These pet guardians prefer their animals to eat minimally processed and more "natural" foods instead of highly heat-processed diets manufactured with synthetic preservatives. The market for RMBDs for dogs and cats is estimated at $33 million in the United States. This figure is likely underestimated because some pet owners feed their animals raw diets prepared at home. Despite their increasing demand, RMBDs have been plagued with numerous recalls because of contamination from foodborne pathogens like Salmonella, E. coli, or Campylobacter. Existing literature regarding mitigation strategies in RMBD's for dogs/cats are very limited. Thus, a comprehensive search for published research was conducted regarding technologies used in meat and poultry processing and raw materials tangential to this trade (e.g., meats and poultry). In this review paper, we explored multiple non-thermal processes and GRAS approved food additives that can be used as potential antimicrobials alone or in combinations to assert multiple stressors that impede microbial growth, ultimately leading to pathogen inactivation through hurdle technology. This review focuses on use of high-pressure pasteurization, organic acidulants, essential oils, and bacteriophages as possible approaches to commercially pasteurize RMBDs effectively at a relatively low cost. A summary of the different ways these technologies have been used in the past to control foodborne pathogens in meat and poultry related products and how they can be applied successfully to impede growth of enteric pathogens in commercially produced raw diets for companion animals is provided.
Collapse
Affiliation(s)
| | - Charles G. Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
43
|
Nonthermal Food Processing: A Step Towards a Circular Economy to Meet the Sustainable Development Goals. Food Chem X 2022; 16:100516. [DOI: 10.1016/j.fochx.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
44
|
Current status and future trends of sous vide processing in meat industry; A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Wu YJ, Lu YC, Wu YH, Lin YH, Hsu CL, Wang CY. Effects of high-pressure processing on the physicochemical properties and glycemic index of fruit puree in a hyperglycemia mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6138-6145. [PMID: 35478405 DOI: 10.1002/jsfa.11967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In this study, the duration of high-pressure processing (HPP) required to achieve a 5 log reduction of Escherichia coli O157:H7 in fruit purees was evaluated. Banana, cantaloupe, and dragon fruit purees were subjected to HPP at 600 MPa for 300, 270, and 270 s, respectively, and their physicochemical properties and enzyme activities were then analysed. Diabetic mice were fed fresh and HPP-treated purees to observe their effects on the glycemic index (GI) and postprandial blood glucose response. RESULTS Compared with their fresh counterparts, the HPP-treated banana and dragon fruit purees exhibited significantly higher viscosities, lower glucose concentrations, and higher glucose dialysis retardation indices and showed disrupted sucrose invertase and polygalacturonase activities. The GI and postprandial blood glucose response were not significantly different between the fresh and HPP-treated cantaloupe purees. By contrast, the peak time of glucose response (Tmax ) was delayed from 30 min to 60 min, and the area under the receiver operating characteristic curve was reduced by 40% in the mice fed HPP-treated banana and dragon fruit purees. The GIs of the HPP-treated banana and dragon fruit purees (were 50.3 and 44.8, respectively) were significantly lower than those of their fresh counterparts (85.1 and 75.2, respectively). CONCLUSION HPP can change the physicochemical properties of fruit purees, resulting in stabilized blood glucose levels and lower GIs after consumption. Therefore, purees processed in this manner would benefit consumers and patients with diabetes/pre-diabetes who need to maintain stable blood glucose levels (Fig. S1). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Jing Wu
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yi-Ching Lu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Wu
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Yan-Han Lin
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| |
Collapse
|
46
|
Chen WT, Kuo YL, Chen CH, Wu HT, Chen HW, Fang WP. Improving the stability and bioactivity of curcumin using chitosan-coated liposomes through a combination mode of high-pressure processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Reis VHDOT, Rodrigues BM, Loubet Filho PS, Cazarin CBB, Rafacho BPM, dos Santos EEF. Biotechnological potential of Hancornia speciosa whole tree: A narrative review from composition to health applicability. Heliyon 2022; 8:e11018. [PMID: 36276713 PMCID: PMC9578994 DOI: 10.1016/j.heliyon.2022.e11018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Mangabeira (Hancornia speciosa) is a Brazilian tree and a socioeconomic key due to the commercialization of its food products and tree parts to treat health conditions empirically. This review gathers the main chemical, and microbiological characteristics of the mangabeira tree parts (leaves, fruits, tree bark, latex, and seeds), emphasizing its applicability in food science and focusing on its bioapplicability in health conditions. Leaves, fruits, and tree bark can be used to develop functional foods, and phytochemical products; the tree latex have great potential in the bioengineering material field; and the seeds in sustainable energy production. Leaves and fruits were the main samples bioapplied in health conditions in vitro (oxidative stress and chemopreventive effect) and in vivo (gastrointestinal and cardiovascular health, anti-inflammatory, and antidiabetic effect), whereas tree bark and latex also exhibited health effects and seeds showed low cytotoxicity. All parts of the mangabeira tree can be explored by extractivist families and industries from a sustainable point of view.
Collapse
Affiliation(s)
- Vitória Helena de Oliveira Teixeira Reis
- Graduate Program of Biotechnology, Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Bruna Magusso Rodrigues
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences Food, and Nutrition, Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Paulo Sérgio Loubet Filho
- Graduate Program of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Cinthia Baú Betim Cazarin
- Graduate Program of Food and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas, 13083-862 Campinas, São Paulo, Brazil
| | - Bruna Paola Murino Rafacho
- Graduate Program of Biotechnology, Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences Food, and Nutrition, Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - e Elisvânia Freitas dos Santos
- Graduate Program of Biotechnology, Faculty of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
- Graduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
48
|
Comparison of the Effects of High Hydrostatic Pressure and Pasteurization on Quality of Milk during Storage. Foods 2022; 11:foods11182837. [PMID: 36140965 PMCID: PMC9498420 DOI: 10.3390/foods11182837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
High hydrostatic pressure (HHP, 600 MPa/15 min), pasteurization (72 °C/15 s) and pasteurization-HHP (72 °C/15 s + 600 MPa/15 min) processing of milk were comparatively evaluated by examining their effects on microorganisms and quality during 30 days of storage at 4 °C. The counts of total aerobic bacteria in HHP-treated milk were less than 2.22 lgCFU/mL during storage, while they exceeded 5.00 lgCFU/mL in other treated milk. Although HHP changed the color, it had more advantages in maintaining the nutrient (fat, calcium and β-lactoglobulin) properties of milk during storage. Moreover, the viscosity and particle size of HHP-treated milk were more similar to the untreated milk during storage. However, consumer habits towards heat-treated milk have led to poor acceptance of HHP-treated milk, resulting in a low sensory score. In sum, compared with pasteurization- and pasteurization-HHP-treated milk, HHP-treated milk showed longer shelf life and better nutritional quality, but lower sensory acceptance.
Collapse
|
49
|
Stability of acidified milk drinks: Comparison of high hydrostatic pressure (HHP) and thermal treatments. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Ngamlerst C, Prangthip P, Leelawat B, Supawong S, Vatthanakul S. A Vital Role of High-Pressure Processing in the Gel Forming on New Healthy Egg Pudding through Texture, Microstructure, and Molecular Impacts. Foods 2022; 11:2555. [PMID: 36076740 PMCID: PMC9454986 DOI: 10.3390/foods11172555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
High-pressure processing (HPP) can induce gelation of egg-white protein and improve physical and physicochemical properties of egg-white pudding. Interestingly, one step, including production and pasteurisation, is accomplished to produce a ready-to-eat snack. An ideal healthy snack in the elderly population consists of low-sugar and fat, high fibre and vitamin levels, is tasty, creamy-soft, and refreshing. Our strawberry-flavoured egg-white pudding contains high protein and fibre from inulin, zero fat, and a soft texture produced for various groups, from healthy to older people. After HPP at different high-pressure levels (450, 475, and 500 MPa) and different times (5, 10 and 15 min), this study investigated the physical quality and physicochemical properties of strawberry-flavoured egg-white pudding, such as texture, colour, syneresis, microstructure, secondary structure of protein, and microorganism growth. The results indicate increasing high-pressure levels, and/or holding time treatment caused significantly (p < 0.05) higher hardness values and lower syneresis, as well as surface hydrophobicity. Moreover, many micropores and thicker wall structures were clearly observed for increasing high-pressure levels. Furthermore, HPP altered the β-sheet and β-turns structure of strawberry-flavoured egg-white pudding. In conclusion, increasing high-pressure levels and/or holding time treatment at 450, 475, and 500 MPa for 5, 10, and 15 min affected the physical, physicochemical, and biochemical properties of strawberry-flavoured egg-white pudding.
Collapse
Affiliation(s)
- Chattraya Ngamlerst
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
| | - Pattaneeya Prangthip
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Bootsrapa Leelawat
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
| | - Supattra Supawong
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
| | - Suteera Vatthanakul
- Department of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathumthani 12121, Thailand
- Thammasat University Center of Excellence in Food Science and Innovation, Klong Luang, Pathumthani 12121, Thailand
| |
Collapse
|