1
|
Hailu W, Alemayehu H, Wolde D, Hailu L, Medhin G, Rajashekara G, Gebreyes WA, Eguale T. Prevalence and antimicrobial susceptibility profile of Salmonella isolated from vegetable farms fertilized with animal manure in Addis Ababa Ethiopia. Sci Rep 2024; 14:19169. [PMID: 39160213 PMCID: PMC11333614 DOI: 10.1038/s41598-024-70173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Woinshet Hailu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Deneke Wolde
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, P.O. Box 667, Hossana, Ethiopia
| | - Lulit Hailu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gireesh Rajashekara
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - Wondwossen A Gebreyes
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University Global One Health LLC, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Cossi MVC, Polveiro RC, Yamatogi RS, Camargo AC, Nero LA. Multi-locus sequence typing, antimicrobials resistance and virulence profiles of Salmonella enterica isolated from bovine carcasses in Minas Gerais state, Brazil. Braz J Microbiol 2024; 55:1773-1781. [PMID: 38702536 PMCID: PMC11153481 DOI: 10.1007/s42770-024-01341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.
Collapse
Affiliation(s)
| | - Richard Costa Polveiro
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Ricardo Seiti Yamatogi
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Anderson Carlos Camargo
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
3
|
Qian M, Xu D, Wang J, Zaeim D, Han J, Qu D. Isolation, antimicrobial resistance and virulence characterization of Salmonella spp. from fresh foods in retail markets in Hangzhou, China. PLoS One 2023; 18:e0292621. [PMID: 37856530 PMCID: PMC10586686 DOI: 10.1371/journal.pone.0292621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Salmonella can cause severe foodborne diseases. This study investigated the prevalence of Salmonella spp. in fresh foods in Hangzhou market and their harborage of antibiotic resistance and virulence genes, antibiotic susceptibility, and pathogenicity. A total of 500 samples (pork, n = 140; chicken, n = 128; vegetable, n = 232) were collected over a one-year period. Salmonella was found in 4.2% (21) of samples with the detection rate in pork, chicken and vegetables as 4.3% (6), 6.3% (8), and 3% (7), respectively. One Salmonella strain was recovered from each positive sample. The isolates were identified as six serotypes, of which S. Enteritidis (n = 7) and S. Typhimurium (n = 6) were the most predominant serotypes. The majority of isolates showed resistance to tetracycline (85.7%) and/or ciprofloxacin (71.4%). Tetracycline resistance genes showed the highest prevalence (90.5%). The occurrence of resistance genes for β-lactams (blaTEM-1, 66.7%; and blaSHV, 9.5%) and aminoglycosides (aadA1, 47.6%; Aac(3)-Ia, 19%) was higher than sulfonamides (sul1, 42.9%) and quinolones (parC, 38.1%). The virulence gene fimA was detected in 57.1% of isolates. Gene co-occurrence analysis implied that resistance genes were associated with virulence genes. Furthermore, selected S. Typhimurium isolates (n = 4) carrying different resistance and virulence genes up-regulated the secretions of cytokines IL-6 and IL-8 by Caco-2 cells in different degrees, suggesting that virulence genes may play a role in inflammatory transcription. In in vivo virulence test, microbiological counts in mouse feces and tissues showed that all included S. Typhimurium were able to infect mice, with one strain showing significantly higher virulence than others. In conclusion, this study indicates Salmonella contamination in fresh foods in Hangzhou market poses a risk to public health and it should be closely monitored to prevent and control foodborne diseases.
Collapse
Affiliation(s)
- Min Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiankang Wang
- Agricultural Technology and Water Conservancy Service Center, Jiaxing, China
| | - Davood Zaeim
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Sheng H, Suo J, Dai J, Wang S, Li M, Su L, Cao M, Cao Y, Chen J, Cui S, Yang B. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China. Int J Food Microbiol 2023; 403:110305. [PMID: 37421839 DOI: 10.1016/j.ijfoodmicro.2023.110305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Salmonella is a major foodborne pathogen that poses a substantial risk to food safety and public health. This study aimed to assess the prevalence, antibiotic susceptibility, and genomic features of Salmonella isolates recovered from 600 retail meat samples (300 pork, 150 chicken and 150 beef) from August 2018 to October 2019 in Shaanxi, China. Overall, 40 (6.67 %) of 600 samples were positive to Salmonella, with the highest prevalence in chicken (21.33 %, 32/150), followed in pork (2.67 %, 8/300), while no Salmonella was detected in beef. A total of 10 serotypes and 11 sequence types (STs) were detected in 40 Salmonella isolates, with the most common being ST198 S. Kentucky (n = 15), ST13 S. Agona (n = 6), and ST17 S. Indiana (n = 5). Resistance was most commonly found to tetracycline (82.50 %), followed by to ampicillin (77.50 %), nalidixic acid (70.00 %), kanamycin (57.50 %), ceftriaxone (55.00 %), cefotaxime (52.50 %), cefoperazone (52.50 %), chloramphenicol (50.00 %), levofloxacin (57.50 %), cefotaxime (52.50 %), kanamycin (52.50 %), chloramphenicol (50.00 %), ciprofloxacin (50.00 %), and levofloxacin (50.00 %). All ST198 S. Kentucky isolates showed multi-drug resistance (MDR; ≥3 antimicrobial categories) pattern. Genomic analysis showed 56 distinct antibiotic resistance genes (ARGs) and 6 target gene mutations of quinolone resistance determining regions (QRDRs) in 40 Salmonella isolates, among which, the most prevalent ARG types were related to aminoglycosides and β-lactams resistance, and the most frequent mutation in QRDRs was GyrA (S83F) (47.5 %). The number of ARGs in Salmonella isolates showed a significant positive correlation with the numbers of insert sequences (ISs) and plasmid replicons. Taken together, our findings indicated retail chickens were seriously contaminated, while pork and beef are rarely contaminated by Salmonella. Antibiotic resistance determinants and genetic relationships of the isolates provide crucial data for food safety and public health safeguarding.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Cao
- Hebei Quality Inspection and Testing Center of Forest, Grass and Flower, Shijiazhuang 050081, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Microbiological analysis and characterization of Salmonella and ciprofloxacin-resistant Escherichia coli isolates recovered from retail fresh vegetables in Shaanxi Province, China. Int J Food Microbiol 2023; 387:110053. [PMID: 36521241 DOI: 10.1016/j.ijfoodmicro.2022.110053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Fresh vegetables are closely associated with foodborne disease outbreaks; however, systematic analysis of the microbiological quality of fresh vegetables and molecular information on foodborne pathogens in fresh produce are poorly reported in China. Here, we evaluated the epidemiological prevalence of coliforms via the most probable number method and characterized Salmonella and ciprofloxacin-resistant (CIPR) Escherichia coli isolates recovered from retail fresh vegetables in Shaanxi Province, China. Antimicrobial susceptibility testing, serotype determination, multilocus sequence typing (MLST), core genome multilocus sequence typing (cgMLST), antibiotic resistance encoding gene (ARG) annotation, virulence factor prediction, and functional classification were performed. Between October 2020 and September 2021, 576 samples (i.e., tomatoes, lettuces, spinaches, and cabbages) were found to be positive for coliforms, and the prevalence of coliforms showed a seasonal trend. Coliform counts of vegetables in supermarkets in Xi'an were significantly lower (P < 0.01) than that in other cities. The detection rates of Salmonella and CIPRE. coli-positive vegetables were 1 % (6/576) and 0.7 % (4/576), respectively. All isolates exhibited resistance to ≥1 antibiotics, and 92.9 % (13/14) were multidrug-resistant. One extended spectrum β-lactamase (ESBL)-producing CIPRE. coli isolate in spinach was resistant to not only three third-generation cephalosporins but also to two polymyxins. Among nine Salmonella isolates, five different serovars (S. Enteritidis, S. Indiana, monophasic variant of S. Typhimurium, S. Agona, and S. Gallinarum), four sequence types (STs; ST11, ST13, ST17, and ST34), and seven core genome STs (cgSTs) were identified. Five CIPRE. coli strains were assigned to three serovars (O101:H4, O8:H18, and O11:H25), three STs (ST44, ST48, and ST457), and four cgSTs. Coexisting amino acid mutations of Thr57Ser/Ser80Arg in ParC and Ser83Phe/Asp87Gly in GyrA in quinolone resistance-determining regions (QRDRs) might be causes for nalidixic acid resistance. Eight definite virulence profiles in eight serovars were identified. Notably, cdtB and pltA only encoded typhoid toxins and were just detected from S. Typhoid isolates were also detected from S. Indiana and monophasic S. Typhimurium, which are closely associated with swine food chain were first detected in fresh vegetables. In conclusion, our findings suggest that coliform contamination on fresh vegetables is prevalent in this province. Most Salmonella and CIPRE. coli isolates were phenotypically and genetically diverse and could resist multiple antibiotics by carrying multiple ARGs and virulence genes.
Collapse
|
6
|
Manzari M, Fani F, Alebouyeh M, Moaddeli A, Rahnamaye Farzami M, Amin Shahidi M, Shekarforoush SS. Multidrug-resistant Salmonella strains from food animals as a potential source for human infection in Iran. Comp Immunol Microbiol Infect Dis 2022; 90-91:101898. [DOI: 10.1016/j.cimid.2022.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
7
|
Fang Z, Zhou X, Wang X, Shi X. Development of a 3-plex droplet digital PCR for identification and absolute quantification of Salmonella and its two important serovars in various food samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Bai L, Wang L, Huang S, Bai R, Lv X, Sun L, Zhang F, Xu X. Rapid, Visual, and Sequence-Specific Detection of Salmonella in Egg Liquid with vis-NEAA, a CRISPR/Cas12 Empowered New Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2401-2409. [PMID: 35138842 DOI: 10.1021/acs.jafc.1c06715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salmonella is one of the main pathogenic factors that cause foodborne diseases. Rapid and accurate detection of Salmonella in food is of great importance to ensure food safety. Nicking enzyme-assisted amplification (NEAA) is one of the promising isothermal amplification methods finishing the in vitro amplification in ∼10 min; however, it suffers from nonspecific amplification a lot (∼70% products are noises). In this paper, we introduced CRISPR/Cas12a to specifically recognize the NEAA amplicons and transduce the signals into turned-on fluorescent visual readouts (vis-NEAA). Impressively, with this method, the high efficiency of NEAA has been taken great advantage and the nonspecific products were successfully bypassed at the same time. In comparison to NEAA-gel electrophoresis, vis-NEAA showed complete fidelity toward the presence of specific products, while for real-time PCR, it possesses equivalent sensitivity and specificity but saves ∼80% of the time. A level of 80 CFU/mL Salmonella in spiked eggs can be detected on-site in ∼20 min.
Collapse
Affiliation(s)
- Linlin Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuqin Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou 350108, China
| | - Rong Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou 350108, China
| | - Xucong Lv
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liping Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Ding S, Hu H, Yue X, Feng K, Gao X, Dong Q, Yang M, Tamer U, Huang G, Zhang J. A fluorescent biosensor based on quantum dot-labeled streptavidin and poly-l-lysine for the rapid detection of Salmonella in milk. J Dairy Sci 2022; 105:2895-2907. [PMID: 35181133 DOI: 10.3168/jds.2021-21229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Salmonella, as a common foodborne pathogen in dairy products, poses a great threat to human health. We studied a new detection method based on quantum dots (QD). A fluorescent biosensor with multiple fluorescent signal amplification based on a streptavidin (SA) biotin system and the polyamino linear polymer poly-l-lysine (PLL) were established to detect Salmonella in milk. First, Salmonella was captured on a black 96-well plate with paired Salmonella mAb to form a double-antibody sandwich. Second, SA was immobilized on biotin-modified mAb by SA-biotin specific bond. Then, the biotin-modified polylysine (BT-PLL) was bound on SA and specifically bonded again through the SA-biotin system. Finally, water-soluble CdSe/ZnS QD-labeled SA was added to a black 96-well plate for covalent coupling with BT-PLL. The fluorescent signal was amplified in a dendritic manner by the layer-by-layer overlap of SA and biotin and the covalent coupling of biotinylated PLL. Under optimal conditions, the detection limit was 4.9 × 103 cfu/mL in PBS. The detection limit was 10 times better than that of the conventional sandwich ELISA. In addition, the proposed biosensor was well specific and could be used for detecting Salmonella in milk samples.
Collapse
Affiliation(s)
- Shuangyan Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Hailiang Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xianglin Yue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Kaiwen Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qiuling Dong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06500, Ankara, Turkey
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
10
|
Silva MBRD, Maffei DF, Moreira DA, Dias M, Mendes MA, Franco BDGDM. Agricultural practices in Brazilian organic farms and microbiological characteristics of samples collected along the production chain. J Appl Microbiol 2022; 132:1185-1196. [PMID: 34365710 DOI: 10.1111/jam.15247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
AIMS To gather data on agricultural practices in organic farms in Sao Paulo, Brazil, and evaluate their relationship with the microbiological characteristics of samples collected along the production chain. METHODS AND RESULTS Practices data were based on field observations and interviews with farmers in 10 selected organic lettuce producing farms. Counts of Enterobacteriaceae and surveys for Salmonella were performed in samples of lettuce (before and after washing), fertilizers, irrigation and washing water, all collected in the same farm. Water samples were also tested for total coliforms and generic Escherichia coli. Isolated Enterobacteriaceae were identified by MALDI-TOF MS. Contamination of lettuce was influenced by some agricultural practices: chicken manure-based fertilization resulted in higher Enterobacteriaceae counts in lettuce when compared to other types of manure, whereas pre-washed lettuces presented lower microbial counts than non-pre-washed samples. Salmonella was detected in one lettuce sample by qPCR. Escherichia coli was detected in all irrigation water samples. All sample types contained Enterobacteriaceae species commonly reported as opportunistic human pathogens. CONCLUSIONS The data highlight the need for improvement in the good agricultural practices in the studied farms. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides information on agricultural practices and microbiological characteristics of organic lettuce, contributing to the development of more accurate risk assessments.
Collapse
Affiliation(s)
- Marcelo Belchior Rosendo da Silva
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele Fernanda Maffei
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Agri-food Industry, Food and Nutrition, ‟Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Debora Andrade Moreira
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bernadette Dora Gombossy de Melo Franco
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
11
|
Feng K, Li T, Ye C, Gao X, Yue X, Ding S, Dong Q, Yang M, Huang G, Zhang J. A novel electrochemical immunosensor based on Fe 3O 4@graphene nanocomposite modified glassy carbon electrode for rapid detection of Salmonella in milk. J Dairy Sci 2022; 105:2108-2118. [PMID: 34998563 DOI: 10.3168/jds.2021-21121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
Foods contaminated by foodborne pathogens have always been a great threat to human life. Herein, we constructed an electrochemical immunosensor for Salmonella detection by using a Fe3O4@graphene modified electrode. Because of the excellent electrical conductivity and mechanical stability of graphene and the large specific surface area of Fe3O4, the Fe3O4@graphene nanocomposite exhibits an excellent electrical signal, which greatly increased the sensitivity of the immunosensor. Gold nanoparticles were deposited on Fe3O4@graphene nanocomposite by electrochemical technology for the immobilization of the antibody. Cyclic voltammetry was selected to electrochemically characterize the construction process of immunosensors. The microstructure and morphology of related nanocomposites were analyzed by scanning electron microscopy. Under optimized experimental conditions, a good linear relationship was achieved in the Salmonella concentration range of 2.4 × 102 to 2.4 × 107 cfu/mL, and the limit of detection of the immunosensor was 2.4 × 102 cfu/mL. Additionally, the constructed immunosensor exhibited acceptable selectivity, reproducibility, and stability and provides a new reference for detecting pathogenic bacteria in milk.
Collapse
Affiliation(s)
- Kaiwen Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Cuizhu Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xianglin Yue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Shuangyan Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qiuling Dong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
12
|
Dos Santos Bersot L, Carbonera NR, Rodrigues Valcanaia CD, Viana C, Nero LA. Multidrug-Resistant and Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serotype Heidelberg Is Widespread in a Poultry Processing Facility in Southern Brazil. J Food Prot 2021; 84:2053-2058. [PMID: 34324677 DOI: 10.4315/jfp-21-140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to characterize the distribution of Salmonella isolates in a poultry processing facility and to identify their antibiotic resistance profiles. Salmonella enterica was detected in 146 samples (66.7%), and 125 isolates were identified as Salmonella Heidelberg (n = 123), Salmonella Abony (n = 1), and Salmonella O:4,5 (n = 1). Salmonella Heidelberg isolates were subjected to XbaI macrorestriction analysis and pulsed-field gel electrophoresis. The 66 pulsotypes obtained were grouped into four major clusters, indicating cross-contamination and persistence of this serotype in the processing facility. Selected S. enterica isolates were characterized by their antibiotic resistance, and most (n = 122, 97.6%) were multidrug resistant. Resistance to third-generation cephalosporins ceftazidime (84 isolates, 67.2%) and cefotaxime and ceftriaxone (91 isolates, 72.8%) was particularly prevalent. Production of extended-spectrum β-lactamases (ESBL) was identified in 24 isolates (19.2%), and ESBL-producing isolates were resistant to at least eight antibiotics. This study revealed the high prevalence of Salmonella Heidelberg in the poultry chain, providing insight into the ecology of this pathogen in this facility. The high prevalence of multidrug-resistant S. enterica is a concern due to the potential consequences for public health. HIGHLIGHTS
Collapse
Affiliation(s)
- Luciano Dos Santos Bersot
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Neila Rita Carbonera
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Carolina Dias Rodrigues Valcanaia
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Cibeli Viana
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
13
|
Zhou WY, Sun SF, Zhang YS, Hu Q, Zheng XF, Yang ZQ, Jiao XA. Isolation and Characterization of a Virulent Bacteriophage for Controlling Salmonella Enteritidis Growth in Ready-to-Eat Mixed-Ingredient Salads. J Food Prot 2021; 84:1629-1639. [PMID: 33793776 DOI: 10.4315/jfp-20-460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Ready-to-eat vegetable salads have gained popularity worldwide. However, the microbial safety of these salads is a health concern, primarily due to Salmonella Enteritidis contamination during the growing, harvesting, processing, and handling of produce. In this study, a bacteriophage-based strategy was developed to control Salmonella Enteritidis growth in mixed-ingredient salads. The lytic Salmonella-specific phage SapYZU01 was isolated from a soil sample from a suburban vegetable field in Yangzhou (People's Republic of China). SapYZU01 has a short latent period, a large burst size, and a lytic effect against 13 Salmonella Enteritidis strains isolated from various sources (human samples, pork, deli foods, chickens, and chicken meat). The SapYZU01 genome did not contain virulence or antibiotic resistance genes. SapYZU01 significantly decreased the viability of Salmonella Enteritidis cells in iceberg lettuce, chicken meat, and mixed-ingredient (lettuce plus chicken) salads at 37 and 25°C. Bacterial levels in the salad decreased significantly (by 4.0 log CFU/g) at 25°C after treatment of contaminated lettuce before salad preparation with SapYZU01 at a multiplicity of infection (MOI) of 100. Bacterial levels were decreased by 3.8 log CFU/g at 25°C in lettuce plus chicken salads treated after the salad preparation with SapYZU01 at an MOI of 100. In contrast, treating cooked chicken meat with SapYZU01 at an MOI of 100 before mixing it with contaminated lettuce decreased the bacterial level of the salad by 1.2 log CFU/g at 25°C. These findings indicate the potential application of SapYZU01 as a natural biocontrol agent against Salmonella Enteritidis in mixed-ingredient salads. However, both the treatment method and the bacteriophage MOI must be considered when using this lytic bacteriophage in mixed-ingredient salads. HIGHLIGHTS
Collapse
Affiliation(s)
- Wen-Yuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China
| | - Si-Fan Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China
| | - Yuan-Song Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China
| | - Qin Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China
| | - Xiang-Feng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225001, People's Republic of China
| |
Collapse
|
14
|
Sultana KF, Saha O, Hoque MN, Sultana M, Hossain MA. Multilocus sequence typing of multidrug-resistant Salmonella strains circulating in poultry farms of Bangladesh. Braz J Microbiol 2021; 52:2385-2399. [PMID: 34297327 DOI: 10.1007/s42770-021-00577-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/11/2021] [Indexed: 11/28/2022] Open
Abstract
Salmonella is one of the most important foodborne zoonotic pathogens, and becoming multidrug-resistant (MDR), which represents a serious public health concern worldwide. This study aimed to identify the circulating MDR strains of Salmonella through cutting edge molecular techniques including gene specific PCR, RAPD-PCR, ribosomal gene sequencing, and multilocus sequence types (MLST) in the poultry industry of Bangladesh. Two hundred Salmonella isolates were retrieved from 154 samples comprising droppings (n = 60), cloacal swabs (n = 60), feeds (n = 14), feeding water (n = 14), and handler's swab (n = 6) from 14 commercial layer farms of Bangladesh. The isolates were confirmed as Salmonella through invA gene specific PCR, and further genotyping was done by RAPD-PCR, and 16S rRNA sequencing. The isolates were distributed into 18 different genotypes according to RAPD typing. The phylogenetic analysis identified three diverging phylogroups such as S. enterica Litchfield, S. enterica Enteritidis and S. enterica Kentucky with 11, 8, and 6 strains, respectively. The in vitro antibiogram profiling the Salmonella isolates through disc diffusion method using 13 commercially available antibiotics revealed highest resistance against doxycycline (91.5%) followed by tetracycline and ampicillin (86.0%, in each), and 72.0% isolates as MDR, being resistant to ≥ 5 antibiotics. The MLST typing was carried out based on the PCR amplification of seven housekeeping genes (aroC, hisD, hemD, purE, secA, thrA, and dnaN). MLST typing also revealed three sequence types (STs) such as ST11, ST198, and ST214 in these isolates, and eBURST analysis showed ST11 as the founder genotype. The three STs were highly resistant to tetracyclines and quinolone group of antibiotics, and all of the isolates harboring S. enterica Litchfield showed the highest resistance. Circulating common MLSTs with MDR properties in different farms confirmed the possibility of a common route of intra-farm transmission. We report for the first time of the association serovar Litchfield (ST11) in avian salmonellosis with MDR properties which is an urgent public health concern in Bangladesh.
Collapse
Affiliation(s)
- Khandokar Fahmida Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Muibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh. .,Jashore Science and Technology University, Jessore, Bangladesh.
| |
Collapse
|
15
|
Ye Q, Shang Y, Chen M, Pang R, Li F, Xiang X, Wang C, Zhou B, Zhang S, Zhang J, Yang X, Xue L, Ding Y, Wu Q. Identification of Novel Sensitive and Reliable Serovar-Specific Targets for PCR Detection of Salmonella Serovars Hadar and Albany by Pan-Genome Analysis. Front Microbiol 2021; 12:605984. [PMID: 33815306 PMCID: PMC8011537 DOI: 10.3389/fmicb.2021.605984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
The accurate and rapid classification of Salmonella serovars is an essential focus for the identification of isolates involved in disease in humans and animals. The purpose of current research was to identify novel sensitive and reliable serovar-specific targets and to develop PCR method for Salmonella C2 serogroups (O:8 epitopes) in food samples to facilitate timely treatment. A total of 575 genomic sequences of 16 target serovars belonging to serogroup C2 and 150 genomic sequences of non-target serovars were analysed by pan-genome analysis. As a result, four and three specific genes were found for serovars Albany and Hadar, respectively. Primer sets for PCR targeting these serovar-specific genes were designed and evaluated based on their specificity; the results showed high specificity (100%). The sensitivity of the specific PCR was 2.8 × 101–103 CFU/mL and 2.3 × 103–104 CFU/mL for serovars Albany and Hadar, respectively, and the detection limits were 1.04 × 103–104 CFU/g and 1.16 × 104–105 CFU/g in artificially contaminated raw pork samples. Furthermore, the potential functions of these serovar-specific genes were analysed; all of the genes were functionally unknown, except for one specific serovar Albany gene known to be a encoded secreted protein and one specific gene for serovars Hadar and Albany that is a encoded membrane protein. Thus, these findings demonstrate that pan-genome analysis is a precious method for mining new high-quality serovar-targets for PCR assays or other molecular methods that are highly sensitive and can be used for rapid detection of Salmonella serovars.
Collapse
Affiliation(s)
- Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinran Xiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Baoqing Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Corredor-García D, García-Pinilla S, Blanco-Lizarazo CM. Systematic Review and Meta-analysis: Salmonella spp. prevalence in vegetables and fruits. World J Microbiol Biotechnol 2021; 37:47. [PMID: 33564967 DOI: 10.1007/s11274-021-03012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
In this study, a systematic review and a meta-analysis were conducted to analyse recent worldwide information about the prevalence of Salmonella spp. in vegetables and fruits to estimate the effect of the different processes such as washing, cutting or disinfection, and place of sampling. A systematic search was conducted for articles from 2014 to 2020 published to date regarding prevalence of Salmonella spp. in vegetables and fruits, without excluding material by location, or author. It was possible to determine eight categories for vegetables and fruits in comparison with the meta-analysis which showed five categories due to data availability. Results showed prevalence for Salmonella spp. of 0.1%, 0.2%, 13.7%, 0.1%, and 0% for fruits, leafy vegetables, mixed vegetables related to ready-to-eat salads (RTE), tubercles, and tomatoes, respectively. Moreover, categories such as fruits, tubercles, and tomatoes as associated with different types of preparations and places of sampling (Retail stores, fresh products wholesale, street markets, distribution centers, farms, and processing plants) did not present a significant combined effect on the prevalence of Salmonella spp. Likewise, leafy, and mixed vegetables showed differences associated with a type of processing, where leafy fresh unprocessed vegetables had a significant positive effect on the prevalence of the pathogen regarding the RTE products. These findings may be useful for the construction of a quantitative model of risk assessment as a means to characterize the differences among the sort of vegetable, fruit, type of processing, and place of sampling.
Collapse
Affiliation(s)
- Daniel Corredor-García
- Food Engineering Program, Engineering Faculty, Food Engineering Research Group, Fundación Universitaria Agraria de Colombia, Calle 170#54 a-10,, Bogotá, D.C, Colombia
| | - Santiago García-Pinilla
- Food Engineering Program, Engineering Faculty, Food Engineering Research Group, Fundación Universitaria Agraria de Colombia, Calle 170#54 a-10,, Bogotá, D.C, Colombia
| | - Carla María Blanco-Lizarazo
- Food Engineering Program, Engineering Faculty, Food Engineering Research Group, Fundación Universitaria Agraria de Colombia, Calle 170#54 a-10,, Bogotá, D.C, Colombia.
| |
Collapse
|
17
|
Yang T, Wu B, Yue X, Jin L, Li T, Liang X, Ding S, Feng K, Huang G, Zhang J. Rapid detection of Salmonella in milk with a nuclear magnetic resonance biosensor based on a streptavidin–biotin system and a polyamidoamine-dendrimer-targeted gadolinium probe. J Dairy Sci 2021; 104:1494-1503. [DOI: 10.3168/jds.2020-19163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
|
18
|
Nguyen TK, Bui HT, Truong TA, Lam DN, Ikeuchi S, Ly LKT, Hara-Kudo Y, Taniguchi T, Hayashidani H. Retail fresh vegetables as a potential source of Salmonella infection in the Mekong Delta, Vietnam. Int J Food Microbiol 2021; 341:109049. [PMID: 33493824 DOI: 10.1016/j.ijfoodmicro.2021.109049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022]
Abstract
From July 2017 to Jan 2019, a total of 572 retail fresh vegetables were collected to clarify the contamination of Salmonella in the Mekong Delta, Vietnam. Salmonella was isolated from 74 (12.9%) of 572 samples. The isolation rate of Salmonella from retail fresh vegetables in the rainy season (15.3%) was significantly higher than that in the dry season (7.6%) (P < 0.05). Of 74 Salmonella isolates, Salmonella Weltevreden was the most predominant serovar (35.1%) identified from retail fresh vegetables in all of the wet markets. All S. Weltevreden isolates (100%) were susceptible to nine antibiotics examined. Thus, retail fresh vegetables were considered as an important potential vehicle of Salmonella transmission to humans in the Mekong Delta. These results provide important data for preventing and controlling human salmonellosis in this area.
Collapse
Affiliation(s)
- Thuan Khanh Nguyen
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan; Can Tho University, Capus II, 3/2 street, Ninh Kieu District, Can Tho City, Viet Nam
| | - Hien Thi Bui
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Thy Anh Truong
- Can Tho University, Capus II, 3/2 street, Ninh Kieu District, Can Tho City, Viet Nam
| | - Diep Ngoc Lam
- Can Tho University, Capus II, 3/2 street, Ninh Kieu District, Can Tho City, Viet Nam
| | - Shunsuke Ikeuchi
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Lien Khai Thi Ly
- Can Tho University, Capus II, 3/2 street, Ninh Kieu District, Can Tho City, Viet Nam
| | - Yukiko Hara-Kudo
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Takahide Taniguchi
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Hideki Hayashidani
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan.
| |
Collapse
|
19
|
AGIRDEMIR O, YURDAKUL O, KEYVAN E, SEN E. Effects of various chemical decontaminants on Salmonella Typhimurium survival in chicken carcasses. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.02920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Erdi SEN
- Burdur Mehmet Akif Ersoy University, Turkey
| |
Collapse
|
20
|
Li W, Li H, Zheng S, Wang Z, Sheng H, Shi C, Shi X, Niu Q, Yang B. Prevalence, Serotype, Antibiotic Susceptibility, and Genotype of Salmonella in Eggs From Poultry Farms and Marketplaces in Yangling, Shaanxi Province, China. Front Microbiol 2020; 11:1482. [PMID: 32903897 PMCID: PMC7438954 DOI: 10.3389/fmicb.2020.01482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023] Open
Abstract
Poultry products such as eggs provide essential nutrients to the human body and thus play vital roles in the human food network. Salmonella is one of the most notorious foodborne pathogens and has been found to be prevalent in eggs. To better understand the characteristics of Salmonella in eggs, we investigated the prevalence of Salmonella spp. in 814 fresh eggs collected from poultry farms and retail marketplaces in Yangling, Shaanxi Province, China. The serotype, genotype, and antibiotic susceptibilities of 61 Salmonella isolates recovered from the eggs were analyzed. The average detection rate of Salmonella-positive eggs was 5.6%, with 6.6% of the eggs collected from poultry farms and 5.1% from marketplaces. Thirteen serotypes were identified from the 61 isolates, among which Salmonella Typhimurium (24.5%) and Salmonella Indiana (22.9%) were the most prevalent serotypes. Other dominant serotypes included Salmonella Thompson (13.1%) and Salmonella Enteritidis (11.4%), with the remaining nine serotypes detected at low rates (1.6-4.9%). All the Salmonella isolates tested were resistant to sulfisoxazole (100.0%). The majority (77.1%) of the isolates were resistant to nalidixic acid, amoxicillin-clavulanate, and ampicillin, while nearly two-thirds (63.9-68.9%) were resistant to trimethoprim-sulfamethoxazole, kanamycin, tetracyclines, and chloramphenicol. The rate of resistance to ciprofloxacin was 40.1%; the resistance rates to streptomycin, ceftiofur, and ceftriaxone ranged from 21.3 to 26.2%; and those to gentamicin, amikacin, and cefoxitin were relatively low (3.3-16.4%). Forty-nine (80.3%) Salmonella isolates exhibited resistance to multiple antibiotics, 20 (32.8%) of which were resistant to at least 10 antibiotics. Subtyping by pulse-field gel electrophoresis revealed a close genetic relatedness of Salmonella isolates from poultry farms, in striking contrast to the high diversity of the isolates obtained from marketplaces. Isolates of the same serotype always shared identical genotype and antibiotic resistance profiles, even the ones that were recovered from eggs sampled at different locations and times. These findings indicate that diverse Salmonella spp. with high rates of multidrug resistance are prevalent in fresh eggs in the study area. More attention should be paid to egg production, transportation, and storage to prevent foodborne outbreaks caused by Salmonella.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shujuan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zewei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qinya Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Manafi L, Aliakbarlu J, Dastmalchi Saei H. Antibiotic resistance and biofilm formation ability of Salmonella serotypes isolated from beef, mutton, and meat contact surfaces at retail. J Food Sci 2020; 85:2516-2522. [PMID: 32671849 DOI: 10.1111/1750-3841.15335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 01/08/2023]
Abstract
In this study, Salmonella isolates recovered from meat (beef and mutton) and meat contact surfaces at retail were investigated to determine their serotype, antibiotic resistance, and biofilm formation ability. Salmonella was found in 29 (24.17%) samples out of 120 samples including 14/50 (28%) of beef, 10/40 (25%) of mutton, and 5/30 (16.67%) of meat contact surfaces. Seven isolates were identified as S. Enteritidis, three as S. Typhimurium, and two as S. Typhi, while the rest of the isolates were considered as other Salmonella spp. All of the isolates were resistant to at least one antimicrobial agent and 48.27% of them were identified as multidrug-resistant (MDR) Salmonella. All (100%) of meat contact surfaces isolates, 42.8% of beef isolates, and 30% of mutton isolates were found to be MDR Salmonella. Resistance to nalidixic acid (100%), tetracycline (79.3%), and sulphamethoxazole/trimethoprim (44.8%) were observed. The gyrA gene was detected in 19 of 29 isolates, but tetA was found in one isolate. All of the serotypes were able to form biofilm (75.86 % moderate and 24.14 % strong) and S. Enteritidis was the strongest biofilm producer. The findings indicated that the majority of Salmonella isolates in this study were MDR and biofilm producer. Then, safety measures such as cleaning and disinfection must be taken to control Salmonella and promote public health. PRACTICAL APPLICATION: The present study provides useful information on the prevalence of Salmonella serotypes in meat and meat contact surfaces and their antibiotic resistance patterns as well as biofilm formation capacities. Improving hygiene practices in livestock, slaughterhouses, and at retails may reduce the risk of meat contamination to Salmonella. Meanwhile, high levels of antibiotic resistance in Salmonella isolates emphasized on the improper use of antibiotics.
Collapse
Affiliation(s)
- Leila Manafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Habib Dastmalchi Saei
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
22
|
Zeinali T, Naseri K, Zandi N, Khosravi M. Screening of Salmonella enterica Serovars, Typhi, Typhimurium, and Enteritidis in Raw Milk and Dairy Products in South-Khorasan, Iran: Conventional versus Molecular Method. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666191010130113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objective:
Food-borne Salmonellosis has been reported as the second
most common bacterial infection. Salmonella enterica subsp. enterica serotype enteritidis (S. Enteritidis)
and S. enterica subsp. enterica serotype typhimurium (S. Typhimurium) are the most common
serotypes worldwide as salmonellosis agents. Salmonella yyphi is the causative agent of typhoid fever
worldwide. The purpose of the present study was to determine the contamination rate of raw milk
and dairy products to Salmonella typhi, S. typhimurium and S. Enteritidis in South-Khorasan, Iran. It
is very important in food safety risk assessment and human health.
Methods:
A total of 260 raw milk and 181 dairy products were obtained from South-Khorasan, Iran.
Dairy samples were pre-enriched in buffered peptone water and enriched in Rappaport Vassiliadis
(RV). Raw milk was enriched in RV. Plating of the enriched samples was carried out on Xylose
Lysine Desoxycholate (XLD) agar and Brilliant Green agar (BGA). All of the enriched samples were
also tested by M-PCR for detection of S. typhi, S. typhimurium and S. Enteritidis.
Results:
Among the 441 tested samples only 4 samples were contaminated with Salmonella spp. in
culture method. PCR assay, didn’t find any positive sample regarding Salmonella spp. In chi-square
test, the difference of two methods of isolation was significant (P< 0.05).
Conclusions:
In conclusion, the results of the present study showed a good hygienic state of raw milk
and dairy products. Enrichment based PCR assay is more economical than time-consuming culture
method for Salmonella detection.
Collapse
Affiliation(s)
- Tayebeh Zeinali
- Social Determinants of Health Research Center, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Zandi
- Research laboratory, Birjand University of Medical Sciences, Birjand, Iran
| | - Matin Khosravi
- Food and drug Organization, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
23
|
Prevalence, antibiotic resistance, PFGE and MLST characterization of Salmonella in swine mesenteric lymph nodes. Prev Vet Med 2020; 179:105024. [PMID: 32417637 DOI: 10.1016/j.prevetmed.2020.105024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/21/2022]
Abstract
This study evaluated 250 animals from 25 different processing lots, processed in four slaughterhouses in São Paulo state, Brazil for the presence of Salmonella in the mesenteric lymph nodes (10 g sample of each animal) and characterized the antibiotics resistance profile, the Pulsed Field Gel Electrophoresis - PFGE and Multi Locus Sequence Typing - MLST profiles of selected strains. The pathogen was present in 36.4% (n = 91, CL 95% 30.4-43.4) of samples and 72% (n = 18, CL 95% 50.6-87.9%) of the analyzed lots. The main serovars were S. Typhimurium (n = 23), Salmonella enterica subsp. enterica 1.4,5,12:i:- (n = 17), followed by S. Infantis (n = 12) and S. Havana (n = 11). Twenty-eight strains (30%) were classified as other serovars. Sixty-eight percent of the strains were resistant to Streptomycin and tetracycline, followed by ampicillin and sulphonamides (62.6%), chloramphenicol (56.0%), trimethoprim-sulfamethoxazole (41.8%) and nalidixic acid (40.7%). The antibiotics with lower resistance rates were cephalothin and aztreonam (both with 3.3% resistant), and ceftriaxone and cefepime (both with 7.7%). Multidrug-resistant strains (MDR) accounted for 70.3% of the isolates. Eight strains were submitted to MLST: four S. Typhimurium and one S.1.4,5,12:i:-, all belonging to the ST 19, two Salmonella Infantis, belonging to the ST 32 and one S. Derby, belonging to ST 40. Twenty-one isolates with different antibiotics resistance profiles from the most prevalent serovars were selected for PFGE analysis. Serovar S. Typhimurium (n = 11) revealed 4 pulsotypes and 1 cluster and S. 1.4,5,12:i:- (n = 10) revealed 5 pulsotypes and 4 clusters. The high prevalence of the pathogen, with its high rates of antibiotics resistance and belonging to genetic groups that are often associated with disease in humans, shows that the production chain of pork is a potential source of infection in salmonellosis cases. Therefore, effective preventive measures for pathogen control are needed to reduce the risk of foodborne diseases.
Collapse
|
24
|
Jin L, Li T, Wu B, Yang T, Zou D, Liang X, Hu L, Huang G, Zhang J. Rapid detection of Salmonella in milk by nuclear magnetic resonance based on membrane filtration superparamagnetic nanobiosensor. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Three-Year Longitudinal Study: Prevalence of Salmonella Enterica in Chicken Meat is Higher in Supermarkets Than Wet Markets from Mexico. Foods 2020; 9:foods9030264. [PMID: 32121659 PMCID: PMC7143798 DOI: 10.3390/foods9030264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Worldwide, chicken meat is considered one of the main sources of Salmonella enterica in humans. To protect consumers from this foodborne pathogen, international health authorities recommend the establishment of continuous Salmonella surveillance programs in meat. However, these programs are scarce in many world regions; thus, the goal of the present study was to perform a longitudinal surveillance of S. enterica in chicken meat in Mexico. A total of 1160 samples were collected and analyzed monthly from 2016 to 2018 in ten chicken meat retailers (supermarkets and wet markets) located in central Mexico. The isolation and identification of S. enterica was carried out using conventional and molecular methods. Overall, S. enterica was recovered from 18.1% (210/1160) of the chicken meat samples. Remarkably, during the three years of evaluation, S. enterica was more prevalent (p < 0.0001) in supermarkets (27.2%, 158/580) than in wet markets (9.0%, 52/580). The study was 3.8 times more likely (odds ratio = 3.8, p < 0.0001) to recover S. enterica from supermarkets than wet markets. Additionally, a higher prevalence (p < 0.05) of this pathogen was observed during the spring, summer, autumn, and winter in supermarkets compared with wet markets. Moreover, the recovery rate of S. enterica from supermarkets showed a gradual increase from 20.78% to 42% (p < 0.0001) from 2016 to 2018. Interestingly, no correlation (p > 0.05) was observed between the S. enterica recovery rate in chicken meat and reported cases of Salmonella infections in humans. Higher levels of S. enterica in chicken meat retailed in supermarkets are not unusual; this phenomenon has also been reported in some European and Asian countries. Together, these results uncover an important health threat that needs to be urgently addressed by poultry meat producers and retailers.
Collapse
|
26
|
Liu A, Liu Y, Peng L, Cai X, Shen L, Duan M, Ning Y, Liu S, Li C, Liu Y, Chen H, Wu W, Wang X, Hu B, Li C. Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on lettuce and tofu. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Identification and characterization of two high affinity aptamers specific for Salmonella Enteritidis. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Liu A, Wang Y, Cai X, Jiang S, Cai X, Shen L, Liu Y, Han G, Chen S, Wang J, Wu W, Li C, Liu S, Wang X. Characterization of endolysins from bacteriophage LPST10 and evaluation of their potential for controlling Salmonella Typhimurium on lettuce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Zhou M, Li X, Hou W, Wang H, Paoli GC, Shi X. Incidence and Characterization of Salmonella Isolates From Raw Meat Products Sold at Small Markets in Hubei Province, China. Front Microbiol 2019; 10:2265. [PMID: 31636615 PMCID: PMC6787437 DOI: 10.3389/fmicb.2019.02265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Salmonella is a leading cause of foodborne disease and is often associated with the consumption of foods of animal origin. In this study, sixty-six Salmonella isolates were obtained from 631 raw meat samples purchased at small retail suppliers in Hubei Province, China. The most prevalent Salmonella serotypes were Thompson (18.2%) and Agona (13.6%). Frequent antimicrobial resistance was observed for the sulfonamides (43.9%), tetracycline (43.9%), and the β-lactams amoxicillin and ampicillin (36.4% for each). Interestingly, a high incidence of resistance to cephazolin was observed in strains of the most common serotype, S. Thompson. Class I integrons were found in 27.3% (18/66) of the isolates and five of these integrons contained different gene cassettes (aacA4C-arr-3-dfr2, dfrA12-aadA21, aadA2, dfrA12-aadA2, dfr17-aadA5). Additional antimicrobial resistance genes, including bla TEM-1, bla CTX-M-65, bla CTX-M-15, qnrB, and qnrS, were also identified among these Salmonella isolates. Results of replicon typing and conjugation experiments revealed that an integron with qnrB and bla CTX-M-15 genes was present on incH12 mobile plasmid in S. Thompson strain. Multilocus sequence typing (MLST) analysis revealed 32 sequence types, indicating that these isolates were phenotypically and genetically diverse, among which ST26 (18.2%) and ST541 (12.1%) were the predominant sequence types. The integrons, along with multiple antimicrobial resistance genes on mobile plasmids, are likely contributors to the dissemination of multidrug resistance in Salmonella.
Collapse
Affiliation(s)
- Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xiaofang Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wenfu Hou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - George C Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center (USDA-ARS-ERRC), USDA-MOST Joint Research Center for Food Safety, Wyndmoor, PA, United States
| | - Xianming Shi
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, MOST-USDA Joint Research Center for Food Safety, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Yang J, Ju Z, Yang Y, Zhao X, Jiang Z, Sun S. Serotype, antimicrobial susceptibility and genotype profiles of Salmonella isolated from duck farms and a slaughterhouse in Shandong province, China. BMC Microbiol 2019; 19:202. [PMID: 31477003 PMCID: PMC6720067 DOI: 10.1186/s12866-019-1570-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Salmonella has been considered as one of the most important foodborne pathogens that threatened breeding industry and public health. To investigate the prevalence and characterization of Salmonella isolated from duck farms and a slaughterhouse in Shandong province, a total of 49 Salmonella strains were isolated from 2342 samples from four duck farms and one duck slaughterhouse in Jinan and Tai'an, Shandong province, China. RESULTS Among the isolates, S. Enteritidis (20/49, 40.8%) and S. Anatum (10/49, 20.4%) were the most prevalent, and high resistance rates were detected for erythromycin (49/49, 100.0%) and nalidixic acid (47/49, 95.9%). Class I integrons were detected in 17 isolates (34.7%17/49), which contained gene cassettes aadA7 + aac3-Id(15/17) and aadA5 + dfrA17 (2/17). Eleven different kinds of resistance genes were detected while blaTEM(36/49, 73.5%) was the most prevalent, followed by sul2(14/49, 28.6%). Thirteen virulence genes were tested, and all of the strains carried invA, hilA and sipA. Multilocus sequence typing (MLST) results showed that seven sequence types (STs) were identified; ST11 was the most prevalent ST (20/49, 40.8%), followed by ST2441 (10/49, 20.4%). There was a strong correlation between STs and serovars. The results of pulsed field gel electrophoresis(PFGE) showed that 39 PFGE patterns were generated from 49 Salmonella strains. PFGE patterns were mostly diverse and revealed high similarity between the isolates from the same sampling sites. CONCLUSIONS The presence of Salmonella infections among duck farms revealed that ducks could also be potential reservoirs for Salmonella. The high resistance rates against commonly used antimicrobials suggested a need for more reasonable use of antimicrobials, as well as for investigating substitutes for antimicrobials.
Collapse
Affiliation(s)
- Jie Yang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Zijing Ju
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 China
| | - Xiaonan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Zhiyu Jiang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| |
Collapse
|
31
|
Erickson MC, Liao JY, Payton AS, Cook PW, Bautista J, Díaz-Pérez JC. Disposition of Salmonella and Escherichia coli O157:H7 following Spraying of Contaminated Water on Cucumber Fruit and Flowers in the Field. J Food Prot 2018; 81:2074-2081. [PMID: 30485767 DOI: 10.4315/0362-028x.jfp-18-344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cucumbers are frequently consumed raw and have been implicated in several recent foodborne outbreaks. Because this item may become contaminated at the farm, it is vital to explore the fate of attenuated Salmonella Typhimurium or Escherichia coli O157:H7 sprayed onto foliage, flowers, and fruit in fields and determine whether pre- or postcontamination spray interventions could minimize contamination. After spraying cucumber plants with contaminated irrigation water (3.8 log CFU/mL of Salmonella Typhimurium and E. coli O157:H7), 60 to 78% of cucumber fruit were not contaminated because the plant's canopy likely prevented many of the underlying fruit from being exposed to the water. Subsequent exposure of contaminated cucumber plants to a simulated shower event did not appear to dislodge pathogens from contaminated foliage onto the fruit, nor did it appear to consistently wash either pathogen from the fruit. Spraying flowers and attached ovaries directly with a pathogen inoculum (4.6 log CFU/mL) initially led to 100% and 65 to 90% contamination, respectively. Within 3 days, 30 to 40% of the flowers were still contaminated; however, contamination of ovaries was minimal (≤10%), suggesting it was unlikely that internalization occurred through the flower to the ovary with these pathogen strains. In another study, both pathogens were found on a withered flower but not on the fruit to which the flower was attached, suggesting that this contaminated flower could serve as a source of cross-contamination in a storage bin if harvested with the fruit. Because pre- and postcontamination acetic acid-based spray treatments failed to reduce pathogen prevalence, the probability that fruit initially contaminated at 1.3 to 2.8 log CFU of Salmonella Typhimurium or E. coli O157:H7 per cucumber would be positive by enrichment culture decreased by a factor of 1.6 and 1.9 for Salmonella Typhimurium and E. coli O157:H7, respectively, for every day the fruit was held in the field ( P ≤ 0.0001). Hence, to reduce the prevalence of Salmonella Typhimurium on cucumbers below 5%, more than 1 week would be required.
Collapse
Affiliation(s)
- Marilyn C Erickson
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jye-Yin Liao
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Alison S Payton
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Peter W Cook
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jesus Bautista
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| | - Juan Carlos Díaz-Pérez
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| |
Collapse
|
32
|
Karimiazar F, Soltanpour MS, Aminzare M, Hassanzadazar H. Prevalence, genotyping, serotyping, and antibiotic resistance of isolated
Salmonella
strains from industrial and local eggs in Iran. J Food Saf 2018. [DOI: 10.1111/jfs.12585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Farshad Karimiazar
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical Sciences Zanjan Iran
| | - Mohammad S. Soltanpour
- Department of Medical Laboratory Sciences,, School of Paramedical SciencesZanjan University of Medical Sciences Zanjan Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical Sciences Zanjan Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
33
|
Du M, Li J, Zhao R, Yang Y, Wang Y, Ma K, Cheng X, Wan Y, Wu X. Effective pre-treatment technique based on immune-magnetic separation for rapid detection of trace levels of Salmonella in milk. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|