1
|
Chaggar HK, Hudson LK, Orejuela K, Thomas L, Spann M, Garman KN, Dunn JR, Denes TG. Salmonella enterica serovar Braenderup shows clade-specific source associations and a high proportion of molecular epidemiological clustering. Appl Environ Microbiol 2025; 91:e0259424. [PMID: 40116507 PMCID: PMC12016519 DOI: 10.1128/aem.02594-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/23/2025] Open
Abstract
Salmonella enterica serovar Braenderup (S. enterica ser. Braenderup) is an important clinical serovar in the United States. This serovar was reported by the CDC in 2017 as the fifth most common Salmonella enterica serovar associated with outbreaks in the United States, which have been linked to both fresh produce and food animal products. The goals of this study were to compare the relatedness of human clinical isolates from southeastern USA (Tennessee (n = 106), Kentucky (n = 48), Virginia (n = 252), South Carolina (n = 109), Georgia (n = 159), Alabama (n = 8), Arkansas (n = 26), and Louisiana (n = 91)) and global clinical (n = 5,153) and nonclinical (n = 1,053) isolates obtained from the NCBI. Additionally, we also examined the population structure of S. enterica ser. Braenderup strains (n = 3,131) on EnteroBase and found that all the strains of this serovar are associated with a single cgMLST eBurst group (ceBG 185), confirming that this serovar is monophyletic. We divided the S. enterica ser. Braenderup population into two clades (Clade I and Clade II) and one clade group (Clade Group III). The composition of distinct environmental isolates in the clades differed: Clade I was significantly associated with produce (90.7%; P < 0.0001) and water, soil, and sediment (76.9%; P < 0.0001), and Clade II was significantly associated with poultry environments (62.8%; P < 0.0001). The clade-specific gene associations (e.g., Clade I-associated competence proteins and cytochrome_c_asm protein and Clade II-associated heme-exporter protein and dimethyl sulfoxide [DMSO] reductase-encoding genes) provide potential insights into possible mechanisms driving environmental adaptation and host-pathogen interaction. Phylogenetic analyses identified 218 molecular epidemiological clusters in the current study, which represented a greater proportion of potentially outbreak-related isolates than previously estimated. IMPORTANCE This study provides insights into the genomic diversity of S. enterica ser. Braenderup by revealing distinct clade-specific source attribution patterns and showing that a greater proportion of isolates were associated with epidemiological clusters based on the genomic relatedness than previously estimated. Specifically, we analyzed the diversity of human clinical isolates from southeastern USA and compared them with the global clinical and nonclinical isolates. Our analysis showed different clades of S. enterica ser. Braenderup linked to different environments, providing insights on the potential source of human sporadic infection and outbreaks. These findings can enhance public health surveillance and response strategies targeting S. enterica serovar Braenderup by expanding our understanding of potential transmission pathways and the genomic diversity of clinical and environmental isolates.
Collapse
Affiliation(s)
- Harleen K. Chaggar
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Kelly Orejuela
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Linda Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Maya Spann
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Katie N. Garman
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - John R. Dunn
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Shen Y, Li B, Hao G, Duan M, Zhao Y, Liu Z, Li X, Jia F. A CRISPR/Cas12a-based direct transverse relaxation time biosensor via hydrogel sol-gel transition for Salmonella detection. Food Chem 2025; 470:142693. [PMID: 39740438 DOI: 10.1016/j.foodchem.2024.142693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
This research developed a magnetic relaxation switching (MRS) biosensor based on hydrogel sol-gel transition and the CRISPR/Cas12a system (MRS-CRISPR) to detect Salmonella. Herein, the alkaline phosphatase (ALP) labeled with streptavidin was captured by the biotin-modified DNA on magnetic nanoparticles (MNPs) surface, which generated an acidic environment via enzymatic reaction to release Ca2+ and induced the transformation of alginate sol to hydrogels. In contrast, Salmonella activated the trans-cleavage activity of the CRISPR/Cas12a system, interrupting the capture of ALP and the subsequent sol-gel transition. Then, transverse relaxation time (T2), which was regulated by the hydrogelation process was measured for Salmonella detection. The MRS-CRISPR biosensor enables sensitive detection of Salmonella with a detection limit of 158 CFU/mL. It directly alters the state of water molecules, overcoming the disadvantages of traditional MRS sensors that rely on MNPs to produce T2 signals indirectly. This method offers innovative insights for the application of the MRS technology in food safety analysis.
Collapse
Affiliation(s)
- Yafang Shen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Bingyan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Bortolossi AC, Magri TG, Amorim-Neto DP, Sant'Ana AS. Incidence and Growth Potential of Salmonella in Pulps from Fresh Tomatoes of Various Cultivars. Foodborne Pathog Dis 2025. [PMID: 40137843 DOI: 10.1089/fpd.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Brazil plays a significant role in the global tomato market and research into the microbiological characteristics and optimal storage conditions for this fruit is fundamental. Additionally, the recurrent outbreaks of salmonellosis linked to tomato consumption underscore the importance of understanding the prevalence and persistence of this bacterium in this product to ensure food safety. This study evaluated the incidence of Salmonella in commercially available tomatoes and determined the growth potential (δ) of a pool of Salmonella strains (Salmonella Enteritidis [503, 504], Salmonella Typhimurium [271], Salmonella Infantis [2883], and Salmonella Senftenberg [587]) on pulp of three tomato cultivars (Sweet Grape, Salad Sensation, and Débora) under different storage scenarios. None of the 240 tomato samples collected in Campinas (São Paulo State, Brazil) showed surface contamination by Salmonella. Tomato pulps of the Débora and Sweet Grape varieties, with lower pH values (3.0 and 4.0, respectively), inhibited the growth of Salmonella at all tested temperatures (10°C, 20°C, and 30°C). However, the Salad Sensation pulp (pH 6.0) allowed for Salmonella multiplication, especially at 30°C with δ of 2.88 ± 0.12 log10 colony-forming unit/g. These results indicate that pH is a critical factor for Salmonella growth in tomato pulps of different varieties stored at various temperatures.
Collapse
Affiliation(s)
- Ana Carolina Bortolossi
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Thaís G Magri
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Dionisio P Amorim-Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Kiskó G, Bajramović B, Elzhraa F, Erdei-Tombor P, Dobó V, Mohácsi-Farkas C, Taczman-Brückner A, Belák Á. The Invisible Threat of Antibiotic Resistance in Food. Antibiotics (Basel) 2025; 14:250. [PMID: 40149061 PMCID: PMC11939317 DOI: 10.3390/antibiotics14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Belma Bajramović
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Fatma Elzhraa
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Patrícia Erdei-Tombor
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Viktória Dobó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| |
Collapse
|
5
|
Suzuki Y, Horita T, Nishimura E, Xie H, Tamai S, Kobayashi I, Fukuda A, Usui M. Crop contamination evaluation by antimicrobial-resistant bacteria via livestock waste compost-fertilized field soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135987. [PMID: 39353273 DOI: 10.1016/j.jhazmat.2024.135987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Antimicrobial-resistant bacteria, selected by antimicrobial agent use in livestock, are emerging and their spread to crops from feces via composting represents a public health concern as they are ultimately transmitted to humans. In this study, we investigated Escherichia coli and other ampicillin (AMP)-resistant coliform spread conditions in field soil and dent corn, an agricultural crop, on a livestock-derived compost-applying farm. No AMP-resistant E. coli was detected in any samples of field soil and dent corn. In contrast, AMP-resistant and extended-spectrum β-lactam (ESBL) producing coliforms were consistently present in field soil and dent corn during the entire study period. In particular, extremely high AMP-resistant coliform levels were detected in dent corn stems and roots. AMP-resistant coliform detection in crops is pivotal and raises significant concerns regarding antimicrobial-resistant bacterial spread. Furthermore, AMP-resistant coliform isolate identification defined Enterobacter bugandensis and Enterobacter asburiae as the dominant species among AMP-resistant coliforms, both tested positive for ESBL production. This means that high concentrations of AMP-resistant coliforms are to be present on farms where crops are grown. However, we identified no common species among the AMP-resistant coliforms in the compost, field soil, and dent corn samples. Therefore, the initial hypothesis of the compost being the source of antimicrobial-resistant bacteria was not confirmed. Although their source remains unknown, a certain antimicrobial-resistant bacterial concentration could nonetheless be detected in the field.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan.
| | - Tomoyuki Horita
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Emi Nishimura
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hui Xie
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Soichiro Tamai
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ikuo Kobayashi
- Sumiyoshi Livestock Science Station, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0192, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| |
Collapse
|
6
|
Andrade Batista S, Stedefeldt E, Batistela Dos Santos E, Yoshio Nakano E, Cortez Ginani V, Braz Assunção Botelho R. Understanding and evaluating risk perception, knowledge, and food safety self-reported practices of public-school students in Brazil. Food Res Int 2024; 196:115027. [PMID: 39614552 DOI: 10.1016/j.foodres.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Foodborne diseases are a global burden. Actions to fight this group of diseases are necessary, especially for the younger demographic, which consists of consumers, food handlers, and the future workforce of the food chain. To this end, outlining the food safety profile of the target audience is imperative. Thus, this study aimed to understand and evaluate the risk perception, knowledge, and food safety self-reported practices of individuals between 5th and 9th grades (10 to 14 years old, considering the normal teaching flow) of public schools in the Federal District - Brazil. Instruments by Batista et al. (2023) and Brazil (2013) were used to achieve the objectives. The study included 1,420 students aged 9 to 17 (women = 50.6 %; n = 719) with a mean age of 11.9 years (±1.7) enrolled in 25 schools. It was observed that a more significant proportion of students attributed very low and low risk of Foodborne Diseases to the foods produced and served in School Food Services. The presence of optimistic bias, low perception of lethality, average knowledge, risky practices, and the gap between unsafe food knowledge and safe food handling/consumption practices were also identified. Correlations were identified between social vulnerability and risk perception (positive) and self-reported practices (negative). The results show the urgency of considering these individuals to ensure food safety, considering their vulnerability, reality, and the tools at their disposal.
Collapse
Affiliation(s)
- Sueny Andrade Batista
- Department of Nutrition, School of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília 70910-900, Distrito Federal, Brazil.
| | - Elke Stedefeldt
- Department of Preventive Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04023-032, São Paulo, Brazil
| | | | - Eduardo Yoshio Nakano
- Department of Statistics, Institute of Exact Sciences, University of Brasilia (UnB), Campus Darcy Ribeiro, Brasília 70910-900, Distrito Federal, Brazil
| | - Verônica Cortez Ginani
- Department of Nutrition, School of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília 70910-900, Distrito Federal, Brazil
| | - Raquel Braz Assunção Botelho
- Department of Nutrition, School of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Brasília 70910-900, Distrito Federal, Brazil
| |
Collapse
|
7
|
Alves JM, Silva FA, Silveira DR, Massaut KB, Fiorentini ÂM, Lopes GV, Magnani M. Understanding the potential of fresh produce as vehicles of Salmonella enterica. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:133-180. [PMID: 40023560 DOI: 10.1016/bs.afnr.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter presents an overview of Salmonella enterica as a contaminant in fresh produce, exploring outbreaks and recalls linked to them. It also provides information on potential sources of S. enterica contamination throughout the entire production chain of these products and presents food safety tools and new approaches for controlling this pathogen. S. enterica is recognized worldwide as a pathogen responsible for foodborne outbreaks, and there has been an increase in reported cases of salmonellosis linked to fresh produce. These products are susceptible to contamination throughout various stages of the farm-to-fork process. The potential sources of contamination are present from pre-harvest and harvest stages (e.g., soil, blossoms, seeds, irrigation water and gray/blackwater, wild and domestic animals/organic fertilizers, and distinctive traits of the plant) to post-harvest stages (e.g., processing, packaging, storage/retail, and preparing for consumption). Thus, controlling S. enterica contamination is extremely important for ensuring the safe consumption of fresh produce. However, obtaining practical, efficient, low-cost, and sustainable solutions that ensure the products' sensorial, nutritional, and food quality is still a challenge. As an alternative to conventional methods, recent studies report the use of new technologies, such as neutral, acidic or low chlorine electrolyzed oxidizing water, ultraviolet light, ultrasound, microemulsion of essential oils, cold plasma, irradiation, bacteriophages, and other methods, which can be used alone or in combination with the conventional ones. Therefore, understanding the main sources of S. enterica contamination in fresh produce and the effective approach for controlling this pathogen is crucial to reducing future outbreaks.
Collapse
Affiliation(s)
- Jade Morais Alves
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Débora Rodrigues Silveira
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Khadija Bezerra Massaut
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Graciela Volz Lopes
- Department of Agroindustrial Science and Technology, Eliseu Maciel Faculty of Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
8
|
Riva F, Dechesne A, Eckert EM, Riva V, Borin S, Mapelli F, Smets BF, Crotti E. Conjugal plasmid transfer in the plant rhizosphere in the One Health context. Front Microbiol 2024; 15:1457854. [PMID: 39268528 PMCID: PMC11390587 DOI: 10.3389/fmicb.2024.1457854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is one of the primary routes of antimicrobial resistance (AMR) dissemination. In the One Health context, tracking the spread of mobile genetic elements (MGEs) carrying ARGs in agri-food ecosystems is pivotal in understanding AMR diffusion and estimating potential risks for human health. So far, little attention has been devoted to plant niches; hence, this study aimed to evaluate the conjugal transfer of ARGs to the bacterial community associated with the plant rhizosphere, a hotspot for microbial abundance and activity in the soil. We simulated a source of AMR determinants that could enter the food chain via plants through irrigation. Methods Among the bacterial strains isolated from treated wastewater, the strain Klebsiella variicola EEF15 was selected as an ARG donor because of the relevance of Enterobacteriaceae in the AMR context and the One Health framework. The strain ability to recolonize lettuce, chosen as a model for vegetables that were consumed raw, was assessed by a rifampicin resistant mutant. K. variicola EEF15 was genetically manipulated to track the conjugal transfer of the broad host range plasmid pKJK5 containing a fluorescent marker gene to the natural rhizosphere microbiome obtained from lettuce plants. Transconjugants were sorted by fluorescent protein expression and identified through 16S rRNA gene amplicon sequencing. Results and discussion K. variicola EEF15 was able to colonize the lettuce rhizosphere and inhabit its leaf endosphere 7 days past bacterial administration. Fluorescence stereomicroscopy revealed plasmid transfer at a frequency of 10-3; cell sorting allowed the selection of the transconjugants. The conjugation rates and the strain's ability to colonize the plant rhizosphere and leaf endosphere make strain EEF15::lacIq-pLpp-mCherry-gmR with pKJK5::Plac::gfp an interesting candidate to study ARG spread in the agri-food ecosystem. Future studies taking advantage of additional environmental donor strains could provide a comprehensive snapshot of AMR spread in the One Health context.
Collapse
Affiliation(s)
- Francesco Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ester M Eckert
- CNR - IRSA Water Research Institute, Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological and Chemical Engineering, Center for Water Technology, Aarhus University, Aarhus, Denmark
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
9
|
Lozano-Villegas KJ, Rondón-Barragán IS. Virulence and Antimicrobial-Resistant Gene Profiles of Salmonella spp. Isolates from Chicken Carcasses Markets in Ibague City, Colombia. Int J Microbiol 2024; 2024:4674138. [PMID: 39220438 PMCID: PMC11364481 DOI: 10.1155/2024/4674138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella spp. is one of the leading causes of foodborne bacterial infections, with major impacts on public health and healthcare system. Salmonella is commonly transmitted via the fecal-to-oral route, and food contaminated with the bacteria (e.g., poultry products) is considered a common source of infection, being a potential risk for public health. The study aims to characterize the antimicrobial resistance- and virulence-associated genes in Salmonella isolates recovered from chicken marketed carcasses (n = 20). The presence of 14 antimicrobial and 23 virulence genes was evaluated using end-point PCR. The antimicrobial genes were detected in the following proportion among the isolates: bla TEM 100%, dfrA1 and bla CMY2 90% (n = 18), aadA1 75% (n = 15), sul1 and sul2 50% (n = 10), floR 45% (n = 9), qnrD 20% (n = 4), and aadA2 15% (n = 3). catA, sul3, qnrS, and aac(6')-Ib genes were absent in all isolates. Regarding virulence-associated genes, all Salmonella strains contain invA, fimA, avrA, msgA, sopB, and sopE. The cdtB gene was present in 95% (n = 19) of isolates, whereas spvC and spvB were present in 55% (n = 11). Other virulence genes such as spiC, lpfC, lpfA, and csgA were present in 90% (n = 18) of strains. The presence of antimicrobial and virulence genes in several Salmonella strains in chicken meat suggests the potential pathogenicity of the strains, which is relevant given the possibility of cross-contamination which represents a significant threat to public health.
Collapse
Affiliation(s)
- Kelly Johanna Lozano-Villegas
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| |
Collapse
|
10
|
Hailu W, Alemayehu H, Wolde D, Hailu L, Medhin G, Rajashekara G, Gebreyes WA, Eguale T. Prevalence and antimicrobial susceptibility profile of Salmonella isolated from vegetable farms fertilized with animal manure in Addis Ababa Ethiopia. Sci Rep 2024; 14:19169. [PMID: 39160213 PMCID: PMC11333614 DOI: 10.1038/s41598-024-70173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Woinshet Hailu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Deneke Wolde
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, P.O. Box 667, Hossana, Ethiopia
| | - Lulit Hailu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gireesh Rajashekara
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - Wondwossen A Gebreyes
- Global One Health Initiative (GOHi), Ohio State University, Columbus, OH, USA
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University Global One Health LLC, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Bai Y, Li J, Huang M, Yan S, Li F, Xu J, Peng Z, Wang X, Ma J, Sun J, Yang B, Cui S. Prevalence and characterization of foodborne pathogens isolated from fresh-cut fruits and vegetables in Beijing, China. Int J Food Microbiol 2024; 421:110804. [PMID: 38905809 DOI: 10.1016/j.ijfoodmicro.2024.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Pre-cut fresh fruits and vegetables are highly appealing to consumers for their convenience, however, as they are highly susceptible to microbial contamination in processing, the potential risks of foodborne illnesses to public health are not negligible. This study aimed to assess the prevalence, antibiotic susceptibility and molecular characteristics of major foodborne pathogens (Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella) isolated from fresh-cut fruits and vegetables in Beijing, China. 86 stains were isolated from 326 samples, with S. aureus being the highest prevalence (15.38 %), followed by E. coli (9.23 %) and L. monocytogenes (1.85 %), while no Salmonella was detected. The prevalence by type of food indicated that fruit trays and mixed vegetables were more susceptible to contamination by pathogens. 98 % of S. aureus were resistant to at least of one antibiotic, and showed a high resistance rate to benzylpenicillin (90 %) and oxacillin (48 %). Among 25 E. coli isolates, 57.67 % of which exhibited multi-drug resistance, with common resist to trimethoprim/sulfamethoxazole (66.67 %) and ampicillin (63.33 %). A total of 9 sequence types (STs) and 8 spa types were identified in 35 S. aureus isolates, with ST398-t34 being the predominant type (42.86 %). Additionally, analysis of 25 E. coli isolates demonstrated significant heterogeneity, characterized by 22 serotypes and 18 STs. Genomic analysis revealed that 5 and 44 distinct antibiotic resistance genes (ARGs) in S. aureus and E. coli, respectively. Seven quinolone resistance-determining regions (QRDRs) mutations were identified in E. coli isolates, of which GyrA (S83L) was the most frequently detected. All the S. aureus and E. coli isolates harbored virulence genes. ARGs in S. aureus and E. coli showed a significant positive correlation with plasmids. Furthermore, one L. monocytogenes isolate, which was ST101 and serogroupIIc from watermelon sample, harbored virulence genes (inlA and inlB) and LIPI-1 pathogenic islands (prfA, plcA, hly and actA), which posed potential risks for consumer's health. This study focused on the potential microbial risk of fresh-cut fruits and vegetables associated with foodborne diseases, improving the scientific understanding towards risk assessment related to ready-to-eat foods.
Collapse
Affiliation(s)
- Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Jun Li
- College of Food Science and Engineering, Northwest Agriculture and Forestry Science and Technology University, Shaanxi 712100, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Hunan 417000, China; College of Life Science, Anqing Normal University, Anhui 246133, China
| | - Shaofei Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Xueshuo Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jinjing Ma
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China; College of Life Science, Anqing Normal University, Anhui 246133, China
| | - Jiali Sun
- College of Food Science and Engineering, Northwest Agriculture and Forestry Science and Technology University, Shaanxi 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest Agriculture and Forestry Science and Technology University, Shaanxi 712100, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
12
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Yang Q, Chen J, Dai J, He Y, Wei K, Gong M, Chen Q, Sheng H, Su L, Liu L, Chen J, Bai L, Cui S, Yang B. Total coliforms, microbial diversity and multiple characteristics of Salmonella in soil-irrigation water-fresh vegetable system in Shaanxi, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171657. [PMID: 38490413 DOI: 10.1016/j.scitotenv.2024.171657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Global occurrences of foodborne disease outbreaks have been documented, involving fresh agricultural produce contaminated by various pathogens. This contamination can occur at any point in the supply chain. However, studies on the prevalence of total coliforms, Salmonella and microbial diversity in vegetable and associated environments are limited. This study aimed to assess 1) the number of total coliforms (n = 299) and diversity of microbial communities (n = 52); 2) the prevalence, antibiotic susceptibility, genomic characteristics, and potential transmission relationships of Salmonella in soil-irrigation water-vegetable system (n = 506). Overall, 84.28 % samples were positive to total coliforms, with most frequently detected in soil (100 %), followed by irrigation water (79.26 %) and vegetables (62.00 %). A seasonal trend in coliform prevalence was observed, with significantly higher levels in summer (P < 0.05). Detection rates of Salmonella in soil, vegetable and irrigation water were 2.21 %, 4.74 % and 9.40 %. Fourteen serotypes and sequence types (STs) were respectively annotated in 56 Salmonella isolates, ST13 S. Agona (30.36 %, 17/56), ST469 S. Rissen (25.00 %, 14/56), and ST36 S. Typhimurium (12.50 %, 7/56) were dominant serotypes and STs. Thirty-one (55.36 %) isolates were multi-drug resistant, and the resistance was most frequently found to ampicillin (55.36 %, 31/56), followed by to sulfamethoxazole (51.79 %, 29/56) and tetracycline (50.00 %, 28/56). The genomic characteristics and antibiotic resistance patterns of Salmonella isolates from soil, vegetables, and irrigation water within a coherent geographical locale exhibited remarkable similarities, indicating Salmonella may be transmitted among these environments or have a common source of contamination. Microbial alpha diversity indices in soil were significantly higher (P < 0.05) than that in vegetable and irrigation water. The microbial phylum in irrigation water covered that in the vegetable, demonstrating a significant overlap in the microbial communities between the vegetables and the irrigation water.
Collapse
Affiliation(s)
- Qiuping Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengqing Gong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinquan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lisha Liu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Li Bai
- China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Choe J, Kim SH, Han JM, Kim JH, Kwak MS, Jeong DW, Park MK. Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity. J Microbiol 2023; 61:1063-1073. [PMID: 38165607 DOI: 10.1007/s12275-023-00098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 01/04/2024]
Abstract
The consumption of fresh produce has led to increase in antibiotic-resistant (AR) Salmonella outbreaks. In this study, indigenous Salmonella was isolated from a total of two hundred-two samples including fresh produce and agricultural environmental samples in Korea. After biochemical confirmation using the Indole, Methyl Red, Voges-Proskauer, Citrate tests, presumable Salmonella isolates were identified by 16S rRNA sequencing. Identified Salmonella isolates were evaluated for antibiotic susceptibility against twenty-two antibiotics. The specificity and the efficiency of plating (EOP) of vB_SalS_KFSSM were evaluated against fifty-three bacterial strains. Twenty-five suspected Salmonella were isolated and confirmed by the positive result for methyl red and citrate, of which ten were identified as Salmonella spp. through 16S rRNA gene sequencing. Eight Salmonella isolates (4.0%, n = 8/202) were resistant to at least one antibiotic, among which five were multi-drug resistant. As a lytic phage against Salmonella spp. CMGS-1, vB_SalS_KFSSM was isolated from cow manure. The phage was observed as a tailed phage belonging to the class Caudoviricetes. It exhibited an intra-broad specificity against four indigenous AR Salmonella isolates, two indigenous Salmonella isolates, and five other Salmonella serotypes with great efficiencies (EOP ≥ 0.75). Thus, this study suggested the potential of vB_SalS_KFSSM to combat indigenous AR Salmonella.
Collapse
Affiliation(s)
- Jaein Choe
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Hyeon Kim
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji Min Han
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong-Hoon Kim
- KookminBio Corporation, Seoul, 02826, Republic of Korea
| | - Mi-Sun Kwak
- KookminBio Corporation, Seoul, 02826, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
15
|
Petano-Duque JM, Rueda-García V, Rondón-Barragán IS. Virulence genes identification in Salmonella enterica isolates from humans, crocodiles, and poultry farms from two regions in Colombia. Vet World 2023; 16:2096-2103. [PMID: 38023281 PMCID: PMC10668553 DOI: 10.14202/vetworld.2023.2096-2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Salmonella spp. is frequently found in the digestive tract of birds and reptiles and transmitted to humans through food. Salmonellosis is a public health problem because of pathogenicity variability in strains for virulence factors. This study aimed to identify the virulence genes in Salmonella isolates from humans, crocodiles, broiler cloacas, and broiler carcasses from two departments of Colombia. Materials and Methods This study was conducted on 31 Salmonella enterica strains from humans with gastroenteritis (seven), crocodiles (seven), broiler cloacas (six), and broiler carcasses (12) from Tolima and Santander departments of Colombia, belonging to 21 serotypes. All samples were tested for Salmonella spp. using culture method on selective and non-selective mediums. Extraction of genomic DNA was performed from fresh colonies, DNA quality was verified by spectrophotometry and confirmed by amplification of InvA gene using conventional polymerase chain reaction (PCR). bapA, fimA, icmF, IroB, marT, mgtC, nlpI, oafA, pagN, siiD, spvC, spvR, spvB, Stn, and vexA genes were amplified by PCR. Results The most prevalent gene was bapA (100%), followed by marT (96.77%), mgtC (93.55%), and fimA (83.87%). Likewise, IroB (70.97%), Stn (67.74%), spvR (61.29%), pagN (54.84%), icmF (54.8%), and SiiD (45.16%) were positive for more than 50% of the strains. Furthermore, none of the isolates tested positive for the vexA gene. Salmonella isolates presented 26 virulence profiles. Conclusion This study reported 14 virulence genes in Salmonella spp. isolates from humans with gastroenteritis, crocodiles, and broiler cloacas and carcasses. The distribution of virulence genes differed among sources. This study could help in decision-making by health and sanitary authorities.
Collapse
Affiliation(s)
- Julieth Michel Petano-Duque
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
16
|
Mahami T, Odai BT, Nettey SN, Asamoah A, Adjei I, Offei B, Mireku A, Ayeh EA, Ocloo FC. Microbial food safety of lettuce produced under irrigated wastewater from Onyasia River in Ghana. Heliyon 2023; 9:e19273. [PMID: 37662740 PMCID: PMC10474412 DOI: 10.1016/j.heliyon.2023.e19273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Fresh produce continues to be the main source of foodborne illness outbreaks, particularly in developing countries where water stress results in the use of surface wastewater all year round for irrigation of vegetables. The objective of the current study was to evaluate the microbial quality of lettuce irrigated with wastewater from Onyasia river. Lettuce and soil were sampled from selected vegetable farms on the Eastern gate of the Ghana Atomic Energy Commission land alongside surface wastewater from the Onyasia river, which is used as the main source for irrigation. Samples were analyzed for aerobic mesophilic plate counts, total coliforms count, fecal coliforms count, Salmonella counts and intestinal parasites using standard methods. Surface wastewater was found to be contaminated with mean fecal coliform counts of log 3.50 cfu/100 mL. Enterobacter cloacae, Acinetobacter baumannii, and Klebsiella pneumonia were also isolated from the wastewater samples. No intestinal parasite egg was detected in wastewater samples. While fecal coliforms and Salmonella spp were not detected, mean aerobic mesophilic plate counts (log 4.82 cfu/g) and total coliforms count (log 3.50 cfu/g) were recorded in the lettuce samples. Enterobacter asburiae, Acinetobacter baumannii, Klebsiella variicola and Citrobacter freundii were isolated from lettuce. Infective larvae of helminths were observed on lettuce samples at a density of 36/g-648/g with a mean of 342/g. Soil samples recorded a mean aerobic mesophilic plate counts of log 6.14 cfu/g, total coliforms count of log 4.90 cfu/g while fecal coliforms and Salmonella spp were not detected (<1 cfu/g) Soil samples yielded a mean infective larval count of 1941.5 larvae/g and a Strongyle count of 12 eggs/g. Even though less than 1 cfu/g of Salmonella spp were found, the study found lettuce to be contaminated with other foodborne bacteria pathogens, opportunistic bacteria pathogens, eggs and infective larvae of intestinal parasites of health importance. As a consequence, the microbial food safety risk associated with wastewater irrigated vegetables was observed to be high with possible public health implications. It is recommended that wastewater from the Onyasia River should be treated before use for irrigation of lettuce.
Collapse
Affiliation(s)
- Tahiru Mahami
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| | - Bernard T. Odai
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| | - Samuel N.A. Nettey
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| | - Anita Asamoah
- National Nuclear Research Institute (NNRI), GAEC, Accra, Ghana
| | - Isaac Adjei
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| | - Benjamin Offei
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| | - Abigail Mireku
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| | - Ernestina A. Ayeh
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| | - Fidelis C.K. Ocloo
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), GAEC, Accra, Ghana
| |
Collapse
|
17
|
Habib I, Khan M, Mohamed MYI, Ghazawi A, Abdalla A, Lakshmi G, Elbediwi M, Al Marzooqi HM, Afifi HS, Shehata MG, Al-Rifai R. Assessing the Prevalence and Potential Risks of Salmonella Infection Associated with Fresh Salad Vegetable Consumption in the United Arab Emirates. Foods 2023; 12:3060. [PMID: 37628060 PMCID: PMC10453016 DOI: 10.3390/foods12163060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate the occurrence and characteristics of Salmonella isolates in salad vegetables in the United Arab Emirates (UAE). Out of 400 samples tested from retail, only 1.25% (95% confidence interval, 0.41-2.89) were found to be positive for Salmonella, all of which were from conventional local produce, presented at ambient temperature, and featured as loose items. The five Salmonella-positive samples were arugula (n = 3), dill (n = 1), and spinach (n = 1). The Salmonella isolates from the five samples were found to be pan-susceptible to a panel of 12 antimicrobials tested using a disc diffusion assay. Based on whole-genome sequencing (WGS) analysis, only two antimicrobial resistance genes were detected-one conferring resistance to aminoglycosides (aac(6')-Iaa) and the other to fosfomycin (fosA7). WGS enabled the analysis of virulence determinants of the recovered Salmonella isolates from salad vegetables, revealing a range from 152 to 165 genes, collectively grouped under five categories, including secretion system, fimbrial adherence determinants, macrophage-inducible genes, magnesium uptake, and non-fimbrial adherence determinants. All isolates were found to possess genes associated with the type III secretion system (TTSS), encoded by Salmonella pathogenicity island-1 (SPI-1), but various genes associated with the second type III secretion system (TTSS-2), encoded by SPI-2, were absent in all isolates. Combining the mean prevalence of Salmonella with information regarding consumption in the UAE, an exposure of 0.0131 salmonellae consumed per person per day through transmission via salad vegetables was calculated. This exposure was used as an input in a beta-Poisson dose-response model, which estimated that there would be 10,584 cases of the Salmonella infection annually for the entire UAE population. In conclusion, salad vegetables sold in the UAE are generally safe for consumption regarding Salmonella occurrence, but occasional contamination is possible. The results of this study may be used for the future development of risk-based food safety surveillance systems in the UAE and to elaborate on the importance for producers, retailers, and consumers to follow good hygiene practices, particularly for raw food items such as leafy salad greens.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (M.-Y.I.M.); (A.A.); (G.L.)
- Environmental Health Department, High Institute of Public Health, Alexandria University, Alexandria 21531, Egypt
| | - Mushtaq Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (M.K.); (A.G.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (M.-Y.I.M.); (A.A.); (G.L.)
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (M.K.); (A.G.)
| | - Afra Abdalla
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (M.-Y.I.M.); (A.A.); (G.L.)
| | - Glindya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (M.-Y.I.M.); (A.A.); (G.L.)
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14163 Berlin, Germany;
- Animal Health Research Institute, Agriculture Research Centre, Cairo 12618, Egypt
| | - Hassan Mohamed Al Marzooqi
- Food Research Section, Research and Development Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates; (H.M.A.M.); (H.S.A.); (M.G.S.)
| | - Hanan Sobhy Afifi
- Food Research Section, Research and Development Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates; (H.M.A.M.); (H.S.A.); (M.G.S.)
| | - Mohamed Gamal Shehata
- Food Research Section, Research and Development Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates; (H.M.A.M.); (H.S.A.); (M.G.S.)
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTACITY), New Borg El-Arab City 21934, Egypt
| | - Rami Al-Rifai
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| |
Collapse
|
18
|
Manafi L, Aliakbarlu J, Dastmalchi Saei H. Susceptibility of Salmonella serotypes isolated from meat and meat contact surfaces to thermal, acidic, and alkaline treatments and disinfectants. Food Sci Nutr 2023; 11:1882-1890. [PMID: 37051333 PMCID: PMC10084953 DOI: 10.1002/fsn3.3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The present study was conducted to evaluate the response of 29 Salmonella isolates to exposure to thermal (60°C for 2 min), acidic (pH 2.9 for 30 min), and alkaline (pH 11 for 60 min) treatments and investigate the susceptibility of the isolates and their biofilms to disinfectants. The reductions of Salmonella isolates populations subjected to each treatment were analyzed according to their isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability. Median reductions for all of Salmonella isolates populations after thermal, acidic, and alkaline treatments were 1.8, 2.1, and 0.7 log CFU/ml, respectively. The isolates behavior under stress conditions were not related to their isolation source, serotype, or biofilm formation ability. The median reduction after alkaline treatment in non-MDR (multidrug- resistant) isolates populations was significantly (p < .05) higher than MDR isolates. The median reduction in biofilms of moderate biofilm producers by disinfectants was significantly (p < .05) higher than that of strong biofilm producers. In conclusion, Salmonella isolates showed the highest susceptibility to acidic treatment and MDR isolates were more resistant to alkaline treatment than non-MDR ones. The current study also revealed that the strong biofilm producer isolates were more resistant to disinfectants than moderate biofilm producers. This study facilitated the understanding of the relationship between Salmonella characteristics (isolation source, serotype, antibiotic resistance pattern, and biofilm formation ability) and its susceptibility to thermal, acidic, and alkaline treatments and disinfectants. The findings are helpful for the prevention and control of Salmonella.
Collapse
Affiliation(s)
- Leila Manafi
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | - Javad Aliakbarlu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality ControlUrmia UniversityUrmiaIran
| | | |
Collapse
|
19
|
Elbediwi M, Tang Y, Yue M. Genomic characterization of ESBL-producing Salmonella Thompson isolates harboring mcr-9 from dead chick embryos in China. Vet Microbiol 2023; 278:109634. [PMID: 36610099 DOI: 10.1016/j.vetmic.2022.109634] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The emergence and dissemination of the extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae harbouring antimicrobial resistance (AMR) genes has diminished the potential options for treating multidrug-resistant (MDR) bacterial infections. Until now, numerous studies reported the spreading of critical plasmid-borne AMR genes from different sources worldwide. While the knowledge on the occurrence of the plasmid-borne AMR genes, especially mcr genes in the dead chick embryos, remains obscure. A retrospective study was conducted to detect the presence of the mcr genes in forty-five Salmonella enterica isolates recovered from 2139 dead chick embryo samples, from breeding chicken hatcheries in Henan, China. Using multiplex PCR, we found only four isolates out of the forty-five were mcr-9-positive. These four isolates were found to be MDR, ESBL- producing and showed resistance to 10 antimicrobial drugs. Additionally, mcr-9 harbouring plasmids were successfully transferred into Escherichia coli (E. coli) J53 by conjugation and the mcr-9 gene was confirmed by PCR. We also found that the transconjugants exhibited higher MICs for ampicillin, gentamycin and colistin than the recipient. Whole-genome sequence analysis showed that the four isolates belonged to Salmonella Thompson ST26 and harboured IncHI2 plasmid replicon. Furthermore, the mcr-9 harbouring plasmids were reconstructed using in silico tools and found to be carried other AMR genes (blaDHA-1 and qnrB4). The studied isolates carried the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), in addition to pef and csg operons which are important in host adhesion and biofilm formation. The mgtC gene, which is involved in phagocytosis, has also been identified. Together, the increase in the phenotypic resistance of the transconjugants and the plasmid in silico reconstruction analysis confirmed that the corresponding resistance genes might be located together on the same plasmid. To track the potential phylogenomic relations of our detected ESBL S. Thompson isolates, we constructed a phylogenomic tree with available ESBL S. Thompson genomes (n = 26) that were reported worldwide. The studied isolates were independently clustered together with four other Chinese isolates of food origin in one clade, providing strong evidence of a potential recent and wide dissemination of ESBL S. Thompson across the food chain in China. In conclusion, we report the detection of four highly virulent ESBL-producing S. Thompson ST26 isolates harbouring mcr-9 gene obtained from dead chick embryos in Henan, China.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.
| | - Yanting Tang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Microbiological analysis and characterization of Salmonella and ciprofloxacin-resistant Escherichia coli isolates recovered from retail fresh vegetables in Shaanxi Province, China. Int J Food Microbiol 2023; 387:110053. [PMID: 36521241 DOI: 10.1016/j.ijfoodmicro.2022.110053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Fresh vegetables are closely associated with foodborne disease outbreaks; however, systematic analysis of the microbiological quality of fresh vegetables and molecular information on foodborne pathogens in fresh produce are poorly reported in China. Here, we evaluated the epidemiological prevalence of coliforms via the most probable number method and characterized Salmonella and ciprofloxacin-resistant (CIPR) Escherichia coli isolates recovered from retail fresh vegetables in Shaanxi Province, China. Antimicrobial susceptibility testing, serotype determination, multilocus sequence typing (MLST), core genome multilocus sequence typing (cgMLST), antibiotic resistance encoding gene (ARG) annotation, virulence factor prediction, and functional classification were performed. Between October 2020 and September 2021, 576 samples (i.e., tomatoes, lettuces, spinaches, and cabbages) were found to be positive for coliforms, and the prevalence of coliforms showed a seasonal trend. Coliform counts of vegetables in supermarkets in Xi'an were significantly lower (P < 0.01) than that in other cities. The detection rates of Salmonella and CIPRE. coli-positive vegetables were 1 % (6/576) and 0.7 % (4/576), respectively. All isolates exhibited resistance to ≥1 antibiotics, and 92.9 % (13/14) were multidrug-resistant. One extended spectrum β-lactamase (ESBL)-producing CIPRE. coli isolate in spinach was resistant to not only three third-generation cephalosporins but also to two polymyxins. Among nine Salmonella isolates, five different serovars (S. Enteritidis, S. Indiana, monophasic variant of S. Typhimurium, S. Agona, and S. Gallinarum), four sequence types (STs; ST11, ST13, ST17, and ST34), and seven core genome STs (cgSTs) were identified. Five CIPRE. coli strains were assigned to three serovars (O101:H4, O8:H18, and O11:H25), three STs (ST44, ST48, and ST457), and four cgSTs. Coexisting amino acid mutations of Thr57Ser/Ser80Arg in ParC and Ser83Phe/Asp87Gly in GyrA in quinolone resistance-determining regions (QRDRs) might be causes for nalidixic acid resistance. Eight definite virulence profiles in eight serovars were identified. Notably, cdtB and pltA only encoded typhoid toxins and were just detected from S. Typhoid isolates were also detected from S. Indiana and monophasic S. Typhimurium, which are closely associated with swine food chain were first detected in fresh vegetables. In conclusion, our findings suggest that coliform contamination on fresh vegetables is prevalent in this province. Most Salmonella and CIPRE. coli isolates were phenotypically and genetically diverse and could resist multiple antibiotics by carrying multiple ARGs and virulence genes.
Collapse
|
21
|
Oh H, Yoon Y, Yoon JW, Oh SW, Lee S, Lee H. Salmonella Risk Assessment in Poultry Meat from Farm to Consumer in Korea. Foods 2023; 12:foods12030649. [PMID: 36766177 PMCID: PMC9914641 DOI: 10.3390/foods12030649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
This study predicted Salmonella outbreak risk from eating cooked poultry in various methods. The incidence of Salmonella in poultry meat and the environment from farm to home for consumption was investigated. To develop the predictive models, Salmonella growth data were collected at 4-25 °C during storage and fitted with the Baranyi model. The effects of cooking on cell counts in poultry meat were investigated. Temperature, duration, and consumption patterns were all searched. A simulation in @Risk was run using these data to estimate the probability of foodborne Salmonella disease. In farm, Salmonella was detected from only fecal samples (8.5%; 56/660). In slaughterhouses, Salmonella was detected from feces 16.0% (38/237) for chicken and 19.5% (82/420) for duck) and from carcasses of each step (scalding, defeathering, and chilling) by cross contamination. In chicken (n = 270) and duck (n = 205), Salmonella was detected in 5 chicken (1.9%) and 16 duck meat samples (7.8%). Salmonella contamination levels were initially estimated to be -3.1 Log CFU/g and -2.5 Log CFU/g, respectively. With R2 values between 0.862 and 0.924, the predictive models were suitable for describing the fate of Salmonella in poultry meat with of 0.862 and 0.924. The Salmonella was not detected when poultry meat cooks completely. However, if poultry meat contaminated with Salmonella were cooked incompletely, Salmonella remained on the food surface. The risk of foodborne Salmonella disease from poultry consumption after cooking was 3.0 × 10-10/person/day and 8.8 × 10-11/person/day in South Korea, indicating a low risk.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Jang-Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul 02703, Republic of Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Correspondence: (S.L.); (H.L.)
| | - Heeyoung Lee
- Food Standard Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Correspondence: (S.L.); (H.L.)
| |
Collapse
|
22
|
Guo L, Xiao T, Wu L, Li Y, Duan X, Liu W, Liu K, Jin W, Ren H, Sun J, Liu Y, Liao X, Zhao Y. Comprehensive profiling of serotypes, antimicrobial resistance and virulence of Salmonella isolates from food animals in China, 2015-2021. Front Microbiol 2023; 14:1133241. [PMID: 37082181 PMCID: PMC10110913 DOI: 10.3389/fmicb.2023.1133241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction Salmonella is a ubiquitous foodborne pathogen and mainly transmitted to human farm-to-fork chain through contaminated foods of animal origin. Methods In this study, we investigated the serotypes, antimicrobial resistance and virulence of Salmonella from China. Results A total of 617 Salmonella isolates were collected from 4 major food animal species across 23 provi nces in China from 2015-2021. Highest Salmonella prevalence were observed in Guangdong (44.4%) and Sandong (23.7%). Chickens (43.0%) was shown to be the major source of Salmonella contamination, followed by pigs (34.5%) and ducks (18.5%). The number of Salmonella increased significantly from 5.51% to 27.23% during 2015-2020. S. Derby (17.3%), S. Enteritidis (13.1%) and S. Typhimurium (11.4%) were the most common serotypes among 41 serotypes identifiedin this study. Antibiotic susceptibility testing showing that the majority of the Salmonella isolates were resistant to neomycin (99.7%), tetracycline (98.1%), ampicillin (97.4%), sulfadiazine/trimethoprim (97.1%), nalidixic acid (89.1%), doxycycline (83.1%), ceftria xone (70.3%), spectinomycin (67.7%), florfenicol (60.0%), cefotaxime (52.0%) and lomefloxacin (59.8%). The rates of resistance to multiple antibiotics in S. Derby and S.Typhimurium were higher than that in S. Enteritidis. However, the rate of resistance to fosfomycin were observed from higher to lower by S. Derby, S. Enteritidis, and S. Typhimurium. Biofilm formation ability analysis found that 88.49%of the Salmonella were able to produce biofilms, of which 236 Salmonella isolates were strong biofilm producer. Among the 26 types of antibiotics resistance genes (ARGs) were identified in this study, 4 ARGs (tetB,sul2,aadA2, and aph(3')-IIa) were highly prevalent. In addition, 5 β-lactam resistance genes (bla TEM, bla SHV, bla CMY-2, bla CTX-M, and bla OXA) and 7 quinolone resistance genes (oqxA, oqxB, qnrB, qnrC, qnrD, qnrS, and qeqA) were detected among these isolates. 12 out of 17 virulence genes selected in this study were commonly presented in the chromosomes of tested isolate, with a detection rate of over 80%, including misL, spiA, stn, pagC, iroN, fim, msgA, sopB, prgH, sitC, ttrC, spaN. Discussion This study provided a systematical updating on surveillance on prevalence of Salmonella from food animals in China, shedding the light on continued vigilance for Salmonella in food animals.
Collapse
Affiliation(s)
- Lili Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Bolin Biotechnology Co., Qingdao, China
| | - Tianan Xiao
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Liqin Wu
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Yan Li
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Xiaoxiao Duan
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Kaidi Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjie Jin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yahong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoping Liao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Xiaoping Liao,
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Yongda Zhao,
| |
Collapse
|
23
|
Batista SA, Ginani VC, Stedefeldt E, Nakano EY, Botelho RBA. Reproducibility and Validity of a Self-Administered Food Safety Assessment Tool on Children and Adolescent's Risk Perception, Knowledge, and Practices. Nutrients 2023; 15:nu15010213. [PMID: 36615869 PMCID: PMC9823607 DOI: 10.3390/nu15010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to verify the instrument's reliability and validity for assessing children and adolescents' risk perception, knowledge, and food safety practices in the school context. Moreover, it aimed to test the hypothesis that both application methods (paper and pencil (PAPI) and online) are valid. The instrument comprised three questionnaires and followed a strict protocol to combine online and PAPI models, resulting in five application forms. The sample consisted of 439 Brazilian students from 10 to 14 years old (y/o). The results related to reliability and validity indicated that the knowledge questionnaire presented adequate stability and discriminant validity coefficients. The self-reported practices questionnaire obtained acceptable coefficients of stability and internal consistency. Regarding risk perception data, it was observed that students attribute a low probability of Foodborne Diseases (FBD) outbreaks occurrence and low severity of possible symptoms. In addition, students demonstrated insufficient knowledge and inadequate practices on issues related to failures associated with the time and temperature of preparation, storage, and exposure of food, contamination of food, and consumption of unsafe food. In this context, the reproducibility and validity indices need to be interpreted and discussed correctly, and young people in food safety actions are a priority in facing FBD.
Collapse
Affiliation(s)
- Sueny Andrade Batista
- Department of Nutrition, School of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
- Correspondence:
| | - Verônica Cortez Ginani
- Department of Nutrition, School of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
| | - Elke Stedefeldt
- Department of Preventive Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04023-032, SP, Brazil
| | - Eduardo Yoshio Nakano
- Department of Statistics, Institute of Exact Sciences, University of Brasilia (UnB), Campus Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
| | - Raquel Braz Assunção Botelho
- Department of Nutrition, School of Health Sciences, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasília 70910-900, DF, Brazil
| |
Collapse
|
24
|
Xu P, Xu T, Ma M, Qiu X, Wang Y, Zhu Y. Significantly enhanced electrochemiluminescence of nalidixic acid/S2O82− system by isonicotinic as Co-reaction accelerator for ultrasensitive detection of tetraethylenepentamine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Yang X, Huang J, Su Y, Cai S, Zhang J, Guo W, Wang J, Chen M, Wu S, Yang S, Wu Q. Incidence and antimicrobial resistance of Salmonella serovars in fresh retail aquatic products from China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Himanshu, R. Prudencio C, da Costa AC, Leal E, Chang CM, Pandey RP. Systematic Surveillance and Meta-Analysis of Antimicrobial Resistance and Food Sources from China and the USA. Antibiotics (Basel) 2022; 11:1471. [PMID: 36358126 PMCID: PMC9686904 DOI: 10.3390/antibiotics11111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Since the discovery of antibiotics in the 20th century, they have been used to fight against infections. The overuse of antibiotics in the wider environment has resulted in the emergence of multidrug-resistant bacteria. In developing countries such as China and developed countries such as the USA, there is evidence of the high pervasiveness of antibiotic-resistant infections. However, the studies on the spread of antibiotic-resistant microorganisms that inform about the consequences are limited. The aim of our study was to analyze and compare antimicrobial resistance (AMR) identified in published research papers from that found in different food sources, which were published between 2012 and December 2021, covering most retail food items. Out of 132 research papers identified, 26 papers have met our strict criteria and are included in the qualitative and quantitative analysis. The selected papers led to 13,018 food samples, out of which 5000 samples were contaminated, including 2276 and 2724 samples from China and the USA, respectively. Meat, aquatic products, milk, and eggs show high to medium potential for AMR exposure to Gram-positive bacteria such as Staphylococcus, Enterococci, etc. and Gram-negative foodborne pathogens such as Campylobacter, Salmonella, Vibrio, etc. Most of the food samples show antibiotic resistance to β-lactams, tetracycline, quinolones, and aminoglycosides. Retail food products such as meat, sea food, and some other food products, as well as AMR genetics and technically important bacteria, are proposed to be better merged with mitigation strategies and systematic One Health AMR surveillance to minimize the knowledge gaps and facilitate comprehensive AMR risk computation for the consumers.
Collapse
Affiliation(s)
- Himanshu
- Department of Biotechnology, SRM University, Rajiv Gandhi Education City, P.S. Rai, Sonepat 131029, Haryana, India
| | | | | | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, Brazil
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan 33302, Taiwan
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Rajiv Gandhi Education City, P.S. Rai, Sonepat 131029, Haryana, India
| |
Collapse
|
27
|
da Silva JL, Vieira BS, Carvalho FT, Carvalho RCT, Figueiredo EEDS. Salmonella Behavior in Meat during Cool Storage: A Systematic Review and Meta-Analysis. Animals (Basel) 2022; 12:2902. [PMID: 36359027 PMCID: PMC9657669 DOI: 10.3390/ani12212902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to investigate Salmonella behavior in meat stored in cool conditions (between 0 °C and 7.5 °C), by employing a systematic review and meta-analysis. The data were obtained from research articles published in SciELO, PubMed, the Web of Science, and Scopus databases. The results of the retrieved studies were obtained from meat (beef, chicken, pork, poultry, and turkey), fish, shellfish, and broth media samples The data were extracted as sample size (n), initial concentration (Xi), final concentration (Xf), standard deviation (SD), standard error (SE), and microbial behavior effects (reduction or growth). A meta-analysis was carried out using the metaphor package from R software. A total of 654 articles were initially retrieved. After applying the exclusion criteria, 83 articles were selected for the systematic review, and 61 of these were used for the meta-analysis. Most studies were conducted at 0 °C to 4.4 °C storage temperatures under normal atmosphere package conditions. Salmonella Typhimurium, S. Enteritidis, and a cocktail (strain mixture) were inoculated at 5.0 and 6.0 log CFU mL−1. Articles both with and without the addition of antimicrobial compounds were found. Salmonella concentration decreases were observed in most studies, estimated for all study combinations as −0.8429 ± 0.0931 log CFU g−1 (95% CI; −1.0254, −0.6604) (p < 0.001), varying for each subgroup analysis. According to this survey, Salmonella concentration decreases are frequent during cool storage, although concentration increases and no bacterial inactivation were observed in some studies.
Collapse
Affiliation(s)
- Jorge Luiz da Silva
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Cuiabá 78106-970, Brazil
| | - Bruno Serpa Vieira
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Alta Floresta 78106-970, Brazil
| | | | | | | |
Collapse
|
28
|
Ndraha N, Goh AP, Tran GD, Chen CQ, Hsiao HI. Predictive models for the growth of Salmonella spp., Listeria spp., and Escherichia coli in lettuce harvested on Taiwanese farms. J Food Sci 2022; 87:3599-3610. [PMID: 35781285 DOI: 10.1111/1750-3841.16236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
This study aimed at developing predictive models for Salmonella, Listeria, and E. coli in lettuce iceberg (Lactuca sativa) locally grown in Taiwan. The models were developed under constant temperature levels (5, 10, 15, 20, and 25°C) and validated under dynamic temperature conditions (18°C for 4 h, 7°C for 48 h, 23°C for 4 h). The result showed that (1) all strains were unable to grow at 5°C except for standard strain of Listeria obtained from the BCRC and (2) the growth rate of locally isolated strains of Salmonella and Listeria was higher than the standard one at certain temperature levels and lower than the growth rates of E. coli. The findings in this study enhance our understanding about the growth variability between Salmonella, Listeria, and E. coli strains on vegetables locally grown in Taiwan and may be used to improve the management of proper storage temperature in the lettuce supply chain in this country. Considering the temperature recommendation for refrigerated food in Taiwan, the findings in this study therefore recommend that fresh vegetables (e.g., lettuce) should be stored at 5°C or lower to prevent the rapid growth of these microorganisms. Finally, the developed models can be used in the assessment of the microbiological risk of Salmonella, Listeria, and E. coli contamination in lettuce locally grown in Taiwan. PRACTICAL APPLICATION: This study developed predictive models describing the growth of Salmonella, Listeria, and E. coli in lettuce locally grown in Taiwan. The models developed in this study can be used in quantitative microbial risk assessment.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 20224, Taiwan
| | - Ai Ping Goh
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 20224, Taiwan
| | - Gia Dieu Tran
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 20224, Taiwan
| | - Cheng-Quan Chen
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 20224, Taiwan
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 20224, Taiwan
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 20224, Taiwan
| |
Collapse
|
29
|
Cabrera-Díaz E, Castillo A, Martínez-Chávez L, Beltrán-Huerta J, Gutiérrez-González P, Orozco-García AG, García-Frutos R, Martínez-Gonzáles NE. Attachment and Survival of Salmonella enterica and Listeria monocytogenes on Tomatoes (Solanum lycopersicum) as Affected by Relative Humidity, Temperature, and Storage Time. J Food Prot 2022; 85:1044-1052. [PMID: 35512125 DOI: 10.4315/jfp-21-370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Tomatoes (Solanum lycopersicum) are one of the most commonly consumed fruits worldwide. The fruit can become contaminated with Salmonella and Listeria monocytogenes at various stages of the production and supply chain, and these pathogens may survive under various storage conditions. The effects of relative humidity, temperature, and duration of storage on the attachment and survival of both pathogens on the surface of tomatoes were investigated. Fresh whole Roma tomatoes were inoculated with a cocktail of Salmonella or L. monocytogenes strains and stored at 5, 12, 25, 30, or 35°C for up to 10 days. Every day during storage, relative humidity and temperature were measured and tomatoes were removed to enumerate pathogens cells that were loosely attached (LA; cells were detached from the tomato surface by rinsing) and strongly attached (SA; sonication was required to detach cells from the tomato surface). The attachment strength (SR) was calculated to express the proportion of surviving SA cells on the tomato surface. The initial levels of Salmonella and L. monocytogenes on the tomato surface after inoculation were 6.6 and 6.5 log CFU per tomato for LA cells and 5.1 and 5.6 log CFU per tomato for SA cells, respectively. For both pathogens, the LA levels were higher (P < 0.05) than the SA levels. The LA and SA levels differed significantly as a function of temperature, relative humidity, and duration of storage. The SR for Salmonella was affected by storage time but not temperature, whereas the SR for L. monocytogenes was affected by storage time and temperature and relative humidity (P < 0.05). An understanding of the attachment and survival of Salmonella and L. monocytogenes on tomatoes stored under various temperature conditions may be useful for preventing or reducing the establishment of pathogens and for designing improved decontamination methods. HIGHLIGHTS
Collapse
Affiliation(s)
- E Cabrera-Díaz
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, México C.P. 45200
| | - A Castillo
- Department of Food Science and Technology, Texas A&M University, 2256 TAMU, College Station, Texas 77843, USA
| | - L Martínez-Chávez
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - J Beltrán-Huerta
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - P Gutiérrez-González
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - A G Orozco-García
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, México C.P. 45200
| | - R García-Frutos
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| | - N E Martínez-Gonzáles
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara, Jalisco, México, C.P. 44430
| |
Collapse
|
30
|
Li Y, Li K, Peng K, Wang Z, Song H, Li R. Distribution, antimicrobial resistance and genomic characterization of Salmonella along the pork production chain in Jiangsu, China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Yin Y, Zhu D, Yang G, Su J, Duan G. Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152851. [PMID: 34990692 DOI: 10.1016/j.scitotenv.2021.152851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Fresh vegetables are considered as a reservoir of pathogenic bacteria and antibiotic resistance genes (ARGs), which are the emerging environmental contaminants, posing increasing concerned risk to human health. However, the prevalence of pathogens in phyllosphere of fresh vegetables, as well as the association of ARGs with pathogenic bacteria, have not been well elaborated. In this study, we explored the structure of microbial communities and ARGs through high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing, and characterized the microorganisms resisting to antibiotics by pure culture. From phyllosphere of six different kinds of vegetables, 205 ARGs were detected and genes for multidrug resistance was the most abundant. The predominant potential pathogens were classified to Pseudomonas, Klebsiella, and Acinetobacter genera, which carried various ARGs such as multidrug and beta-lactam resistance genes presumedly. Among six kinds of vegetables, Lactuca sativa var. asparagina carried the highest abundance of potential pathogens and ARGs, while Allium sativum L harbored the lowest abundance of pathogens and ARGs. In addition, various culturable bacteria resisting to colistin or meropenem could be isolated from all vegetables, remarkably, all the isolates resistant to both antibiotics are potential pathogens. Our study highlighted the risks of pathogens and ARGs from raw vegetables to consumers, characterized their structure patterns among different vegetables, and analyzed the potential mechanisms regulating phyllosphere pathogens and resistome of fresh vegetables, which would be helpful for reducing the microbial risk from vegetable ingestion.
Collapse
Affiliation(s)
- Yue Yin
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianqiang Su
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Srisamran J, Atwill ER, Chuanchuen R, Jeamsripong S. Detection and analysis of indicator and pathogenic bacteria in conventional and organic fruits and vegetables sold in retail markets. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Produce-associated foodborne outbreaks have been increasingly implicated as the significant proportion of the annual incidence of foodborne illness worldwide. The objectives of this study were to determine the concentrations of indicator bacteria and the presence of Salmonella spp., Shigella spp., Escherichia coli O157:H7, and Listeria monocytogenes, and to characterize predictors associated with Salmonella contamination of retail produce from fresh markets and supermarkets in Bangkok, Thailand. A total of 503 samples were collected during May 2018 and February 2019, comprised of sweet basil, spring onion, coriander, cabbage, lettuce, cucumber, and tomato, with n = 167 conventional items from fresh open-air markets, n = 168 conventional items from supermarkets, and n = 168 organic items from supermarkets. The overall prevalence in these 503 items for fecal coliforms and E. coli were 84.3% and 71.4%, with mean concentrations (± S.D.) of fecal coliforms and E. coli being 3.0×105 (± 1.3×106) and 1.8×105 (± 1.1×105) MPN/g, respectively. The concentration of fecal coliforms and E. coli was higher in produce sampled from fresh open-air markets than produce from supermarkets; similarly, these bacterial indicators were higher from produce grown under conventional methods than certified organic produce. The prevalence of Salmonella and Shigella was 4.8% and 0.4%, respectively, but no positives were found for E. coli O157:H7 and L. monocytogenes. The predominant Salmonella serovar were Stanley (30.8%). Based on logistic regression, the odds of Salmonella contamination were significantly (p < 0.05) higher during the rainy versus dry season, produce grown using conventional versus organic agriculture, sweet basil versus other commodities, and using ice tank versus dry refrigeration for overnight retail storage. This study indicated that fruits and vegetables are important sources of microbial contamination. Hence, monitoring and surveillance of pathogen contamination to produce is needed to strengthen food safety.
Collapse
Affiliation(s)
- Jutanat Srisamran
- Research unit in microbial food safety and antimicrobial resistance, department of veterinary public health, faculty of veterinary science, Bangkok, Thailand
| | - Edward R Atwill
- Western center for food safety, university of California, Davis, Davis, California, USA
| | - Rungtip Chuanchuen
- Research unit in microbial food safety and antimicrobial resistance, department of veterinary public health, faculty of veterinary science, Bangkok, Thailand
| | - Saharuetai Jeamsripong
- Research unit in microbial food safety and antimicrobial resistance, department of veterinary public health, faculty of veterinary science, Bangkok, Thailand
| |
Collapse
|
33
|
Silva MBRD, Maffei DF, Moreira DA, Dias M, Mendes MA, Franco BDGDM. Agricultural practices in Brazilian organic farms and microbiological characteristics of samples collected along the production chain. J Appl Microbiol 2022; 132:1185-1196. [PMID: 34365710 DOI: 10.1111/jam.15247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
AIMS To gather data on agricultural practices in organic farms in Sao Paulo, Brazil, and evaluate their relationship with the microbiological characteristics of samples collected along the production chain. METHODS AND RESULTS Practices data were based on field observations and interviews with farmers in 10 selected organic lettuce producing farms. Counts of Enterobacteriaceae and surveys for Salmonella were performed in samples of lettuce (before and after washing), fertilizers, irrigation and washing water, all collected in the same farm. Water samples were also tested for total coliforms and generic Escherichia coli. Isolated Enterobacteriaceae were identified by MALDI-TOF MS. Contamination of lettuce was influenced by some agricultural practices: chicken manure-based fertilization resulted in higher Enterobacteriaceae counts in lettuce when compared to other types of manure, whereas pre-washed lettuces presented lower microbial counts than non-pre-washed samples. Salmonella was detected in one lettuce sample by qPCR. Escherichia coli was detected in all irrigation water samples. All sample types contained Enterobacteriaceae species commonly reported as opportunistic human pathogens. CONCLUSIONS The data highlight the need for improvement in the good agricultural practices in the studied farms. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides information on agricultural practices and microbiological characteristics of organic lettuce, contributing to the development of more accurate risk assessments.
Collapse
Affiliation(s)
- Marcelo Belchior Rosendo da Silva
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele Fernanda Maffei
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Agri-food Industry, Food and Nutrition, ‟Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Debora Andrade Moreira
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School of University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bernadette Dora Gombossy de Melo Franco
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
34
|
Shen W, Chen H, Geng J, Wu RA, Wang X, Ding T. Prevalence, serovar distribution, and antibiotic resistance of Salmonella spp. isolated from pork in China: A systematic review and meta-analysis. Int J Food Microbiol 2022; 361:109473. [PMID: 34768041 DOI: 10.1016/j.ijfoodmicro.2021.109473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
The epidemiological characteristics of Salmonella spp. in pork have been widely studied in China, but the results remain inconsistent. This study aimed to summarize the epidemiological characteristics of Salmonella spp. isolated from pork, including its prevalence, serovar distribution, and antibiotic resistance rate. We systematically reviewed published studies on Salmonella spp. isolated from pork in China between 2000 and 2020 in two Chinese and three English databases and quantitatively summarized its prevalence, serovar distribution, and antibiotic resistance using meta-analysis methods. Furthermore, we conducted subgroup analysis and meta-regression to explore the source of the heterogeneity from historical changes and regional difference perspectives. Ninety-one eligible studies published between 2000 and 2020 were included. The meta-analysis showed that the pooled prevalence of Salmonella isolated from pork was 0.17 (95% CI: 0.14, 0.20), with a detected growing trend over time. For the proportions of serovars, Derby (0.32, 95% CI: 0.26, 0.38), Typhimurium (0.10, 95% CI: 0.07, 0.15) and London (0.05, 95% CI: 0.03, 0.08) were dominant in these studies. The antibiotic resistance rates were high for tetracycline (0.68, 95% CI: 0.59, 0.77), sulfisoxazole (0.65, 95% CI: 0.45, 0.83), ampicillin (0.43, 95% CI: 0.34, 0.53), streptomycin (0.42, 95% CI: 0.29, 0.56), and sulfamethoxazole (0.42, 95% CI: 0.25, 0.60). The results of this study revealed a high prevalence, the regional characteristics of serovar distribution, and the severe challenges of antibiotic resistance of Salmonella originating from pork in China, suggesting the potential increasing risk and disease burden. Therefore, it is necessary to improve the prevention and control strategies of Salmonella in pork.
Collapse
Affiliation(s)
- Wangwang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Geng
- Center for Global Health, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Ricardo A Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Godínez-Oviedo A, Cabrera-Díaz E, Palacios-Marmolejo A, Pérez-Covarrubias OB, Vargas-Daniel RC, Tamplin ML, Bowman JP, Hernández-Iturriaga M. Detection, quantification, and characterization of Salmonella enterica in mango, tomato, and raw chicken purchased in the central region of Mexico. J Food Sci 2021; 87:370-382. [PMID: 34954835 DOI: 10.1111/1750-3841.16003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
To estimate human exposure to Salmonella enterica, it is essential to understand the pathogen distribution and characteristics. Prevalence and concentration of S. enterica were determined in mango, tomato, and raw chicken samples purchased in three states (Aguascalientes, Querétaro, and Guadalajara) located in the central region of Mexico during two seasons. In addition, S. enterica isolates were characterized by absence/presence of 13 virulence genes (chromosomal, prophage, and plasmid) and resistance to 14 antibiotics. A total of 300 samples of mango, 272 of tomato, and 354 of raw chicken were analyzed. The mean of the prevalence (24.9%) and concentration (-0.61 Log MPN/g) of S. enterica in chicken was higher than in mango (1.3%, -1.7 Log MPN/g) and tomato (1.1%, -1.7 Log MPN). Among S. enterica isolates (284), there were 7 different virulotypes, belonging 68.7% of isolates to V2; there was high variability in the presence of mobile genetic elements. The occurrence of specific mobile elements ranged from 81.4% to 11.3% among isolates. Among the isolates, 91.5% were resistant to at least one antibiotic with ampicillin being the most frequent; 54.9% of isolates were multidrug resistant. Data from this study can be used for quantitative microbial risk assessment of S. enterica related to mango, tomato, and raw chicken consumption in the central region of Mexico. PRACTICAL APPLICATION: Data on the prevalence and concentration of Salmonella enterica obtained in this study can be used to estimate the exposure assessment for the consumption of mango, tomato, and chicken in the central region of Mexico. In addition, the characteristics of the S. enterica isolates could be used to select representative strains for future studies to evaluate the intraspecies variability.
Collapse
Affiliation(s)
- Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario Cerro de las Campanas S/N, Querétaro, México
| | - Elisa Cabrera-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | | | - Olga Berenice Pérez-Covarrubias
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | | | - Mark L Tamplin
- Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - John P Bowman
- Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario Cerro de las Campanas S/N, Querétaro, México
| |
Collapse
|
36
|
Xiao X, Tang B, Liu S, Suo Y, Yang H, Wang W. Evaluation of the Stress Tolerance of Salmonella with Different Antibiotic Resistance Profiles. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5604458. [PMID: 34568492 PMCID: PMC8457946 DOI: 10.1155/2021/5604458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Disease caused by antibiotic-resistant Salmonella is a serious clinical problem that poses a great threat to public health. The present study is aimed at assessing differences in bacterial kinetics with different antibiotic resistance profiles under environmental stress and at developing microbial tolerance models in lettuce during storage from 4 to 36°C. The drug-resistance phenotypes of 10 Salmonella Typhimurium (S. Typhimurium) isolates were examined using the broth microdilution method. The results of 10 S. Typhimurium isolates in the suspensions showed that a slow trend towards reduction of drug-sensitive (DS) isolates in relation to the others though without statistical difference. Compared to DS S. Typhimurium SA62, greater bacterial reduction was observed in multidrug-resistant (MDR) S. Typhimurium HZC3 during lettuce storage at 4°C (P < 0.05). It was likely that a cross-response between antibiotic resistance and food-associated stress tolerance. The greater growth in lettuce at 12°C was observed for DS S. Typhimurium SA62 compared to MDR S. Typhimurium HZC3 and was even statistically different (P < 0.05), while no significant difference was observed for bacterial growth between MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 strains in lettuce storage from 16 to 36°C (P > 0.05). The goodness-of-fit indices indicated the Log-linear primary model provided a satisfactory fit to describe the MDR S. Typhimurium HZC3 and DS S. Typhimurium SA62 survival at 4°C. A square root secondary model could be used to describe the effect of temperature (12, 16, 28, and 36°C) on the growth rates of S. Typhimurium HZC3 (adj - R 2 = 0.91, RMSE = 0.06) and S. Typhimurium SA62 (adj - R 2 = 0.99, RMSE = 0.01) derived from the Huang primary model. It was necessary to pay attention to the tolerance of antibiotic resistant bacteria under environmental stress, and the generated models could provide parts of the input data for microbial risk assessment of Salmonella with different antibiotic resistance profile in lettuce.
Collapse
Affiliation(s)
- Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Siyi Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yujuan Suo
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
37
|
Ye Q, Shang Y, Chen M, Pang R, Li F, Wang C, Xiang X, Zhou B, Zhang S, Zhang J, Wu S, Xue L, Ding Y, Wu Q. Identification of new serovar-specific detection targets against salmonella B serogroup using large-scale comparative genomics. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Shang Y, Ye Q, Wu Q, Pang R, Xiang X, Wang C, Li F, Zhou B, Xue L, Zhang Y, Sun X, Zhang J. PCR identification of Salmonella serovars for the E serogroup based on novel specific targets obtained by pan-genome analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Ye Q, Shang Y, Chen M, Pang R, Li F, Xiang X, Zhou B, Wang C, Zhang S, Zhang J, Wang J, Xue L, Ding Y, Wu Q. Mining and evaluating novel serovar-specific Salmonella C1 serogroup genes by polymerase chain reaction analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Corredor-García D, García-Pinilla S, Blanco-Lizarazo CM. Systematic Review and Meta-analysis: Salmonella spp. prevalence in vegetables and fruits. World J Microbiol Biotechnol 2021; 37:47. [PMID: 33564967 DOI: 10.1007/s11274-021-03012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
In this study, a systematic review and a meta-analysis were conducted to analyse recent worldwide information about the prevalence of Salmonella spp. in vegetables and fruits to estimate the effect of the different processes such as washing, cutting or disinfection, and place of sampling. A systematic search was conducted for articles from 2014 to 2020 published to date regarding prevalence of Salmonella spp. in vegetables and fruits, without excluding material by location, or author. It was possible to determine eight categories for vegetables and fruits in comparison with the meta-analysis which showed five categories due to data availability. Results showed prevalence for Salmonella spp. of 0.1%, 0.2%, 13.7%, 0.1%, and 0% for fruits, leafy vegetables, mixed vegetables related to ready-to-eat salads (RTE), tubercles, and tomatoes, respectively. Moreover, categories such as fruits, tubercles, and tomatoes as associated with different types of preparations and places of sampling (Retail stores, fresh products wholesale, street markets, distribution centers, farms, and processing plants) did not present a significant combined effect on the prevalence of Salmonella spp. Likewise, leafy, and mixed vegetables showed differences associated with a type of processing, where leafy fresh unprocessed vegetables had a significant positive effect on the prevalence of the pathogen regarding the RTE products. These findings may be useful for the construction of a quantitative model of risk assessment as a means to characterize the differences among the sort of vegetable, fruit, type of processing, and place of sampling.
Collapse
Affiliation(s)
- Daniel Corredor-García
- Food Engineering Program, Engineering Faculty, Food Engineering Research Group, Fundación Universitaria Agraria de Colombia, Calle 170#54 a-10,, Bogotá, D.C, Colombia
| | - Santiago García-Pinilla
- Food Engineering Program, Engineering Faculty, Food Engineering Research Group, Fundación Universitaria Agraria de Colombia, Calle 170#54 a-10,, Bogotá, D.C, Colombia
| | - Carla María Blanco-Lizarazo
- Food Engineering Program, Engineering Faculty, Food Engineering Research Group, Fundación Universitaria Agraria de Colombia, Calle 170#54 a-10,, Bogotá, D.C, Colombia.
| |
Collapse
|
41
|
Ben Hassena A, Haendiges J, Zormati S, Guermazi S, Gdoura R, Gonzalez-Escalona N, Siala M. Virulence and resistance genes profiles and clonal relationships of non-typhoidal food-borne Salmonella strains isolated in Tunisia by whole genome sequencing. Int J Food Microbiol 2020; 337:108941. [PMID: 33181420 DOI: 10.1016/j.ijfoodmicro.2020.108941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Whole genome sequencing (WGS) has made impressive progress in the field of molecular biology. Its most common application for public health is in the area of surveillance of food-borne diseases. WGS has the potential for providing a large amount of information, such as the identification of the strain type, the characterization of antibiotic resistance and virulence, and phylogeny. In our study, thirty-nine non-typhoidal Salmonella strains were isolated from diverse sources in Tunisia. Non-typhoidal Salmonella are among the most common pathogens contaminating food animals. The presence of virulence and antimicrobial resistance determinants in those strains were investigated using whole genome sequencing (WGS) and appropriate data analysis. The genomes were screened for several Salmonella virulence genes using the Virulence Factor Database VFDB. Twelve different virulence profiles, which correspond to the 12 identified serovars, were recognized. Several antimicrobial resistance genes were also detected: aac (6')-Iaa, sul1, tetA, bla-TEM and qnrS genes. Phylogenetic relationships among the strains were further assessed by a cgMLST analysis. The resulting phylogenetic tree consisted of several clusters consistently with the in silico multilocus sequence typing (MLST) and serotyping. Our findings demonstrated that WGS and subsequent data analysis provided an accurate tool for genetic characterization of bacterial strains compared to usual molecular typing techniques. To the best of our knowledge, this is the first report of an application of WGS for genetic characterization of food-borne Tunisian strains.
Collapse
Affiliation(s)
- Amal Ben Hassena
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Julie Haendiges
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Sonia Zormati
- Regional Center of Veterinary research of Sfax, Tunisia
| | - Sonda Guermazi
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Radhouane Gdoura
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Narjol Gonzalez-Escalona
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Mariam Siala
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax, Sfax, Tunisia; Department of Biology, Preparatory Institute for Engineering Studies of Sfax, University of Sfax, Tunisia.
| |
Collapse
|
42
|
Riva F, Riva V, Eckert EM, Colinas N, Di Cesare A, Borin S, Mapelli F, Crotti E. An Environmental Escherichia coli Strain Is Naturally Competent to Acquire Exogenous DNA. Front Microbiol 2020; 11:574301. [PMID: 33013812 PMCID: PMC7494812 DOI: 10.3389/fmicb.2020.574301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
The diffusion of antibiotic resistance determinants in different environments, e.g., soil and water, has become a public concern for global health and food safety and many efforts are currently devoted to clarify this complex ecological and evolutionary issue. Horizontal gene transfer (HGT) has an important role in the spread of antibiotic resistance genes (ARGs). However, among the different HGT mechanisms, the capacity of environmental bacteria to acquire naked exogenous DNA by natural competence is still poorly investigated. This study aimed to characterize the ability of the environmental Escherichia coli strain ED1, isolated from the crustacean Daphnia sp., to acquire exogenous DNA by natural competence. Transformation experiments were carried out varying different parameters, i.e., cell growth phase, amount of exogenous DNA and exposition to artificial lake water (ALW) and treated wastewater to mimic environmental-like conditions that may be encountered in the agri-food system. Results were compared with those showed by the laboratory E. coli strain DH5α. Our experimental data, supported by genomic sequencing, showed that, when exposed to pure water, ED1 strain was able to acquire exogenous DNA with frequencies (10–8–10–9) statistically higher than the ones observed for DH5α strain (10–10). Interestingly, higher values were retrieved for ED1 than DH5α strains exposed to ALW (10–7 vs. 10–9, respectively) or treated wastewater (10–8 vs. 10–10, respectively). We tested, therefore, ED1 strain ability to colonize the rhizosphere of lettuce, a model plant representative of raw-consumed vegetables of high economic importance in the ready-to-eat food industry. Results showed that ED1 strain was able to efficiently colonize lettuce rhizosphere, revealing a stable colonization for 14 days-long period. In conclusion, ED1 strain ability to acquire exogenous DNA in environmental-like conditions by natural competence, combined with its ability to efficiently and stably colonize plant rhizosphere, poses the attention to food and human safety showing a possible route of diffusion of antibiotic resistance in the agri-food system, sustaining the “One Health” warnings related to the antibiotic spread.
Collapse
Affiliation(s)
- Francesco Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Ester M Eckert
- Molecular Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Noemi Colinas
- Molecular Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy.,Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - Andrea Di Cesare
- Molecular Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
43
|
Chen S, Yang X, Fu S, Qin X, Yang T, Man C, Jiang Y. A novel AuNPs colorimetric sensor for sensitively detecting viable Salmonella typhimurium based on dual aptamers. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107281] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. BIOSENSORS 2020; 10:E58. [PMID: 32486225 PMCID: PMC7344754 DOI: 10.3390/bios10060058] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The use of biosensors is considered a novel approach for the rapid detection of foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or biochemical signals into measurable electrical signals, are systems containing a biological detection material combined with a chemical or physical transducer. The objective of this review was to present the effectiveness of various forms of sensing technologies for the detection of foodborne pathogens in food products, as well as the criteria for industrial use of this technology. In this article, the principle components and requirements for an ideal biosensor, types, and their applications in the food industry are summarized. This review also focuses in detail on the application of the most widely used biosensor types in food safety.
Collapse
Affiliation(s)
- Athmar A. Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|