1
|
Chen L, Pu Y, He X, Cao J, Jiang W. Physicochemical properties and in vitro hypolipidemic activities of three different bonding state pectic polysaccharide fractions extracted sequentially from pear pulp. Int J Biol Macromol 2025; 300:140284. [PMID: 39863223 DOI: 10.1016/j.ijbiomac.2025.140284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.71 % and 66.67 %, respectively, whereas CSF was low methyl-esterified pectic polysaccharides (47.83 %). WSF, CSF, and NSF all demonstrated low molecular weight, desirable rheological, thermal, antioxidant, and hypolipidemic effects in vitro. It was remarkable that WSF displayed the most excellent inhibition capacity of cholesterol micelles (26.63 %), pancreatic lipase (PL) (91.13 %)/cholesterol esterase (CEase) (53.10 %) activity inhibition, attributed to its highest DM and roughest morphology. CSF and NSF exhibited stronger cholate-binding capacity than WSF, inseparable from higher apparent viscosity and gel ability. On these grounds, different bonding state pectic polysaccharide fractions from pear presented some distinctions in their structural characteristics and functional properties, which might endow them with exploitation in health promotion and dietary supplements.
Collapse
Affiliation(s)
- Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Wang L, Zhang Z, Zeng Z, Lin Y, Xiong B, Zheng B, Zhang Y, Pan L. Structural characterization of polysaccharide from an edible fungus Dictyophora indusiata and the remodel function of gut microbiota in inflammatory mice. Carbohydr Polym 2025; 351:123141. [PMID: 39779040 DOI: 10.1016/j.carbpol.2024.123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025]
Abstract
Dictyophora indusiata is an edible fungus, which is known as bamboo fungus. D. indusiata polysaccharide is considered as the most important bioactive component. The aim of this study was to investigate the structure of a polysaccharide fraction from D. indusiata and the effects of D. indusiata polysaccharide on gut microbiota and metabolites in inflammatory mice. Here, the DIP1p, a polysaccharide fraction from D. indusiata, was obtained by isolation and purification using Cellulose DE-52 column and Sephadex G-200 gel column. The results showed that DIP1p is a heteropolysaccharide consisting of glucose, mannose, galactose and xylose in the ratio of 55.2 %, 28.6 %, 10.3 % and 5.9 %, which mainly linked by →3)-Glcp-(1 → glycosidic bonds. In addition, D. indusiata polysaccharide restored the colonic length reduction, modulated the secretion of cytokine and mitigated histological damage. It is remarkable that D. indusiata polysaccharide enhanced the abundance of beneficial bacteria Blautia and Roseburia, and increased the levels of short-chain fatty acids including acetic acid and propionic acid. Our findings indicated that D. indusiata polysaccharide remodeled gut microbiota and enhanced short-chain fatty acids levels to alleviate the inflammation.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Bin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Li Y, Liu J, Pei D, Di D. Structural Characterization of, and Protective Effects Against, CoCl 2-Induced Hypoxia Injury to a Novel Neutral Polysaccharide from Lycium barbarum L. Foods 2025; 14:339. [PMID: 39941931 PMCID: PMC11818000 DOI: 10.3390/foods14030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Oxidative stress is closely related to the occurrence and development of ischaemic stroke. Natural plant polysaccharides have potential value in inhibiting oxidative stress and preventing ischaemic stroke. Here, a novel neutral polysaccharide named LICP009-3F-1a with a Mw of 10,780 Da was separated and purified from Lycium barbarum L. fruits. Linkage and NMR data revealed that LICP009-3F-1a has the following backbone: →4)-β-D-Glcp-(1→6)-β-D-Galp-(1→, with a branched chain of β-D-Galp-(1→3)-β-D-Galp-(1→, α-L-Araf-(1→ and →6)-α-D-Glcp-(1→ connected to the main chain through O-3 of →3,6)-β-D-Galp-(1→. X-ray and SEM analyses showed that LICP009-3F-1a has a semicrystalline structure with a laminar morphology. Thermal property analysis showed that LICP009-3F-1a is thermally stable. In vivo experiments suggested that LICP009-3F-1a could inhibit hypoxia-induced oxidative stress damage by eliminating ROS, reversing and restoring the activities of the antioxidant enzymes SOD, CAT, and GPx, and reducing the expression levels of the HIF-1α and VEGF genes. Blocking the apoptosis genes Bax and Caspase 3 and upregulating the expression of the antiapoptotic gene Bcl-2 protected PC12 cells from hypoxia-induced apoptosis. These results suggest that LICP009-3F-1a may have multiple potential uses in the treatment of IS.
Collapse
Affiliation(s)
| | | | | | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China; (Y.L.); (J.L.); (D.P.)
| |
Collapse
|
4
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
5
|
Chen Z, Wang D, Gu S, Wu N, Wang K, Zhang Y. Size exclusion chromatography and asymmetrical flow field-flow fractionation for structural characterization of polysaccharides: A comparative review. Int J Biol Macromol 2024; 277:134236. [PMID: 39079564 DOI: 10.1016/j.ijbiomac.2024.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Natural polysaccharides exhibit a wide range of biological activities, which are closely related to their structural characteristics, including their molecular weight distribution, size, monosaccharide composition, glycosidic bond types and spatial conformation, etc. Size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4), as two potent separation techniques, both harbor potential for continuous development and enhancement. This manuscript reviewed the fundamental principles and separation applications of SEC and AF4. The structural information and spatial conformation of polysaccharides can be obtained using SEC or AF4 coupled with multiple detectors. In addition, this manuscript elaborates in detail on the shear degradation of samples such as polysaccharides separated by SEC. In addition, the abnormal elution that occurs during the application of the two methods is also discussed. Both SEC and AF4 possess considerable potential for ongoing development and refinement, thereby offering increased possibilities and opportunities for polysaccharide separation and characterization.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Fan H, Li R, Zhang Y, Xu X, Pan S, Liu F. Effect of H 2O 2/ascorbic acid degradation and gradient ethanol precipitation on the physicochemical properties and biological activities of pectin polysaccharides from Satsuma Mandarin. Int J Biol Macromol 2024; 280:135843. [PMID: 39306161 DOI: 10.1016/j.ijbiomac.2024.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this work, three degraded polysaccharides (DMPP-40, DMPP-60, DMPP-80) were successfully obtained by H2O2/ascorbic acid degradation and gradient ethanol precipitation from Satsuma mandarin peel pectin (MPP), and their physicochemical properties, antioxidant and prebiotic activities were investigated. The molecular weight of MPP, DMPP-40, DMPP-60, DMPP-80 were determined to be 336.83 ± 10.57, 18.93 ± 0.54, 26.07 ± 0.83 and 8.71 ± 0.27 kDa, respectively. The ethanol concentration significantly affected the physicochemical properties of DMPPs. DMPP-60 showed the highest yield (69.07 %) and uronic acid content (64.85 %), DMPP-80 showed the lowest molecular weight (8.71 kDa), and the composition and proportion of monosaccharides of DMPPs were significantly different. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (1H NMR) confirmed that DMPPs exhibited similar functional groups, while X-ray diffraction (XRD) indicated that DMPP-40 possessed some crystallographic sequences. Scanning electron microscopy (SEM) images directly verified the fragmented structure and reduced surface area of DMPPs. Besides, the H2O2/ascorbic acid treatment could obviously reduce the apparent viscosity and thermal stability of MPP. Meanwhile, the results of bioactivity assay showed that DMPPs possessed better antioxidant activity and probiotics pro-proliferative effects compared with MPP. DMPP-80 could significantly inhibit lipopolysaccharides (LPS)-stimulated production of inflammatory factors (including nitric oxide (NO), interleukin (IL)-6, tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in RAW264.7 cells. Results suggest that the H2O2/ascorbic acid combined with gradient ethanol precipitation has potential applications in degradation and separation of MPP to improve its biological activities.
Collapse
Affiliation(s)
- Hekai Fan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanbing Zhang
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Elnahas MO, Elkhateeb WA, Daba GM. Nutritive profile, pharmaceutical potentials, and structural analysis of multifunctional bioactive fungal polysaccharides-A review. Int J Biol Macromol 2024; 266:130893. [PMID: 38493817 DOI: 10.1016/j.ijbiomac.2024.130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Asian nations have long used edible fungi as food and medicine. Polysaccharides are among the main building units of the cell walls of fungi. Fungal polysaccharides have been documented in the medicinal and industrial sectors as products with a vast array of various biological activities and applications such as antitumor, antioxidant, anticancer, immunomodulation, and antiviral activities, etc. The goal of this review is to give insights into the various biological activities of mushroom polysaccharides and their potential as a medicine for human health. The extraction, purity, and structural analysis of fungal polysaccharides were also reviewed in this work. Also, future prospective, and challenges for fungal polysaccharides in pharmaceutical applications can be found in this review. Overall, this review serves as a valuable resource in exploring the therapeutic potential and applications of fungal polysaccharides. By building upon the existing knowledge base and addressing critical research gaps, researchers can find new opportunities for utilizing fungal polysaccharides as valuable therapeutic agents and functional ingredients in pharmaceuticals, nutraceuticals, and biotechnology.
Collapse
Affiliation(s)
- Marwa O Elnahas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Xu M, Ren J, Jiang Z, Zhou S, Wang E, Li H, Wu W, Zhang X, Wang J, Jiao L. Structural characterization and immunostimulant activities of polysaccharides fractionated by gradient ethanol precipitation method from Panax ginseng C. A. Meyer. Front Pharmacol 2024; 15:1388206. [PMID: 38720774 PMCID: PMC11076722 DOI: 10.3389/fphar.2024.1388206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Panax ginseng C. A. Meyer is a dual-purpose plant for medicine and food, its polysaccharide is considered as an immune enhancer. Four polysaccharides, WGP-20-F, WGP-40-F, WGP-60-F and WGP-80-F were obtained from ginseng via water extraction and gradient ethanol precipitation with different molecular weights (Mw) of 1.720 × 106, 1.434 × 106, 4.225 × 104 and 1.520 × 104 Da, respectively. WGP-20-F and WGP-40-F which with higher Mw and a triple-helix structure are glucans composed of 4-ɑ-Glcp, do not show remarkable immunoregulatory effects. WGP-60-F and WGP-80-F are heteropolysaccharides mainly composed of 4-ɑ-Glcp and also contain t-ɑ-Araf, 5-ɑ-Araf and 3,5-ɑ-Araf. They are spherical branched conformations without a triple-helix structure and can effectively increase the index of immune organs, lymphocyte proliferation, activate macrophages to regulate the immune system in mice and further enhance immune functions by improving delayed-type hypersensitivity reaction and antibody response. These results indicated that WGP-60-F and WGP-80-F could be used as potential immune enhancers, and gradient ethanol precipitation can be applied for the preparation of ginseng bioactive polysaccharide.
Collapse
Affiliation(s)
- Mengran Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuo Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Enpeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- The Affiliated Hospital Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol 2024; 262:129923. [PMID: 38325677 DOI: 10.1016/j.ijbiomac.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Traditional Chinese medicines are tremendous sources of polysaccharides, which are of great interest in the human welfare system as natural medicines, food, and cosmetics. This review aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of traditional Chinese medicine polysaccharides (TCMPs), and the chemical structure, biological activities (anti-tumor, hypoglycemic, antioxidant, intestinal flora regulation, immunomodulatory, anti-inflammatory, anti-aging, hypolipidemic, hepatoprotective, and other activities), and the underlying mechanisms of polysaccharides extracted from 76 diverse traditional Chinese medicines were compared and discussed. With this wide coverage, a total of 164 scientific articles were searched from the database including Google Scholar, PubMed, Web of Science, and China Knowledge Network. This comprehensive survey from previous reports indicates that TCMPs are non-toxic, highly biocompatible, and good biodegradability. Besides, this review highlights that TCMPs may be excellent functional factors and effective therapeutic drugs. Finally, the current problems and future research advances of TCMPs are also introduced. New valuable insights for the future researches regarding TCMPs are also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengqi Zhang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Can Zhang
- School of Chemistry, Chemical Engineering and Materials, Heilongjiang University, No.74 Xuefu Road, Nangang District, Harbin 150080, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
10
|
You Y, Song C, Fu Y, Sun Y, Wen C, Zhu B, Song S. Structure-activity relationship of Caulerpa lentillifera polysaccharide in inhibiting lipid digestion. Int J Biol Macromol 2024; 260:129435. [PMID: 38228205 DOI: 10.1016/j.ijbiomac.2024.129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Caulerpa lentillifera polysaccharide (CLP) has been characterized as a sulfated polysaccharide which can effectively inhibit lipid digestion. However, little information was known regarding its inhibitory mechanisms. In the present study, desulfation and degradation were conducted to prepare the derivatives of CLP, and a series of chemical and spectroscopic methods were used to elucidate the structure-activity relationship of CLP on the inhibitory effect of lipid digestion. Results revealed that CLP possessed excellent binding capacities for sodium cholate, sodium glycocholate, and sodium taurocholate. In addition, CLP can effectively inhibit lipase activity by quenching the fluorescence intensity, changing the secondary structure, and decreasing the UV-Vis absorbance. Of note, sulfate groups in CLP took a vital role in inhibiting lipase activity, while the molecular weight of CLP showed a positive correlation with the binding activities of bile acids. Furthermore, adding CLP into the whey protein isolate (WPI) emulsion system also impeded lipid digestion, indicating that CLP can be a potential reduced-fat nutraceutical used in food emulsion systems.
Collapse
Affiliation(s)
- Ying You
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China; Institute of Functional Agriculture, Shanxi Agriculture University, Taigu 030801, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chen Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Yinghuan Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaa-nxi University of Science and Technology, Xi'an 710021, PR China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China; Institute of Functional Agriculture, Shanxi Agriculture University, Taigu 030801, China.
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Han P, Tian X, Wang H, Ju Y, Sheng M, Wang Y, Cheng D. Purslane (Portulacae oleracea L.) polysaccharide relieves cadmium-induced colonic impairments by restricting Cd accumulation and inhibiting inflammatory responses. Int J Biol Macromol 2024; 257:128500. [PMID: 38040149 DOI: 10.1016/j.ijbiomac.2023.128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
This study aimed to assess the protective effects of purslane polysaccharide (PP) on colonic impairments in mice exposed to cadmium (Cd). C57BL/6 mice were administered with PP (200-800 mg/kg/day) by gavage for 4 weeks after treatment with 100 mg·L-1 CdCl2. PP significantly reduced Cd accumulation in the colon tissue and promoted the excretion of Cd in the feces. PP could reduce the expression levels of inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6) and inhibit the activation of the TLR4/MyD88/NF-κB signaling pathway. In addition, the results of 16S rRNA analysis revealed that PP significantly increased the abundance of probiotics (Lactobacillus), while decreased the abundance of pathogenic bacteria (Lachnospiraceae_NK4A136_group). Following the augmentation of beneficial intestinal bacteria, the treatment with PP led to an increase in the levels of intestinal microbial metabolites, specifically short-chain fatty acids (SCFAs). The SCFAs are known for their anti-inflammatory properties, immune-regulatory effects, and promotion of intestinal barrier function. Additionally, the results suggested that PP effectively impeded the enterohepatic circulation by inhibiting the FXR-FGF15 axis in the intestines of Cd-exposed mice. In summary, PP mitigated the toxic effects of Cd by limiting its accumulation and suppressing inflammatory responses in colon.
Collapse
Affiliation(s)
- Pengyun Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haozhe Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mian Sheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Zhang J, Wang C, Li Q, Liang W. Polysaccharides from Radix Peucedani: Extraction, Structural Characterization and Antioxidant Activity. Molecules 2023; 28:7845. [PMID: 38067574 PMCID: PMC10707930 DOI: 10.3390/molecules28237845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, an ultrasound-assisted green extraction method was applied for the extraction of polysaccharides from Radix Peucedani based on deep eutectic solvents (DESs), and the result showed that a DES system composed of betaine and 1,2-propylene glycol with a molar ratio of 1:2 possessed the optimal extraction efficiency for polysaccharides. Single-factor and Box-Behnken designs were used to determine the optimum extraction conditions for the maximum yields of polysaccharides from Radix Peucedani by using DESs. The maximum yields of polysaccharides attained 11.372% within a DES water content of 19%, an extraction time of 36 min, an extraction temperature of 54 °C, a solid-liquid ratio of 1:30 and an ultrasonic irradiation power of 420 W. The physicochemical properties of polysaccharides were analyzed using ICS and FT-IR, and the structure morphology was observed by SEM. The polysaccharides extracted from Radix Peucedani exhibited general antioxidant activities in vitro including DPPH, Hydroxyl and ABTS+ radical-scavenging activity. The antioxidant mechanism of Radix Peucedani polysaccharides was investigated using network pharmacology and molecular docking methods. The result showed that the high binding activity of glucose and IL1B, galactose and CASP3 was recognized as a potential mechanism for the antioxidant effects of Radix Peucedani polysaccharides.
Collapse
Affiliation(s)
| | | | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (C.W.); (W.L.)
| | | |
Collapse
|
13
|
Visan AI, Cristescu R. Polysaccharide-Based Coatings as Drug Delivery Systems. Pharmaceutics 2023; 15:2227. [PMID: 37765196 PMCID: PMC10537422 DOI: 10.3390/pharmaceutics15092227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic polysaccharide-based coatings have recently emerged as versatile strategies to transform a conventional medical implant into a drug delivery system. However, the translation of these polysaccharide-based coatings into the clinic as drug delivery systems still requires a deeper understanding of their drug degradation/release profiles. This claim is supported by little or no data. In this review paper, a comprehensive description of the benefits and challenges generated by the polysaccharide-based coatings is provided. Moreover, the latest advances made towards the application of the most important representative coatings based on polysaccharide types for drug delivery are debated. Furthermore, suggestions/recommendations for future research to speed up the transition of polysaccharide-based drug delivery systems from the laboratory testing to clinical applications are given.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania
| |
Collapse
|
14
|
Hou S, Tan M, Chang S, Zhu Y, Rong G, Wei G, Zhang J, Zhao B, Zhao QS. Effects of different processing (Paozhi) on structural characterization and antioxidant activities of polysaccharides from Cistanche deserticola. Int J Biol Macromol 2023:125507. [PMID: 37355072 DOI: 10.1016/j.ijbiomac.2023.125507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
In this study, five polysaccharides were extracted from processed Cistanche deserticola. The processing included crude product, enzymatic hydrolysis, hot air drying, stir-baking with wine and high-pressure steaming, and these polysaccharides were named as CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs and HPS-CDPs, respectively. The structural characteristics and biological activities were explored. The results showed that processing changed properties of C. deserticola polysaccharides. CP-CDPs had the highest brightness value L*(93.84) and carbohydrate content (61.27 %). EH-CDPs had minimum Mw (1531.50 kDa), while SBW-CDPs had maximum Mw (2526.0 kDa). Glucose was major predominant monosaccharide in CP-CDPs (89.82 %), HAD-CDPs (79.3 %), SBW-CDPs (59.41 %) and HPS-CDPs (63.86 %), while galactose was major monosaccharide in EH-CDPs (29.44 %). According to SEM, SBW-CDPs showed compact structures, while HPS-CDPs and HAD-CDPs had similar looser structure than SBW-CDPs; meanwhile, CP-CDPs showed irregular agglomeration shape and EH-CDPs was dense blocky shape. The AFM showed SBW-CDPs had the largest molecular chain than other polysaccharides. When scavenging activity reaching 50 %, the concentrations of CP-CDPs, EH-CDPs, HAD-CDPs, SBW-CDPs, HPS-CDPs are 2.25, 0.25, 0.75, 1.8 and 1.5 mg/mL, respectively. This study sheds light on the effects of traditional Chinese medicine processing on characteristics, bioactivities of C. deserticola polysaccharides, and provides the basis for applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shoubu Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Senlin Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guang Rong
- HiperCog Group, Department of Education, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
| | - Gaojie Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinyu Zhang
- Inner Mongolia Alashan Cistanche Co. ltd, Alashanzuoqi, Inner Mongolia 750306, PR China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Fu C, Ye K, Ma S, Du H, Chen S, Liu D, Ma G, Xiao H. Simulated gastrointestinal digestion and gut microbiota fermentation of polysaccharides from Agaricus bisporus. Food Chem 2023; 418:135849. [PMID: 36963137 DOI: 10.1016/j.foodchem.2023.135849] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
Agaricus bisporus, an edible mushroom, is grown and consumed worldwide for its delicious taste and multiple health benefits. A. bisporus polysaccharides (ABP) are the main bioactive ingredient of the mushroom that confers health benefits. In this study, we prepared and characterized ABP, and the digestion, fermentation prosperities, and the effect of ABP on gut microbiota were detected via in vitro simulated digestion and gut microbiota fermentation. The results showed that during the simulated digestion process, the molecular weight of ABP was unchanged, and no free monosaccharide was produced, indicating that ABP could not be digested completely. However, after the fermentation, gut microbiota degraded and utilized ABP, which produced short-chain fatty acids and caused a decrease in pH value. Meanwhile, ABP modulated the gut microbiota composition by increasing the abundance of beneficial bacteria. The results suggested that ABP is a promising food component with prebiotic potential.
Collapse
Affiliation(s)
- Chujing Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Sai Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst 01003, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Science, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
16
|
Effects of different extraction techniques on the structural, physicochemical, and bioactivity properties of heteropolysaccharides from Platycodon grandiflorum roots. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Zhang ZF, Song TT, Chen JF, Lv GY. Recovery of a hypolipidemic polysaccharide from artificially cultivated Sanghuangporus vaninii with an effective method. Front Nutr 2023; 9:1095556. [PMID: 36712537 PMCID: PMC9880258 DOI: 10.3389/fnut.2022.1095556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, an effective method was developed to extract the polysaccharide from Sanghuangporus vaninii (PFSV) by destroying the cell wall. Box-Behnken design was employed to determine the optimal processing conditions as follows: processing temperature (80°C), processing time (0.81 h) and amount of HCl (1.5 ml). Under these conditions, the yield of PFSV reached 5.94 ± 0.16%. The purified polysaccharide (PFSV-2) was found to be a hetero-polysaccharide with an average molecular weight of 20.377 kDa. The backbone of PFSV-2 was composed of an →6)-α-Galp-(1→ and →2,6)-β-Manp-(1→ and →2)-α-Fucp-(1→ and was branched of t-α-Manp-(1→ at position 2 of residue B. PFSV-2 showed hypolipidemic activity by decreasing lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Furthermore, PFSV-2 downregulated the pparg, fasn, and HMGCRb genes and upregulated the pparab and acaca genes. These findings suggested PFSV-2 may be a promising candidate in lipid regulation therapy.
Collapse
|
18
|
Medina OJ, Patarroyo W, Moreno LM. Current trends in cacti drying processes and their effects on cellulose and mucilage from two Colombian cactus species. Heliyon 2022; 8:e12618. [PMID: 36619411 PMCID: PMC9816971 DOI: 10.1016/j.heliyon.2022.e12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/02/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
The effect of temperature and drying technologies on mucilage and cellulose (obtained by the microwave-assisted extraction technique, MAE) from Opuntia ficus-indica (OFI) and Austrocylindropuntia cylindrica (CC) was determined using a conventional oven (CO) and Refractive Window (RW). Mathematical modeling was performed from drying kinetics data using the Lewis, Henderson-Pabis, Page, and Logarithmic models. Activation Energy (Ea) and Diffusivity (D) were also determined. The model with the best fit was the logarithmic one, with a correlation coefficient (R2) greater than 0.99. The obtained activation energies were 22.81 kJ mol-1 for Refractance window (RW) and 31.44 kJ mol-1 using conventional hot air drying (CO) while a diffusivity of 2.9 ∗10-8 m2 s-1 for RW and 1.3∗10-8 m2 s-1 for CO were found as well. According to our results, a greater drying efficiency and a less chemical deterioration of the plant sample are obtained by drying with Refractance window.
Collapse
|
19
|
Wang B, Yan L, Guo S, Wen L, Yu M, Feng L, Jia X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front Nutr 2022; 9:908175. [PMID: 35669078 PMCID: PMC9163837 DOI: 10.3389/fnut.2022.908175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides, which are widely found in Chinese herbs and work as one of the important active ingredients. Its biological activity is attributed to its complex chemical structure with diverse spatial conformations. However, the structural elucidation is the foundation but a bottleneck problem because the majority of CHPs are heteropolysaccharides with more complex structures. Similarly, the studies on the relationship between structure and function of CHPs are even more scarce. Therefore, this review summarizes the structure-activity relationship of CHPs. Meanwhile, we reviewed the structural elucidation strategies and some new progress especially in the advanced structural analysis methods. The characteristics and applicable scopes of various methods are compared to provide reference for selecting the most efficient method and developing new hyphenated techniques. Additionally, the principle structural modification methods of CHPs and their effects on activity are summarized. The shortcomings, potential breakthroughs, and developing directions of the study of CHPs are discussed. We hope to provide a reference for further research and promote the application of CHPs.
Collapse
|
20
|
Long H, Xia X, Liao S, Wu T, Wang L, Chen Q, Wei S, Gu X, Zhu Z. Physicochemical Characterization and Antioxidant and Hypolipidaemic Activities of a Polysaccharide From the Fruit of Kadsura coccinea (Lem.) A. C. Smith. Front Nutr 2022; 9:903218. [PMID: 35662931 PMCID: PMC9158746 DOI: 10.3389/fnut.2022.903218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 01/24/2023] Open
Abstract
Kadsura coccinea fruit, a novel fruit resource, has attracted wide interest, but the physicochemical characteristics and biological activities of its polysaccharides remain unclear. This study investigated the physicochemical properties of a polysaccharide extracted from K. coccinea fruit polysaccharide (KCFP) and evaluated its antioxidant and hypolipidaemic activities in vitro and in vivo. KCFP is an amorphous, thermally stable pectin heteropolysaccharide with an average molecular weight of 204.6 kDa that is mainly composed of mannose, rhamnose, glucose, galactose, xylose, arabinose, galacturonic acid (molar percentage >70%) and glucuronic acid. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging assays and an iron reducing antioxidant power assay showed that KCFP has strong antioxidant capacity, while the bile acid binding assay showed that KCFP has hypolipidaemic potential in vitro. The antioxidant and hypolipidaemic activities of KCFP were further evaluated in high-fat diet-induced hyperlipidaemic mice. KCFP significantly increased the activities of superoxide dismutase, glutathione peroxidase and catalase, decreased the malondialdehyde content, significantly reduced the total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels, and increased the amount of high-density lipoprotein cholesterol (HDL-C). These findings suggest that KCFP could be used as a functional food to remedy oxidative damage and hyperlipidaemia.
Collapse
Affiliation(s)
- Hairong Long
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Xianghua Xia
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Suqi Liao
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Lijun Wang
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Qianping Chen
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Shugen Wei
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
| | - Xiaoyu Gu
- Guangxi Botanical Garden of Medicinal Plants, No. 189, Nanning, China
- *Correspondence: Xiaoyu Gu,
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou, China
- Zhenjun Zhu,
| |
Collapse
|
21
|
Kalita P, Ahmed AB, Sen S, Chakraborty R. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism. Int J Biol Macromol 2022; 206:681-698. [PMID: 35247430 DOI: 10.1016/j.ijbiomac.2022.02.189] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
Abstract
Currently, research on natural products is facing challenging future in various aspects. A large group of natural polysaccharides such as β-glucan, cellulose, hemicellulose, chitin, pectin, agaropectin, heteroglycans, lignins, hydrocolloids, homopolysaccharides, heteropolysaccharides were studied extensively for their various therapeutical potential. Several research works have already demonstrated those polysaccharides has tremendous health benefits, and found to exhibit anticancer, antiviral, immunomodulatory, antimicrobial, anticoagulant, anti-inflammatory, antidiabetic, antioxidant and antitumor activities. Different mushroom, plant, fungus, algae, vegetables, microalgae etc. are some important source of several polysaccharide macromolecules such as glucans, ulvan A, ulvan B, fucoidan, rhamnan sulfate, laminarin sulfate, agar, alginate, heteroglycans. Earlier research work demonstrated that natural polysaccharides have the highest ability to carry biological properties along with some biopolymers like as proteins and nucleic acids due to their structural variability. The preventive effect of these biomacromolecules was extensively studied, especially their beneficial effect on chronic metabolic conditions like dyslipidemia and related disorders. Dyslipidemia is a serious metabolic disorder associated with coronary heart disease, coronary artery diseases, hypercholesterolemia, atherosclerosis, etc. Dietary natural polysaccharides could play an important role in the management and prevention of dyslipidemia. Polysaccharides from natural sources mainly sulfated polysaccharides exhibited predominant lipid-lowering and cholesterol-lowering activities through different mechanisms. Polysaccharides isolated from different edible plants, vegetables, plant, algae, mushroom with higher biological activities, particularly hypolipidemic activity were highlighted in this paper, in a way for their futuristic therapeutic application. This review aims to comprehensively discuss overall advances in hypolipidemic activity of polysaccharides, including their sources, structural characteristic and chemistry, biological activity and their probable mode of action.
Collapse
Affiliation(s)
- Pratap Kalita
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India; Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India; Research Scholar, Assam Science Technology University, Guwahati, Assam, 781013, India.
| | - Abdul Baquee Ahmed
- Girijananda Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Raja Chakraborty
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, West Bengal, 700126, India
| |
Collapse
|
22
|
Wang D, Xue Z, Wu H, Shi G, Feng S, Zhao L. Hepatoprotective effect and structural analysis of Hedysarum polysaccharides in vivo and in vitro. J Food Biochem 2022; 46:e14188. [PMID: 35484857 DOI: 10.1111/jfbc.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
The crude Hedysarum polysaccharides (HPS: HPS-50 and HPS-80) obtained from Radix Hedysari exhibited great pharmacological activities in our previous research. This study investigated the effects of HPS on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury (ALI) in mice and LPS-induced injury in LO2 cells, as well as the relationship between structural characteristics and hepatoprotective activities. The in vivo results showed that compared with HPS-80, HPS-50 showed stronger hepatoprotection, which improved histopathological changes to normal levels. HPS-50 significantly decreased the levels of ALT, AST, MPO, and MDA, increased the activities of SOD, CAT, and GSH, and suppressed the LPS/D-GalN-triggered production of TNF-α, IL-1β, and IL-6 (p < .05). The results in vitro showed that HPS-50-P (HPS-50-1, HPS-50-2, and HPS-50-3) purified from HPS-50 played significant protective roles against LPS-induced injury in LO2 cells by reducing cell apoptosis and relieving cell cycle arrest. HPS-50-2 restored the percentage of normal cells from 54.8% to 94.7%, and reduced the S phase cells from 59.40% to 47.05% (p < .01). By analyzing the structure of HPS-50-P, including monosaccharide composition, molecular weight, chain conformation, and surface morphology, we speculated that the best protective effect of HPS-50-2 might be attributed to its beta configuration, highest molecular weight, and high glucose and galactose contents. These findings indicate that HPS-50 might be a promising source of functional foods for the protection and prevention of ALI. PRACTICAL APPLICATIONS: In this study, the protective effect of HPS on ALI was evaluated from multiple perspectives, and HPS-50-2 was screened as a potential active ingredient. This study has two practical applications. First, it provides a new way to improve ALI, and a new option for patients to prevent and treat ALI. Second, this work also complements the pharmacological activity of Radix Hedysari and provides a basis for the development of Radix Hedysari as a functional food.
Collapse
Affiliation(s)
- Donghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Zhiyuan Xue
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Huifang Wu
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Gengen Shi
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lianggong Zhao
- The Second Hospital of Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
23
|
Comparison of physicochemical characteristics and biological activities of polysaccharides from barley (Hordeum vulgare L.) grass at different growth stages. Food Chem 2022; 389:133083. [PMID: 35487082 DOI: 10.1016/j.foodchem.2022.133083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022]
Abstract
Barley grass polysaccharides (BGPs) are some of the major bioactive constituents of barley (Hordeum vulgare L.) grass (BG). They exhibit favorable biological activities and health benefits. In this study, seven BGPs were extracted from BG, which was harvested at three different growth stages (e.g., seedling, tillering, and stem elongation), by alkaline-extraction method. Their physicochemical properties, structural characteristics, and biological activities were investigated and compared. Results demonstrated that the extraction yields, chemical compositions, monosaccharide constituents, and molecular weights of the seven BGPs obtained at different growth stages varied obviously. These BGPs had similar preliminary structural characteristics but different microstructures and thermal properties. Furthermore, the BGPs (BGP-Z12 and BGP-Z21) obtained at the seedling stage possessed stronger in vitro antioxidant potentials, cholic acid binding activity, and immunological activity than other BGPs. Therefore, these results indicated that that the seedling stage of BG was the preferable harvest time for preparing highly bioactive BGPs.
Collapse
|
24
|
Du B, Nie S, Peng F, Yang Y, Xu B. A narrative review on conformational structure characterization of natural polysaccharides. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei PR China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| | - Fei Peng
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei PR China
| | - Yuedong Yang
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei PR China
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
25
|
An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022; 27:molecules27061903. [PMID: 35335266 PMCID: PMC8952498 DOI: 10.3390/molecules27061903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a chronic metabolic disease caused by the abnormal metabolism of lipoproteins in the human body. Its main hazard is to accelerate systemic atherosclerosis, which causes cerebrovascular diseases such as coronary heart disease and thrombosis. At the same time, although the current hypolipidemic drugs have a certain therapeutic effect, they have side effects such as liver damage and digestive tract discomfort. Many kinds of polysaccharides from natural resources possess therapeutic effects on hyperlipidemia but still lack a comprehensive understanding. In this paper, the research progress of natural polysaccharides on reducing blood lipids in recent years is reviewed. The pharmacological mechanisms and targets of natural polysaccharides are mainly introduced. The relationship between structure and hypolipidemic activity is also discussed in detail. This review will help to understand the value of polysaccharides in lowering blood lipids and provide guidance for the development and clinical application of new hypolipidemic drugs.
Collapse
|
26
|
Ma G, Xu Q, Du H, Muinde Kimatu B, Su A, Yang W, Hu Q, Xiao H. Characterization of polysaccharide from Pleurotus eryngii during simulated gastrointestinal digestion and fermentation. Food Chem 2022; 370:131303. [PMID: 34662794 DOI: 10.1016/j.foodchem.2021.131303] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Pleurotus eryngii is a valuable new edible mushroom variety cultivated on a large scale in China. The polysaccharides found in this mushroom are strong bioactive. This study used simulated digestion and fermentation model to study the digestion and fermentation characteristics of Pleurotus eryngii polysaccharide (PEP) and its effect on gut microbiota. The results showed that the molecular weight of PEP remained unchanged after simulated digestion, and the overall structure of PEP was not destroyed, indicating that PEP was not decomposed during digestion. However, during fermentation, PEP was degraded and utilized by intestinal flora to produce a variety of short-chain fatty acids (SCFAs), which reduced the pH value in fecal cultures. Meanwhile, PEP regulated the composition of intestinal flora, and the relative abundance of Firmicutes increased significantly. These suggests that PEP can be used as a functional food to promote intestinal health and prevent disease.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Qian Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA
| | - Benard Muinde Kimatu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Department of Dairy and Food Science and Technology, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| | - Anxiang Su
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA.
| |
Collapse
|
27
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Chen P, Xu Y, Yang S, Chang Q, Zheng B, Zhang Y, Hu X, Zeng H. Application of X-ray diffraction and energy dispersive spectroscopy in the isolation of sulfated polysaccharide from Porphyra haitanensis and its antioxidant capacity under in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6452-6462. [PMID: 33997981 DOI: 10.1002/jsfa.11316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The separation and purification of Porphyra haitanensis polysaccharide (PHP), and the determination of changes in molecular weight (Mw) and antioxidant capacity after in vitro digestion, were undertaken. RESULTS Analysis of two polysaccharide fractions (PHP0.5-1-UF and PHP1.0-1-UF) by various techniques showed that they were very pure sulfated polysaccharides without pigment or protein. PHP0.5-1-UF was filamentous or 'tape-like' sheets, whereas PHP1.0-1-UF had some filaments and large numbers of rounded aggregates. The Mw of PHP, PHP0.5-1-UF and PHP1.0-1-UF was 2.06 × 106 (±2.02%), 6.68 × 106 (±3.17%), and 1.14 × 106 (±3.44%) (g mol-1 ), respectively. After in vitro digestion, the Mw of PHP, PHP0.5-1-UF, and PHP1.0-1-UF decreased. Their antioxidant capacities were markedly higher than before digestion, especially PHP0.5-1-UF and its digestion products, which might be related to the reductions in Mw. CONCLUSION These findings provide a greater understanding of the separation and purification of sulfated polysaccharides and the influence of digestion on biological activity. They also contribute to the practical application of sulfated polysaccharides in functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhong Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Chang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
29
|
Yu S, Wang J, Li Y, Wang X, Ren F, Wang X. Structural Studies of Water-Insoluble β-Glucan from Oat Bran and Its Effect on Improving Lipid Metabolism in Mice Fed High-Fat Diet. Nutrients 2021; 13:nu13093254. [PMID: 34579130 PMCID: PMC8467107 DOI: 10.3390/nu13093254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Water-insoluble β-glucan has been reported to have beneficial effects on human health. However, no studies have thoroughly characterized the structure and function of water-insoluble β-glucan in oat bran. Thus, the structure and effect of water-insoluble β-glucan on weight gain and lipid metabolism in high-fat diet (HFD)-fed mice were analyzed. First, water-insoluble β-glucan was isolated and purified from oat bran. Compared with water-soluble β-glucan, water-insoluble β-glucan had higher DP3:DP4 molar ratio (2.12 and 1.67, respectively) and molecular weight (123,800 and 119,200 g/mol, respectively). Notably, water-insoluble β-glucan exhibited more fibrous sheet-like structure and greater swelling power than water-soluble β-glucan. Animal experiments have shown that oral administration of water-insoluble β-glucan tended to lower the final body weight of obese mice after 10 weeks treatment. In addition, water-insoluble β-glucan administration significantly improved the serum lipid profile (triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels) and epididymal adipocytes size. What is more, water-insoluble β-glucan reduced the accumulation and accelerated the decomposition of lipid in liver. In conclusion, water-insoluble β-glucan (oat bran) could alleviate obesity in HFD-fed mice by improving blood lipid level and accelerating the decomposition of lipid.
Collapse
Affiliation(s)
- Shoujuan Yu
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Jun Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
- Correspondence: ; Tel.: +86-010-62738589
| |
Collapse
|
30
|
Gunasekaran S, Govindan S, Ramani P. Investigation of chemical and biological properties of an acidic polysaccharide fraction from Pleurotus eous (Berk.) Sacc. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Hu SM, Zhou JM, Zhou QQ, Li P, Xie YY, Zhou T, Gu Q. Purification, characterization and biological activities of exopolysaccharides from Lactobacillus rhamnosus ZFM231 isolated from milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Dou ZM, Chen C, Huang Q, Fu X. Comparative study on the effect of extraction solvent on the physicochemical properties and bioactivity of blackberry fruit polysaccharides. Int J Biol Macromol 2021; 183:1548-1559. [PMID: 34029582 DOI: 10.1016/j.ijbiomac.2021.05.131] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023]
Abstract
In this study, hot water, 0.1 M HCl and 0.1 M NaOH and 0.1 M NaCl solution were separately used for extraction of blackberry polysaccharides (BPs: Hw, Ac, Al and Na). The physicochemical properties and biological activities were then investigated and compared. Results showed that the extraction yield, molecular weight, monosaccharide composition, particle size, triple-helical structure, surface morphology and rheological properties of BPs were greatly affected by extraction solvents. Bioactivity assays implied that the four BPs showed that the polysaccharides (Hw and Na) with higher molecular weight had stronger antioxidant and α-glucosidase inhibitory activity. Moreover, anti-glycated assay indicated that BPs with higher molecular weight and higher content of galacturonic acid possessed better inhibition of AGEs formation. These results suggested that the higher molecular weight of blackberry polysaccharide could be developed as a beneficial bioactive ingredient for diabetes mellitus and complications.
Collapse
Affiliation(s)
- Zu-Man Dou
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Chun Chen
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China.
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519715, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
34
|
Pawełczyk A, Żwawiak J, Zaprutko L. Kumquat Fruits as an Important Source of Food Ingredients and Utility Compounds. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Żwawiak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
35
|
Feki A, Sellem I, Hamzaoui A, Ben Amar W, Mellouli L, Zariat A, Nasri M, Ben Amara I. Effect of the incorporation of polysaccharide from Falkenbergia rufolanosa on beef sausages for quality and shelf life improvement. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Structural characteristics and in vitro and in vivo immunoregulatory properties of a gluco-arabinan from Angelica dahurica. Int J Biol Macromol 2021; 183:90-100. [PMID: 33872613 DOI: 10.1016/j.ijbiomac.2021.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
A water-soluble polysaccharide identified here as ADP80-2 was acquired from Angelica dahurica. ADP80-2 was a gluco-arabinan composed of arabinose and a trace of glucose with a molecular weight of 9950 g/mol. The backbone of ADP80-2 comprised →5)-α-L-Araf-(1→, →3, 5)-α-L-Araf-(1→, →6)-α-D-Glcp-(1→, with a terminal branch α-L-Araf-(1 → residue. In terms of immunoregulatory activity, ADP80-2 can significantly promote the phagocytosis, the production of nitric oxide (NO), and the secretion of cytokines (IL-6, IL-1β, and TNF-α) of macrophage. In addition to the cellular immunomodulatory activities, the chemokines related to immunoregulation were significantly increased in the zebrafish model after treated with ADP80-2. These biological results indicated that ADP80-2 with immunomodulatory effects was expected to be useful for the development of new immunomodulatory agents. Simultaneously, the discovery of ADP80-2 further revealed the chemical composition of A. dahurica used as a traditional Chinese medicine and spice.
Collapse
|
37
|
Carpintero‐Tepole V, Córdova‐Aguilar MS, Vázquez‐León LA, Guzmán‐Huerta C, Blancas‐Cabrera A, Ascanio G. Ultrafiltration of
Opuntia ficus‐indica
mucilage obtained by solvent‐free mechanical extraction. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Violeta Carpintero‐Tepole
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México Mexico City Mexico
| | | | - Lucio Abel Vázquez‐León
- Cátedra CONACYT‐UNPA, Instituto de Biotecnología, Universidad del Papaloapan ‐ Campus Tuxtepec Tuxtepec Mexico
| | - Citlali Guzmán‐Huerta
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México Mexico City Mexico
| | - Abel Blancas‐Cabrera
- Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Mexico City Mexico
| | - Gabriel Ascanio
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
38
|
Shi Y, Ye YF, Zhang BW, Liu Y, Wang JH. Purification, structural characterization and immunostimulatory activity of polysaccharides from Umbilicaria esculenta. Int J Biol Macromol 2021; 181:743-751. [PMID: 33798575 DOI: 10.1016/j.ijbiomac.2021.03.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/27/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
In this study, an active component UP1-1 was isolated from Chinese Huangshan Umbilicaria esculenta via hot water extraction and purified by anion-exchange and gel-filtration chromatography. UP1-1 mainly composed of galactose, mannose and glucose in a molar ratio of 0.8:1.0:4.6 with an average molecular weight of 281 kDa. Methylation analysis of UP1-1 revealed the major glycosidic bonds comprised 1,6-linked Glcp, 1,4-linked Glcp, t-linked Glcp, 1,3,6-linked Manp, 1,3-linked Galp, t-linked Galp at the ratio of 2.28:0.38:0.32:0.63:0.25:0.29. Structural analysis results revealed that the backbone of UP1-1 consisted of →6)-β-D-Glcp-(1→, →6)-β-D-Manp-(1→, →4)-β-D-Glcp-(1 → residues with side chains of →3)-β-D-Galp-(1→, β-D-Galp-(1 → and β-D-Glcp-(1 → branches located at O-3 position of →6)-β-D-Manp-(1→. Immunostimulatory activity tests showed that UP1-1 could promote the phagocytic activity and NO production of RAW 264.7 cells in a dose-dependent manner. UP1-1 could significantly improve the proliferation effect of RAW 264.7 cells at the concentration of 50 μg/mL. Thus, UP1-1 exerted good immunostimulatory activity, suggesting that UP1-1 has a great potential application in pharmacological industry.
Collapse
Affiliation(s)
- Yang Shi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yun-Fang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Bi-Wei Zhang
- The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yong Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China; The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jun-Hui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
39
|
Zhang Y, Xie Q, You L, Cheung PCK, Zhao Z. Behavior of Non-Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Anti-Obesity Effect. EFOOD 2021. [DOI: 10.2991/efood.k.210310.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
40
|
Yuan D, Li C, You L, Dong H, Fu X. Changes of digestive and fermentation properties of Sargassum pallidum polysaccharide after ultrasonic degradation and its impacts on gut microbiota. Int J Biol Macromol 2020; 164:1443-1450. [PMID: 32735930 DOI: 10.1016/j.ijbiomac.2020.07.198] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022]
Abstract
The in vitro digestive and fermentation properties of Sargassum pallidum polysaccharide (SPP) after ultrasound degradation were investigated. The results showed that SPP and its degraded fractions were not affected by human saliva, but slightly degraded by breaking glycosidic bonds under simulated gastrointestinal digestion. The DPPH radical scavenging activity, α-glucosidase inhibitory activity, and bile acid-binding capacity of SPP and its degraded fractions were decreased after digestion, which was attributed to the reduction of molecular weights (MWs) and viscosity. Furthermore, in vitro fermentation assay indicated that SPP and its degraded fractions showed good fermentability. The predominant compositional monosaccharides including arabinose, galactose, glucose, xylose, and uronic acid were significantly decreased, and the degraded SPP fractions were more easily fermented and utilized by gut bacteria. SPP and its degraded fractions could modulate gut health by decreasing the Firmicutes/Bacteroidetes ratio and increasing the relative abundances of some beneficial genera, such as Prevotella, Dialister, Phascolarctobacterium, Ruminococcus, and Bacteroides. These findings suggested that SPP and its degraded fractions exhibited similar influence on gut microbiota community, but appropriate degraded SPP fractions were more easily fermented by gut microbiota.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Lijun You
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
41
|
Structural characterization of a novel galactoglucan from Fortunella margarita and its molecular structural change following simulated digestion in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
42
|
Gan L, Li X, Wang H, Peng B, Tian Y. Structural characterization and functional evaluation of a novel exopolysaccharide from the moderate halophile Gracilibacillus sp. SCU50. Int J Biol Macromol 2020; 154:1140-1148. [DOI: 10.1016/j.ijbiomac.2019.11.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
|
43
|
Zhao Y, Chen X, Jia W, Gong G, Zhao Y, Li G, Zhou J, Li X, Zhao Y, Ma W. Extraction, isolation, characterisation, antioxidant and anti‐fatigue activities of
Pleurotus eryngii
polysaccharides. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanyuan Zhao
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Xuefeng Chen
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Wei Jia
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Guoli Gong
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Yanni Zhao
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Guoliang Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021China
| | - Jie Zhou
- Xi’an Medical University Xi’an 710021China
| | - Xiaona Li
- Xi’an Medical University Xi’an 710021China
| | - Yu Zhao
- Xi’an Medical University Xi’an 710021China
| | - Wenjin Ma
- Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000China
| |
Collapse
|
44
|
Cao M, Wang S, Gao Y, Pan X, Wang X, Deng R, Liu P. Study on physicochemical properties and antioxidant activity of polysaccharides from Desmodesmus armatus. J Food Biochem 2020; 44:e13243. [PMID: 32462686 DOI: 10.1111/jfbc.13243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023]
Abstract
Physicochemical properties and antioxidant activities of Desmodesmus armatus polysaccharides (DAP) were studied. They were extracted by microwave-assisted constant temperature extraction and purification by DEAE-cellulose 52. Four eluents of water (DAP1), 0.25 mol/L NaCl (DAP2), 0.5 mol/L NaCl (DAP3), and 1.0 mol/L NaCl (DAP4) were collected. Four polysaccharides fractions were analyzed, and they were all composed of mannose, rhamnose, glucuronic acid, galacturonic acid, arabinose, and fucose. Gel Permeation Chromatography (GPC) analysis showed that the four polysaccharides fractions have a uniform molecular weight distribution. Scanning electron microscope showed that DAP1 had a dense structure and a smooth but uneven surface, while DAP2, DAP3, and DAP4 were amorphous solids in sheets. Oxidation in vitro experiments showed that DAP2 and DAP3 had scavenging effects on ABTS, DPPH, and hydroxyl radicals. PRACTICAL APPLICATIONS: In the determination of the antioxidant activity, it was found that the antioxidative activity of the polysaccharide of Desmodesmus armatus measured was significantly stronger than the crude polysaccharide of other microalgae. After the polysaccharide was purified, two polysaccharide fractions (DAP2 and DAP3) of Desmodesmus armatus were found to have strong scavenging ability to ABTS, DPPH, and hydroxyl radicals. They can be regarded as a new type of antioxidant, and the differences in the physicochemical properties between the parts can provide a preliminary explanation for the differences in antioxidant activity. But the connection between them needs further analysis. The Desmodesmus armatus used in the experiment is easy to cultivate and easy to obtain, which greatly increases its applicability. This research opens up new possibilities for the development of antioxidants and provides favorable evidence for the use of Desmodesmus armatus in food and feed.
Collapse
Affiliation(s)
- Meng Cao
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Shenglin Wang
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Yumei Gao
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Xiaoyan Pan
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Xiuhai Wang
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Ruru Deng
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Pinghuai Liu
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| |
Collapse
|
45
|
Zhang Z, Zhou Y, Lin Y, Li Y, Xia B, Lin L, Liao D. GC-MS-based metabolomics research on the anti-hyperlipidaemic activity of Prunella vulgaris L. polysaccharides. Int J Biol Macromol 2020; 159:461-473. [PMID: 32387363 DOI: 10.1016/j.ijbiomac.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
Prunella vulgaris polysaccharides (PVPs) have a variety of biological activities, but the mechanism and extent of their anti-hyperlipidaemic effect remain unclear. In vitro, PVPs had a significant inhibitory effect on angiotensin (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation. A metabolomics approach based on gas chromatography-mass spectrometry (GC-MS) and chemometrics was established in this study to evaluate the anti-hyperlipidaemic activity of PVPs in a high-fat Sprague-Dawley rat model. In vivo, PVPs could significantly reduce the weight gain and the increases in serum total cholesterol (TC), low-density lipoprotein (LDL)-C and non-high-density lipoprotein (HDL)-C levels observed in rats fed a high-fat diet; they could also significantly increase serum GSH-Px activity, reduce the content of MDA and TNF-α and decrease abdominal fat volume in rats. Furthermore, PVPs exerted a repairing effect on morphological and structural damage in liver tissue cells in hyperlipidaemic rats fed a high-fat diet. PVPs improved lipid metabolism disorder in rats. Alanine, threonine, succinic acid, proline, inositol and arachidonic acid levels in the serum were considered potential biomarkers involved in amino acid, glucose, energy and lipid metabolism. Therefore, PVPs may interfere with hyperlipidaemia through anti-lipid peroxidation effects, attenuation of inflammation and regulation of glucose, amino acid, energy and lipid metabolism.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamin Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Prima Drug Research Center Co., Ltd., Changsha 410311, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
46
|
Long H, Gu X, Zhou N, Zhu Z, Wang C, Liu X, Zhao M. Physicochemical characterization and bile acid-binding capacity of water-extract polysaccharides fractionated by stepwise ethanol precipitation from Caulerpa lentillifera. Int J Biol Macromol 2020; 150:654-661. [DOI: 10.1016/j.ijbiomac.2020.02.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
|
47
|
Li X, Chen W, Chang Q, Zhang Y, Zheng B, Zeng H. Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch: A comparative study. Int J Biol Macromol 2020; 144:67-75. [PMID: 31816380 DOI: 10.1016/j.ijbiomac.2019.12.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
The objectives of this study were to investigate and compare the structural and physicochemical properties of native ginger starch (NGS) and ginger resistant starch (GRS). NGS had oblate and compact granules, whereas GRS exhibited fissures. Compared to GRS, NGS had a narrower molar mass distribution and a higher molecular weight (Mw). According to X-ray diffraction measurements, Fourier transform infrared spectroscopy, and 13C CP/MAS NMR spectroscopy, NGS sample had an A-type crystalline pattern with high relative crystallinity and short-range order structure, and GRS had a B-type crystalline pattern. Furthermore, NGS exhibited significantly higher gelatinization enthalpy than GRS. NGS displayed lower peak viscosity and final viscosity, whereas GRS had higher through viscosity and final viscosity, presumably due to the content and type of resistant starch. The pasting and gelatinization properties of NGS and GRS might be related to relative crystallinity and short-range order structure. The information obtained from this study can be used by manufacturers and researchers in the production of ginger-containing products.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Chang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
48
|
Li Y, Li X, Chu Q, Jia R, Chen W, Wang Y, Yu X, Zheng X. Russula alutacea Fr. polysaccharide ameliorates inflammation in both RAW264.7 and zebrafish (Danio rerio) larvae. Int J Biol Macromol 2020; 145:740-749. [DOI: 10.1016/j.ijbiomac.2019.12.218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/30/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
|
49
|
Ayyash M, Abu-Jdayil B, Itsaranuwat P, Galiwango E, Tamiello-Rosa C, Abdullah H, Esposito G, Hunashal Y, Obaid RS, Hamed F. Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int J Biol Macromol 2020; 144:938-946. [DOI: 10.1016/j.ijbiomac.2019.09.171] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023]
|
50
|
Chen P, Lin Y, Chen Y, Chang Q, Zheng B, Zhang Y, Hu X, Zeng H. Structural characterization of a novel mannogalactoglucan from Fortunella margarita and its simulated digestion in vitro. Food Chem Toxicol 2019; 133:110778. [DOI: 10.1016/j.fct.2019.110778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
|