1
|
Rajabi H, Razavi SMA. Incorporation of co-encapsulated extracts of saffron petal and Stachys schtschegleevii into chitosan/basil seed gum/graphene oxide bionanocomposite: Effects on physical, mechanical, antioxidant, and antibacterial properties. Int J Biol Macromol 2025; 309:143116. [PMID: 40246102 DOI: 10.1016/j.ijbiomac.2025.143116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The effects of encapsulation order and concentration (25 % & 50 %) of saffron petal (SPE) and Stachys schtschegleevii (SSE) extracts on the properties of bionanocomposites (BNCs) composed of basil seed gum (BSG), chitosan (CH), and graphene oxide (GO) were evaluated. Two encapsulation approaches were employed: in the first, SPE was encapsulated via complex coacervation using CH and gum Arabic, then mixed with SSE, maltodextrin, BSG, and GO (0.1-0.2 %) before spray drying; in the second, the encapsulation order of SPE and SSE was reversed. Encapsulation order and GO concentration significantly increased thickness (by 20 %), water vapor permeability (by 50 %), and solubility (by 45 %). Thermal stability improved by 10 % in bionanocomposites containing 50 % co-encapsulated extracts. Fourier transform infrared spectroscopy confirmed the successful incorporation of co-encapsulated extracts, while microscopic analysis revealed small cracks with micro- and nano-sized particles (219 nm to 8.3 μm) in BNCs with spray-dried coacervates. Co-encapsulation enhanced antibacterial and antioxidant activity, while encapsulation order regulated the sequential release of bioactive compounds, enabling controlled antimicrobial or antioxidant release based on food deterioration patterns. These findings highlight the potential of co-encapsulated extracts in developing advanced BNCs for active food packaging, where controlled release of bioactive compounds is essential for preserving food quality.
Collapse
Affiliation(s)
- Hamid Rajabi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran; Incubator Center of Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran.
| |
Collapse
|
2
|
Alizadeh Sani M, Khezerlou A, Rezvani-Ghalhari M, McClements DJ, Varma RS. Advanced carbon-based nanomaterials: Application in the development of multifunctional next-generation food packaging materials. Adv Colloid Interface Sci 2025; 339:103422. [PMID: 39904277 DOI: 10.1016/j.cis.2025.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Carbon-based nanomaterials (CNMs) hold great promise for food packaging applications due to their ability to improve barrier properties, mechanical strength, sensing capabilities, and resistance to environmental factors. CNMs, such as graphene and carbon nanotubes, can also be used as preservatives to extend the shelf life of food products by preventing spoilage and maintaining freshness. Additionally, their ability to respond to changes in environmental conditions means they can be used as sensors to provide information about food quality, freshness, or safety. SCOPE AND APPROACH This article reviews the properties of CNMs, their impact on packaging film properties, their utilization in smart and active food packaging systems in the food sector, and their potential safety concerns. KEY FINDINGS AND CONCLUSIONS These innovative nanomaterials offer a range of unique properties that can enhance the safety, shelf-life, quality, and sustainability of packaged food products. However, CNMs have their own set of challenges that need to be addressed, including their functional performance and safety assessment. Collaborations among material scientists, food technologists, and regulatory bodies are required to drive the development of safe and effective CNM-based food packaging solutions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Antibiotics Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Mohammad Rezvani-Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Li Z, Khan MR, Ahmad N, Zhang W, Goksen G. Preparation of polysaccharide-based films synergistically reinforced by tea polyphenols and graphene oxide. Food Chem X 2025; 27:102414. [PMID: 40241697 PMCID: PMC12002608 DOI: 10.1016/j.fochx.2025.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
In this study, pectin (PE) composite films containing tea polyphenol (TP) and graphene oxide (GO) were developed. The effects of TP and GO on the appearance, structure, mechanical properties, barrier properties, hydrophobicity, and antioxidant properties of pure PE films were investigated. The results demonstrated that the addition of 1 % w/w TP and 1 % w/w GO increased the tensile strength (TS) and elongation at break (EB) of the composite films to 20.22 MPa and 34.18 %, respectively. Additionally, the water vapor permeability (WVP) was reduced to 0.67 ± 0.17 (×10-10 g-1s-1Pa-1), and both the moisture content and water contact angle were significantly decreased. Furthermore, the incorporation of TP enhanced the antioxidant properties of the composite films and demonstrated the slow-release capability of TP. Blueberry fruits packaged in PE-TP-GO film maintained an optimal appearance after eight days of storage at 25 °C, with a reduction in shrinkage index of approximately 29.4 % compared to those packaged in the PE film.
Collapse
Affiliation(s)
- Zixuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| |
Collapse
|
4
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
5
|
Rajabi H, Jafari SM. Synthesis and characterization of three-dimensional graphene oxide-chitosan/ glutaraldehyde nanocomposites: Towards adsorption of crocin from saffron. Int J Biol Macromol 2024; 281:136672. [PMID: 39426767 DOI: 10.1016/j.ijbiomac.2024.136672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Despite the unique properties of graphene oxide (GO) as a green adsorbent, its low structural stability presents a drawback. This study aimed to modify the properties of GO through its functionalization with chitosan (CH), cross-linked with glutaraldehyde (GLU), and synthesized via the freeze-drying method (GO-CH/GLU). Microscopic analysis illustrated that covering the GO sheets with CH and nanoparticles (NPs) resulted in a 15.8 % increase in d-spacing and a 600 % increase in sheet thickness. The GO-CH/GLU composite was utilized for the separation/purification of crocin from saffron extract under varying pH (5-9), temperature (298-318 K), stirring rate (100-300 rpm), and crocin concentration (25-200 mg/mL). The Freundlich isotherm and pseudo-second-order kinetic models provided a good fit for crocin adsorption. Thermodynamic analysis revealed that the process was endothermic, spontaneous, and physical. Optimal adsorption conditions in batch mode were pH 7, a stirring rate of 300 rpm, a temperature of 318 K, and a crocin concentration of 100 mg/mL. These conditions were applied in a continuous system, resulting in a crocin separation efficiency of 94.17 % at 180 mL/h. Additionally, HPLC data indicated that the purity of separated crocin exceeded 90 %. So, the GO-CH/GLU composite is a promising and economical adsorbent for the food industry.
Collapse
Affiliation(s)
- Hamid Rajabi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Cicek Ozkan B, Guner M. Adjustable dielectric and bioactivity characteristics of chitosan-based composites via crosslinking approach and incorporation of graphene. Int J Biol Macromol 2024; 270:132125. [PMID: 38750849 DOI: 10.1016/j.ijbiomac.2024.132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
This study explores the structural, electrical, dielectric, and bioactivity properties of chitosan (CS) composites incorporating graphene (G) nanoparticles. Characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), dielectric spectroscopy, and in vitro testing in SBF, were employed to investigate the effects of G content and crosslinking. The XPS peak at 289.89 eV for CS-G10 indicates CC and CH bonds, suggesting significant interactions between chitosan's hydroxyl groups and graphene's carbon atoms, ensuring structural homogeneity. Dielectric constant (ε') gradually increased with G loading (0 %, 1 %, 5 %, and 10 %) for uncrosslinked composites, reaching 17.94, 18.92, 28.28, and 41.1, respectively. Crosslinked composites exhibited reduced ε' values (15.71, 15.42, 14.14, and 27.03) compared to non-crosslinked ones, with marginal increases post-percolation threshold (5 wt% G filling). XRD analysis revealed shifts in characteristic peaks of CS after SBF treatment, with new peaks at 28.9° and 48.5° indicating hydroxyapatite presence, confirming composite bioactivity. CS-G10/GA showed the highest bioactivity, suggesting promise for biomedical applications.
Collapse
Affiliation(s)
- Betul Cicek Ozkan
- Department of Metallurgical and Materials Engineering, Technology Faculty, Fırat University, 23119 Elazığ, Turkey.
| | - Melek Guner
- Department of Metallurgical and Materials Engineering, Technology Faculty, Fırat University, 23119 Elazığ, Turkey; Central Laboratory, Application, and Research Center, Batman University, 72070 Batman, Turkey
| |
Collapse
|
7
|
Nayak A, Mukherjee A, Kumar S, Dutta D. Exploring the potential of jujube seed powder in polysaccharide based functional film: Characterization, properties and application in fruit preservation. Int J Biol Macromol 2024; 260:129450. [PMID: 38232896 DOI: 10.1016/j.ijbiomac.2024.129450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In this study, we fabricated a novel biodegradable functional film using natural polysaccharides by adding jujube seed powder as an active ingredient. Scanning electron microscopy analysis showed agglomerate formation in the film with increasing concentration of seed powder. Fourier transform-infrared spectroscopy study demonstrated an electrostatic interaction between pectin and chitosan. The water solubility and swelling degree significantly decreased from 55.5 to 47.7 % and 66.0 to 41.9 %, respectively, depicting the film's water resistance properties. Higher opacity and lower transmittance value of the film indicated its protective effect towards light-induced oxidation of food. It was observed that the fabricated active film biodegraded to 82.33 % in 6 days. The DPPH radical scavenging activity of 98.02 % was observed for the functional film. The film showed antifungal activity against B. cinerea and P. chrysogenum. The highest zone of inhibition was obtained against food spoiling bacteria B. subtilis followed by S. aureus, P. aeruginosa and E. coli. Genotoxicity studies with the fabricated film showed a mitotic index of 8 % compared to 3 % in the control film. We used the fabricated film to preserve grapefruits, and the result showed that it could preserve grapes for ten days with an increase in antioxidant activity and polyphenolic content.
Collapse
Affiliation(s)
- Anamika Nayak
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam 783370, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
8
|
Wang K, Wang Y, Cheng M, Wang Y, Zhao P, Xi X, Lu J, Wang X, Han X, Wang J. Preparation and characterization of active films based on oregano essential oil microcapsules/soybean protein isolate/sodium carboxymethyl cellulose. Int J Biol Macromol 2024; 258:128985. [PMID: 38154359 DOI: 10.1016/j.ijbiomac.2023.128985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
This study aimed to prepare oregano essential oil microcapsules (EOMs) by the active coalescence method using gelatin and sodium alginate as wall materials and oregano essential oil (OEO) as the core material. EOMs were added to the soybean protein isolate (SPI)/sodium carboxymethyl cellulose (CMC) matrix to prepare SPI-CMC-EOM active films, and the physical and chemical features of the active films and EOMs were characterized. The results showed that the microencapsulated OEO could protect its active ingredients. Scanning electron microscopy results showed that EOMs were highly compatible with the film matrix. The solubility of active films decreased upon adding EOMs, and their ultraviolet resistance and thermal stability also improved. When the added amount of EOMs was 5 %, the active films had the best mechanical properties and the lowest water vapor permeability. The active films prepared under this condition had excellent comprehensive performance. Also, adding EOMs considerably enhanced the antioxidant of the active films and endowed them with antibacterial properties. The application of the SPI-CMC-EOM films to A. bisporus effectively delayed senescence and maintained the freshness of the postharvest A. bisporus. This study provided a theoretical foundation for the incorporation of EOMs into active films based on biological materials.
Collapse
Affiliation(s)
- Kaiyue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yifan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yirong Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Peixin Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiumei Xi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jinhang Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xin Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
9
|
Sellappan LK, Manoharan S. Fabrication of bioinspired keratin/sodium alginate based biopolymeric mat loaded with herbal drug and green synthesized zinc oxide nanoparticles as a dual drug antimicrobial wound dressing. Int J Biol Macromol 2024; 259:129162. [PMID: 38181910 DOI: 10.1016/j.ijbiomac.2023.129162] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Dual drug antibacterial wound dressings with biological materials possess crucial wound healing characteristics including biocompatibility, non-toxicity, degradability, mechanical strength and antibacterial properties. The study focusses on fabricating keratin (K)‑sodium alginate (A) based wound dressings by loading green synthesized zinc oxide nanoparticles (ZnO NPs) using C. roseus (leaf extract) and M. recutita (Chamomile flower part) herbal drug (CH) as a bioactive dual antibacterial wound dressing for the first time. The optimized ZnO NPs and CH exhibits strong physiochemical and electrostatic interactions (FT-IR, XRD and SEM) on the fabricated K-A-CH-ZnO biopolymeric mats. Moreover, the tiny porous network of the biopolymeric mat enhances thermal stability, hydrophilicity, mechanical strength and explores the water vapor transmission (2538.07 g/m2/day) and oxygen permeability (7.38 ± 0.31 g/m2) to maintain moist environment and cell-material interactions. During enzymatic degradation studies, ZnO NPs and CH of biopolymeric mat not only retains structural integrity but also increases the characteristic of swelling with sustained drug release (57 %) in 144 h which accelerates wound healing process. Also, K-A-CH-ZnO mat exhibited excellent antibacterial effects against B. subtilis and E. coli. Furthermore, NIH 3T3 fibroblast cell behavior using MTT assay and in vivo evaluations of biopolymeric mat depicted enhanced biocompatibility with increased collagen deposition at the wound site as a prominent dual drug medicated antimicrobial wound dressing.
Collapse
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| |
Collapse
|
10
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Wang K, Li F, Sun X, Wang F, Xie D, Wei Y. Transparent chitosan/hexagonal boron nitride nanosheets composite films with enhanced UV shielding and gas barrier properties. Int J Biol Macromol 2023; 251:126308. [PMID: 37573919 DOI: 10.1016/j.ijbiomac.2023.126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
It is of great significance to develop natural renewable polymer materials for different applications. Herein, the nano-sized hexagonal boron nitride nanosheets (hBNNSs) were facilely exfoliated through liquid-nitrogen, microwave, and ultrasonication treatments, and novel chitosan/hBNNSs (CS/hBNNSs) films were fabricated via solution casting. The obtained transparent CS/hBNNSs films demonstrated outstanding UV shielding ability with 98.51 % UV-A and 96.40 % UV-B lights being resisted. Compared to those properties of CS film, the oxygen permeability (OP) and carbon dioxide permeability (CO2P) of CS/hBNNSs films are significantly lowered by 96.35 % and 94.06 %, respectively, which are much better than CS/graphene oxide or other CS nanocomposite films. Moreover, the addition of hBNNSs in CS films also obviously improves their water vapor barrier ability, thermostability, mechanical properties, and antibacterial activity. The CS/hBNNSs films and the strategy developed in this work prove their great prospect in producing high-performance packaging films with desirable excellent UV shielding and oxygen barrier qualities.
Collapse
Affiliation(s)
- Ke Wang
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fayong Li
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xiaoyan Sun
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Feiyan Wang
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dong Xie
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Saghafi Y, Baharifar H, Najmoddin N, Asefnejad A, Maleki H, Sajjadi-Jazi SM, Bonkdar A, Shams F, Khoshnevisan K. Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels 2023; 9:672. [PMID: 37623127 PMCID: PMC10454236 DOI: 10.3390/gels9080672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
A cutaneous wound is caused by various injuries in the skin, which can be wrapped with an efficient dressing. Electrospinning is a straightforward adjustable technique that quickly and continuously generates nanofibrous wound dressings containing antibacterial and anti-inflammatory agents to promote wound healing. The present study investigated the physicochemical and biological properties of bromelain (BRO)- and silver nanoparticle (Ag NPs)-loaded gel-based electrospun polycaprolactone/chitosan (PCL/CS) nanofibrous dressings for wound-healing applications. Electron microscopy results showed that the obtained nanofibers (NFs) had a uniform and homogeneous morphology without beads with an average diameter of 176 ± 63 nm. The FTIR (Fourier transform infrared) analysis exhibited the loading of the components. Moreover, adding BRO and Ag NPs increased the tensile strength of the NFs up to 4.59 MPa. BRO and Ag NPs did not significantly affect the hydrophilicity and toxicity of the obtained wound dressing; however, the antibacterial activity against E. coli and S. aureus bacteria was significantly improved. The in vivo study showed that the wound dressing containing BRO and Ag NPs improved the wound-healing process within one week compared to other groups. Therefore, gel-based PCL/CS nanofibrous dressings containing BRO and Ag NPs could be a promising solution for healing skin wounds.
Collapse
Affiliation(s)
- Yasaman Saghafi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Hassan Maleki
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1411713137, Iran
| | - Alireza Bonkdar
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Forough Shams
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Kamyar Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| |
Collapse
|
13
|
Caner C, Rahvali F, Yüceer M, Oral A. Effects of types and concentrations of modified Cloisite Clays on properties of chitosan nanocomposites for food packaging. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering Faculty of Engineering, Canakkale Onsekiz Mart University 017020 Canakkale Turkey
| | - Fatih Rahvali
- Department of Food Engineering Faculty of Engineering, Canakkale Onsekiz Mart University 017020 Canakkale Turkey
| | - Muhammed Yüceer
- Department of Food Processing Canakkale Onsekiz Mart University 017020 Canakkale Turkey
| | - Ayhan Oral
- Department of Chemistry Faculty of Sciences, Canakkale Onsekiz Mart University 017020 Canakkale Turkey
| |
Collapse
|
14
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
15
|
Emran MY, Miran W, Gomaa H, Ibrahim I, Belessiotis GV, Abdelwahab AA, Othman MB. Biowaste Materials for Advanced Biodegradable Packaging Technology. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:861-897. [DOI: 10.1007/978-3-031-09710-2_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Mujtaba M, Lipponen J, Ojanen M, Puttonen S, Vaittinen H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158328. [PMID: 36037892 DOI: 10.1016/j.scitotenv.2022.158328] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, petroleum-based synthetic plastics are used as a key barrier material in the paper-based packaging of several food and nonfood goods. This widespread usage of plastic as a barrier lining is not only harmful to human and marine health, but it is also polluting the ecosystem. Researchers and food manufacturers are focused on biobased alternatives because of its numerous advantages, including biodegradability, biocompatibility, non-toxicity, and structural flexibility. When used alone or in composites/multilayers, these biobased alternatives provide strong barrier qualities against grease, oxygen, microbes, air, and water. According to the most recent literature reports, biobased polymers for barrier coatings are having difficulty breaking into the business. Technological breakthroughs in the field of bioplastic production and application are rapidly evolving, proffering new options for academics and industry to collaborate and develop sustainable packaging solutions. Existing techniques, such as multilayer coating of nanocomposites, can be improved further by designing them in a more systematic manner to attain the best barrier qualities. Modified nanocellulose, lignin nanoparticles, and bio-polyester are among the most promising future candidates for nanocomposite-based packaging films with high barrier qualities. In this review, the state-of-art and research advancements made in biobased polymeric alternatives such as paper and board barrier coating are summarized. Finally, the existing limitations and potential future development prospects for these biobased polymers as barrier materials are reviewed.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Juha Lipponen
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland
| | - Mari Ojanen
- Kemira Oyj, Energiakatu 4, 00101 Helsinki, Finland
| | | | - Henri Vaittinen
- Valmet Technologies, Wärtsilänkatu 100, 04440 Järvenpää, Finland
| |
Collapse
|
17
|
Maryam Adilah Z, Han Lyn F, Nabilah B, Jamilah B, Gun Hean C, Nur Hanani Z. Enhancing the physicochemical and functional properties of gelatin/graphene oxide/cinnamon bark oil nanocomposite packaging films using ferulic acid. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Fu X, Chang X, Ding Z, Xu H, Kong H, Chen F, Wang R, Shan Y, Ding S. Fabrication and Characterization of Eco-Friendly Polyelectrolyte Bilayer Films Based on Chitosan and Different Types of Edible Citrus Pectin. Foods 2022; 11:3536. [PMID: 36360151 PMCID: PMC9655154 DOI: 10.3390/foods11213536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 09/28/2023] Open
Abstract
The eco-friendly polyelectrolyte bilayer films were prepared by layer-by-layer (LBL) casting method using chitosan (CS) and four types of edible citrus pectin as film substrates. The results showed that the polyelectrolyte bilayer films exhibited excellent comprehensive properties. Furthermore, the interaction between CS and pectin was closely related to the degree of methyl-esterification (DM), molecular weight (Mw), and zeta potential of pectin. The low DM, Mw, and high zeta potential of the low methyl-esterified pectin (LM) resulted in a denser internal structure of the bilayer film, stronger UV shielding performance, and stronger gas barrier ability. The high DM and Mw of the high methyl-esterified pectin (HM) endow the bilayer film with stronger mechanical properties, thermal stability, and antifogging property. The microstructural and spectroscopic analysis showed that there are hydrogen bonds and electrostatic interactions between the layers. Overall, the developed CS-pectin polyelectrolyte bilayer films provided potential applications for food bioactive packaging.
Collapse
Affiliation(s)
- Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zemin Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hui Kong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| |
Collapse
|
19
|
N-doped carbon dots incorporated chitosan/polyvinylpyrrolidone based polymer film for advanced packaging applications. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Dat NM, Huong LM, Cong CQ, Hai ND, Nam NTH, Thinh DB, Duy HK, Danh TT, Loi PHHP, Phong MT, Hieu NH. Green synthesis of chitosan-based membrane modified with uniformly micro-sizing selenium particles decorated graphene oxide for antibacterial application. Int J Biol Macromol 2022; 220:348-359. [PMID: 35981679 DOI: 10.1016/j.ijbiomac.2022.08.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
In this study, selenium microparticles (SeMPs) were green-synthesized by utilizing the Terminalia catappa leaves extract as an effective reducing agent. SeMPs were then decorated onto graphene oxide (GO) with the assistance of ultrasound using the ex-situ technique to obtain the SeMPs-GO composite. SeMPs and SeMPs-GO were thoroughly characterized with modern analytical methods, whereas the antibacterial performance of the composites was evaluated via the optical density method. Particularly, SeMPs-GO held up an inhibition of 99 % against both Gram-positive and Gram-negative bacteria strains as well as restrained 50 % of fungal activity. SeMPs-GO was additionally incorporated onto chitosan (CTS) to collect the SeMPs-GO/CTS membrane which was characterized by similar advanced analysis methods. The antibacterial property of the membrane was determined by the inhibition zone diameter. Furthermore, the membrane exhibited good thermal and mechanical characteristics, showing no sign of degradation at a temperature below 260 °C, and a tensile strength of 38 N/mm2. The swelling degree reached 148 % after 6 h of immersion in water, which was stable after 72 h (153 %). The obtained membrane can potentially be utilized for medical and food applications.
Collapse
Affiliation(s)
- Nguyen Minh Dat
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Le Minh Huong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Che Quang Cong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Duy Hai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Doan Ba Thinh
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Huynh Khanh Duy
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Tong Thanh Danh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Pham Hoang Huy Phuoc Loi
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Mai Thanh Phong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Santillo C, Wang Y, Buonocore GG, Gentile G, Verdolotti L, Kaciulis S, Xia H, Lavorgna M. Hybrid Graphenene Oxide/Cellulose Nanofillers to Enhance Mechanical and Barrier Properties of Chitosan-Based Composites. Front Chem 2022; 10:926364. [PMID: 35958229 PMCID: PMC9361047 DOI: 10.3389/fchem.2022.926364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Chitosan-based hybrid nanocomposites, containing cellulose nanocrystals (CNCs), graphene oxide (GO), and borate as crosslinking agents, were successfully prepared by solution-casting technique. The synergistic effect of the two fillers, and the role of the cross-linker, in enhancing the structural and functional properties of the chitosan polymer, was investigated. XPS results confirm the chemical interaction between borate ions and hydroxyl groups of chitosan, GO, and CNCs. The morphological characterization shows that the GO sheets are oriented along the casting surface, whereas the CNC particles are homogenously distributed in the sample. Results of tensile tests reveal that the presence of graphene oxide enhances the elastic modulus, tensile strength, elongation at break, and toughness of chitosan, while cellulose and borate induce an increase in the elastic modulus and stress at the yield point. In particular, the borate-crosslinked chitosan-based sample containing 0.5 wt% of GO and 0.5 wt% of CNCs shows an elongation at a break value of 30.2% and a toughness value of 988 J*m−3 which are improved by 124% and 216%, respectively, compared with the pristine chitosan. Moreover, the water permeability results show that the presence of graphene oxide slightly increases the water barrier properties, whereas the borate and cellulose nanocrystals significantly reduce the water vapor permeability of the polymer by about 50%. Thus, by modulating the content of the two reinforcing fillers, it is possible to obtain chitosan-based nanocomposites with enhanced mechanical and water barrier properties which can be potentially used in various applications such as food and electronic packaging.
Collapse
Affiliation(s)
- C. Santillo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Yinglei Wang
- Xi’an Modern Chemistry Research Institute, Xi’an, China
| | - G. G. Buonocore
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
- *Correspondence: G. G. Buonocore,
| | - G. Gentile
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - L. Verdolotti
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, National Research Council, Rome, Italy
| | - H. Xia
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - M. Lavorgna
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
- Institute of Polymers, Composites and Biomaterials UOS Lecco, National Research Council, Lecco, Italy
| |
Collapse
|
22
|
Das J, Mohan S, Kalyad SC. One-pot and Solvent-free Synthesis of Carbodiimide Modified Chitosan; Extraordinary Thermally Stability. CHEMISTRY JOURNAL OF MOLDOVA 2022. [DOI: 10.19261/cjm.2022.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A facile, one-pot, and solvent-free synthesis was developed to obtain a thermally stable chitosan biopolymer. The bifunctional isocyanate by interaction with chitosan formed urea and urethane bonds between chitosan chains. Subsequently, the designed chemistry facilitated the formation of carbodiimide bonds between chitosan chains via dehydration of the urea bond. The modified chitosan was proved to be superior in thermal properties and could be used as a thermally stable bio-filler. This synthetic methodology is a facile route to achieve improved thermal stability in biopolymers.
Collapse
|
23
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
24
|
Wu Z, Li Y, Tang J, Lin D, Qin W, Loy DA, Zhang Q, Chen H, Li S. Ultrasound-assisted preparation of chitosan/nano-silica aerogel/tea polyphenol biodegradable films: Physical and functional properties. ULTRASONICS SONOCHEMISTRY 2022; 87:106052. [PMID: 35660275 PMCID: PMC9168617 DOI: 10.1016/j.ultsonch.2022.106052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, chitosan(CS), nano-silicon aerogels(nSA) and tea polyphenols(TP) were used as film-forming materials and processed with ultrasonication to form films using the tape-casting method. The effects of ultrasonication time, temperature and frequency on the properties of CS/nSA/TP film were explored via material property testing. The results of response surface showed that the maximum tensile strength of the film was 4.036 MPa at ultrasonication time(57.97 min), temperature(37.26 °C) and frequency(30 kHz). The maximum elongation at break of the film was 279.42 % at ultrasonication time(60.88 min), temperature(39.93 °C) and frequency(30 kHz). Due to cavitation and super-mixing effects, ultrasonication may make the surface of the film smoother and easier to degrade. After ultrasonication, TPs were protected by the 3D network structure composed of CS and nSA. Ultrasonication improved the antioxidant and antibacterial properties of the film. These results show that ultrasonication is an effective method to improve the properties of films.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jing Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Douglas A Loy
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
25
|
Jiang Z, Wang J, Xiang D, Zhang Z. Functional Properties and Preservative Effect of P-Hydroxybenzoic Acid Grafted Chitosan Films on Fresh-Cut Jackfruit. Foods 2022; 11:foods11091360. [PMID: 35564083 PMCID: PMC9100193 DOI: 10.3390/foods11091360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
In the present study, p-hydroxybenzoic acid-grafted chitosan (PA-g-CS) conjugates with different grafting degrees were synthesized by a free radical-regulated grafting approach. The conjugates were further developed into films by casting, and their characteristics and preservative effects on fresh-cut jackfruit were evaluated. Compared to the CS film, the PA-g-CS film showed comprehensive performance improvements, including enhancements of water solubility, anti-ultraviolet capacity, antioxidation, and antibacterial activity. Moreover, compared with CS film, some appreciable and favorable changes of physical properties were observed in the PA-g-CS films, which included water vapor permeability, oxygen permeability, surface morphology, moisture content, and mechanical intensity. Furthermore, compared to CS alone, the application of PA-g-CS films to fresh-cut jackfruit exerted a beneficial effect on the quality of products, as indicated by the inhibition of weight loss, softening, and membrane damage, the maintenance of soluble solids and ascorbic acids contents, as well as a reduced bacterial count and a higher sensory score. Among these PA-g-CS films, the best preservation effect was achieved with the highest degree of grafting (PA-g-CS III). The results suggested that the PA-g-CS film has the potential to be explored as a new type of packaging material for the preservation of fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Zhiguo Jiang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiaolong Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
| | - Dong Xiang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
- Correspondence: (D.X.); (Z.Z.)
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
- Correspondence: (D.X.); (Z.Z.)
| |
Collapse
|
26
|
Wang L, Peng X, Fu H. An electrochemical aptasensor for the sensitive detection of Pb2+ based on a chitosan/reduced graphene oxide/titanium dioxide. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri MYM, Asyraf MRM, Sapuan SM, Zainudin ES, Sharma S, Abral H, Asrofi M, Syafri E, Sari NH, Rafidah M, Zakaria SZS, Razman MR, Majid NA, Ramli Z, Azmi A, Bangar SP, Ibrahim R. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers (Basel) 2022; 14:874. [PMID: 35267697 PMCID: PMC8912483 DOI: 10.3390/polym14050874] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.
Collapse
Affiliation(s)
- Rushdan Ahmad Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Humaira Alias Aisyah
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Abu Hassan Nordin
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Norzita Ngadi
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Mohamed Yusoff Mohd Zuhri
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - Salit Mohd Sapuan
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, India;
| | - Hairul Abral
- Department of Mechanical Engineering, Andalas University, Padang 25163, Sumatera Barat, Indonesia;
| | - Mochamad Asrofi
- Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia;
| | - Edi Syafri
- Department of Agricultural Technology, Agricultural Polytechnic, Payakumbuh 26271, West Sumatra, Indonesia;
| | - Nasmi Herlina Sari
- Mechanical Engineering Department, Faculty of Engineering, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia;
| | - Mazlan Rafidah
- Department of Civil Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Sharifah Zarina Syed Zakaria
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Nuriah Abd Majid
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Zuliskandar Ramli
- Institute of the Malay World and Civilisation (ATMA), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Ashraf Azmi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Rushdan Ibrahim
- Pulp and Paper Branch, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia;
| |
Collapse
|
28
|
Román‐Doval R, Gomez‐Sanchez A, Millán‐Casarrubias EJ, Prokhorov E, Montejo‐Alvaro F, Luna Bugallo A, Hernández‐Iturriaga M, Leal‐Cervantes M, Luna‐Barcenas G, Mendoza S. Physicochemical properties of pullulan/chitosan/graphene oxide composite films. POLYM INT 2022. [DOI: 10.1002/pi.6377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. Román‐Doval
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro C.P. 76010 Querétaro Mexico
- Instituto Tecnológico Del Valle de Etla Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - A. Gomez‐Sanchez
- Programa de Doctorado en Nanociencias y Nanotecnología Centro de Investigación y de Estudios Avanzados del IPN Ciudad de México Mexico
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, C.P. 76230 Querétaro Mexico
| | - E. J. Millán‐Casarrubias
- Programa de Doctorado en Nanociencias y Nanotecnología Centro de Investigación y de Estudios Avanzados del IPN Ciudad de México Mexico
| | - E. Prokhorov
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, C.P. 76230 Querétaro Mexico
| | - F. Montejo‐Alvaro
- Instituto Tecnológico Del Valle de Etla Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo Oaxaca 68230 Mexico
| | - A. Luna Bugallo
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México, Querétaro, Qro. C.P. 76000 Mexico
| | - M. Hernández‐Iturriaga
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro C.P. 76010 Querétaro Mexico
| | - M. Leal‐Cervantes
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro C.P. 76010 Querétaro Mexico
| | - G. Luna‐Barcenas
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, C.P. 76230 Querétaro Mexico
| | - S. Mendoza
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química Universidad Autónoma de Querétaro, Centro Universitario, Santiago de Querétaro C.P. 76010 Querétaro Mexico
| |
Collapse
|
29
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ariffin F, Wijekoon MMJO, Al-Hassan AA, Dheyab MA, Ghasemlou M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr Polym 2022; 277:118876. [PMID: 34893279 DOI: 10.1016/j.carbpol.2021.118876] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - A A Al-Hassan
- Department of Food Science and Human Nutrition, College of Agriculture and vit. Medicine, Qassim University, 51452 Burydah, Saudi Arabia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
30
|
Abstract
Chitosan (CS) and graphene oxide (GO) nanocomposites have received wide attention in biomedical fields due to the synergistic effect between CS which has excellent biological characteristics and GO which owns great physicochemical, mechanical, and optical properties. Nanocomposites based on CS and GO can be fabricated into a variety of forms, such as nanoparticles, hydrogels, scaffolds, films, and nanofibers. Thanks to the ease of functionalization, the performance of these nanocomposites in different forms can be further improved by introducing other functional polymers, nanoparticles, or growth factors. With this background, the current review summarizes the latest developments of CS-GO nanocomposites in different forms and compositions in biomedical applications including drug and biomacromolecules delivery, wound healing, bone tissue engineering, and biosensors. Future improving directions and challenges for clinical practice are proposed as well.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Emran MY, Miran W, Gomaa H, Ibrahim I, Belessiotis GV, Abdelwahab AA, Othman MB. Biowaste Materials for Advanced Biodegradable Packaging Technology. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-37. [DOI: 10.1007/978-3-030-83783-9_46-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 09/01/2023]
|
32
|
A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
33
|
Composite biopolymer films based on a polyelectrolyte complex of furcellaran and chitosan. Carbohydr Polym 2021; 274:118627. [PMID: 34702453 DOI: 10.1016/j.carbpol.2021.118627] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
The aim of research was to develop biopolymer films based on natural polysaccharides. For the first time, biodegradable films were obtained on the basis of a furcellaran-chitosan polyelectrolyte complex. The conditions for its formation were determined by measuring the zeta potential as a function of colloid pH, the size of pure components and their mixtures. The structure and morphology of the prepared films were characterised by FT-IR and AFM analysis. The lowest WVTR values were observed for the FUR and the CHIT-FUR films at the ratio of 9:1. The mechanical, water and rheological properties depend on the weight ratio of furcellaran to chitosan in the mixture. The thermal stability has been improved in CHIT-FUR films at the 9:1 ratio. The results obtained create the possibility of successfully using CHIT-FUR films in the development of biodegradable packaging materials.
Collapse
|
34
|
Bigi F, Haghighi H, Siesler HW, Licciardello F, Pulvirenti A. Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Chitosan-Graphene Oxide Composite Membranes for Solid-Phase Extraction of Pesticides. Int J Mol Sci 2021; 22:ijms22168374. [PMID: 34445079 PMCID: PMC8395051 DOI: 10.3390/ijms22168374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/28/2023] Open
Abstract
Solid-phase extraction (SPE) coupled to LC/MS/MS analysis is a valid approach for the determination of organic micropollutants (OMPs) in liquid samples. To remove the greatest number of OMPs from environmental matrices, the development of innovative sorbent materials is crucial. Recently, much attention has been paid to inorganic nanosystems such as graphite-derived materials. Graphene oxide has been employed in water-purification processes, including the removal of several micropollutants such as dyes, flame retardants, or pharmaceutical products. Polysaccharides have also been widely used as convenient media for the dispersion of sorbent materials, thanks to their unique properties such as biodegradability, biocompatibility, nontoxicity, and low cost. In this work, chitosan-graphene oxide (CS_GO) composite membranes containing different amounts of GO were prepared and used as sorbents for the SPE of pesticides. To improve their dimensional stability in aqueous medium, the CS_GO membranes were surface crosslinked with glutaraldehyde. The composite systems were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, swelling degree, contact angle, and mechanical measurements. As the GO content increased, a decrease in surface homogeneity, an improvement of mechanical properties, and a reduction of thermal stability of the CS-based membranes were observed. The increased dimensional stability in water, together with the presence of high GO amounts, made the prepared composite membranes more efficacious than the ones based just on CS in isolating and preconcentrating different hydrophilic/hydrophobic pollutants.
Collapse
|
36
|
Han Lyn F, Tan CP, Zawawi R, Nur Hanani Z. Physicochemical properties of chitosan/ graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Nor Adilah A, Gun Hean C, Nur Hanani Z. Incorporation of graphene oxide to enhance fish gelatin as bio-packaging material. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Effect of sonication time and heat treatment on the structural and physical properties of chitosan/graphene oxide nanocomposite films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Harun WSW. Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids - A systematic overview. ULTRASONICS SONOCHEMISTRY 2021; 73:105479. [PMID: 33578278 PMCID: PMC7881269 DOI: 10.1016/j.ultsonch.2021.105479] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 05/25/2023]
Abstract
Optimum ultrasonication time will lead to the better performance for heat transfer in addition to preparation methods and thermal properties of the nanofluids. Nano particles are dispersed in base fluids like water (water-based fluids), glycols (glycol base fluids) &oils at different mass or volume fraction by using different preparation techniques. Significant preparation technique can enhance the stability, effects various parameters & thermo-physical properties of fluids. Agglomeration of the dispersed nano particles will lead to declined thermal performance, thermal conductivity, and viscosity. For better dispersion and breaking down the clusters, Ultrasonication method is the highly influential approach. Sonication hour is unique for different nano fluids depending on their response to several considerations. In this review, systematic investigations showing effect on various physical and thermal properties based on ultrasonication/ sonication time are illustrated. In this analysis it is found that increased power or time of ideal sonication increases the dispersion, leading to higher stable fluids, decreased particle size, higher thermal conductivity, and lower viscosity values. Employing the ultrasonic probe is substantially more effective than ultrasonic bath devices. Low ultrasonication power and time provides best outcome. Various sonication time periods by various research are summarized with respect to the different thermophysical properties. This is first review explaining sonication period influence on thermophysical properties of graphene nanofluids.
Collapse
Affiliation(s)
- Madderla Sandhya
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia; Department of Mechanical Engineering, Kakatiya Institute of Technology and Science, Warangal, Telangana State 506015, India.
| | - D Ramasamy
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia; Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Malaysia
| | - K Sudhakar
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia; Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Malaysia
| | - K Kadirgama
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - W S W Harun
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| |
Collapse
|
40
|
Yu Y, Zheng J, Li J, Lu L, Yan J, Zhang L, Wang L. Applications of two-dimensional materials in food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Han Lyn F, Tan CP, Zawawi RM, Nur Hanani ZA. Enhancing the mechanical and barrier properties of chitosan/graphene oxide composite films using trisodium citrate and sodium tripolyphosphate crosslinkers. J Appl Polym Sci 2021. [DOI: 10.1002/app.50618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Foong Han Lyn
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry, Faculty of Science Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Zainal Abedin Nur Hanani
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Seri Kembangan Malaysia
| |
Collapse
|
42
|
Bilal M, Gul I, Basharat A, Qamar SA. Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 2021; 176:540-557. [PMID: 33607134 DOI: 10.1016/j.ijbiomac.2021.02.107] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Polysaccharides are omnipresent biomolecules that hold great potential as promising biomaterials for a myriad of applications in various biotechnological and industrial sectors. The presence of diverse functional groups renders them tailorable functionalities for preparing a multitude of novel bio-nanostructures. Further, they are biocompatible and biodegradable, hence, considered as environmentally friendly biopolymers. Application of nanotechnology in food science has shown many advantages in improving food quality and enhancing its shelf life. Recently, considerable efforts have been made to develop polysaccharide-based nanostructures for possible food applications. Therefore, it is of immense importance to explore literature on polysaccharide-based nanostructures delineating their food application potentialities. Herein, we reviewed the developments in polysaccharide-based bio-nanostructures and highlighted their potential applications in food preservation and bioactive "smart" food packaging. We categorized these bio-nanostructures into polysaccharide-based nanoparticles, nanocapsules, nanocomposites, dendrimeric nanostructures, and metallo-polysaccharide hybrids. This review demonstrates that the polysaccharides are emerging biopolymers, gaining much attention as robust biomaterials with excellent tuneable properties.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
43
|
M Ahmed E, Saber D, Abd ElAziz K, Alghtani AH, Felemban BF, Ali HT, Megahed M. Chitosan-based nanocomposites: preparation and characterization for food packing industry. MATERIALS RESEARCH EXPRESS 2021; 8:025017. [DOI: 10.1088/2053-1591/abe791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
In the present work, Cerium (IV)-Zirconium (IV) oxide nanoparticles (CeO4ZrNPs) was successfully dispersed into Chitosan/15Gelatin nanocomposites with different quantities. The obtained chitosan-based nanocomposites represented remarkable improvements in structural, morphological, mechanical, and thermal properties. Roughness increased from 74 nm to 6.4 nm, Young’s Modulus enhanced from 1.36 GPa to 2.99 GPa. The influence of dispersed CeO4ZrNPs contents on the phase transition temperature (T
g) and the non-isothermal degradation processes of chitosan-based nanocomposites were examined using Differential Scanning Galorimetry (DSC) with different heating rates. Kinetic parameters of the thermal degradation for chitosan-based nanocomposites were evaluated using Kissinger-Akahira-Sunose (KAS) and Kissenger (KIS) procedures. Chitosan-based nanocomposites showed an increase in the thermal degradation temperature with higher activation energies, indicating improved thermal stability. Thermal analysis demonstrated that chitosan-based nanocomposites became more ordered by increasing CeO4ZrNPs as inferred from the negative entropy increase. Moreover, the degradation of chitosan-based nanocomposites has been described as a non-spontaneous process. The resulting information is particularly important in applications in which there is a need to obtain chitosan nanocomposites with improved mechanical and thermal properties such as food packing industry.
Collapse
|
44
|
|
45
|
Jessop I, Albornoz J, Ramírez O, Durán B, Molero L, Bonardd S, Kortaberria G, Diaz Diaz D, Leiva A, Saldías C. Optical, morphological and photocatalytic properties of biobased tractable films of chitosan/donor-acceptor polymer blends. Carbohydr Polym 2020; 249:116822. [DOI: 10.1016/j.carbpol.2020.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
|
46
|
Rajabi H, Jafari SM, Feizy J, Ghorbani M, Mohajeri SA. Preparation and characterization of 3D graphene oxide nanostructures embedded with nanocomplexes of chitosan- gum Arabic biopolymers. Int J Biol Macromol 2020; 162:163-174. [DOI: 10.1016/j.ijbiomac.2020.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
|
47
|
Zhang H, Wang W, Ding J, Lu Y, Xu J, Wang A. An upgraded and universal strategy to reinforce chitosan/polyvinylpyrrolidone film by incorporating active silica nanorods derived from natural palygorskite. Int J Biol Macromol 2020; 165:1276-1285. [PMID: 33035527 DOI: 10.1016/j.ijbiomac.2020.09.241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
Abstract
Active silica nanorod (OPal) was prepared from natural palygorskite (RPal) using an updated acid leaching route, and then the effect of RPal and OPal as nano-filler on the network structure, mechanical, thermal and anti-aging properties of chitosan/polyvinylpyrrolidone (CS/PVP) films was studied comparatively. It was revealed that OPal had a better dispersibility than RPal in CS/PVP substrate, and its incorporation improved the mechanical properties and thermal stability of the films significantly. The optimal composite film containing OPal shows the maximum tensile strength of 27.53 MPa (only 14.87 MPa and 22.47 MPa for CS/PVP and CS/PVP/RPal films, respectively), resulting from the more uniform dispersion of OPal in polymer substrate and its stronger interaction with 3D polymer network. By a controllable acid-leaching process, the metal ions in octahedral sheets of RPal were dissolved out continuously, which is favorable to alleviate the adverse effects of variable metal ions on the film under UV light irradiation, and thus improve the aging-resistant ability of films. This study provides new ideas for improving the reinforcing ability of natural clay minerals towards biopolymer-based material, finds a new way to resolve the aging problem of polymer composites caused by incorporation of natural clay minerals.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
| | - Junjie Ding
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yushen Lu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiang Xu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
48
|
Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:110899. [DOI: 10.1016/j.msec.2020.110899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022]
|
49
|
Hu F, Sun T, Xie J, Xue B, Li X, Gan J, Li L, Shao Z. Functional properties and preservative effect on Penaeus vannamei of chitosan films with conjugated or incorporated chlorogenic acid. Int J Biol Macromol 2020; 159:333-340. [PMID: 32422261 DOI: 10.1016/j.ijbiomac.2020.05.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
The chlorogenic acid-grafted-chitosan conjugates (CA-g-CS) with three grafting ratios were synthesized. Then the CA-g-CS conjugated films (CA-g-CS I, CA-g-CS II, and CA-g-CS III) and the CA-CS incorporated films (CA-CS I, CA-CS II, and CA-CS III) with equivalent chlorogenic acid content were prepared, respectively. The physical, mechanical, and biological properties of CA-g-CS conjugated and CA-CS incorporated films were evaluated. Further, the CA-g-CS III and CA-CS III were chosen to evaluate their preservative effect on shrimp. Compared with CS film, CA-g-CS conjugated and CA-CS incorporated films showed enhanced opacity and water solubility, changed thickness and water vapor permeability, and reduced moisture content, tensile strength and elongation at break. Conjugation or incorporation of CA enhanced antioxidant and antibacterial activities of CS films, and these activities increased with the increasing of CA content. CA-g-CS III showed better preservative effect on shrimp than CA-CS III in terms of weight loss, pH value, total volatile basic nitrogen, total bacterial count and sensory score of shrimp during storage. Therefore, CA-g-CS conjugated films exhibited better bioactivities and preservative effect on shrimp than CA-CS incorporated films. Compared with incorporation, conjugation of CA with CS is a more efficient way to improve properties of CS film.
Collapse
Affiliation(s)
- Fei Hu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jianhong Gan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Li Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Zehuai Shao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
50
|
Yoshida Y, Yamauchi K, Hiraragi R, Kiyono Y, Omori S, Shibano JI. Microstructures of crab chela: A biological composite for pinching. J Mech Behav Biomed Mater 2020; 112:104071. [PMID: 32911227 DOI: 10.1016/j.jmbbm.2020.104071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
We have investigated the microstructures and mechanical properties of four crab species Paralithodes brevipes, Eriocheir japonicas, Geothelphusa dehaani, and Telmessus acutidens and analyzed the molecular and elemental data of their chela. In the visible brown region (BR) at the distal end of the dactylus tip in Paralithodes brevipes and Eriocheir japonicas, the elastic modulus and calcium (Ca) content were lower than in the white region (WR). Near the interface between BR and WR, Ca, and carbon (C) composition changed continuously. Molecular analysis shows that the dactylus tips of the chela in P. brevipes and E. japonicas were composed of chitin and calcium carbonate. In G. dehaani and T. acutidens, the Ca concentration was homogeneous in the top portion (TP) of the dactylus dentitions. The lowest value of Ca concentration was found near the surface of the bottom portion (BP) on the dactylus dentitions. In G. dehaani, the elastic modulus distribution in the TP was maximum near the outermost surface, and gradually decreased in the inner layers; the lowest elastic modulus in the BP was near the outermost surface, and the distribution increased in the inner layer. These results show that the biological composite was as a continuous structure near the interface of the dactylus tip. Understanding the microstructures of the dactyla of crabs might help the study and development of bio-inspired composites for pinching.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Faculty of Engineering, Kitami Institute of Technology, Koen-cho, Kitami, Hokkaido, 090-8507, Japan.
| | - Ken Yamauchi
- Graduate School, Department of Mechanical Engineering, Kitami Institute of Technology, Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Ryoma Hiraragi
- Graduate School, Department of Mechanical Engineering, Kitami Institute of Technology, Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Yutaka Kiyono
- Department of Mechanical Engineering, Kitami Institute of Technology, Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Seiichi Omori
- Faculty of Engineering, Kitami Institute of Technology, Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Jun-Ichi Shibano
- Faculty of Engineering, Kitami Institute of Technology, Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| |
Collapse
|