1
|
Cherrak Y, Younes AA, Perez-Molphe-Montoya E, Maurer L, Yilmaz K, Enz U, Zeder C, Kiefer P, Christen P, Gül E, Vorholt JA, von Mering C, Hardt WD. Neutrophil recruitment during intestinal inflammation primes Salmonella elimination by commensal E. coli in a context-dependent manner. Cell Host Microbe 2025; 33:358-372.e4. [PMID: 40023150 DOI: 10.1016/j.chom.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Foodborne bacterial diarrhea involves complex pathogen-microbiota-host interactions. Pathogen-displacing probiotics are increasingly popular, but heterogeneous patient outcomes highlighted the need to understand individualized host-probiotic activity. Using the mouse gut commensal Escherichia coli 8178 and the human probiotic E. coli Nissle 1917, we found that the degree of protection against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) varies across mice with distinct gut microbiotas. Pathogen clearance is linked to enteropathy severity and subsequent recruitment of intraluminal neutrophils, which differs in a microbiota-dependent manner. By combining mouse knockout and antibody-mediated depletion models with bacterial genetics, we show that neutrophils and host-derived reactive oxygen species directly influence E. coli-mediated S. Tm displacement by potentiating siderophore-bound toxin killing. Our work demonstrates how host immune factors shape pathogen-displacing probiotic efficiency while also revealing an unconventional antagonistic interaction where a gut commensal and the host synergize to displace an enteric pathogen.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eugenio Perez-Molphe-Montoya
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Science and Technology, 8092 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Zavišić G, Ristić S, Petričević S, Janković D, Petković B. Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives. Foods 2024; 13:2487. [PMID: 39200415 PMCID: PMC11353716 DOI: 10.3390/foods13162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Heroja Pinkija 4, 21101 Novi Sad, Serbia
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Saša Petričević
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Drina Janković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia;
| | - Branka Petković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| |
Collapse
|
3
|
Choi J, Yadav S, Vaddu S, Thippareddi H, Kim WK. In vitro and in vivo evaluation of tannic acid as an antibacterial agent in broilers infected with Salmonella Typhimurium. Poult Sci 2023; 102:102987. [PMID: 37844525 PMCID: PMC10585643 DOI: 10.1016/j.psj.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/18/2023] Open
Abstract
This study was conducted to evaluate tannic acid (TA) as an antibacterial agent against Salmonella Typhimurium in in vitro and in vivo chicken models. The TA formed an inhibitory zone against Salmonella enterica serotypes including S. Typhimurium, S. Enteritidis, and S. Infantis. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of TA against Salmonella Typhimurium nalidixic acid resistant strain (STNR) were determined as 40 and 700 μg/mL, respectively. Sublethal doses of TA (5, 10, and 20 μg/mL) restricted swimming and swarming motility and biofilm formation of STNR compared to the control group (0 μg/mL) (P < 0.05). The TA-bovine serum albumin (BSA) complex formed at simulated gastric pH (pH 3.75) was hydrolyzed at pH 6.75 and 7.25 (P < 0.05), and the hydrolysis of the TA-BSA complex was stronger at pH 7.25 compared to the pH 6.75 (P < 0.05). The inhibitory zone of the TA-BSA complex against STNR at pH 6.75 was lower than TA without BSA at 30 and 60 min (P < 0.05), but not at 120 min (P > 0.1). The inhibitory zone of the TA-BSA complex against STNR at pH 7.25 was not decreased at 0, 30, and 60 min compared to TA without BSA (P > 0.1). The recovery rate of TA was 83, 54.8, 10.5, and 19.6% in the gizzard, jejunum, ileum, and ceca, respectively, in broiler chickens. The STNR-infected broilers fed 0.25 g/kg of TA had significantly lower unweighted beta diversity distance compared to the sham-challenged control (SCC) and challenged controlled (CC) group on D 21. TA supplementation linearly (P < 0.05) and quadratically (tendency; P = 0.071) reduced relative abundance of the family Peptostreptococcaceae in broilers infected with STNR on D 7. TA supplementation linearly (P < 0.05) and quadratically (tendency; P = 0.06) increased the relative abundance of the family Erysipelotrichaceae in broilers infected with STNR on D 21. Therefore, TA has potential to be used as an antibacterial agent against the S. Typhimurium infection in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sasikala Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Jayswal K, Kala A, Chaudhary LC, Kumar A, Tomar A. Autochthonous buffalo-gut origin Pediococcus pentosaceus RM119 decreased diarrhea and enhanced gut health, immunity in neonatal Murrah calves. Anim Biotechnol 2023; 34:3306-3314. [PMID: 36309815 DOI: 10.1080/10495398.2022.2138415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study assessed the effect of autochthonous probiotic Pediococcus pentosaceus RM119 on gut health, growth, and nutrient utilization in calves. Twelve buffalo calves (<15 d) were divided into two groups, control without probiotics, and probiotic group with P. pentosaceus RM119 @ 108 CFU/calf/d. The probiotic group showed a reduction (p < 0.05) in fecal score, diarrhea episodes and duration of diarrhea. The fecal pH, fecal ammonia was lower, whereas lactate was higher in probiotic group than control. There was a significant increase (p < 0.01) in the concentration of fecal acetate, propionate and butyrate levels in the probiotic supplemented group. The fecal lactobacilli and bifidobacterium were higher (p < 0.01), whereas, fecal coliform and clostridial count were lower (p < 0.01) in P. pentosaceus RM119 supplemented group. There was an improvement in reduced glutathione anti oxidant. Overall, buffalo-gut origin P. pentosaceus RM119 reduced the frequency and severity of diarrhea in neonatal buffalo calves and improved the gut health.
Collapse
Affiliation(s)
- Kavipriya Jayswal
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Anju Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - L C Chaudhary
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Aks Tomar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
5
|
Saha UB, Saroj SD. Lactic acid bacteria: prominent player in the fight against human pathogens. Expert Rev Anti Infect Ther 2022; 20:1435-1453. [PMID: 36154442 DOI: 10.1080/14787210.2022.2128765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications. AREAS COVERED This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed. EXPERT OPINION Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.
Collapse
Affiliation(s)
- Ujjayni B Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| |
Collapse
|
6
|
Metleva AS, Smolovskaya OV, Pleshkov VA, Mironov AN, Evstratenko AL. Influence of cow reproductive tract microbiota on formation of calf upper respiratory tract microbiota. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224201003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diagnosis of latent endometritis and predicting the effect of the inflammatory process on the course of pregnancy and its outcome is a necessary measure when conducting clinical examination of animals. Lack of diagnostic criteria, including microbiological one, cause difficulties for veterinarians in assessing latent endometritis. Often, animals suffering from latent inflammation of the reproductive tract are infertile and cannot be treated. And from cows with dysbiosis of the genital tract, sick young animals are born, lagging behind in growth and development. The aim of the work was to establish the relationship between the genital tract microbiome, the number and species composition of commensals and opportunistic microorganisms on the ability to carry pregnancy. Washes from the oral and nasal cavities were taken from the young born to study the microbiome: lactic acid microorganisms in combination with opportunistic pathogens. As a result of the research, it was found that animals with a low number of lactic acid microorganisms and an increased titer of opportunistic microorganisms were infertile, which led to their culling. In young animals, they are present in the respiratory tract in all samples, together with coccal microorganisms. The study of lactic acid microorganisms is advisable in the diagnosis of inflammatory processes of the reproductive tract and upper respiratory tract.
Collapse
|
7
|
Thiam M, Barreto Sánchez AL, Zhang J, Wen J, Zhao G, Wang Q. Investigation of the Potential of Heterophil/Lymphocyte Ratio as a Biomarker to Predict Colonization Resistance and Inflammatory Response to Salmonella enteritidis Infection in Chicken. Pathogens 2022; 11:pathogens11010072. [PMID: 35056020 PMCID: PMC8778401 DOI: 10.3390/pathogens11010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Salmonella causes significant economic loss to the poultry industry and represents a real threat to human health. The region of difference 21 (ROD21) pathogenicity island removal is a genetic mechanism by which Salmonellaenteritidis (SE) invades the intestinal epithelium and induces systemic infection in mice. The heterophil/lymphocyte (H/L) ratio reflects the chicken’s robustness and immune system status. The H/L ratio is considered a disease resistance trait, and it could be used as a marker for selecting Salmonella resistance in live chickens. However, the association of the H/L ratio with Salmonella resistance and the inflammatory response remains to be elucidated. Moreover, the kinetics of ROD21 excision in the intestine and immune organs of chickens is unknown. Therefore, this study aimed to investigate the bacterial load, the ROD21 excision, the IL-1β, IL-8, and INF-γ blood serum concentration kinetics, and the association with the H/L ratio in chicken at 1, 3, 7, and 21 days post-SE infection. The results showed a significant correlation between the H/L ratio and the bacterial load in the ileum and caecum at 7 dpi. The ROD21 pathogenicity island absolute and relative excision in the caecum were positively correlated at 1 dpi but negatively correlated at 7 dpi with the H/L ratio. However, in the liver, we found the opposite tendency. The association of the H/L ratio with IL-1β, IL-8, and INF-γ blood serum concentrations showed that a low H/L ratio is correlated with increased IL-1β and INF-γ at 21 dpi. This study confirmed that the H/L ratio is associated with robustness and Salmonella-resistance in chicken. The methodology used in this study can separate individuals into susceptible and resistant and can help in the selection and breeding of Salmonella-resistant chickens.
Collapse
|
8
|
Liu H, Zhao F, Zhang K, Zhao J, Wang Y. Investigating the growth performance, meat quality, immune function and proteomic profiles of plasmal exosomes in Lactobacillus plantarum-treated broilers with immunological stress. Food Funct 2021; 12:11790-11807. [PMID: 34761788 DOI: 10.1039/d1fo01936h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Exosomes are extracellular membranous nanovesicles that carry functional molecules to mediate cell-to-cell communication. To date, whether probiotics improve the immune function of broilers by plasmal exosome cargo is unclear. In this study, 300 broilers were allocated to three treatments: control diet (CON group), control diet + dexamethasone injection (DEX group), and control diet containing 1 × 108 cfu g-1 P8 + DEX injection (P8 + DEX group). The growth performance, meat quality and immune function of plasma and jejunal mucosa were detected. Exosomes were isolated from the plasma and characterized. Then, the exosome protein profile was determined by proteomic analysis. Correlation analyses between the exosomal proteins and growth performance, meat quality, immune function were performed. Lastly, the related protein levels were verified by multiple reaction monitoring (MRM). Results showed that P8 treatment increased the growth performance, meat quality and immune function of DEX-induced broilers with immunological stress. Moreover, the average diameters, cup-shaped morphology and expressed exosomal proteins confirmed that the isolated extracellular vesicles were exosomes. A total of 784 proteins were identified in the exosomes; among which, 126 differentially expressed proteins (DEPs) were found between the DEX and CON groups and 102 DEPs were found between the P8 + DEX and DEX groups. Gene ontology analysis indicated that DEPs between the DEX and CON groups are mainly involved in the metabolic process, cellular anatomical entity, cytoplasm, etc. DEPs between the P8 + DEX and DEX groups are mainly involved in the multicellular organismal process, response to stimulus, cytoplasm, etc. Pathway analysis revealed that most of the DEPs between the DEX and CON groups participated in the ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton, etc. Most of the DEPs between the P8 + DEX and DEX groups participated in the ErbB and PPAR signaling pathways. Moreover, many DEPs were correlated with the altered parameters of growth performance, meat quality and immunity in P8-treated broilers. MRM further revealed that the upregulated FABP6 and EPCAM in the DEX group were decreased by P8 + DEX treatment, and the downregulated C1QTNF3 in the DEX group was increased by P8 + DEX treatment. In conclusion, our findings demonstrated that P8 may promote the immune function, growth performance and meat quality of broilers with immunological stress by regulating the plasma exosomal proteins, especially the proteins of FABP6, EPCAM and C1QTNF3 and the pathway of PPAR (ILK/FABP6).
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Rolim FRL, Oliveira CJB, de Freitas Neto OC, Dos Santos KMO, Guerra GCB, Rodrigues RV, de Assis POA, Araújo DFDS, de Carvalho VAG, Lemos MLP, da Silva NMV, Soares JKB, Garcia HEM, de Souza EL, Souza FDAL, de Barros MEG, de Oliveira MEG, Queiroga RCRE. Microbiological, immunological, and histological changes in the gut of Salmonella Enteritidis-challenged rats fed goat cheese containing Lactobacillus rhamnosus EM1107. J Dairy Sci 2020; 104:179-197. [PMID: 33131813 DOI: 10.3168/jds.2020-18820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Cheeses are able to serve as suitable matrices for supplying probiotics to consumers, enabling appropriate conditions for bacteria to survive gastric transit and reach the gut, where they are assumed to promote beneficial processes. The present study aimed to evaluate the microbiological, immunological, and histological changes in the gut of Salmonella Enteritidis-challenged rats fed goat cheese supplemented with the probiotic strain Lactobacillus rhamnosus EM1107. Thirty male albino Wistar rats were randomly distributed into 5 experimental groups with 6 animals each: negative (NC) and positive (PtC) control groups, control goat cheese (CCh), goat cheese added with L. rhamnosus EM1107 (LrCh), and L. rhamnosus EM1107 only (EM1107). All animals, except NC group were challenged with Salmonella Enteritidis (109 cfu in 1 mL of saline through oral gavage). Microbial composition was assessed with high-throughput 16S rRNA sequencing by means of Illumina MiSeq (Illumina, San Diego, CA). Nuclear factor kappa B (NF-κB) from the animal cecum tissue was determined by real-time PCR and interleukins (TNF-α, IL-1β, IL-10, and IFN-γ) by means of ELISA. Myeloperoxidase and malondialdehyde levels were determined biochemically. The administration of the L. rhamnosus EM1107 probiotic strain, either as a pure culture or added to a cheese matrix, was able to reduce Salmonella colonization in the intestinal lumen and lessen tissue damage compared with rats from PtC group. In addition, the use of cheese for the probiotic strain delivery (LrCh) was associated with a marked shift in the gut microbiota composition toward the increase of beneficial organisms such as Blautia and Lactobacillus and a reduction in NF-κB expression. These findings support our hypothesis that cheeses might be explored as functional matrices for the efficacious delivery of probiotic strains to consumers.
Collapse
Affiliation(s)
- F R L Rolim
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - C J B Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraíba, 58397-000, Areia, Brazil; Global One Health initiative (GOHi), The Ohio State University, Columbus 43210
| | - O C de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - K M O Dos Santos
- Brazilian Agricultural Research Corporation (EMBRAPA), 23020-470, Rio de Janeiro, Brazil
| | - G C B Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, 59064-741, Natal, Brazil
| | - R V Rodrigues
- Department of Nutrition, Center for Education and Health, Federal University of Campina Grande, 58175-000, Cuité, Brazil
| | - P O A de Assis
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - D F de S Araújo
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, 59200-000, Santa Cruz, Brazil
| | - V A G de Carvalho
- Department of Morphology, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - M L P Lemos
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraíba, 58397-000, Areia, Brazil
| | - N M V da Silva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraíba, 58397-000, Areia, Brazil
| | - J K B Soares
- Department of Nutrition, Center for Education and Health, Federal University of Campina Grande, 58175-000, Cuité, Brazil
| | - H E M Garcia
- Department of Morphology, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - E L de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - F de A L Souza
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| | - M E G de Barros
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| | - M E G de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - R C R E Queiroga
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
10
|
Song J, Li Q, Everaert N, Liu R, Zheng M, Zhao G, Wen J. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. J Anim Sci 2020; 98:skz396. [PMID: 31894241 PMCID: PMC6986778 DOI: 10.1093/jas/skz396] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)-infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P < 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P < 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P < 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.
Collapse
Affiliation(s)
- Jiao Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Santos TT, Ornellas RMDS, Acurcio LB, Sandes SHC, da Costa AM, Uetanabaro APT, Nicoli JR, Vinderola G. Differential Immune Response of Lactobacillus plantarum 286 Against Salmonella Typhimurium Infection in Conventional and Germ-Free Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1323:1-17. [PMID: 32415613 DOI: 10.1007/5584_2020_544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We aimed at evaluating in vivo the probiotic potential of Lactobacillus plantarum 286 against Salmonella enterica serov. Typhimurium. Colonization capacity and antagonistic activity were determined in feces of gnotobiotic mice. Survival to infection, translocation, histopathology, IgA and cytokine levels (IL-10, IL-6, IFN-γ, TNF-α, TGF-β) were determined both in conventional and germ-free mice followed L. plantarum 286 administration and Salmonella infection. L. plantarum 286 colonized the intestine of gnotobiotic mice, where it produced antagonistic substances against S. Typhimurium. In conventional animals, the administration of this strain increased intestinal IgA levels and reduced the inflammatory response and the tissue damage caused by S. Typhimurium. Reduction of tissue damage in the intestine and liver of germ-free animals was also observed, however the immune response elicited was different in either model. L. plantarum 286 showed in vivo probiotic properties in both murine models. Probiotic capacity results may depend on the animal model chosen.
Collapse
Affiliation(s)
- Tizá Teles Santos
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Roberta Maria Dos Santos Ornellas
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Leonardo Borges Acurcio
- Department of Microbiology, Institute of Biological Sciences (ICB, in portuguese), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sávio Henrique Cicco Sandes
- Department of Microbiology, Institute of Biological Sciences (ICB, in portuguese), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Miura da Costa
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Department of Biological Sciences, Laboratory of Microbiology of the Agroindustry, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Jacques Robert Nicoli
- Department of Microbiology, Institute of Biological Sciences (ICB, in portuguese), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
12
|
Kumar A, Allison A, Henry M, Scales A, Fouladkhah AC. Development of Salmonellosis as Affected by Bioactive Food Compounds. Microorganisms 2019; 7:microorganisms7090364. [PMID: 31540475 PMCID: PMC6780870 DOI: 10.3390/microorganisms7090364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Infections caused by Salmonella serovars are the leading cause of foodborne hospitalizations and deaths in Americans, extensively prevalent worldwide, and pose a considerable financial burden on public health infrastructure and private manufacturing. While a comprehensive review is lacking for delineating the role of dietary components on prevention of Salmonellosis, evidence for the role of diet for preventing the infection and management of Salmonellosis symptoms is increasing. The current study is an evaluation of preclinical and clinical studies and their underlying mechanisms to elaborate the efficacy of bioactive dietary components for augmenting the prevention of Salmonella infection. Studies investigating dietary components such as fibers, fatty acids, amino acids, vitamins, minerals, phenolic compounds, and probiotics exhibited efficacy of dietary compounds against Salmonellosis through manipulation of host bile acids, mucin, epithelial barrier, innate and adaptive immunity and gut microbiota as well as impacting the cellular signaling cascades of the pathogen. Pre-clinical studies investigating synergism and/or antagonistic activities of various bioactive compounds, additional randomized clinical trials, if not curtailed by lack of equipoise and ethical concerns, and well-planned epidemiological studies could augment the development of a validated and evidence-based guideline for mitigating the public health burden of human Salmonellosis through dietary compounds.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Abimbola Allison
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Monica Henry
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Anita Scales
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
13
|
Liu J, Gu Z, Song F, Zhang H, Zhao J, Chen W. Lactobacillus plantarum ZS2058 and Lactobacillus rhamnosus GG Use Different Mechanisms to Prevent Salmonella Infection in vivo. Front Microbiol 2019; 10:299. [PMID: 30842764 PMCID: PMC6391337 DOI: 10.3389/fmicb.2019.00299] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Pathogen-induced infectious diseases pose great threats to public health. Accordingly, many studies have investigated effective strategies targeting pathogenic infections. We previously reported the preventive effects of Lactobacillus plantarum ZS2058 (ZS2058) and L. rhamnosus GG (LGG) against Salmonella spp. in a murine model. Here, we compared the mechanisms underlying the preventive effects of these Lactobacillus strains in vivo. Notably, reduced C-reactive protein levels were observed with both ZS2058 and LGG, which suggests abrogated anti-infection and inflammatory responses. ZS2058 more efficiently reduced the pathogenicity of Salmonella by increasing the level of propionic acid in feces and production of mucin 2 in the mouse colon and activity through the interleukin (IL)-23/IL-22 and IL-23/IL-17 pathways. Meanwhile, LGG more strongly alleviated gut inflammation, as indicated by changes in the levels of tissue necrosis factor (TNF)-α, IL-10 and myeloperoxidase (MPO) in infected mice. Moreover, both ZS2058 and LGG restored the levels of interferon (INF)-γ, a cytokine suppressed by Salmonella, albeit through different pathways. Our results demonstrate that ZS2058 and LGG prevent Salmonella infection via different mechanisms.
Collapse
Affiliation(s)
- Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fanfen Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
14
|
Machado Prado MR, Boller C. Anti-inflammatory effects of probiotics. DISCOVERY AND DEVELOPMENT OF ANTI-INFLAMMATORY AGENTS FROM NATURAL PRODUCTS 2019:259-282. [DOI: 10.1016/b978-0-12-816992-6.00009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Burns P, Oddi S, Forzani L, Tabacman E, Reinheimer J, Vinderola G. Variability in gut mucosal secretory IgA in mice along a working day. BMC Res Notes 2018; 11:98. [PMID: 29402300 PMCID: PMC5800014 DOI: 10.1186/s13104-018-3213-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/31/2018] [Indexed: 11/22/2022] Open
Abstract
Objective To assess the variability of secretory immunoglobulin A (S-IgA) in the lumen and feces of mice along a working day. Results Mice were maintained under a 12 h light–dark cycle, light period starting at 8 AM. S-IgA was determined in feces and intestinal content (after one or three washes) at three points along the day: at the beginning, in the middle and at the end of the light period (ELP). Significant reduction in the content of S-IgA in the small intestine fluid and in feces was observed at the end of the light cycle, which coincides with the end of a regular working day (8 PM) in any given animal facility. It was also observed that three washes of the small intestine were more effective than one flush to recover a significant higher amount of S-IgA, with the smallest coefficient of variation observed by the ELP. A smaller CV would imply a reduced number of animals needed to achieve the same meaningful results. The results may be useful when designing animal trials for the selection of probiotic candidates based on their capacity of activating S-IgA, since it would imply a more rational use of experimental animals.
Collapse
Affiliation(s)
- Patricia Burns
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Sofia Oddi
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Liliana Forzani
- Departamento de Matemática, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | | | - Jorge Reinheimer
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000, Santa Fe, Argentina.
| |
Collapse
|
16
|
Moe AZ, Paulsen P, Pichpol D, Fries R, Irsigler H, Baumann MPO, Oo KN. Prevalence and Antimicrobial Resistance of Salmonella Isolates from Chicken Carcasses in Retail Markets in Yangon, Myanmar. J Food Prot 2017; 80:947-951. [PMID: 28463083 DOI: 10.4315/0362-028x.jfp-16-407] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A cross-sectional investigation was conducted concerning prevalence, antimicrobial resistance, multidrug resistance patterns, and serovar diversity of Salmonella in chicken meat sold at retail in Yangon, Myanmar. The 141 chicken meat samples were collected at 141 retail markets in the Yangon Region, Myanmar, 1 November 2014 to 31 March 2015. Information on hygienic practices (potential risk factors) was retrieved via checklists. Salmonella was isolated and identified according to International Organization for Standardization methods (ISO 6579:2002) with minor modifications. Twelve antimicrobial agents belonging to eight pharmacological groups were used for antimicrobial susceptibility testing (disk diffusion method). Salmonella was recovered from 138 (97.9%) of the 141 samples. The isolates were most frequently resistant to trimethoprim-sulfamethoxazole (70.3% of isolates), tetracycline (54.3%), streptomycin (49.3%), and ampicillin (47.1%). Resistance was also found to chloramphenicol (29.7%), amoxicillin-clavulanic acid (17.4%), ciprofloxacin (9.4%), tobramycin (8.7%), gentamicin (8%), cefazolin (7.2%), lincomycin-spectinomycin (5.8%), and norfloxacin (0.7%). Among the 138 Salmonella isolates, 72 (52.2%) were resistant to three or more antimicrobial agents. Twenty-four serovars were identified among the 138 Salmonella-positive samples; serovars Albany, Kentucky, Braenderup, and Indiana were found in 38, 11, 10, and 8% of samples, respectively. None of the potential risk factors were significantly related to Salmonella contamination of chicken carcasses. This study provides new information regarding prevalence and antimicrobial resistance and Salmonella serovar diversity in retail markets in Yangon, Myanmar.
Collapse
Affiliation(s)
- Aung Zaw Moe
- 1 Joint Master Course in Veterinary Public Health, Freie Universität, Berlin, Germany and Chiang Mai University, Chiang Mai, Thailand.,2 Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Peter Paulsen
- 3 Institute of Meat Hygiene, Meat Technology and Food Science, Department of Farm Animals and Public Health in Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Duangporn Pichpol
- 4 Veterinary Public Health Centre for Asia Pacific and Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Reinhard Fries
- 5 Winternstrasse 36, 31683 Obernkirchen OT Krainhagen, Germany
| | - Herlinde Irsigler
- 6 Meat Hygiene Section, Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
| | - Maximilian P O Baumann
- 6 Meat Hygiene Section, Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Freie Universität, Berlin, Germany.,7 Food and Agriculture Organization Reference Centre for Veterinary Public Health, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
| | - Kyaw Naing Oo
- 2 Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| |
Collapse
|
17
|
Sandes S, Alvim L, Silva B, Acurcio L, Santos C, Campos M, Santos C, Nicoli J, Neumann E, Nunes Á. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiol Res 2017; 200:1-13. [PMID: 28527759 DOI: 10.1016/j.micres.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/27/2022]
Abstract
From the birth, since their mucosal microbiota and immune system are not fully developed, newborn calves are susceptible to several mucosal pathogenic microorganisms. Operating through humoral and non-humoral mechanisms in the host, several lactic acid bacteria strains bearing probiotic features are often employed in livestock as food supplement, improving animal production performance, promoting health and reducing the severity of mucosal infections. Accordingly, we isolated, species-level identified and screened for their probiotic potentials seventy lactic acid bacteria strains from upper airway, vaginal and intestinal mucosa of healthy calves. Based on in vitro approaches, we selected three strains: Lactobacillus fermentum V3B-08 isolated from upper airway mucosa, Weissella hellenica V1V-30 isolated from vaginal mucosa and Lactobacillus farciminis B4F-06 isolated from intestinal mucosa were used to mono-colonize germ-free mice in the same site in which these strains were isolated, aiming to characterize their immunomodulatory features. These strains were able to colonize germ-free mice mucosa and trigger sIgA synthesis at a local level, in addition to stimulating, in different ways, adaptive immune responses at a systemic level.
Collapse
Affiliation(s)
- Sávio Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luige Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Bruno Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Cinara Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil; Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Márcia Campos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Camila Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Jacques Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Álvaro Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
Silva IGO, Vellano IHB, Moraes AC, Lee IM, Alvarenga B, Milbradt EL, Hataka A, Okamoto AS, Andreatti Filho RL. Evaluation of a Probiotic and a Competitive Exclusion Product Inoculated In Ovo on Broiler Chickens Challenged with Salmonella Heidelberg. ACTA ACUST UNITED AC 2017. [DOI: 10.1590/1806-9061-2016-0409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- IGO Silva
- College of Veterinary Medicine and Animal Science, Brazil
| | - IHB Vellano
- College of Veterinary Medicine and Animal Science, Brazil
| | | | - IM Lee
- BioCamp Laboratories, Brazil
| | | | - EL Milbradt
- College of Veterinary Medicine and Animal Science, Brazil
| | - A Hataka
- College of Veterinary Medicine and Animal Science, Brazil
| | - AS Okamoto
- College of Veterinary Medicine and Animal Science, Brazil
| | | |
Collapse
|
19
|
Mingmongkolchai S, Panbangred W. In vitro evaluation of candidate Bacillus spp. for animal feed. J GEN APPL MICROBIOL 2017; 63:147-156. [DOI: 10.2323/jgam.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sirima Mingmongkolchai
- Department of Biotechnology, Faculty of Science, Mahidol University
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MUOU:CRC), Faculty of Science, Mahidol University
| | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MUOU:CRC), Faculty of Science, Mahidol University
| |
Collapse
|
20
|
Silva BC, Sandes SHC, Alvim LB, Bomfim MRQ, Nicoli JR, Neumann E, Nunes AC. Selection of a candidate probiotic strain of Pediococcus pentosaceus from the faecal microbiota of horses by in vitro testing and health claims in a mouse model of Salmonella infection. J Appl Microbiol 2016; 122:225-238. [PMID: 27813217 PMCID: PMC7166613 DOI: 10.1111/jam.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
AIMS The aim of this study was to verify the suitable use of candidate 'probiotics' selected by in vitro tests and the importance of in vivo assays to nominate micro-organisms as probiotics and alternative prophylactic treatments for Salmonella Typhimurium infection. METHODS AND RESULTS Thirty-three lactic acid bacteria (LAB) isolated from foal's faeces were assessed based on the main desirable functional in vitro criteria. Based on these results, Pediococcus pentosaceus strain 40 was chosen to evaluate its putative probiotic features in a mouse model of Salmonella infection. Daily intragastric doses of Ped. pentosaceus 40 for 10 days before and 10 days after Salmonella challenge (106 CFU of Salm. Typhimurium per mouse) led to a significant aggravation in mouse health by increasing weight loss, worsening clinical symptoms and anticipating the time and the number of deaths by Salmonella. Pediococcus pentosaceus modulated cell-mediated immune responses by up-regulation of the gene expression of the proinflammatory cytokines IFN-γ and TNF-α in the small intestine. CONCLUSION The usual criteria were used for in vitro screening of a large number of LAB for desirable probiotic functional properties. However, the best candidate probiotic strain identified, Ped. pentosaceus #40, aggravated the experimental disease in mice. SIGNIFICANCE AND IMPACT OF THE STUDY These findings emphasize the need for prophylactic or therapeutic effectiveness to be demonstrated in in vivo models to make precise health claims.
Collapse
Affiliation(s)
- B C Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - S H C Sandes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - L B Alvim
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - M R Q Bomfim
- Laboratório de Biologia Molecular de Microrganismos do Núcleo de Biologia Parasitária, Centro Universitário do Maranhão (UniCEUMA), São Luís, MA, Brazil
| | - J R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - E Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - A C Nunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Rokana N, Singh R, Mallappa RH, Batish VK, Grover S. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 - a probiotic strain of Indian gut origin. J Med Microbiol 2016; 65:1482-1493. [PMID: 27902414 DOI: 10.1099/jmm.0.000366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Probiotic Lactobacillus plantarum MTCC 5690, a probiotic strain of Indian gut origin, and milk formulations produced with the same were explored in this study as biotherapeutics by evaluating their functional efficacy against Salmonella infection in mice. The efficacy of milk formulations (fermented/unfermented) of MTCC 5690 for enhancement of intestinal barrier function was determined by monitoring the permeability and histopathology of the intestine. Infected mice fed with probiotic Dahi, fermented probiotic drink and sweetened fermented probiotic drink maintained the health and integrity of the intestinal epithelium as compared to those fed with PBS, milk, unfermented probiotic milk and Dahi. Our relative expression data revealed that the changes caused by MTCC 5690 in intestinal barrier function components were established through modulation of the key regulatory receptors Toll-like receptor 2 and Toll-like receptor 4. The results suggest that fermented milks of MTCC 5690 could enhance the defences of the intestinal barrier in enteric infection condition and, therefore, can be explored as a dietary-based strategy to reduce Salmonella infection in the human gut.
Collapse
Affiliation(s)
- Namita Rokana
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rajbir Singh
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Virender Kumar Batish
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Sunita Grover
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| |
Collapse
|
22
|
Salas-Jara MJ, Ilabaca A, Vega M, García A. Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics. Microorganisms 2016; 4:E35. [PMID: 27681929 PMCID: PMC5039595 DOI: 10.3390/microorganisms4030035] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Probiotics are live bacteria, generally administered in food, conferring beneficial effects to the host because they help to prevent or treat diseases, the majority of which are gastrointestinal. Numerous investigations have verified the beneficial effect of probiotic strains in biofilm form, including increased resistance to temperature, gastric pH and mechanical forces to that of their planktonic counterparts. In addition, the development of new encapsulation technologies, which have exploited the properties of biofilms in the creation of double coated capsules, has given origin to fourth generation probiotics. Up to now, reviews have focused on the detrimental effects of biofilms associated with pathogenic bacteria. Therefore, this work aims to amalgamate information describing the biofilms of Lactobacillus strains which are used as probiotics, particularly L. rhamnosus, L. plantarum, L. reuteri, and L. fermentum. Additionally, we have reviewed the development of probiotics using technology inspired by biofilms.
Collapse
Affiliation(s)
- María José Salas-Jara
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Alejandra Ilabaca
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Marco Vega
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Apolinaria García
- Laboratorio de Patogenicidad Bacteriana, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| |
Collapse
|
23
|
Growth potential of Listeria monocytogenes in probiotic cottage cheese formulations with reduced sodium content. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Rieger J, Janczyk P, Hünigen H, Neumann K, Plendl J. Intraepithelial lymphocyte numbers and histomorphological parameters in the porcine gut after Enterococcus faecium NCIMB 10415 feeding in a Salmonella Typhimurium challenge. Vet Immunol Immunopathol 2015; 164:40-50. [DOI: 10.1016/j.vetimm.2014.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 12/07/2014] [Accepted: 12/31/2014] [Indexed: 02/08/2023]
|
25
|
Sim I, Koh JH, Kim DJ, Gu SH, Park A, Lim YH. In vitro assessment of the gastrointestinal tolerance and immunomodulatory function of Bacillus methylotrophicus isolated from a traditional Korean fermented soybean food. J Appl Microbiol 2015; 118:718-26. [PMID: 25494714 DOI: 10.1111/jam.12719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to investigate the potential of Bacillus methylotrophicus as a probiotic. METHODS AND RESULTS A Bacillus isolate designated strain C14 was isolated from Korean traditional fermented soybean paste (doenjang). The strain was identified, and its physiological and biochemical properties were characterized. The gastrointestinal tolerance and immunomodulatory function of strain C14 were also investigated. Strain C14 was identified as B. methylotrophicus by analysis of its biochemical properties using the API 50CHB system and by phylogenetic analysis of the 16S rDNA sequence. Strain C14 showed >80% and >75% of survival for artificial gastric juices (pH 2.5 and 1% pepsin) and 0.5% (w/v) bile salt, respectively. Heat-killed B. methylotrophicus C14 inhibited the adhesion of various pathogens and enhanced the adhesion of probiotic bacteria to Caco-2 cells. The heat-killed cells also induced high levels of immune cell proliferation compared with the control and stimulated interleukin-6 and tumour necrosis factor-α production in mouse macrophages. CONCLUSIONS Bacillus methylotrophicus C14 could be used as a probiotic. SIGNIFICANCE AND IMPACT OF THE STUDY Recently identified B. methylotrophicus is a new potential probiotic with high gastrointestinal tolerance.
Collapse
Affiliation(s)
- I Sim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Bogsan C, Ferreira L, Maldonado C, Perdigon G, Almeida S, Oliveira M. Fermented or unfermented milk using Bifidobacterium animalis subsp. lactis HN019: Technological approach determines the probiotic modulation of mucosal cellular immunity. Food Res Int 2014; 64:283-288. [DOI: 10.1016/j.foodres.2014.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
|
27
|
Fernandes MS, Cruz AG, Dias Arroyo DM, Faria JDAF, Cristianini M, Sant'Ana AS. On the behavior of Listeria innocua and Lactobacillus acidophilus co-inoculated in a dairy dessert and the potential impacts on food safety and product's functionality. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Amadou I, Le GW, Amza T, Sun J, Shi YH. Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
de Souza Sant'Ana A. Introduction to the Special Issue: Salmonella in foods: Evolution, strategies and challenges. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|