1
|
Bi W, Zhang Y, Lu Z, Zhao H, Wang H, Wang S, Malhotra RK, Wang X, Han L. Matairesinol discovered as a key active ingredient in Chinese dark tea protects against high-fat induced endothelial injury via activating AMPK phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119576. [PMID: 40057143 DOI: 10.1016/j.jep.2025.119576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional health beverage in China, Dark Tea (DT) have been proved to effectively mitigate vascular lesions induced by hyperlipidemia. However, key active ingredient of DT and the potential pharmacological mechanism protecting vascular endothelium is still unclear. AIM OF THE STUDY This study aimed to investigate the key active ingredient in DT and reveal underlying mechanism responsible for its protective effect on vascular endothelium. MATERIALS AND METHODS The protective effect of DT on vascular endothelium was evaluated using a high-fat diet-induced zebrafish model. The chemical ingredients of DT were analyzed by ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UHPLC-Q/TOF-MS), and the active ingredients were identified using a multidimensional molecular data mining approach. Molecular biology experiments were used to explore the underlying mechanisms of DT and its active components. RESULTS The results showed that DT could significantly prevent the deposition of circulatory lipids on the vascular wall, inhibit inflammatory cell aggregation, and reduce microvascular hyperplasia in zebrafish models. An integrated multi-dimensional data mining technique was successfully employed to identify a key active lignan in DT, matairesinol. Furthermore, DT and matairesinol significantly protected endothelial cells by activating AMPK phosphorylation, thereby inhibiting downstream HMGCR protein expression and promoting PPARγ phosphorylation. CONCLUSIONS Matairesinol has been characterized as a key active ingredient in DT. It protects against high-fat-induced vascular endothelial damage by activating AMPK and downstream signaling pathways. These findings offer new insights into the therapeutic potential of DT as a daily dietary supplement for maintaining vascular health.
Collapse
Affiliation(s)
- Wenjie Bi
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yougang Zhang
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Zixu Lu
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Huanxin Zhao
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Haiyang Wang
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Songsong Wang
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Rajiv Kumar Malhotra
- James Graham Brown Cancer Center, University of Louisville, Louisville, 40202, Kentucky, USA
| | - Xiaojing Wang
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Liwen Han
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; James Graham Brown Cancer Center, University of Louisville, Louisville, 40202, Kentucky, USA.
| |
Collapse
|
2
|
Cheng L, Wei Y, Peng L, Wei K, Liu Z, Wei X. State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits. Crit Rev Food Sci Nutr 2024; 64:11321-11340. [PMID: 37584203 DOI: 10.1080/10408398.2023.2236701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
As far as health benefit is concerned, dark tea is one of the best beverages in the world. Theabrownins are the major ingredient contributing to the health benefits of dark tea and known as "the soft gold in dark tea." A growing body of evidence indicated that theabrownins are macromolecular pigments with reddish-brown color and mellow taste, and mainly derived from the oxidative polymerization of tea polyphenols. Theabrownins are the main active ingredients in dark tea which brings multiple health-promoting effects in modulating lipid metabolism, reducing body weight gain, attenuating diabetes, mitigating NAFLD, scavenging ROS, and preventing tumors. More importantly, it's their substantial generation in microbial fermentation that endows dark tea with much stronger hypolipidemic effect compared with other types of tea. This review firstly summarizes the most recent findings on the preparation, structural characteristics, and health-promoting effects of theabrownins, emphasizing the underlying molecular mechanism, especially the different mechanisms behind the effect of theabrownins-mediated gut microbiota on the host's multiple health-promoting benefits. Furthermore, this review points out the main limitations of current research and potential future research directions, hoping to provide updated scientific evidence for their better theoretical research and industrial utilization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
3
|
Wang W, Feng Z, Min R, Yin J, Jiang H. The Effect of Temperature and Humidity on Yellow Tea Volatile Compounds during Yellowing Process. Foods 2024; 13:3283. [PMID: 39456345 PMCID: PMC11506851 DOI: 10.3390/foods13203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Yellowing is the key processing technology of yellow tea, and environmental conditions have a significant impact on the yellowing process. In this study, volatile compounds of the yellowing process under different environmental conditions were analyzed by GC-MS. Results showed that a total of 75 volatile compounds were identified. A partial least squares discriminant analysis (PLS-DA) determined that 42 of them were differential compounds, including 12 hydrocarbons, 8 ketones, 8 aldehydes, 6 alcohols, and 8 other compounds, and compared the contents of differential compounds under the conditions of 40 °C with 90% humidity, 50 °C with 50% humidity, and 30 °C with 70% humidity, then analyzed the variation patterns of hydrocarbons under different yellowing environmental conditions. A 40 °C with 90% humidity treatment reduced the content of more hydrocarbons and increased the aldehydes. The content of 3-hexen-1-ol was higher when treated at 50 °C with 50% humidity and was consistent with the results of sensory evaluation. This study could provide a theoretical basis for future research on the aroma of yellow tea.
Collapse
Affiliation(s)
| | | | | | | | - Heyuan Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (W.W.); (Z.F.); (R.M.); (J.Y.)
| |
Collapse
|
4
|
Zhai X, Li S, Wang T, Bai J, Xu F, Zhou W. Dark Tea Wine Protects Against Metabolic Dysfunction-Associated Steatotic Liver Disease In Vivo Through Activating the Nrf2/HO-1 Antioxidant Signaling Pathway. J Med Food 2024; 27:912-921. [PMID: 39001839 DOI: 10.1089/jmf.2024.k.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex and multifactorial disease. Dark tea exhibits great potential for various bioactivities for metabolic health. In this study, we aimed to evaluate therapeutic effects and the underlying mechanisms of dark tea wine (DTW) on MASLD with obesity. A rat model of MASLD was established by high-fat diet and administered with different doses of DTW as an intervention. The biomarkers of lipid metabolism and oxidative stress in rats were tested. The weight of organs and adipose tissues and the expressions of nuclear factor erythroid 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) were investigated based on the pathology and western blot analysis. We found that DTW enhanced antioxidant capacity via activating the Nrf2/HO-1 signaling pathway, further markedly triggering inhibition of weight gain, reduction of lipid dysfunction, and improvement of pathological characteristics to ameliorate MASLD induced by high-fat diet. These results suggest that DTW is a promising functional supplement for prevention and treatment of MASLD and obesity.
Collapse
Affiliation(s)
- Xiaodong Zhai
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Suyang Li
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Tongsheng Wang
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Jinbo Bai
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| | - Fengqing Xu
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, PR China
| | - Wuxi Zhou
- Anhui University of Chinese Medicine, Xinzhan District, Hefei, PR China
| |
Collapse
|
5
|
Wang X, Liu J, Wei J, Zhang Y, Xu Y, Yue T, Yuan Y. Protective Mechanism of Eurotium amstelodami from Fuzhuan Brick Tea against Colitis and Gut-Derived Liver Injury Induced by Dextran Sulfate Sodium in C57BL/6 Mice. Nutrients 2024; 16:1178. [PMID: 38674869 PMCID: PMC11054642 DOI: 10.3390/nu16081178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The study explored the potential protective impact of the probiotic fungus Eurotium amstelodami in Fuzhuan brick tea on ulcerative colitis, along with the underlying mechanism. A spore suspension of E. amstelodami was administered to C57BL/6 mice to alleviate DSS-induced colitis. The findings indicated that administering E. amstelodami evidently enhanced the ultrastructure of colonic epithelium, showing characteristics such as enhanced TJ length, reduced microvilli damage, and enlarged intercellular space. After HLL supplementation, the activation of the liver inflammation pathway, including TLR4/NF-kB and NLRP3 inflammasome caused by DSS, was significantly suppressed, and bile acid metabolism, linking liver and gut, was enhanced, manifested by restoration of bile acid receptor (FXR, TGR5) level. The dysbiosis of the gut microbes in colitis mice was also restored by HLL intervention, characterized by the enrichment of beneficial bacteria (Lactobacillus, Bifidobacterium, Akkermansia, and Faecalibaculum) and fungi (Aspergillus, Trichoderma, Wallemia, Eurotium, and Cladosporium), which was closely associated with lipid metabolism and amino acid metabolism, and was negatively correlated with inflammatory gene expression. Hence, the recovery of gut microbial community structure, implicated deeply in the inflammatory index and metabolites profile, might play a crucial role in the therapeutic mechanism of HLL on colitis.
Collapse
Affiliation(s)
- Xin Wang
- College of Health Management, Shangluo University, Shangluo 726000, China; (X.W.); (J.L.)
- Shaanxi Union Research Center of University and Enterprise for Healthy and Wellness Industry, Shangluo 726000, China
| | - Jinhu Liu
- College of Health Management, Shangluo University, Shangluo 726000, China; (X.W.); (J.L.)
- Shaanxi Union Research Center of University and Enterprise for Healthy and Wellness Industry, Shangluo 726000, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| | - Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| | - Yunpeng Xu
- Shangluo Characteristic Industry and Leisure Agriculture Guidance Center, Shangluo 726000, China;
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (J.W.); (Y.Z.); (T.Y.)
| |
Collapse
|
6
|
Yoo A, Ahn J, Seo HD, Hahm JH, Jung CH, Ly SY, Ha TY. Fuzhuan brick tea extract ameliorates obesity-induced skeletal muscle atrophy by alleviating mitochondrial dysfunction in mice. J Nutr Biochem 2024; 125:109532. [PMID: 37977405 DOI: 10.1016/j.jnutbio.2023.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Fuzhuan brick tea (FBT) is a post-fermented tea fermented by the fungus Eurotium cristatum and is mainly produced in Hunan Province, China. Our previous study revealed that FBT extract prevents obesity by increasing energy expenditure and mitochondrial content in mice. Therefore, in this study, we hypothesized that FBT extract could be effective in alleviating obesity-induced muscle atrophy by addressing mitochondrial dysfunction, and aimed to explore the underlying molecular mechanism of FBT extract in high-fat diet-induced obese mice. FBT extract increased skeletal muscle weight and size, myosin heavy chain isoforms, and muscle performance in obese mice. Additionally, FBT extract reduced obesity-induced intramuscular lipids, skeletal muscle inflammation, and the expression of skeletal muscle atrophy markers, and increased the expression of fibronectin type III domain-containing protein 5 in skeletal muscles. Obesity-induced skeletal muscle mitochondrial dysfunction was improved by FBT extract as analyzed through mitochondrial morphology, fatty acid oxidation, respiratory chain complexes, and mitochondrial dynamics and biogenesis. Epigallocatechin, a major bioactive compound in FBT extract, attenuated palmitic acid-induced muscle atrophy by regulating mitochondrial functions in C2C12 cells. In conclusion, FBT extract may prevent obesity-induced muscle atrophy by alleviating mitochondrial dysfunction in mice.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyo Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Sun Yung Ly
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Tae Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Yang W, Cheng S, Liu M, Li N, Wang J, Yao W, Chen F, Xie J, Gong P. Lipid-Lowering Effects of a Novel Polysaccharide Obtained from Fuzhuan Brick Tea In Vitro. Foods 2023; 12:3428. [PMID: 37761137 PMCID: PMC10527736 DOI: 10.3390/foods12183428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid accumulation causes diseases such as obesity and abnormal lipid metabolism, thus impairing human health. Tea polysaccharide is one of the natural, active substances that can lower lipid levels. In this paper, an oleic-acid-induced HepG2 cell model was established. The lipid-lowering effects of a novel group of Fuzhuan brick tea polysaccharides (FTPs)-obtained from Fuzhuan brick tea-were examined in vitro. The monosaccharide composition of FTP3 was Glc, Gal, Ara, Man, Rha, GalAc, GlcAc, and Xyl with a molar ratio of 23.5:13.2:9.0:5.5:5.4:2.7:1.3:1.0, respectively. A molecular weight of 335.68 kDa was identified for FTP3. HepG2 cells treated with FTP3 achieved a prominent lipid-lowering effect compared with cells treated with oleic acid. Images of the Oil Red O staining treatment showed that FTP3-treated groups had significantly fewer red fat droplets. TC and TG levels were lower in FTP3-treated groups. FTP3 alleviated lipid accumulation in HepG2 cells, activated AMPK, and decreased the SREBP-1C and FAS protein expressions associated with fatty acid synthesis. FTP3 holds promising potential for its lipid-lowering effects.
Collapse
Affiliation(s)
- Wenjuan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Shirui Cheng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Meng Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Nan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jing Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
| | - Jianwu Xie
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Y.); (S.C.); (M.L.); (N.L.); (J.W.); (W.Y.); (J.X.)
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
8
|
Zheng X, Hu T, Xie H, Ou X, Huang J, Wang C, Liu Z, Li Q. Characterization of the key odor-active compounds in different aroma types of Fu brick tea using HS-SPME/GC-MSO combined with sensory-directed flavor analysis. Food Chem 2023; 426:136527. [PMID: 37336100 DOI: 10.1016/j.foodchem.2023.136527] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Fu brick tea (FBT) is popular for its unique 'fungal flower' aroma, however, its key odor-active compounds are essentially unknown. In this study, the odor-active compounds of "stale-fungal" aroma (CJX), "fresh-fungal" aroma (QJX), and "fermentation-fungal" aroma (FJX) types FBT were extracted and examined by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatographyolfactometry (GC-O). A total of 43 volatile and 38 odor-active compounds were identified by these methods. Among them, the content of dihydroactindiolide (4596-13189 µg/L), (E)-linalool oxide (2863-6627 µg/L), and benzyl alcohol (4992-6859 µg/L) were highest. Aroma recombination experiments further verified that these odor-active compounds could be simulated the overall aroma profile of FBT successfully. Furthermore, omission experiments confirmed that 15, 20, and 15 key odor-active compounds in CJX, QJX, and FJX FBT, respectively. This study will provide a theoretical basis for comprehensively understanding the formation of characteristic aromas in FBT.
Collapse
Affiliation(s)
- Xuexue Zheng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tengfei Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - He Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xingchang Ou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
9
|
Song F, Zhang K, Yang J, Wilson AS, Chen C, Xu X. The Hypolipidemic Characteristics of a Methanol Extract of Fermented Green Tea and Spore of Eurotium cristatum SXHBTBU1934 in Golden Hamsters. Nutrients 2023; 15:1329. [PMID: 36986059 PMCID: PMC10055714 DOI: 10.3390/nu15061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Fuzhuan brick tea (FBT), a distinctive Chinese dark tea with the predominant fungus of Eurotium cristatum, offered significant health benefits to Chinese people. In the current study, the in vivo bioactivities of E. cristatum (SXHBTBU1934) fermented green tea and spores of E. cristatum fermented on wheat were investigated, respectively. The methanol extract of fermented green tea and spore of E. cristatum both showed potent lipid-lowering activity in the blood of a high-fat diet induced hyperlipidemia model in golden hamsters and significantly reduced the accumulation of fat granules in the liver. These results indicated that the key active components were produced by E. cristatum. Chemical investigations suggested similar components in the two extracts and led to the identification of a new alkaloid, namely variecolorin P (1), along with four known structurally related compounds, (-)-neoechinulin A (2), neoechinulin D (3), variecolorin G (4), and echinulin (5). The structure of the new alkaloid was elucidated by HRESIMS, 1H, 13C, and 2D NMR analysis. The lipid-lowering activity of these compounds was evaluated using an oleic acid-induced HepG2 cell line model. Compound 1 significantly reduced the lipid accumulation in the HepG2 cell line with an IC50 value of 0.127 μM.
Collapse
Affiliation(s)
- Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Kai Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Jinpeng Yang
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| | - Annette S. Wilson
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Caixia Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.S.W.); (C.C.)
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
| |
Collapse
|
10
|
Qi B, Zhang Y, Ren D, Qin X, Wang N, Yang X. Fu Brick Tea Alleviates Constipation via Regulating the Aquaporins-Mediated Water Transport System in Association with Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3862-3875. [PMID: 36802556 DOI: 10.1021/acs.jafc.2c07709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the amendatory effects of Fu brick tea aqueous extract (FTE) on constipation and its underlying molecular mechanism. The administration of FTE by oral gavage (100 and 400 mg/kg·bw) for 5 weeks significantly increased fecal water content, improved difficult defecation, and enhanced intestinal propulsion in loperamide (LOP)-induced constipated mice. FTE also reduced colonic inflammatory factors, maintained the intestinal tight junction structure, and inhibited colonic Aquaporins (AQPs) expression, thus normalizing the intestinal barrier and colonic water transport system of constipated mice. 16S rRNA gene sequence analysis results indicated that two doses of FTE increased the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and increased the relative abundance of Lactobacillus from 5.6 ± 1.3 to 21.5 ± 3.4% and 28.5 ± 4.3% at the genus level, subsequently resulting in a significant elevation of colonic contents short-chain fatty acids levels. The metabolomic analysis demonstrated that FTE improved levels of 25 metabolites associated with constipation. These findings suggest that Fu brick tea has the potential to alleviate constipation by regulating gut microbiota and its metabolites, thereby improving the intestinal barrier and AQPs-mediated water transport system in mice.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuanyuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinshu Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
11
|
Zhang B, Ren D, Zhao A, Shao H, Li T, Niu P, Zhao Y, Yang X. Eurotium cristatum Exhibited Anti-Colitis Effects via Modulating Gut Microbiota-Dependent Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16164-16175. [PMID: 36519185 DOI: 10.1021/acs.jafc.2c05464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fu-brick tea (FBT) has attracted the attention of researchers because of its unique nutritional value, but it remains unknown whether Eurotium cristatum, the critical fungus from FBT, is responsible for the observed anti-colitis effects of FBT. Herein, the effects of E. cristatum on dextran sulfate sodium (DSS)-induced ulcerative colitis was first discussed. The results illustrated that the oral administration of E. cristatum inhibited DSS-induced colon damage. Microbiota analysis revealed that E. cristatum improved the intestinal homeostasis of colitis mice, especially increased the proportion of Lactobacillus, followed by an obvious increase in fecal short-chain fatty acids (SCFAs). Besides, E. cristatum markedly promoted tryptophan metabolism and increased the fecal contents of tryptophan metabolites in colitis mice. Furthermore, E. cristatum drastically increased the content of colonic IL-22 and the expression of tight-junction proteins. Conclusively, these results suggest that E. cristatum can resist colon damage and other implications of colitis by regulating the microbiota and enhancing tryptophan metabolism to strengthen intestinal barriers.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
12
|
Wang C, Xu W, Yuan Y, Zhai Y, Hu T, Huang J, Liu Z, Li Q. Characterization and modelling of odor-active compounds release behavior from Fu-brick tea during boiling-water extraction by molecular sensory science approach. Food Chem X 2022; 17:100551. [PMID: 36845510 PMCID: PMC9943754 DOI: 10.1016/j.fochx.2022.100551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The odor-active compounds in Fu-brick tea and their release behaviors during boiling-water were studied. Fifty-one odor-active compounds were identified, and their release behaviors were identified by continuously recovering 16 sections of condensed water combined with sensory, instrumental, and nonlinear curve fitting analysis. The odor intensities of condensed water and the concentrations of odor-active compounds could be significantly fitted (p < 0.01) to power-function type curves. Hydrocarbons showed the fastest release rate, while organic acids showed the slowest. The release rates had very little correlation with their concentrations, molecular weights, and boiling points. Most odor-active compounds (≥70 %) released need to evaporate more than 24 % of the added water during boiling-water extraction. Meanwhile, on the basis of odor activity value (OAV) calculation, the aroma recombination experiments were performed to explore the odor-active compounds that made major contributions to the formation of the aroma profile of each condensed water.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Wazhen Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yuqi Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yuke Zhai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tengfei Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Corresponding author at: Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
13
|
Zhang B, Ren D, Zhao A, Cheng Y, Liu Y, Zhao Y, Yang X. Eurotium cristatum reduces obesity by alleviating gut microbiota dysbiosis and modulating lipid and energy metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7039-7051. [PMID: 35690883 DOI: 10.1002/jsfa.12065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fuzhuan brick tea (FBT) has been shown to prevent obesity, but little is known about the effect of Eurotium cristatum, a critical fungus from FBT. This study examined the effects of live E. cristatum on lipid metabolism and gut microbiota composition in high-fat (HF) diet-induced obese mice. RESULTS Male HF diet-fed mice were treated with E. cristatum for 12 weeks. The results showed that E. cristatum administration caused strong inhibition against HF-induced body weight gain, dyslipidemia and liver oxidative stress damage. Additionally, Firmicutes and Bacteroidetes in phylum level and six types of bacterial including short-chain fatty acids (SCFAs) producing bacteria in genus level were found to be significantly changed in E. cristatum treated mice as compared to HF fed mice. As expected, E. cristatum could increase total SCFAs levels in feces. Interestingly, E. cristatum markedly increased the proportion of Akkermansia to resist obesity. Functional prediction analysis indicated that E. cristatum changed lipid and energy metabolism. Furthermore, E. cristatum ingestion can modulate hepatic acetyl-coa carboxylase (ACC), fatty acid synthase (FAS), sterol-regulatory element binding protein-1 (SREBP-1) and adipose uncoupling protein-1 (UCP-1) expression. CONCLUSION Conclusively, these findings suggest that E. cristatum can prevent the HF-induced lipid accumulation and other complications by modulating gut microbiota, lipid and energy metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yukun Cheng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
14
|
Du Y, Yang C, Ren D, Shao H, Zhao Y, Yang X. Fu brick tea alleviates alcoholic liver injury by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB signaling pathway. Food Funct 2022; 13:9391-9406. [PMID: 35959866 DOI: 10.1039/d2fo01547a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study first evaluated the protective effects of Fu brick tea water extracts (FTE) on alcoholic liver injury and its underlying mechanism in C57BL/6J mice. Oral administration of FTE by oral gavage (400 mg per kg bw) for 12 weeks significantly alleviated lipid metabolism disorder, reduced the activities of serum ALT and AST, decreased the expression of the liver CYP2E1 gene, and enhanced the antioxidant capacities of the livers in alcohol-fed mice (p < 0.05). FTE also relieved alcohol-induced gut microbiota dysbiosis by promoting the proliferation of probiotics such as Muribaculaceae and Lactobacillus, and subsequently increased the cecal levels of short-chain fatty acids (SCFAs) and decreased the tryptophan content of alcohol-fed mice (p < 0.05). Importantly, FTE was found to improve the alcohol-impaired gut barrier function by up-regulating the expression of the epithelial tight junction protein. Accordingly, FTE decreased the circulating lipopolysaccharide (LPS) and thus inhibited the hepatic TLR4/NF-κB signaling pathway to ameliorate alcoholic liver injury. Cumulatively, these findings shed light on the important role of the gut microbiota-liver axis behind the protective efficacy of FTE on alcoholic liver injury.
Collapse
Affiliation(s)
- Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
15
|
Xiang M, Chu J, Cai W, Ma H, Zhu W, Zhang X, Ren J, Xiao L, Liu D, Liu X. Microbial Succession and Interactions During the Manufacture of Fu Brick Tea. Front Microbiol 2022; 13:892437. [PMID: 35814693 PMCID: PMC9261264 DOI: 10.3389/fmicb.2022.892437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Fu Brick tea is a very popular post-fermented tea that is known for its "golden flower fungus," Aspergillus cristatus, which becomes the dominant microbe during the maturation process. This study used both culture-dependent methods and high-throughput sequencing to track microbial succession and interactions during the development of the golden flower fungus, a crucial component of the manufacturing process of Fu Brick tea. Among the bacterial communities, Klebsiella and Lactobacillus were consistently cultured from both fresh tea leaves and in post-fermentation Fu Brick tea. Methylobacterium, Pelomonas, and Sphingomonas were dominant genera in fresh tea leaves but declined once fermentation started, while Bacillus, Kluyvera, and Paenibacillus became dominant after piling fermentation. The abundance of A. cristatus increased during the manufacturing process, accounting for over 98% of all fungi present after the golden flower bloom in the Fu Brick tea product. Despite their consistent presence during culture work, network analysis showed Lactobacillus and Klebsiella to be negatively correlated with A. cristatus. Bacillus spp., as expected from culture work, positively correlated with the presence of golden flower fungus. This study provides complete insights about the succession of microbial communities and highlights the importance of co-occurrence microbes with A. cristatus during the manufacturing process of Fu Brick tea.
Collapse
Affiliation(s)
- Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Chu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjiao Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haikun Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weijing Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Dongbo Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Fuzhuan brick tea extract prevents diet-induced obesity via stimulation of fat browning in mice. Food Chem 2022; 377:132006. [PMID: 34999463 DOI: 10.1016/j.foodchem.2021.132006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022]
Abstract
Fuzhuan brick tea is a post-fermented tea that is intentionally fermented by the fungus Eurotium cristatum. Previous studies have reported the anti-obesity effect of Fuzhuan brick tea extracts (FBT), but the underlying mechanism remains unclear. The present study investigated whether FBT exerts anti-obesity effects through energy expenditure and browning of white adipose tissue. Mice were administered 100 mg or 200 mg FBT/kg body weight along with a high-fat diet (HFD) for 12 weeks; the FBT group had a significantly reduced body weight and adipose tissue mass compared to mice fed an HFD alone. FBT also improved serum biochemical parameters and hepatic steatosis concomitant with obesity. Furthermore, FBT enhanced energy expenditure and promoted browning of subcutaneous adipose tissue by upregulating the expression of brown adipocyte-specific genes, including uncoupling protein 1. Based on these results, we suggest that FBT induces energy expenditure by promoting the browning of subcutaneous adipose tissue, which prevents weight gain.
Collapse
|
17
|
Xuexue Z, Xin H, Youlan J, Chao W, Zhonghua L, Jianan H, Qin L. Characterization of key aroma compounds and relationship between aroma compounds and sensory attributes in different aroma types of Fu brick tea. Food Chem X 2022; 13:100248. [PMID: 35499020 PMCID: PMC9040021 DOI: 10.1016/j.fochx.2022.100248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Aroma characteristics of Fu brick tea were classified into three types. Key aroma compounds in three aroma types of Fu brick tea were identified. Relationship between aroma compounds and aroma attributes was illuminated.
Aroma is one of the most important sensory properties of tea. Floral-fungal aroma type, ripe-fungal aroma type and fresh-fungal aroma type were the main aroma types of Fu brick tea by QDA. A total of 112 volatile compounds were identified and quantified in tea samples by HS-SPME/GC–MS analysis. Ten voaltiles in floral-fungal aroma type, eleven voaltiles in ripe-fungal aroma type, and eighteen voaltiles in fresh-fungal aroma type were identified as key aroma compounds for the aroma characteristics formation in three aroma types of Fu brick tea. In addition, PLS analysis revealed that 3,4-dehydro-β-ionone, dihydro-β-ionone, (+)-carotol and linalool oxide Ⅱ were the key contributors to the ‘floral and fruity’ attribute, α-terpineol contributed to ‘woody’ and ‘stale’ attributes, and thirteen aroma compounds related to ‘green’ attribute. Taken together, these findings will provide new insights into the formation mechanism of different aroma characteristics in Fu brick tea.
Collapse
Affiliation(s)
- Zheng Xuexue
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Hong Xin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jin Youlan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Wang Chao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Liu Zhonghua
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Huang Jianan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Li Qin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| |
Collapse
|
18
|
Lu X, Jing Y, Zhang N, Cao Y. Eurotium cristatum, a Probiotic Fungus from Fuzhuan Brick Tea, and Its Polysaccharides Ameliorated DSS-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2957-2967. [PMID: 35201766 DOI: 10.1021/acs.jafc.1c08301] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eurotium cristatum is a potential probiotic fungus that is used to enhance Fuzhuan tea quality through fermentation and could reduce obesity by modulating gut dysbiosis. This study aimed to investigate the effects and possible mechanisms of killed E. cristatum (KEC) and its polysaccharides (ECP) in ulcerative colitis (UC) relief. KEC and ECP were administered to mice with dextran sulfate sodium-induced UC. The results showed that UC severity, intestinal inflammation, and tight junction protein levels were greatly improved. Furthermore, 16S rRNA sequencing results showed that Escherichia coli, Enterococcus faecium, Clostridium perfringens, Bacteroides caccae, Rothia aeria, and Prevotella melaninogenica were depleted, while Alistipes finegoldii and Bacteroides stercorirosoris were enriched. A fecal microbial transplantation trial confirmed that KEC and ECP ameliorated UC by regulating gut dysbiosis. Thus, this research suggests that KEC and ECP are novel, potent, food-based anti-inflammatory agents that relieve UC by modulating gut dysbiosis.
Collapse
Affiliation(s)
- Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yue Jing
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
19
|
Lu X, Jing Y, Li Y, Zhang N, Cao Y. Eurotium cristatum produced β-hydroxy acid metabolite of monacolin K and improved bioactive compound contents as well as functional properties in fermented wheat bran. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Guo X, Chen F, Liu J, Shao Y, Wang X, Zhou Y. Genome Mining and Analysis of PKS Genes in Eurotium cristatum E1 Isolated from Fuzhuan Brick Tea. J Fungi (Basel) 2022; 8:193. [PMID: 35205947 PMCID: PMC8874483 DOI: 10.3390/jof8020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Eurotium cristatum as the dominant fungi species of Fuzhuan brick tea in China, can produce multitudinous secondary metabolites (SMs) with various bioactivities. Polyketides are a very important class of SMs found in E. cristatum and have gained extensive attention in recent years due to their remarkable diversity of structures and multiple functions. Therefore, it is necessary to explore the polyketides produced by E. cristatum at the genomic level to enhance its application value. In this paper, 12 polyketide synthase (PKS) genes were found in the whole genome of E. cristatum E1 isolated from Fuzhuan brick tea. In addition, the qRT-PCR results further demonstrated that these genes were expressed. Moreover, metabolic analysis demonstrated E. cristatum E1 can produce a variety of polyketides, including citreorosein, emodin, physcion, isoaspergin, dihydroauroglaucin, iso-dihydroauroglaucin, aspergin, flavoglaucin and auroglaucin. Furthermore, based on genomic analysis, the putative secondary metabolites clusters for emodin and flavoglaucin were proposed. The results reported here will lay a good basis for systematically mining SMs resources of E. cristatum and broadening its application fields.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (F.C.); (Y.S.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, China
| |
Collapse
|
21
|
Liu A, Zhang T, Lin L, Xu W, Hu Y, Huang T, Xiao Y, Xiao W, Gong Z. Luminescence and fahua‐fermentation qualities of an autofluorescent microorganism from Fu brick tea. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- An Liu
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
- Hunan Institute of Nuclear Agricultural Science and Space Breeding Hunan Academy of Agricultural Sciences Changsha China
| | - Tuo Zhang
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
- Guizhou Tea Research Institute Guiyang China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
| | - Wei Xu
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
| | - Yuan Hu
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
| | - Tian Huang
- YiyangXiangyi Fu Tea Co. Ltd. Yiyang China
| | - Yiping Xiao
- Hunan Provincial Baishaxi Tea Industry Co. Ltd. Yiyang China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
| |
Collapse
|
22
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Chen G, Peng Y, Xie M, Xu W, Chen C, Zeng X, Liu Z. A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk. Crit Rev Food Sci Nutr 2021; 63:5447-5464. [PMID: 34964426 DOI: 10.1080/10408398.2021.2020718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunxu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
24
|
Zhou F, Li YL, Zhang X, Wang KB, Huang JA, Liu ZH, Zhu MZ. Polyphenols from Fu Brick Tea Reduce Obesity via Modulation of Gut Microbiota and Gut Microbiota-Related Intestinal Oxidative Stress and Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14530-14543. [PMID: 34752089 DOI: 10.1021/acs.jafc.1c04553] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fu brick tea (FBT) is a microbial-fermented tea, which is produced by the solid-state fermentation of tea leaves. Previous studies have proved that FBT aqueous extracts could attenuate obesity and gut microbiota dysbiosis. However, the bioactive components in FBT that contribute to these activities remain unclear. In this study, we aimed to investigate the effects of FBT polyphenols (FBTPs) on obesity, gut microbiota, and gut microbiota-related intestinal oxidative stress and barrier function and to further investigate whether the antiobesity effect of FBTPs was dependent on the alteration of gut microbiota. The results showed that FBTP supplementation effectively attenuated obesity in high-fat diet (HFD)-fed rats. FBTP supplementation improved the intestinal oxidative stress and intestinal barrier function, including intestinal inflammation and the integrity of the intestinal barrier. Furthermore, FBTP intervention significantly attenuated HFD-induced gut microbiota dysbiosis, characterized by increased phylogenetic diversity and decreased Firmicutes/Bacteroidetes ratio. Certain core microbes, including Akkermansia muciniphila, Alloprevotella, Bacteroides, and Faecalibaculum, were also found to be improved by FBTPs. Moreover, the antiobesity effect of FBTPs was gut microbiota-dependent, as demonstrated by a fecal microbiota transplantation experiment. Collectively, we concluded that FBTPs reduced obesity by modulating the gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function. Therefore, FBTPs may be used as prebiotic agents to treat obesity and gut microbiota dysbiosis in obese individuals.
Collapse
Affiliation(s)
- Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Long Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Kun-Bo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
25
|
Zhu J, Yu C, Zhou H, Wei X, Wang Y. Comparative evaluation for phytochemical composition and regulation of blood glucose, hepatic oxidative stress and insulin resistance in mice and HepG2 models of four typical Chinese dark teas. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6563-6577. [PMID: 34018615 DOI: 10.1002/jsfa.11328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Dark tea, comprising one of the six major teas, has many biological activities, which originate from their active substrates, such as polyphenols, polysaccharides, and so on. The hypoglycemic effect is one of its most prominent activities, although less is known about their evaluation and potential role in the hypoglycemic mechanism. RESULTS In the present study, we separately analyzed the phytochemical composition, glycosidase inhibition and free radical scavenging activities, and hypoglycemic activity in type 2 diabetes mellitus mice, as well as the alleviation of insulin resistance in HepG2 cells of four dark tea aqueous extracts. The results showed that the phytochemical composition of dark tea aqueous extracts was significantly different, and they all had good glycosidase inhibition and free radical scavenging activities, in vivo hypoglycemic activity and alleviation of insulin resistance, and could also activate the phosphatidylinositol 3-kinase-Akt-perixisome proliferation-activated receptor cascade signaling pathway to regulate glucose and lipid metabolism, change the key enzyme activities related to glucose metabolism and antioxidant activity, and reduce oxidative stress and inflammatory factor levels. Among them, Liubao brick tea (LBT) and Pu-erh tea (PET) possessed better glycosidase inhibitory activity, in vivo hypoglycemic activity and improved insulin resistance activity, whereas Qingzhuan brick tea and Fuzhuan brick tea had better free radical scavenging activity, which may be explained by their distinct phytochemical compositions, such as tea proteins, polysaccharides, polyphenols, catechins, and tea pigments and some elements. CONCLUSION Dark tea is a highly attractive candidate for developing antidiabetic food, LBT and PET may be good natural sources of agricultural products with anti-diabetic effects. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, Shanghai, China
| | - Chuang Yu
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, Shanghai, China
| | - Hui Zhou
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, Shanghai, China
| | - Xinlin Wei
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, Shanghai, China
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanfeng Wang
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, Shanghai, China
| |
Collapse
|
26
|
Dynamic Evolution and Correlation between Metabolites and Microorganisms during Manufacturing Process and Storage of Fu Brick Tea. Metabolites 2021; 11:metabo11100703. [PMID: 34677418 PMCID: PMC8539874 DOI: 10.3390/metabo11100703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Fu brick tea (FBT) is one of the major brands of dark tea. Microbial fermentation is considered the key step in the development of the special characteristics of FBT. The systemic corelationship of the microbiome and metabolomics during manufacture of Fu brick tea is not fully understood. In this study, we comprehensively explored the microbiome and metabolite dynamic evolution during the FBT manufacturing processes, and revealed decisive factors for the quality and safety of FBT based on the grouped methods of metabolomics combined with biochemical measurements, microbiome sequencing combined with quantitative polymerase chain reaction (PCR), and multiplex analysis. Both the microbiome and quantitative PCR showed that fungi displayed concentrated distribution characteristics in the primary dark tea samples, while bacterial richness increased during the flowering processes and ripening period. All microorganism species, as well as dominant fungi and bacteria, were identified in the distinct processes periods. A total of 178 metabolites were identified, and 34 of them were characterized as critical metabolites responsible for metabolic changes caused by the corresponding processes. Metabolic analysis showed that most metabolites were decreased during the FBT manufacturing processes, with the exception of gallic acid. Multivariate analysis verified that the critical metabolites were correlated with specific dominant microbial species. All the top fungal species except unclassified_g_ Aspergillus showed positive correlations with six critical metabolites (L-The, epigallocatechin (EGC), Gln, tea polyphenol (TP), tea polysaccharides (TPs) and caffeine). Five of the top bacteria species (Cronobacter, Klebsiella, Pantoea, Pluralibacter, and unclassified_ f_Entero-bacteriaceae) showed positive correlations with epigallocatechins and tea polyphenols, while the other 11 top bacterial species correlated negatively with all the critical metabolites. The content of amino acids, tea polyphenols, tea polysaccharides, and flavonoids was reduced during microbial fermentation. In conclusion, our results reveal that microbial composition is the critical factor in changing the metabolic profile of FBT. This discovery provides a theoretical basis for improving the quality of FBT and enhancing its safety.
Collapse
|
27
|
Shi Y, Wang M, Dong Z, Zhu Y, Shi J, Ma W, Lin Z, Lv H. Volatile components and key odorants of Chinese yellow tea (Camellia sinensis). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Zhang C, Guo J, Zhang Z, Tian S, Liu Z, Shen C. Biochemical components and fungal community dynamics during the flowering process of Moringa-Fu brick tea, a novel microbially fermented blended tea. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Zhou C, Zhou X, Wen Z, Liu L, Yang Z, Yang L, Li P, Guo X, Mei X. Compound Fu brick tea modifies the intestinal microbiome composition in high-fat diet-induced obesity mice. Food Sci Nutr 2020; 8:5508-5520. [PMID: 33133553 PMCID: PMC7590332 DOI: 10.1002/fsn3.1850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Compound Fu Brick Tea (CFBT), which is from Duyun city in China, is a traditional Chinese dark tea, Fu Brick Tea, mixed with six herbal medicine. It is consumed by local people for reducing weight, but the mechanism is not clear. The disorder of intestinal microbiome caused by long-term high-fat diet (HFD) is one of the inducements of obesity and related metabolic syndrome. In this study, mice were fed with HFD to establish a high-fat model. Fifty mice were randomly divided into six groups: normal control (CK), HFD model control (NK), positive control with medicine (YK), CFBT groups with low, middle, and high dose (FL, FM, FH). The V3-V4 DNA region of fecal microbiome from mouse intestine was sequenced. The results showed that the diversity of intestinal microflora was highest in CK and lowest in NK. Compared with CK, the dominant bacterium Firmicutes was increased and Bacteroidetes decreased at phylum level in NK. Compared with NK, the abundance of microbiome in CFBT groups was significantly higher and the composition was changed: Muribaculaceae, Bacteroidaceae, and Prevotellaceae increased and Lachnospiraceae decreased in CFBT groups at family level, while at the genus level, Bacteroides increased and Lactobacillus decreased. These results conclude that CFBT can increase the abundance of intestinal microbiome in mice, promote the growth of beneficial bacteria and reduce the number of pathogenic bacteria, and restore the imbalance of intestinal microbiome caused by poor diet.
Collapse
Affiliation(s)
- Caibi Zhou
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Xiaolu Zhou
- College of Horticulture and Landscape ArchitectureHunan Agricultural UniversityChangshaChina
| | - Zhirui Wen
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Liming Liu
- College of Horticulture and Landscape ArchitectureHunan Agricultural UniversityChangshaChina
| | - Zaibo Yang
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Lu Yang
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Ping Li
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Xiying Guo
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| | - Xin Mei
- College of Biological Science and AgricultureQiannan Normal University for NationalitiesDuyunChina
| |
Collapse
|
30
|
Zhang H, Hui J, Yang J, Deng J, Fan D. Eurocristatine, a plant alkaloid from Eurotium cristatum, alleviates insulin resistance in db/db diabetic mice via activation of PI3K/AKT signaling pathway. Eur J Pharmacol 2020; 887:173557. [PMID: 32946868 DOI: 10.1016/j.ejphar.2020.173557] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Eurocristatine (ECT) is an alkaloid isolated from Eurotium cristatum, and it has been used in multiple applications. However, its use as a treatment for type 2 diabetes mellitus (T2DM) has not yet been reported. In this study, we investigated the anti-T2DM effect of ECT and explored its potential molecular mechanism. In vivo, after treatment with ECT (20, 40 mg/kg) for 6 weeks, fasting blood glucose (FBG) was remarkably reduced in db/db mice. Moreover, glucose tolerance, insulin sensitivity and hyperinsulinemia were ameliorated treatment with ECT. The values of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) also showed that ECT could alleviate liver toxicity caused by diabetes in db/db mice. In vitro, ECT (15 and 30 μM) alleviated insulin resistance by increasing glucose consumption, glucose uptake and glycogen content in high glucose-induced HepG2 cells. The Western blotting (WB) results showed that ECT could upregulate the expression of phosphatidylinositol 3-kinase (PI3K), increase the phosphorylation of insulin receptor substrate 1 (IRS1) and protein kinase B (AKT) in vivo and in vitro. Besides, ECT improved the glycogen content by inhibiting the expression of glycogen synthase kinase3β (GSK3β) and promoting that of glycogen synthase (GS). Furthermore, administration of the PI3K/AKT signaling pathway inhibitor LY294002 abolished the beneficial effects of ECT. These findings are the first to verify that ECT has the potential to improve glucose metabolism and alleviate insulin resistance by activating the PI3K/AKT signaling pathway in db/db mice.
Collapse
Affiliation(s)
- Hui Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Jing Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
31
|
Jing N, Liu X, Jin M, Yang X, Hu X, Li C, Zhao K. Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food Funct 2020; 11:6971-6986. [PMID: 32697259 DOI: 10.1039/d0fo01282c] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fubrick tea aqueous extract (FTEs) has been reported to improve lipid metabolism and gut microbiota communities in mice and humans. However, it is still unclear how FTEs prevents obesity through gut microbiota, and whether some other regulatory mechanisms are involved in the process. Here, we found that FTEs supplementation effectively alleviated the body weight gain, visceral fat accumulation, dyslipidemia, and impaired glucose tolerance induced by a high-fat diet (HFD), and fecal microbiota transplantation (FMT) from FTEs-treated mice showed similar protective effects as FTEs supplementation in mice fed with a HFD. The results confirmed that gut microbiota played key roles in attenuating HFD-induced fat deposition and metabolic disorder. In particular, FTEs reversed HFD-induced gut microbiota dysbiosis via increasing the relative abundances of Bacteroides, Adlercreutzia, Alistipes, Parabacteroides, and norank_f_Lachnospiraceae, and reducing that of Staphylococcus. Interestingly, FTEs could still alleviate HFD-induced lipid accumulation in mice treated with antibiotics, which had increased relative abundances of Bacteroidetes, Bacteroides, and Bacteroides_uniformis sp. In addition, supplementation with FTEs also modified the serum metabolome, especially the "caffeine metabolism" pathway. Furthermore, FTEs supplementation increased the concentrations of caffeine, theophylline, and theobromine in serum, which were positively correlated with an abundance of norank_f_Lachnospiraceae. Overall, FTEs exerts beneficial effects against obesity induced by HFD, and the underlying mechanism is partially related to the reprogramming of intestinal microbiota, while the metabolism of caffeine in FTEs also played an important role in the process. This study provides a theoretical basis for the further study of the anti-obesity effects of FTEs and the consideration of gut microbiota as a potential target for the treatment of obesity induced by a HFD.
Collapse
Affiliation(s)
- Nana Jing
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, PR China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhu MZ, Li N, Zhou F, Ouyang J, Lu DM, Xu W, Li J, Lin HY, Zhang Z, Xiao JB, Wang KB, Huang JA, Liu ZH, Wu JL. Microbial bioconversion of the chemical components in dark tea. Food Chem 2020; 312:126043. [PMID: 31896450 DOI: 10.1016/j.foodchem.2019.126043] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Dark tea is a unique fermented tea produced by solid-state fermentation of tea leaves (Camellia sinensis). It includes ripe Pu-erh tea, Fu brick tea, Liupao tea, and other teas. Microbial fermentation is considered to be the key factor controlling the quality of dark tea. It involves a series of reactions that modify the chemical constituents of tea leaves. These chemical conversions during microbial fermentation of dark tea are associated with a variety of functional core microorganisms. Further, Multi-omics approaches have been used to reveal the microbial impact on the conversion of the chemical components in dark tea. In the present review, we provide an overview of the most recent advances in the knowledge of the microbial bioconversion of the chemical components in dark tea, including the chemical composition of dark tea, microbial community composition and dynamics during the fermentation process, and the role of microorganisms in biotransformation of chemical constituents.
Collapse
Affiliation(s)
- Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, 410128, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Dan-Min Lu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Xu
- Horticulture college, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Hai-Yan Lin
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhang Zhang
- China Tea (Hunan) Anhua 1st Factory Co., Ltd., Yiyang, 413500, China
| | - Jian-Bo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Kun-Bo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
33
|
Zhang H, Zhang Y, Chambers IV E, Dai Q. Electron beam irradiation on Fuzhuan brick-tea: Effects on sensory quality and chemical compositions. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Jia W, Shi Q, Shi L, Qin J, Chang J, Chu X. A strategy of untargeted foodomics profiling for dynamic changes during Fu brick tea fermentation using ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2020; 1618:460900. [DOI: 10.1016/j.chroma.2020.460900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 01/18/2023]
|
35
|
Xiao Y, Zhong K, Bai JR, Wu YP, Zhang JQ, Gao H. The biochemical characteristics of a novel fermented loose tea by Eurotium cristatum (MF800948) and its hypolipidemic activity in a zebrafish model. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. Fermentation-enabled wellness foods: A fresh perspective. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Xiong LG, Pan LY, Gong YS, Huang JA, Liu ZH. Fuzhuan Tea protects Caenorhabditis elegans from glucose and advanced glycation end products via distinct pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
38
|
Kang D, Su M, Duan Y, Huang Y. Eurotium cristatum, a potential probiotic fungus from Fuzhuan brick tea, alleviated obesity in mice by modulating gut microbiota. Food Funct 2019; 10:5032-5045. [PMID: 31359019 DOI: 10.1039/c9fo00604d] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is one of the major public health problems worldwide, mainly resulting from unhealthy lifestyles and diet. Gut microbiota dysbiosis may lead to obese humans and animals. Modulating gut bacteria through probiotics or certain dietary supplements could normalize gut microbiota and subsequently alleviate obesity. The daily consumption of Fuzhuan brick tea (FBT) or its extracts has been observed to alleviate obesity in humans and experimental animals. In this study, high-fat diet (HFD)-induced obesity in mice, such as body weight gain and fat accumulation, was prevented by the consumption of Eurotium cristatum, the dominant fungus during the manufacturing and storage of FBT. The dysbiosis of gut microbiota in C57BL/6J mice was also partially normalized. E. cristatum was able to modulate both gut fungal and bacterial compositions, based on the analysis of the microbiota composition of mice fecal samples (n = 5). E. cristatum increased acetate and butyrate-producing bacteria in mouse gut. There was five times more butyrate in the fecal samples from mice fed with E. cristatum than that from untreated HFD mice. Our results suggest that E. cristatum may be used as a probiotic fungus to alleviate obesity and to modulate gut microbiota in humans beneficially.
Collapse
Affiliation(s)
- Dingding Kang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | | | | | | |
Collapse
|
39
|
Fang J, Sureda A, Silva AS, Khan F, Xu S, Nabavi SM. Trends of tea in cardiovascular health and disease: A critical review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Li HH, Luo LY, Wang J, Fu DH, Zeng L. Lexicon development and quantitative descriptive analysis of Hunan fuzhuan brick tea infusion. Food Res Int 2019; 120:275-284. [DOI: 10.1016/j.foodres.2019.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/06/2023]
|
41
|
Shi J, Zhu Y, Zhang Y, Lin Z, Lv HP. Volatile composition of Fu-brick tea and Pu-erh tea analyzed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Increased Phenolic Content and Enhanced Antioxidant Activity in Fermented Glutinous Rice Supplemented with Fu Brick Tea. Molecules 2019; 24:molecules24040671. [PMID: 30769776 PMCID: PMC6412323 DOI: 10.3390/molecules24040671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
Glutinous rice-based foods have a long history are consumed worldwide. They are also in great demand for the pursuit of novel sensory and natural health benefits. In this study, we developed a novel fermented glutinous rice product with the supplementation of Fu brick tea. Using in vitro antioxidant evaluation and phenolic compounds analysis, fermentation with Fu brick tea increased the total phenolic content and enhanced the antioxidant activity of glutinous rice, including scavenging of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical, and hydroxyl radical, ferric-reducing antioxidant power, and ferric ion reducing power and iron chelating capability. Besides, compared with traditional fermented glutinous rice, this novel functional food exhibited a stronger activity for protecting DNA against hydroxyl radical-induced oxidation damage. Quantitative analysis by HPLC identified 14 compounds covering catechins and phenolic acids, which were considered to be positively related to the enhanced antioxidant capability. Furthermore, we found that 80% ethanol was a suitable extract solvent compared with water, because of its higher extraction efficiency and stronger functional activities. Our results suggested that this novel fermented glutinous rice could serve as a nutraceutical food/ingredient with special sensory and functional activities.
Collapse
|
43
|
New Acylglycosides Flavones from Fuzhuan Brick Tea and Simulation Analysis of Their Bioactive Effects. Int J Mol Sci 2019; 20:ijms20030494. [PMID: 30678336 PMCID: PMC6387181 DOI: 10.3390/ijms20030494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 11/29/2022] Open
Abstract
Four novel acylglycosides flavones (AGFs) including two quercetin acylglycosides and two kaempferol acylglycosides were isolated from Fuzhuan brick tea (FBT) as follows: quercetin 3-O-[α-l-rhamnopyranosyl (1→3)] [2-O’’-(E)-p-coumaroyl] [β-d-glucopyranosyl (1→3)-α-l-rhamnopyranosyl (1→6)]-β-d-galactoside was named as camelliquercetiside E (1), quercetin 3-O-[α-l-rhamnopyranosyl (1→3)] [2-O’’-(E)-p-coumaroyl] [α-l-rhamnopyranosyl (1→6)]-β-d-galactoside was named as camelliquercetiside F (2), kaempferol 3-O-[α-l-arabinopyranosyl (1→3)] [2-O’’-(E)-p-coumaroyl] [β-d-glucopyranosyl (1→3)-α-l-rhamnopyranosyl (1→6)]-β-d-glucoside was named as camellikaempferoside D (3), kaempferol 3-O-[α-l-arabinopyranosyl (1→3)] [2-O’’-(E)-p-coumaroyl] [α-l-rhamnopyranosyl (1→6)]-β-d-glucoside was named as camellikaempferoside E (4). Chemical structures of AGFs were identified by time-of-flight mass (TOF-MS) and NMR spectrometers (1H NMR, 13C NMR, 1H-1H COSY, HMBC and HSQC), and the MS2 fragmentation pathway of AGFs was further investigated. The inhibitory abilities of AGFs and their proposed metabolites on α-glucosidase and HMG-CoA reductase were analyzed by molecular docking simulation, and the results suggested that inhibitory activities of AGFs were significantly affected by acyl structure, number of glycosyl and conformation, and part of them had strong inhibitory activities on α-glucosidase and HMG-CoA reductase, suggesting that AGFs and their metabolites might be important ingredients that participate in the regulation of hypoglycemic and hypolipidemic effects. The results provided new AGFs and research directions for the practical study of FBT health functions in future.
Collapse
|
44
|
Cai S, Yang H, Wen B, Zhu K, Zheng X, Huang J, Wang Y, Liu Z, Tu P. Inhibition by microbial metabolites of Chinese dark tea of age-related neurodegenerative disorders in senescence-accelerated mouse prone 8 (SAMP8) mice. Food Funct 2019; 9:5455-5462. [PMID: 30283947 DOI: 10.1039/c8fo01512k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dark tea has a significant effect on the prevention and treatment of age-related degenerative diseases. At present, further exploration of its functional mechanisms is delayed because of the complexity of post-fermentation microbial metabolites during the production phase. In this study, new isolated microbial metabolites extracted from dark tea were used to explore the neuroprotective effects, and they also helped allow further exploration of the mechanism of dark tea. Taking senescence-accelerated mouse prone 8 (SAMP8) mice as a biological model, we examined the protective effect on brain neurons of post-fermentation microbial metabolites which were extracted from dark tea. The 4-month-old mice were given treatments of the same concentration (10 mg kg-1 d-1) which were l-theanine, 3,3'-azanediylbis(4-hydroxybenzoic acid) (CDT-1) and one of the 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols (CDT-2) by gavage for 14 weeks. Relative measurements such as RT-PCR, ELISA, western blotting, and section staining (HE, Nissl and myelin) were carried out. The results showed that l-theanine, CDT-1 and CDT-2 could inhibit the decrease in body weight, and down-regulate the formation of 4-HNE and ubiquitinated protein aggregates and the Aβ metabolic pathway. They could also increase endogenous antioxidant capacity, relieve cell hypoxia, and reduce the rate of neuronal apoptosis. This means that their protective activity regarding SAMP8 neurons was excellent and the activity of CDT-2 was the most significant.
Collapse
Affiliation(s)
- Shuxian Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jiang C, Zeng Z, Huang Y, Zhang X. Chemical compositions of Pu'er tea fermented by Eurotium Cristatum and their lipid-lowering activity. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Long W, Zhang G, Dong Y, Li D. Dark tea extract mitigates hematopoietic radiation injury with antioxidative activity. JOURNAL OF RADIATION RESEARCH 2018; 59:387-394. [PMID: 29325132 PMCID: PMC6054171 DOI: 10.1093/jrr/rrx072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 05/09/2023]
Abstract
The hematopoietic system is widely studied in radiation research. Tea has been proved to have antioxidative activity. In the present study, we describe the protective effects of dark tea extract (DTE) on radiation-induced hematopoietic injury. DTE administration significantly enhanced the survival rate of mice after 7.0 and 7.5 Gy total body irradiation (TBI). The results showed that DTE not only markedly increased the numbers and cloning potential of hematopoietic cells, but also decreased DNA damages after mice were exposed to 6.0 Gy total body irradiation (TBI). In addition, DTE also decreased the levels of reactive oxygen species (ROS) in hematopoietic cells by inhibiting NOX4 expression and increasing the dismutase, catalase and glutathione peroxidase in livers. These data demonstrate that DTE can prevent radiation-induced hematopoietic syndromes, which is beneficial for protection from radiation injuries.
Collapse
Affiliation(s)
- Wei Long
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
| | - Guanghui Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
| | - Yinping Dong
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
| | - Deguan Li
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, No. 238, Baidi Road, Nankai District, Tianjin, China
- Corresponding author. Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, No. 238, Baidi Road, Nankai District, Tianjin 300192, China. Tel: +86-022-85682340; Fax: +86-022-85683033;
| |
Collapse
|
47
|
Chen G, Xie M, Dai Z, Wan P, Ye H, Zeng X, Sun Y. Kudingcha and Fuzhuan Brick Tea Prevent Obesity and Modulate Gut Microbiota in High-Fat Diet Fed Mice. Mol Nutr Food Res 2018; 62:e1700485. [DOI: 10.1002/mnfr.201700485] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/28/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Minhao Xie
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Zhuqing Dai
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Peng Wan
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Hong Ye
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Xiaoxiong Zeng
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Yi Sun
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| |
Collapse
|
48
|
Mao Y, Wei B, Teng J, Xia N, Zhao M, Huang L, Ye Y. Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Mao
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning 530005 China
| | - Baoyao Wei
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning 530005 China
| | - Jianwen Teng
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning 530005 China
| | - Ning Xia
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning 530005 China
| | - Mouming Zhao
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning 530005 China
| | - Li Huang
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning 530005 China
| | - Ying Ye
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning 530005 China
| |
Collapse
|
49
|
Chen G, Xie M, Wan P, Chen D, Ye H, Chen L, Zeng X, Liu Z. Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea. Food Chem 2017; 244:331-339. [PMID: 29120790 DOI: 10.1016/j.foodchem.2017.10.074] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/14/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023]
Abstract
The aim of present study was to examine whether the digestivesystem (saliva, simulated gastric and small intestinal conditions) could break down and large intestinal microbiota could utilize the polysaccharides from Fuzhuan brick tea (FBTPS). The results showed that there was no change in molecular weight, monosaccharide content and content of reducing sugars before and after saliva, simulated gastric and small intestinal digestion, indicating that FBTPS could pass through the digestive system without being broken down and reach the large intestine safely. The content of carbohydrate was significantly decreased by fermentation in vitro of gut microbiota, suggesting that FBTPS could be broken down and utilized by gut microbiota. FBTPS could significantly modulate the composition and abundance of gut microbiota. Furthermore, the contents of short-chain fatty acids were significantly increased. Therefore, FBTPS is expected to be a functional food to improve human health and prevent disease through promoting the gut health.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Minhao Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ligen Chen
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
50
|
Lv HP, Zhang Y, Shi J, Lin Z. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Food Res Int 2017; 100:486-493. [DOI: 10.1016/j.foodres.2016.10.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/12/2023]
|