1
|
Rodríguez RM, de Assis LVM, Calvo E, Colom-Pellicer M, Quesada-Vázquez S, Cruz-Carrión Á, Escoté X, Oster H, Aragonès G, Mulero M. Grape-Seed Proanthocyanidin Extract (GSPE) Modulates Diurnal Rhythms of Hepatic Metabolic Genes and Metabolites, and Reduces Lipid Deposition in Cafeteria-Fed Rats in a Time-of-Day-Dependent Manner. Mol Nutr Food Res 2024; 68:e2400554. [PMID: 39523911 DOI: 10.1002/mnfr.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/30/2024] [Indexed: 11/16/2024]
Abstract
SCOPE Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health issue with increasing prevalence. Polyphenols, such as grape seed proanthocyanidin extract (GSPE), are bioactive compounds present in plants and represent an interesting therapeutical approach for MASLD. METHODS AND RESULTS This study questioned whether the timing of GSPE administration impacts liver diurnal metabolism and steatosis in a rat obesity model. Results from hepatic lipid profiling and diurnal metabolic gene expression and metabolomics reveal that rats fed with a cafeteria (CAF) diet show impaired glucose homeostasis and enhanced lipogenesis in the liver, contributing to liver steatosis. Chronic consumption of GSPE in the inactive or active phase is associated with beneficial effects as the restoration of rhythms of transcripts and metabolites is observed. However, only when given in the active phase, GSPE treatment decreases hepatic triglyceride levels. Using an in vitro hepatocyte model, the study identifies that catechin, one of the main phenolic compounds found in the GSPE extract, is a potential mediator in ameliorating the effects of CAF-induced liver steatosis. CONCLUSION Taken altogether, the findings show that the beneficial effects of GSPE on MASLD development depend on the treatment time.
Collapse
Affiliation(s)
- Romina M Rodríguez
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
| | | | - Enrique Calvo
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, Reus, 43201, Spain
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
| | | | - Álvaro Cruz-Carrión
- United States Department of Agriculture and The Agricultural Research Service (USDA-ARS), Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, AR, 72202, USA
| | - Xavier Escoté
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, Reus, 43204, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, Reus, 43201, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of, Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology-TecnATox, Rovira i Virgili University, Reus, 43201, Spain
| |
Collapse
|
2
|
Navarro-Masip È, Manocchio F, Rodríguez RM, Bravo FI, Torres-Fuentes C, Muguerza B, Aragonès G. Photoperiod-Dependent Effects of Grape-Seed Proanthocyanidins on Adipose Tissue Metabolic Markers in Healthy Rats. Mol Nutr Food Res 2023; 67:e2300035. [PMID: 37423963 DOI: 10.1002/mnfr.202300035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Variations in photoperiod patterns drive metabolic adaptations in mammals, involving important changes in body weight and adiposity. Moreover, (poly)phenols can help heterotrophs adopt metabolic adaptations to face the upcoming environmental conditions. Particularly, proanthocyanidins from grape-seeds show photoperiod-dependent effects on different metabolic parameters. The present study aims to explore whether grape-seed proanthocyanidin extract (GSPE) consumption differently affects the expression of metabolic markers in WAT (subcutaneous and visceral depots) and BAT in a photoperiod-dependent manner. METHODS AND RESULTS GSPE (25 mg kg-1 day-1 ) is orally administrated for 4 weeks to healthy rats exposed to three photoperiods (L6, L12, and L18). In WAT, GSPE consumption significantly upregulates the expression of lipolytic genes in all photoperiods, being accompanied by increased serum concentrations of glycerol and corticosterone only under the L6 photoperiod. Moreover, adiponectin mRNA levels are significantly upregulated in response to GSPE regardless of the photoperiod, whereas Tnfα and Il6 expression are only downregulated in L6 and L18 photoperiods but not in L12. In BAT, GSPE upregulates Pgc1α expression in all groups, whereas the expression of Pparα is only increased in L18. CONCLUSIONS The results indicate that GSPE modulates the expression of important metabolic markers of WAT and BAT in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Romina M Rodríguez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| |
Collapse
|
3
|
Olabiyi AA, de Castro Brás LE. Cardiovascular Remodeling Post-Ischemia: Herbs, Diet, and Drug Interventions. Biomedicines 2023; 11:1697. [PMID: 37371792 DOI: 10.3390/biomedicines11061697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health burden with increasing prevalence, and CVD continues to be the principal global source of illness and mortality. For several disorders, including CVD, the use of dietary and medicinal herbs instead of pharmaceutical drugs continues to be an alternate therapy strategy. Despite the prevalent use of synthetic pharmaceutical medications, there is currently an unprecedented push for the use of diet and herbal preparations in contemporary medical systems. This urge is fueled by a number of factors, the two most important being the common perception that they are safe and more cost-effective than modern pharmaceutical medicines. However, there is a lack of research focused on novel treatment targets that combine all these strategies-pharmaceuticals, diet, and herbs. In this review, we looked at the reported effects of pharmaceutical drugs and diet, as well as medicinal herbs, and propose a combination of these approaches to target independent pathways that could synergistically be efficacious in treating cardiovascular disease.
Collapse
Affiliation(s)
- Ayodeji A Olabiyi
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
4
|
Zhang P, Li D, Zhu J, Hu J. Antihypertensive effects of Pleurospermum lindleyanum aqueous extract in spontaneously hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116261. [PMID: 36787846 DOI: 10.1016/j.jep.2023.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pleurospermum lindleyanum (Lipsky) B. Fedtsch is a perennial herb classified in the Apiaceae family, genus Pleurospermum, chiefly native to the Taxkorgan County, Xinjiang, China. In the Xinjiang Province, it is a well-known ethnic traditional herb, often addressed by its tribal name, Kurumuti. It grows in harsh conditions over 4000 m above sea level, such as the Pamirs plateau. It is rich in flavonoids, coumarins, terpenoids, essential oil, substances that have been widely applied in the prevention and treatment of hypertension, diabetes, coronary heart disease, and cerebral thrombosis by local Tajik residents. AIMS OF THE STUDY The present study aimed to evaluate the antihypertensive effects of the Pleurospermum Lindleyanum aqueous extract (PLAE) in spontaneously hypertensive rats (SHRs). MATERIALS AND METHODS The Pleurospermum lindleyanum was collected from the Taxkorgan Tajik Autonomous County, Xinjiang, China. The main chemical composition of PLAE was identified using the ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). SHRs were treated by gavage with PLAE (equivalent to Pleurospermum lindleyanum 5 or 10 g/kg/day) for 6 weeks, using Captopril (10 mg/kg/day) as positive control. The systolic blood pressure (SBP), renal and cardiac morphology, plasma levels of angiotensin-converting enzyme (ACE), aldosterone (ALD), angiotensinⅡ (AngⅡ), superoxide dismutase (SOD), endothelin-1 (ET-1) and nitric oxide (NO) were measured. RESULTS A total of 30 compounds were identified in PLAE. PLAE significantly attenuated the SBP of SHRs. The effects began after 3 weeks of administration and then became steady and long-lasting. Its potential mechanisms may be associated with the protective effects on renal and cardiac injury caused by hypertension, the decrease of plasma vasoconstrictors, such as ACE, ALD, AngⅡ, and ET-1 levels, the maintenance of NO/ET balance, the increase in plasma NO levels and SOD activity, thereby reducing oxidative stress. CONCLUSION Pleurospermum lindleyanum can be suggested as a novel antihypertensive ethnic traditional herb, which lays the foundation for researching safe and effective antihypertensive herbal medicines.
Collapse
Affiliation(s)
- Ping Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Dongfeng Li
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jinfang Zhu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830052, China; Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Viale Giuseppe Fanin 50, 40127, Bologna, Italy.
| | - Jianglan Hu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830052, China
| |
Collapse
|
5
|
Navarro-Masip È, Colom-Pellicer M, Manocchio F, Arola-Arnal A, Bravo FI, Muguerza B, Aragonès G. Grape-Seed Proanthocyanidins Modulate Adipose Tissue Adaptations to Obesity in a Photoperiod-Dependent Manner in Fischer 344 Rats. Nutrients 2023; 15:nu15041037. [PMID: 36839395 PMCID: PMC9967183 DOI: 10.3390/nu15041037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Seasonal rhythms drive metabolic adaptations that influence body weight and adiposity. Adipose tissue is a key regulator of energy homeostasis in the organism, and its healthiness is needed to prevent the major consequences of overweight and obesity. In this context, supplementation with proanthocyanidins has been postulated as a potential strategy to prevent the alterations caused by obesity. Moreover, the effects of these (poly)phenols on metabolism are photoperiod dependent. In order to describe the impact of grape-seed proanthocyanidins extract (GSPE) on important markers of adipose tissue functionality under an obesogenic environment, we exposed Fischer 344 rats to three different photoperiods and fed them a cafeteria diet for five weeks. Afterwards, we supplemented them with 25 mg GSPE/kg/day for four weeks. Our results revealed that GSPE supplementation prevented excessive body weight gain under a long photoperiod, which could be explained by increased lipolysis in the adipose tissue. Moreover, cholesterol and non-esterified fatty acids (NEFAs) serum concentrations were restored by GSPE under standard photoperiod. GSPE consumption slightly helped combat the obesity-induced hypertrophy in adipocytes, and adiponectin mRNA levels were upregulated under all photoperiods. Overall, the administration of GSPE helped reduce the impact of obesity in the adipose tissue, depending on the photoperiod at which GSPE was consumed and on the type of adipose depots.
Collapse
|
6
|
Oleszek M, Kowalska I, Bertuzzi T, Oleszek W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023; 28:342. [PMID: 36615534 PMCID: PMC9823944 DOI: 10.3390/molecules28010342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023] Open
Abstract
Billions of tons of agro-industrial residues are produced worldwide. This is associated with the risk of pollution as well as management and economic problems. Simultaneously, non-edible portions of many crops are rich in bioactive compounds with valuable properties. For this reason, developing various methods for utilizing agro-industrial residues as a source of high-value by-products is very important. The main objective of the paper is a review of the newest studies on biologically active compounds included in non-edible parts of crops with the highest amount of waste generated annually in the world. The review also provides the newest data on the chemical and biological properties, as well as the potential application of phytochemicals from such waste. The review shows that, in 2020, there were above 6 billion tonnes of residues only from the most popular crops. The greatest amount is generated during sugar, oil, and flour production. All described residues contain valuable phytochemicals that exhibit antioxidant, antimicrobial and very often anti-cancer activity. Many studies show interesting applications, mainly in pharmaceuticals and food production, but also in agriculture and wastewater remediation, as well as metal and steel industries.
Collapse
Affiliation(s)
- Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Terenzio Bertuzzi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
7
|
Manocchio F, Soliz‐Rueda JR, Ribas‐Latre A, Bravo FI, Arola‐Arnal A, Suarez M, Muguerza B. Grape Seed Proanthocyanidins Modulate the Hepatic Molecular Clock via MicroRNAs. Mol Nutr Food Res 2022; 66:e2200443. [PMID: 36189890 PMCID: PMC10078170 DOI: 10.1002/mnfr.202200443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Circadian rhythm is an endogenous and self-sustained timing system, responsible for the coordination of daily processes in 24-h timescale. It is regulated by an endogenous molecular clock, which is sensitive to external cues as light and food. This study has previously shown that grape seed proanthocyanidins extract (GSPE) regulates the hepatic molecular clock. Moreover, GSPE is known to interact with some microRNAs (miRNAs). Therefore, the aim of this study is to evaluate if the activity of GSPE as modulator of hepatic clock genes can be mediated by miRNAs. METHODS AND RESULTS 250 mg kg-1 of GSPE is administered to Wistar rats before a 6-h jet lag and sacrificed at different time points. GSPE modulated both expression of Bmal1 and miR-27b-3p in the liver. Cosinor-based analysis reveals that both Bmal1 and miR-27b-3p expression follow a circadian rhythm, a negative interaction between them, and the role of GSPE adjusting the hepatic peripheral clock via miRNA. Additionally, in vitro studies show that Bmal1 is sensitive to GSPE (25 mg L-1 ). However, this effect is independent of miR-27b-3p. CONCLUSION miRNA regulation of peripheral clocks via GSPE may be part of a complex mechanism that involves the crosstalk with the central system rather than a direct effect.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Jorge R. Soliz‐Rueda
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Aleix Ribas‐Latre
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
- Present address:
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of LeipzigUniversity Hospital LeipzigD‐04103LeipzigGermany
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| |
Collapse
|
8
|
Torres‐Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila‐Román J, Arola‐Arnal A, Salvadó MJ, Arola L, Bravo FI, Muguerza B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol Nutr Food Res 2022; 66:e2100990. [PMID: 35279936 PMCID: PMC9786928 DOI: 10.1002/mnfr.202100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.
Collapse
Affiliation(s)
- Cristina Torres‐Fuentes
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Manuel Suárez
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Gerard Aragonès
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Miquel Mulero
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Javier Ávila‐Román
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Maria Josepa Salvadó
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Lluís Arola
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| |
Collapse
|
9
|
Fan W, Zong H, Zhao T, Deng J, Yang H. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 64:3522-3538. [PMID: 36226711 DOI: 10.1080/10408398.2022.2132375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proanthocyanidins, widespread in natural plant sources, are bioactive substances that exhibit broad benefits to human health. Of note, proanthocyanidins have been reported to lower blood pressure and prevent hypertension, but a critical review of this is lacking. In this review, information on the basic structures and absorption of dietary proanthocyanidins as well as their bioactivities and related mechanisms on the lowering of blood pressure derived via in vivo and clinical studies are summarized. Clinical studies have shown that proanthocyanidins have a pronounced blood pressure-lowering effect, effectively preventing hypertension and reducing the occurrence of cardiovascular and cerebrovascular diseases. The potential mechanisms, which are herein reviewed in detail, involve the improvement of vascular function, reduction of oxidative stress and inflammation, and modulation of lipid metabolism. Taken together, this work provides information for a better understanding of the antihypertensive effects of proanthocyanidins, which may promote their use to reduce the risk of developing hypertension.
Collapse
Affiliation(s)
- Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Houru Zong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Majeed U, Shafi A, Majeed H, Akram K, Liu X, Ye J, Luo Y. Grape (Vitis vinifera L.) phytochemicals and their biochemical protective mechanisms against leading pathologies. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022; 48:972-992. [PMID: 36161374 PMCID: PMC9828255 DOI: 10.1002/biof.1889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
The search for bioactive components for the development of functional foods and nutraceuticals has received tremendous attention. This is due to the increasing awareness of their therapeutic potentials, such as antioxidant, anti-inflammatory, antihypertensive, anti-cancer properties, etc. Food proteins, well known for their nutritional importance and their roles in growth and development, are also sources of peptide sequences with bioactive properties and physiological implications. Cereal and legume grains are important staples that are processed and consumed in various forms worldwide. However, they have received little attention compared to other foods. This review therefore is geared towards surveying the literature for an appraisal of research conducted on bioactive peptides in cereal and legume grains in order to identify what the knowledge gaps are. Studies on bioactive peptides from cereal and legume grains are still quite limited when compared to other food items and most of the research already carried out have been done without identifying the sequence of the bioactive peptides. However, the reports on the antioxidative, anticancer/inflammatory, antihypertensive, antidiabetic properties show there is much prospect of obtaining potent bioactive peptides from cereal and legume grains which could be utilized in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, School of Agriculture and Agricultural TechnologyThe Federal University of TechnologyAkureNigeria
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
12
|
Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022; 11:foods11152189. [PMID: 35892774 PMCID: PMC9330871 DOI: 10.3390/foods11152189] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Plant polyphenols have attracted considerable attention because of their key roles in preventing many diseases, including high blood sugar, high cholesterol, and cancer. A variety of functional foods have been designed and developed with plant polyphenols as the main active ingredients. Polyphenols mainly come from vegetables and fruits and can generally be divided according to their structure into flavonoids, astragalus, phenolic acids, and lignans. Polyphenols are a group of plant-derived functional food ingredients with different molecular structures and various biological activities including antioxidant, anti-inflammatory, and anticancer properties. However, many polyphenolic compounds have low oral bioavailability, which limits the application of polyphenols in nutraceuticals. Fortunately, green bio-based nanocarriers are well suited for encapsulating, protecting, and delivering polyphenols, thereby improving their bioavailability. In this paper, the health benefits of plant polyphenols in the prevention of various diseases are summarized, with a review of the research progress into bio-based nanocarriers for the improvement of the oral bioavailability of polyphenols. Polyphenols have great potential for application as key formulations in health and nutrition products. In the future, the development of food-grade delivery carriers for the encapsulation and delivery of polyphenolic compounds could well solve the limitations of poor water solubility and low bioavailability of polyphenols for practical applications.
Collapse
|
13
|
López-Fernández-Sobrino R, Torres-Fuentes C, Bravo FI, Muguerza B. Winery by-products as a valuable source for natural antihypertensive agents. Crit Rev Food Sci Nutr 2022; 63:7708-7721. [PMID: 35275757 DOI: 10.1080/10408398.2022.2049202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension (HTN) is one of the leading causes of death in the world. Agri-food by-products are emerging as a novel source of natural antihypertensive agents allowing for their valorization and making food and agricultural industries more environmentally friendly. In this regard, wine making process generates large amounts of by-products rich in phenolic compounds that have shown potential to exert several beneficial effects including antihypertensive properties. The aim of this study was to review the blood pressure-lowering effects of winery by-products. In addition, molecular mechanisms involved in their bioactivity were also evaluated. Among the winery by-products, grape seed extracts have widely shown antihypertensive properties in both animal and human studies. Moreover, recent evidence suggests that grape stem, skin and pomace and wine lees may also have great potential to manage HTN, although more studies are needed in order to confirm their potential in humans. Improvement of endothelial dysfunction and reduction of oxidative stress associated with HTN are the main mechanisms involved in the blood pressure-lowering effects of these by-products.
Collapse
Affiliation(s)
- Raúl López-Fernández-Sobrino
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| |
Collapse
|
14
|
Zuraini NZA, Sekar M, Wu YS, Gan SH, Bonam SR, Mat Rani NNI, Begum MY, Lum PT, Subramaniyan V, Fuloria NK, Fuloria S. Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action. Vasc Health Risk Manag 2021; 17:739-769. [PMID: 34858028 PMCID: PMC8631183 DOI: 10.2147/vhrm.s328096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality in both developed and developing countries, affecting millions of individuals each year. Despite the fact that successful therapeutic drugs for the management and treatment of CVDs are available on the market, nutritional fruits appear to offer the greatest benefits to the heart and have been proved to alleviate CVDs. Experimental studies have also demonstrated that nutritional fruits have potential protective effects against CVDs. The aim of the review was to provide a comprehensive summary of scientific evidence on the effect of 10 of the most commonly available nutritional fruits reported against CVDs and describe the associated mechanisms of action. Relevant literatures were searched and collected from several scientific databases including PubMed, ScienceDirect, Google Scholar and Scopus. In the context of CVDs, 10 commonly consumed nutritious fruits including apple, avocado, grapes, mango, orange, kiwi, pomegranate, papaya, pineapple, and watermelon were analysed and addressed. The cardioprotective mechanisms of the 10 nutritional fruits were also compiled and highlighted. Overall, the present review found that the nutritious fruits and their constituents have significant benefits for the management and treatment of CVDs such as myocardial infarction, hypertension, peripheral artery disease, coronary artery disease, cardiomyopathies, dyslipidemias, ischemic stroke, aortic aneurysm, atherosclerosis, cardiac hypertrophy and heart failure, diabetic cardiovascular complications, drug-induced cardiotoxicity and cardiomyopathy. Among the 10 nutritional fruits, pomegranate and grapes have been well explored, and the mechanisms of action are well documented against CVDs. All of the nutritional fruits mentioned are edible and readily accessible on the market. Consuming these fruits, which may contain varying amounts of active constituents depending on the food source and season, the development of nutritious fruits-based health supplements would be more realistic for consistent CVD protection.
Collapse
Affiliation(s)
- Nur Zulaikha Azwa Zuraini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherché des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| |
Collapse
|
15
|
Afzaal M, Saeed F, Rasheed R, Hussain M, Aamir M, Hussain S, Mohamed AA, Alamri MS, Anjum FM. Nutritional, biological, and therapeutic properties of black garlic: a critical review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1967386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Aamir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Shahzad Hussain
- Department of Food Science &, Nutrition King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Abdellatif A. Mohamed
- Department of Food Science &, Nutrition King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Mohamed S. Alamri
- Department of Food Science &, Nutrition King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Faqir M. Anjum
- Administration Department, University of the Gambia, Serrekunda, Gambia
| |
Collapse
|
16
|
Yang H, Tuo X, Wang L, Tundis R, Portillo MP, Simal-Gandara J, Yu Y, Zou L, Xiao J, Deng J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci Technol 2021; 111:114-127. [DOI: 10.1016/j.tifs.2021.02.063] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
López-Fernández-Sobrino R, Soliz-Rueda JR, Suárez M, Mulero M, Arola L, Bravo FI, Muguerza B. Blood Pressure-Lowering Effect of Wine Lees: Dose-Response Study, Effect of Dealcoholization and Possible Mechanisms of Action. Nutrients 2021; 13:nu13041142. [PMID: 33808475 PMCID: PMC8066631 DOI: 10.3390/nu13041142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
The antihypertensive effect of wine lees (WL) has been previously evidenced. In this study, the antihypertensive properties of different doses of WL were evaluated in spontaneously hypertensive rats (SHR). In addition, the blood pressure (BP)-lowering effect of dried (dealcoholized) WL powder (WLPW) and the mechanisms involved in its functionality were investigated. Furthermore, a possible hypotensive effect of WLPW was discarded in Wistar-Kyoto (WKY) rats. The administration of WL at different doses caused a dose-dependent decrease in BP of SHR up to 5.0 mL/kg bw, exhibiting the maximum decrease at 6 h post-administration. WLPW caused a greater drop in BP than WL, showing an antihypertensive effect higher and more prolonged than the drug Captopril. Moreover, the BP-lowering effect of WLPW was specific to the hypertensive state since an undesirable hypotensive effect in normotensive WKY rats was ruled out. Finally, WLPW improved oxidative stress and increased the activity of the antioxidant endogen system of SHR. These results suggest that WLPW could be used as functional ingredient for foods or nutraceuticals to ameliorate hypertension. Nevertheless, further clinical studies are needed to evaluate its long-term antihypertensive efficiency.
Collapse
|
18
|
Enzyme-Assisted Extraction to Obtain Phenolic-Enriched Wine Lees with Enhanced Bioactivity in Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10040517. [PMID: 33810336 PMCID: PMC8065631 DOI: 10.3390/antiox10040517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
The antihypertensive effect of the soluble fraction of wine lees (WL) from Cabernet variety grapes was recently reported by our group. This blood pressure (BP)-lowering effect was attributed to the presence of flavanols and anthocyanins. In this context, phenolic-enriched wine lees (PWL) could potentially exhibit a stronger bioactivity. Therefore, the aim of this study was to obtain a soluble fraction of WL with increased phenolic content and evaluate its functionality. The PWL were obtained using an enzyme-assisted extraction based on the hydrolysis of WL proteins with Flavourzyme®. They contained 57.20% more total phenolic compounds than WL, with anthocyanins and flavanols being the largest families present. In addition, PWL also showed greater angiotensin-converting enzyme inhibitory and antioxidant activities. Finally, the antihypertensive activity of the PWL was evaluated in spontaneously hypertensive rats. A single dose of 5 mL/kg body weight of PWL showed a greater BP-lowering effect than the one shown by WL. Moreover, this antihypertensive effect was more prolonged than the one produced by the antihypertensive drug Captopril. These results demonstrate that enzymatic protein hydrolysis is a useful method to maximize the extraction of phenolic compounds from WL and to obtain extracts with enhanced functionalities.
Collapse
|
19
|
López-Fernández-Sobrino R, Soliz-Rueda JR, Margalef M, Arola-Arnal A, Suárez M, Bravo FI, Muguerza B. ACE Inhibitory and Antihypertensive Activities of Wine Lees and Relationship among Bioactivity and Phenolic Profile. Nutrients 2021; 13:nu13020679. [PMID: 33672674 PMCID: PMC7924335 DOI: 10.3390/nu13020679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Wine lees (WL) are by-products generated in the winemaking process. The aim of this study was to investigate the angiotensin-converting enzyme inhibitory (ACEi) activity, and the blood pressure (BP) lowering effect of WL from individual grape varieties. The relationship among their activities and phenolic profiles was also studied. Three WL, from Cabernet, Mazuela, and Garnacha grape varieties, were firstly selected based on their ACEi properties. Their phenolic profiles were fully characterized by UHPLC-ESI-Q-TOF-MS. Then, their potential antihypertensive effects were evaluated in spontaneously hypertensive rats (SHR). BP was recorded before and after their oral administrations (2, 4, 6, 8, 24, and 48 h) at a dose of 5 mL/kg bw. Cabernet WL (CWL) exhibited a potent antihypertensive activity, similar to that obtained with the drug Captopril. This BP-lowering effect was related to the high amount of anthocyanins and flavanols present in these lees. In addition, a potential hypotensive effect of CWL was discarded in normotensive Wistar-Kyoto rats. Finally, the ACEi and antihypertensive activities of CWL coming from a different harvest were confirmed. Our results suggest the potential of CWL for controlling arterial BP, opening the door to commercial use within the wine industry.
Collapse
|
20
|
Docampo-Palacios ML, Alvarez-Hernández A, de Fátima Â, Lião LM, Pasinetti GM, Dixon RA. Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS OMEGA 2020; 5:30095-30110. [PMID: 33251444 PMCID: PMC7689943 DOI: 10.1021/acsomega.0c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Grape seed extract (GSE) is rich in flavonoids and has been recognized to possess human health benefits. Our group and others have demonstrated that GSE is able to attenuate the development of Alzheimer's disease (AD). Moreover, our results have disclosed that the anti-Alzheimer's benefits are not directly/solely related to the dietary flavonoids themselves, but rather to their metabolites, particularly to the glucuronidated ones. To facilitate the understanding of regioisomer/stereoisomer-specific biological effects of (epi)catechin glucuronides, we here describe a concise chemical synthesis of authentic standards of catechin and epicatechin metabolites 3-12. The synthesis of glucuronides 9 and 12 is described here for the first time. The key reactions employed in the synthesis of the novel glucuronides 9 and 12 include the regioselective methylation of the 4'-hydroxyl group of (epi)catechin (≤1.0/99.0%; 3'-OMe/4'-OMe) and the regioselective deprotection of the tert-butyldimethylsilyl (TBS) group at position 5 (yielding up to 79%) over the others (3, 7 and 3' or 4').
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-214-601-5892. Fax: +1-580-224-6692
| | - Anislay Alvarez-Hernández
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
| | - Ângelo de Fátima
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano Morais Lião
- Institute
of Chemistry, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Giulio M. Pasinetti
- Department
of Psychiatry, The Mount Sinai School of
Medicine, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-940-565-2308
| |
Collapse
|
21
|
Grau-Bové C, González-Quilen C, Terra X, Blay MT, Beltrán-Debón R, Jorba-Martín R, Espina B, Pinent M, Ardévol A. Effects of Flavanols on Enteroendocrine Secretion. Biomolecules 2020; 10:biom10060844. [PMID: 32492958 PMCID: PMC7355421 DOI: 10.3390/biom10060844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Some beneficial effects of grape seed proanthocyanidin extract (GSPE) can be explained by the modulation of enterohormone secretion. As GSPE comprises a combination of different molecules, the pure compounds that cause these effects need to be elucidated. The enterohormones and chemoreceptors present in the gastrointestinal tract differ between species, so if humans are to gain beneficial effects, species closer to humans-and humans themselves-must be used. We demonstrate that 100 mg/L of GSPE stimulates peptide YY (PYY) release, but not glucagon-like peptide 1 (GLP-1) release in the human colon. We used a pig ex vivo system that differentiates between apical and basolateral intestinal sides to analyse how apical stimulation with GSPE and its pure compounds affects the gastrointestinal tract. In pigs, apical GSPE treatment stimulates the basolateral release of PYY in the duodenum and colon and that of GLP-1 in the ascending, but not the descending colon. In the duodenum, luminal stimulation with procyanidin dimer B2 increased PYY secretion, but not CCK secretion, while catechin monomers (catechin/epicatechin) significantly increased CCK release, but not PYY release. The differential effects of GSPE and its pure compounds on enterohormone release at the same intestinal segment suggest that they act through chemosensors located apically and unevenly distributed along the gastrointestinal tract.
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Carlos González-Quilen
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - M. Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Raul Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Rosa Jorba-Martín
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Beatriz Espina
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Correspondence: ; Tel.: +34-97-755-9566
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| |
Collapse
|
22
|
Ajebli M, Eddouks M. Phytotherapy of Hypertension: An Updated Overview. Endocr Metab Immune Disord Drug Targets 2020; 20:812-839. [PMID: 31880255 DOI: 10.2174/1871530320666191227104648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiovascular disorders are the leading cause of morbidity and mortality throughout the globe. Hypertension is the main risk factor that contributes to the development of many diseases. The use of herbal therapies, medicinal plants and their derivatives for the remedy and management of hypertension is well-recognized and popular among a wide part of the world population. METHODS The aim of the current review was to collect, treat, and critically analyze the published research studies relative to experimental and clinical investigations which have studied the blood pressure lowering abilities of medicinal plant derivatives in the last decade. This review was organized into three principal axes; the first axis was attributed to the in vivo and in vitro experimental studies; the second treated the clinical trials; while, the last one is devoted to analyze the mechanisms of action underlying the therapeutic antihypertensive effectiveness of phytochemicals. RESULTS Different types of extracts and isolated molecules obtained from a large variety of species demonstrated their efficiency in improving the increase of blood pressure either experimentally or clinically. Medicinal species such as garlic (Allium sativum), celery (Apium graveolens), Black Cumin (Nigella sativa) and Ginseng (Panax) are among the most common and therapeutically used plant derivatives for controlling hypertension while Asteraceae, Apiaceae and Rosaceae are among the botanical families which were frequently studied in the last decade. Isolated compounds such as allicin and apigenin have received more interest in this field. Recent evidence from clinical trials suggests that a wide variety of herbal preparations and plant extracts or natural isolated compounds have a favorable therapeutic impact on blood flow. Interestingly, phytochemicals can either act directly on blood vessels via a vasorelaxant effect involving a variety of signaling cascades or indirectly through inhibiting or stimulating diversity of systems such as angiotensin-converting enzyme (ACE), renin-angiotensin system (RAS) or the diuretic activity. Hence, based on the findings of the present review medicinal plant derivatives could be used as preventive and curative agents in the case of cardiovascular disorders, particularly hypertension and could play a promoting function for the discovery of new antihypertensive agents. CONCLUSION The analysis of the published data shows that a great effort remains to be done to investigate the medicinal plants cited as antihypertensive through published ethnopharmacological surveys. The analysis of the literature in this field shows the lack of standardization at the level of experimental study methods as well as the need to study purified molecules. Moreover, the mechanistic studies when they exist remain in the whole partial. On the other hand, few advanced clinical studies have been conducted. Finally, the determination of the efficacy/safety ratio remains absent in almost all studies.
Collapse
Affiliation(s)
- Mohammed Ajebli
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Team of Endocrine Physiology and Pharmacology, Moulay Ismail University of Meknes, BP 509, Boutalamine 52000, Errachidia, Morocco
| | - Mohamed Eddouks
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Team of Endocrine Physiology and Pharmacology, Moulay Ismail University of Meknes, BP 509, Boutalamine 52000, Errachidia, Morocco
| |
Collapse
|
23
|
Procyanidin A2 penetrates L-02 cells and protects against tert-butyl hydroperoxide-induced oxidative stress by activating Nrf2 through JNK and p38 phosphorylation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients 2019; 11:E2435. [PMID: 31614852 PMCID: PMC6835351 DOI: 10.3390/nu11102435] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Over the last decade, proanthocyanidins (PACs) are attracting attention not only from the food industry but also from public health organizations due to their health benefits. It is well-known that grapes are a good source of PACs and for that reason, the industry is also focused on grape by-products identification and bioactivity evaluation. Grape seeds extract (GSPE) is a rich source of PACs, mainly composed of monomeric catechin and epicatechin, gallic acid and polymeric and oligomeric proanthocyanidins. Thus, this review encompasses the state-of-art structure and the most recent evidence about the impact of GSPE on chronic diseases, with a focus on oxidative stress, inflammation and metabolic syndrome (MeS)-related disorders such as obesity, diabetes and cardiovascular risk disease in vivo to offer new perspectives in the field that allow further research. Despite the controversial results, is undeniable that PACs from grape seeds are highly antioxidants, thus, the capacity of GSPE to improve oxidative stress might mediate the inflammation process and the progress of MeS-related pathologies. However, further well-design animal studies with standardized dosages and GSPE composition are necessary to shed light into the cause-effect relationship in a more accurate way to later allow a deeper study of the effect of GSPE in humans.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| | - Belén García-Villanova
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Eduardo Guerra-Hernández
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA) 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain.
| |
Collapse
|
25
|
Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. Journal of Food Science and Technology 2019; 57:1205-1215. [PMID: 32180617 DOI: 10.1007/s13197-019-04113-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
Grapes are one of the most highly consumed fruits across the world. In ancient Europe the leaves and the sap of grape plants has been used in traditional treatment for ages. Besides being a wellspring for vitamins and fibre, the skin and seeds of grapes are highly rich in Polyphenols specifically proanthocyanidins, which can be used as a functional ingredient to address various health issues by boosting the natural bio-processes of the body. Since, grape seeds are by product of wine making companies therefore can be easily procured. The present review article briefly describes the various pharmacological activities of grape seed extract and different experimental studies were done which supports the beneficial health qualities of the extract. Through different and various studies, it was proved that the proanthocyanidin rich grape seed extract provides benefits against many diseases i.e. inflammation, cardiovascular disease, hypertension, diabetes, cancer, peptic ulcer, microbial infections, etc. Therefore, beside from using it as a nutraceutical or cosmeceutical, as a result they may have a potential to substitute or complement in currently used drugs in the treatment of diseases by developing it into other successful pharmaceutical formulations for better future prospective.
Collapse
Affiliation(s)
- Madhavi Gupta
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Sanjay Dey
- Division of Pharmaceutics, Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Banitabla, Ulberia, Howrah, West Bengal India
| | - Daphisha Marbaniang
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Paulami Pal
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| | - Subhabrata Ray
- B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal India
| | - Bhaskar Mazumder
- 1Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam India
| |
Collapse
|
26
|
Mas-Capdevila A, Iglesias-Carres L, Arola-Arnal A, Aragonès G, Aleixandre A, Bravo FI, Muguerza B. Evidence that Nitric Oxide is Involved in the Blood Pressure Lowering Effect of the Peptide AVFQHNCQE in Spontaneously Hypertensive Rats. Nutrients 2019; 11:E225. [PMID: 30678184 PMCID: PMC6412221 DOI: 10.3390/nu11020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
AVFQHNCQE is an antihypertensive nonapeptide obtained from a chicken foot protein hydrolysate. The present study aims to investigate the mechanisms involved in its blood pressure (BP)-lowering effect. Male (17⁻20 weeks old) spontaneously hypertensive rats (SHR) were used in this study. Rats were divided into two groups and orally administered water or 10 mg/kg body weight (bw) AVFQHNCQE. One hour post-administration, animals of both groups were intra-peritoneally treated with 1 mL of saline or with 1 mL of saline containing 30 mg/kg bw Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, or with 1 mL of saline containing 5 mg/kg bw indomethacin, which is an inhibitor of prostacyclin synthesis (n = 6 per group). Systolic BP was recorded before oral administration and six hours after oral administration. In an additional experiment, SHR were administered water or 10 mg/kg bw AVFQHNCQE (n = 6 per group) and sacrificed six hours post-administration to study the mechanisms underlying the peptide anti-hypertensive effect. Moreover, the relaxation caused by AVFQHNCQE in isolated aortic rings from Sprague-Dawley rats was evaluated. The BP-lowering effect of the peptide was not changed after indomethacin administration but was completely abolished by L-NAME, which demonstrates that its anti-hypertensive effect is mediated by changes in endothelium-derived NO availability. In addition, AVFQHNCQE administration downregulated aortic gene expression of the vasoconstrictor factor endothelin-1 and the endothelial major free radical producer NADPH. Moreover, while no changes in plasma ACE activity were observed after its administration, liver GSH levels were higher in the peptide-treated group than in the water group, which demonstrates that AVFQHNCQE presents antioxidant properties.
Collapse
Affiliation(s)
- Anna Mas-Capdevila
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Lisard Iglesias-Carres
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Amaya Aleixandre
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 280040 Madrid, Spain.
| | - Francisca I Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
- EURECAT-Technology Centre of Catalonia, Technological Unit of Nutrition and Health, 43204 Reus, Spain.
| |
Collapse
|
27
|
Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients 2018. [PMID: 29518911 PMCID: PMC5872733 DOI: 10.3390/nu10030315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity is highly associated with the pathologies included in the concept of the Metabolic Syndrome. Grape-seed proanthocyanins (GSPE) have showed very positive effects against all these metabolic disruptions; however, there is, as yet, no consensus about their effectiveness against an obesogenic challenge, such as a cafeteria diet. We determined the effectiveness of a dose of 500 mg GSPE/kg b.w. (body weight) against the obesogenic effects of a 17-week cafeteria diet, administered as a sub-chronic treatment, 10–15 days before, intermittently and at the end of the diet, in Wistar rats. Body weight, adiposity, indirect calorimetry and plasma parameters were analyzed. GSPE pre-treatment showed a long-lasting effect on body weight and adiposity that was maintained for seven weeks after the last dose. A corrective treatment was administered for the last two weeks of the cafeteria diet intervention; however, it did not effectively correct any of the parameters assessed. The most effective treatment was an intermittent GSPE dosage, administered every second week during the cafeteria diet. This limited body weight gain, adiposity and most lipotoxic effects. Our results support the administration of this GSPE dose, keeping an intermittent interval between dosages longer than every second week, to improve obesogenic disruptions produced by a cafeteria diet.
Collapse
|
28
|
Mahmoudi M, Charradi K, Limam F, Aouani E. Grape seed and skin extract as an adjunct to xenical therapy reduces obesity, brain lipotoxicity and oxidative stress in high fat diet fed rats. Obes Res Clin Pract 2018; 12:115-126. [DOI: 10.1016/j.orcp.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
|
29
|
Casanova-Martí À, Serrano J, Portune KJ, Sanz Y, Blay MT, Terra X, Ardévol A, Pinent M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct 2018; 9:1672-1682. [DOI: 10.1039/c7fo02028g] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An 8-day treatment of GSPE changed the microbiota composition, and several microbiota taxa correlated with metabolic parameters and enterohormones.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Kevin J. Portune
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - Yolanda Sanz
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - M. Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| |
Collapse
|
30
|
Caimari A, Mariné-Casadó R, Boqué N, Crescenti A, Arola L, Del Bas JM. Maternal intake of grape seed procyanidins during lactation induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Sci Rep 2017; 7:12573. [PMID: 28974704 PMCID: PMC5626783 DOI: 10.1038/s41598-017-12597-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
Previously, we demonstrated that a grape seed procyanidin extract (GSPE) supplementation in pregnant and lactating rats exerted both healthy and deleterious programming effects on their offspring. Here, we evaluated whether the administration of GSPE during lactation (100 mg.kg−1.day−1) in rats elicited beneficial effects in their normoweight (STD-GSPE group) and cafeteria-fed obese (CAF-GSPE group) adult male offspring. STD-GSPE and CAF-GSPE offspring showed increased energy expenditure and circulating total and high-molecular-weight adiponectin. However, these rats showed hyperinsulinemia, decreased insulin sensitivity, increased insulin resistance, down-regulated mRNA levels of adiponectin receptors in inguinal white adipose tissue (Adipor1 and Adipor2) and soleus muscle (Adipor2), and decreased levels of phosphorylated AMPK, the downstream post-receptor target of adiponectin, in the soleus muscle. These deleterious effects could be related to an increased lipid transfer to the pups through the milk, since GSPE-supplemented dams displayed decreased fat content and increased expression of lipogenic genes in their mammary glands, in addition to increased circulating total adiponectin and non-esterified free fatty acids. In conclusion, maternal intake of GSPE during lactation induced insulin resistance and an adiponectin resistance-like phenotype in their normoweight and obese offspring. These findings raise concerns about the possibility of using GSPE as a nutraceutical supplement during this period.
Collapse
Affiliation(s)
- Antoni Caimari
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain. .,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain.
| | - Roger Mariné-Casadó
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Noemí Boqué
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Anna Crescenti
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Lluís Arola
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Maria Del Bas
- Technological Unit of Nutrition and Health. EURECAT-Technology Centre of Catalonia, Reus, Spain.,Nutrition and Health Research Group, EURECAT-Technology Centre of Catalonia, Reus, Spain
| |
Collapse
|
31
|
Zhao CN, Meng X, Li Y, Li S, Liu Q, Tang GY, Li HB. Fruits for Prevention and Treatment of Cardiovascular Diseases. Nutrients 2017; 9:E598. [PMID: 28608832 PMCID: PMC5490577 DOI: 10.3390/nu9060598] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are leading global health problems. Accumulating epidemiological studies have indicated that consuming fruits was inversely related to the risk of CVDs. Moreover, substantial experimental studies have supported the protective role of fruits against CVDs, and several fruits (grape, blueberry, pomegranate, apple, hawthorn, and avocado) have been widely studied and have shown potent cardiovascular protective action. Fruits can prevent CVDs or facilitate the restoration of morphology and functions of heart and vessels after injury. The involved mechanisms included protecting vascular endothelial function, regulating lipids metabolism, modulating blood pressure, inhibiting platelets function, alleviating ischemia/reperfusion injury, suppressing thrombosis, reducing oxidative stress, and attenuating inflammation. The present review summarizes recent discoveries about the effects of fruits on CVDs and discusses potential mechanisms of actions based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Arola L, Blay M, Terra X. Chronic supplementation with dietary proanthocyanidins protects from diet-induced intestinal alterations in obese rats. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201601039] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Katherine Gil-Cardoso
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Iris Ginés
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Montserrat Pinent
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Anna Ardévol
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Lluís Arola
- Nutrigenomics Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Mayte Blay
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Ximena Terra
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
33
|
Downing LE, Edgar D, Ellison PA, Ricketts ML. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 2017; 35:12-32. [DOI: 10.1002/cbf.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Laura E. Downing
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| | - Daniel Edgar
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Patricia A. Ellison
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| |
Collapse
|
34
|
Margalef M, Pons Z, Iglesias-Carres L, Quiñones M, Bravo FI, Arola-Arnal A, Muguerza B. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/26/2016] [Accepted: 09/02/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Maria Margalef
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
- Centre Tecnològic de Nutrició i Salut (CTNS); TECNIO, CEICS; Reus Spain
| | - Zara Pons
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Lisard Iglesias-Carres
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Mar Quiñones
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
- Department of Physiology; CIMUS; University of Santiago de Compostela - Instituto de Investigación Sanitaria; Santiago de Compostela Spain
| | - Francisca Isabel Bravo
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Anna Arola-Arnal
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
| | - Begoña Muguerza
- Nutrigenomic Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Tarragona Spain
- Centre Tecnològic de Nutrició i Salut (CTNS); TECNIO, CEICS; Reus Spain
| |
Collapse
|
35
|
Serrano J, Casanova-Martí À, Blay M, Terra X, Ardévol A, Pinent M. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract. Nutrients 2016; 8:nu8100652. [PMID: 27775601 PMCID: PMC5084038 DOI: 10.3390/nu8100652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Food intake depends on homeostatic and non-homeostatic factors. In order to use grape seed proanthocyanidins (GSPE) as food intake limiting agents, it is important to define the key characteristics of their bioactivity within this complex function. We treated rats with acute and chronic treatments of GSPE at different doses to identify the importance of eating patterns and GSPE dose and the mechanistic aspects of GSPE. GSPE-induced food intake inhibition must be reproduced under non-stressful conditions and with a stable and synchronized feeding pattern. A minimum dose of around 350 mg GSPE/kg body weight (BW) is needed. GSPE components act by activating the Glucagon-like peptide-1 (GLP-1) receptor because their effect is blocked by Exendin 9-39. GSPE in turn acts on the hypothalamic center of food intake control probably because of increased GLP-1 production in the intestine. To conclude, GSPE inhibits food intake through GLP-1 signaling, but it needs to be dosed under optimal conditions to exert this effect.
Collapse
Affiliation(s)
- Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Mayte Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| |
Collapse
|
36
|
Serrano J, Casanova-Martí À, Gil-Cardoso K, Blay MT, Terra X, Pinent M, Ardévol A. Acutely administered grape-seed proanthocyanidin extract acts as a satiating agent. Food Funct 2016; 7:483-90. [PMID: 26514231 DOI: 10.1039/c5fo00892a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Grape-seed proanthocyanidins' role as stimulators of active GLP-1 in rats suggests that they could be effective as satiating agents. Wistar rats were used to study the effects of proanthocyanidins on food intake with different doses, administration times and proanthocyanidin extract compositions. A dose of 423 mg of phenolics per kg body weight (BW) of grape-seed proanthocyanidin extract (GSPE) was necessary to decrease the 12-hour cumulative food intake by 18.7 ± 3.4%. Proanthocyanidins were effective when delivered directly into the gastrointestinal tract one hour before, or simultaneously at the start of the feeding period. Proanthocyanidins without galloyl forms, such as those from cocoa extract, were not as effective as grape-seed derived forms. GSPE increased the portal levels of active GLP-1 and total ghrelin and decreased the CCK levels, simultaneously with a decrease in gastric emptying. In conclusion, grape-seed proanthocyanidins could be useful as a satiating agent under the conditions defined in this study.
Collapse
Affiliation(s)
- Joan Serrano
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Àngela Casanova-Martí
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Katherine Gil-Cardoso
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - M Teresa Blay
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Ximena Terra
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Montserrat Pinent
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| | - Anna Ardévol
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, c/Marcel lí Domingo no. 1, 43007, Tarragona, Spain.
| |
Collapse
|
37
|
Li Q, Wang X, Chen J, Liu C, Li T, McClements DJ, Dai T, Liu J. Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chem 2016; 208:309-17. [DOI: 10.1016/j.foodchem.2016.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
|
38
|
Proanthocyanidins potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced obesity. Int J Obes (Lond) 2016; 41:129-136. [PMID: 27677620 PMCID: PMC5220160 DOI: 10.1038/ijo.2016.169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/29/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Objective: Dietary obesity is usually linked with hypothalamic leptin resistance, in which the primary impact is an interference in the homeostatic control of body weight and appetite. Notably, proanthocyanidins (PACs), which are the most abundant phenolic compounds present in human diet, modulate adiposity and food intake. The aim of this study was to assess whether PACs could re-establish appropriate leptin signalling in both the hypothalamus and peripheral tissues. Design: Male Wistar rats were fed either a standard chow diet (STD group, n=7) or a cafeteria diet (CD) for 13 weeks. The CD-fed rats were treated with either grape-seed PAC extract (GSPE) at 25 mg per kg of body weight per day (CD+GSPE group, n=7) or with the vehicle (CD group, n=7) for the last 21 days of the study period. Specific markers for intracellular leptin signalling, inflammation and endoplasmic reticulum stress in the hypothalamus, liver, mesenteric white adipose tissue and skeletal muscle were analysed using immunoblotting and quantitative PCR. Results: GSPE treatment significantly reduced the food intake but did not reverse the hyperleptinemia and body wt gain assessed. However, the animals treated with GSPE exhibited greater hypothalamic activation of signal transducer and activator of transcription-3, which was associated with a rise in the Pomc mRNA levels compared with the CD group. In addition, this restoration of leptin responsiveness was accompanied by lower local inflammation and increased Sirt1 gene expression. The effects of the GSPE treatment in the peripheral tissues were not as evident as those in the hypothalamus, although the GSPE treatment significantly restored the mRNA levels of Socs3 and Ptp1b in the skeletal muscle. Conclusions: The use of GSPE reduces hyperphagia and improves the central and peripheral leptin resistance associated with diet-induced obesity. Our results suggest that GSPE could exert these effects partially by increasing Sirt1 expression and preventing hypothalamic inflammation.
Collapse
|
39
|
Hannan PA, Khan JA, Ullah I, Ullah S. Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis 2016; 15:151. [PMID: 27613388 PMCID: PMC5016891 DOI: 10.1186/s12944-016-0323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/02/2016] [Indexed: 11/15/2022] Open
Abstract
Background Hyperlipidemia, a major pathological condition associated with disrupted lipid levels and physiological redox homeostasis. The excessive release of reactive oxygen species (ROS) leads to enhanced lipid peroxidation, aggravated atherosclerosis and oxidative stress. Integration of natural antioxidant blends in alone or with conventional treatments can alleviate these issues synergistically contributing least side effects. Published literature reported the efficacy of natural antioxidants as individual and in combinations in various conditions but less data is available on their evaluation in low dose ratio blends particularly in hypercholesterolemic diet. Methods Antihyperlipidemic effects of selected natural antioxidants; the phenolic oligomeric proanthocyanidins (OPC) and pterostilbene (PT) with niacin (NA) were investigated in current study. Their effects on lipid profile, lipid peroxidation and their aptitude to establish redox state between oxidants and antioxidants in body were evaluated in high cholesterol diet fed animal model. Male albino rabbits (n = 6) weighing 1.2–1.6 kg, supplemented with high cholesterol diet (400 mg/kg) for 12 weeks were used in the experiment. Antioxidants were administered individual high (100 mg/kg) and in low dose combinations (total dose = 100 mg/kg). Student’s t test and one way analysis of variance (ANOVA) followed by Dunnet’s test were used as statistical tools for evaluation. Results The results showed synergistic effects of low dose antioxidant blends. Therapies retarded elevation in blood lipid levels, lipid peroxidation and blood antioxidant depletion and consequently contributed in reestablishing redox homeostasis. The LDL/HDL ratio and atherogenic index were suppressed significantly in blend therapies with maximum effects of 59.3 and 25 % (p >0.001) observed in 50:30:20 ratios of OPC, NA and PT, compared to individual therapies 37 and 18 % max respectively. Moreover the results were also in close proximity with the statin therapy (52.66, 26.28 %). Conclusion This study provides an evidence for natural antioxidants blends superiority over individual therapy in chronic diseases like hyperlipidemia. Such therapies in human equivalent doses can help in mitigating chronic illnesses in general populations.
Collapse
Affiliation(s)
- Peer Abdul Hannan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Jamshaid Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Irfan Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Safi Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
40
|
Grape seed flavanols decrease blood pressure via Sirt-1 and confer a vasoprotective pattern in rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Li Q, Chen J, Li T, Liu C, Liu W, Liu J. Comparison of bioactivities and phenolic composition of Choerospondias axillaris peels and fleshes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2462-2471. [PMID: 26249806 DOI: 10.1002/jsfa.7366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Choerospondias axillaris is both an edible and medicinal fruit. It has a growing popularity and economic importance due to its nutritive value and medicinal effects, but comprehensive information on the chemical composition and bioactivity of its fruits is still lacking. Therefore the aim of this study was to investigate the antioxidant, antimicrobial and antiproliferative effects and chemical composition of peel polyphenolic (PP) and flesh polyphenolic (FP) extracts from C. axillaris. RESULTS The phenolics and flavonoids of peel were significantly higher than those of flesh. Ultra-performance liquid chromatography (UPLC) and ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight-mass spectrometry (UPLC/ESI-QTOF-MS(2) ) analysis revealed that (+)-catechin and oligomeric procyanidins were the most abundant compounds in PP and FP. Both extracts exhibited strong ferric-reducing antioxidant power, total antioxidant activity and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•) )-scavenging ability. PP showed a significantly higher antimicrobial effect against tested strains than that of FP, in a dose-dependent manner. Furthermore, both extracts inhibited the growth of HepG2 and Caco-2 cells in a dose- and time-dependent manner, with IC50 values of 39.31 and 47.49 µg mL(-1) to HepG2 cells and 101.90 and 102.61 µg mL(-1) to Caco-2 cells respectively. CONCLUSION This is the first detailed report on the chemical composition and bioactivities of C. axillaris fruits. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Jiyan Liu
- Jiangxi Qiyun Shan Food Co., Ltd, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
42
|
Aragonès G, Suárez M, Ardid-Ruiz A, Vinaixa M, Rodríguez MA, Correig X, Arola L, Bladé C. Dietary proanthocyanidins boost hepatic NAD(+) metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats. Sci Rep 2016; 6:24977. [PMID: 27102823 PMCID: PMC4840337 DOI: 10.1038/srep24977] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD(+)) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD(+) precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD(+). Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD(+) availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD(+) levels.
Collapse
Affiliation(s)
- Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Maria Vinaixa
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), University Rovira i Virgili, IISPV, Reus, Spain
| | - Miguel A Rodríguez
- Center for Omic Sciences (COS), Universitat Rovira i Virgili, Reus, Spain
| | - Xavier Correig
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), University Rovira i Virgili, IISPV, Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.,Center for Omic Sciences (COS), Universitat Rovira i Virgili, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
43
|
A specific dose of grape seed-derived proanthocyanidins to inhibit body weight gain limits food intake and increases energy expenditure in rats. Eur J Nutr 2016; 56:1629-1636. [PMID: 27039093 DOI: 10.1007/s00394-016-1209-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Several studies have suggested that flavanols may have antiobesity effects; however, those effects clearly depend on the experimental conditions. In a previous study, we found that a single acute dose of grape seed proanthocyanidin extract (GSPE) has satiating effects. We therefore hypothesise that satiating doses of GSPE could be used to reduce body weight gain, and our present objective was to define the most effective dose. METHODS We assayed two GSPE doses in aged male Wistar rats. First we performed a subchronic (8-day) treatment by intragastric administration, which was repeated after a washout period. We measured body weight, energy intake and faeces composition; we performed indirect calorimetry; and we analysed the mRNA expression of genes involved in lipid metabolism to determine the target tissue for the GSPE. RESULTS We observed that 0.5 g GSPE/kg BW significantly reduced food intake and thus the amount of energy absorbed. This dosage also increased lipid oxidation in subcutaneous adipose tissue, thus causing a higher total energy expenditure. These combined effects caused a decrease in body weight. Conversely, 1 g GSPE/kg BW, which also reduced energy absorption after the first treatment, had a rebound effect on body weight gain which resulted in a lower response to the proanthocyanidin extract. That is, after the second treatment, the GSPE did not reduce the energy absorbed or modify energy expenditure and body weight. CONCLUSION GSPE at a dose of 0.5 g/kg can reduce body weight by limiting food intake and activating energy expenditure in subcutaneous adipose tissue.
Collapse
|
44
|
Margalef M, Pons Z, Iglesias-Carres L, Arola L, Muguerza B, Arola-Arnal A. Gender-related similarities and differences in the body distribution of grape seed flavanols in rats. Mol Nutr Food Res 2016; 60:760-72. [DOI: 10.1002/mnfr.201500717] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/22/2015] [Accepted: 01/03/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Margalef
- Nutrigenomic group, Department of Biochemistry and Biotechnology; Rovira i Virgili University; Tarragona Spain
| | - Zara Pons
- Nutrigenomic group, Department of Biochemistry and Biotechnology; Rovira i Virgili University; Tarragona Spain
| | - Lisard Iglesias-Carres
- Nutrigenomic group, Department of Biochemistry and Biotechnology; Rovira i Virgili University; Tarragona Spain
| | - Lluís Arola
- Nutrigenomic group, Department of Biochemistry and Biotechnology; Rovira i Virgili University; Tarragona Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO; CEICS; Reus Spain
| | - Begoña Muguerza
- Nutrigenomic group, Department of Biochemistry and Biotechnology; Rovira i Virgili University; Tarragona Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO; CEICS; Reus Spain
| | - Anna Arola-Arnal
- Nutrigenomic group, Department of Biochemistry and Biotechnology; Rovira i Virgili University; Tarragona Spain
| |
Collapse
|
45
|
Pinent M, Castell-Auví A, Genovese MI, Serrano J, Casanova A, Blay M, Ardévol A. Antioxidant effects of proanthocyanidin-rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:178-182. [PMID: 25582348 DOI: 10.1002/jsfa.7079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The gastrointestinal tract (GI) is constantly exposed to reactive species released by the GI tract itself, and those present in food and beverages. Phenolic compounds may help in protecting the GI tract against damage produced by the reactive species. In this paper we have analyzed the effects of a grape seed proanthocyanidin extract (GSPE) on reactive oxygen species (ROS) production in two different intestinal cell types: the absorptive cell line Caco-2 and the enteroendocrine cell line STC-1. RESULTS We show that GSPE prevents tert-butylhydroperoxide-induced oxidative stress in both cell lines, and that the effects are dose and time dependent. We have also analyzed whether GSPE has any in vivo effect, and found that 25 mg kg(-1) body weight cannot counteract the increase in intestinal ROS induced by the cafeteria diet. However, an acute (1 h) treatment of 1 g GSPE kg(-1) body weight reduced ROS in fasted animals and also decreased ROS induction by food. These effects were found only after a short-term treatment. Furthermore, we have compared the in vitro GSPE effects with those of another proanthocyanidin-rich extract from cupuassu seeds, though it has compounds with different structures. Cupuassu extract also shows antioxidant effects in both cell types, which suggests different mechanisms from those of GSPE. CONCLUSION Natural proanthocyanidin-rich extracts have an antioxidant effect in the GI tract, acting on absorptive cells and enterohormone-secreting cells, although the effects depend on the dose and period of treatment. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Anna Castell-Auví
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Maria Inés Genovese
- Departamento de Alimentos e Nutriçao Experimental, Faculdade de Ciências Farmacêuticas, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP, Brazil
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Angela Casanova
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Mayte Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
46
|
Jang HH, Park SK, Choi GY, Park JH, Lee TH, Jung HN, Kim DO. Anti-hypertensive effect of grape seed extract in male spontaneously hypertensive rats. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0297-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Impact of in vitro simulated digestion on the potential health benefits of proanthocyanidins from Choerospondias axillaris peels. Food Res Int 2015; 78:378-387. [DOI: 10.1016/j.foodres.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/05/2015] [Indexed: 11/20/2022]
|
48
|
Margalef M, Pons Z, Iglesias-Carres L, Bravo FI, Muguerza B, Arola-Arnal A. Lack of tissue accumulation of grape seed flavanols after daily long-term administration in healthy and cafeteria-diet obese rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9996-10003. [PMID: 26496863 DOI: 10.1021/acs.jafc.5b03856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
After ingestion flavanols are metabolized by phase-II enzymes and the microbiota and are distributed throughout the body depending on several factors. Herein we aim to evaluate whether flavanols are tissue-accumulated after the long-term administration of a grape seed polyphenol extract (GSPE) in rats and to study if compounds present in tissues differ in a cafeteria-diet obesity state. For that, plasma, liver, mesenteric white adipose tissue (MWAT), brain, and aorta flavanol metabolites from standard chow-diet-fed (ST) and cafeteria-diet-fed (CAF) rats were analyzed by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) 21 h after the last 12-week-daily GSPE (100 mg/kg) dosage. Results showed that long-term GSPE intake did not trigger a flavanol tissue accumulation, indicating a clearance of products at each daily dosage. Therefore, results suggest that polyphenol benefits in a disease state would be due to a daily pulsatile effect. Moreover, obesity induced by diet also influences the metabolism and bioavailability of flavanols in rats.
Collapse
Affiliation(s)
- Maria Margalef
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University , Tarragona 43003, Spain
| | - Zara Pons
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University , Tarragona 43003, Spain
| | - Lisard Iglesias-Carres
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University , Tarragona 43003, Spain
| | - Francisca Isabel Bravo
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University , Tarragona 43003, Spain
| | - Begoña Muguerza
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University , Tarragona 43003, Spain
- Technological Center of Nutrition and Health (CTNS), TECNIO, CEICS , Reus 43204, Spain
| | - Anna Arola-Arnal
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University , Tarragona 43003, Spain
| |
Collapse
|
49
|
A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s00580-015-2192-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Margalef M, Pons Z, Bravo FI, Muguerza B, Arola-Arnal A. Tissue distribution of rat flavanol metabolites at different doses. J Nutr Biochem 2015; 26:987-95. [DOI: 10.1016/j.jnutbio.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023]
|