1
|
Vikash VL, Kamini NR, Ponesakki G, Anandasadagopan SK. Keratinous bioresources: their generation, microbial degradation, and value enhancement for biotechnological applications. World J Microbiol Biotechnol 2025; 41:118. [PMID: 40155538 DOI: 10.1007/s11274-025-04336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Keratin is an important bioresource primarily found in feathers, hair, wool, nails, claws, hooves, horns, and beaks. These crucial protein sources are utilized in many ways for diverse applications. The peptides of keratin develop hierarchical complexity, which leads to the formation of these recalcitrant biomasses. Therefore, microbial breakdown of keratin is a complex process and involves important proteolytic enzymes and inorganic factors. Disulfide bond reduction is the key step in keratin degradation that is mainly facilitated by disulfide-reducing agents or disulfide reductases. Notably, α- and β-keratinous substrates exhibit different structural features; as a result, their disintegration processes make a diversity among keratinous biomass. Various studies have suggested that pretreatment can improve degradation yield following microbial processes. Keratin hydrolysates have been investigated for various uses that contribute to mitigating the environmental impact of these solid wastes. Furthermore, keratin peptides possess bioactive properties, including antioxidant, cytoprotective, and anticancer effects, making them potential candidates for biomedical and nutritional sectors. Microbial keratinases are known for a wide range of substrate specificity that significantly contributes to areas like prion decontamination, carcass processing, antimicrobial functions, and skin exfoliation. This review aims to examine keratin bioresources, their structure, and microbial mechanisms for keratin degradation, along with current insights and future applications of keratin hydrolysates and keratinases.
Collapse
Affiliation(s)
- Vijan Lal Vikash
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Numbi Ramudu Kamini
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ganesan Ponesakki
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Kumar Anandasadagopan
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Immunomodulatory Properties of Sweet Whey-Derived Peptides in THP-1 Macrophages. Molecules 2025; 30:1261. [PMID: 40142037 PMCID: PMC11944360 DOI: 10.3390/molecules30061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Sweet whey (SW), a by-product of cheese production, has potential immunomodulatory properties that could be beneficial in preventing inflammation-related diseases. This study investigated the effects of SW derived from bovine, caprine, ovine, or an ovine/caprine mixture of milk on inflammation-related gene expression in THP-1-derived macrophages, both with and without LPS stimulation. Cells were treated with SW-D-P3 (a fraction smaller than 3 kDa produced by in vitro digestion), and the expression of inflammation-related genes was assessed using quantitative PCR. Results showed that the expression of TLR2 and ICAM1 was attenuated in non-LPS-stimulated macrophages treated with SW-D-P3, regardless of animal origin. Moreover, the expression of TLR4, IL1B, and IL6 was decreased and the expression of an NF-κB subunit RELA and CXCL8 was elevated in a subset of samples treated with SW-D-P3, depending on the milk source. In LPS-challenged cells, the expression of CXCL8 was upregulated and the expression of IRF5 and TNFRSF1A was downregulated in SW-D-P3-treated cells, regardless of animal origin. On the other hand, a number of inflammation-related genes were differentially expressed depending on the animal origin of the samples. Moreover, the higher IL10 expression observed in cells treated with ovine/caprine SW-D-P3 compared to those treated with SW-D-P3 of bovine, caprine, or ovine origin suggests an anti-inflammatory response, in which alternatively activated macrophages (M2 polarization phenotype) may participate. Overall, these findings suggest that incorporating SW into the food industry, either as a standalone ingredient or supplement, may help to prevent inflammation-related diseases.
Collapse
Affiliation(s)
- Eleni Dalaka
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (G.C.S.); (I.P.)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (G.C.S.); (I.P.)
| |
Collapse
|
3
|
Chen C, Yu W, Kou X, Niu Y, Ji J, Shao Y, Wu S, Liu M, Xue Z. Recent advances in the effect of simulated gastrointestinal digestion and encapsulation on peptide bioactivity and stability. Food Funct 2025; 16:1634-1655. [PMID: 39943857 DOI: 10.1039/d4fo04447a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Food-derived bioactive peptides have garnered significant attention from researchers due to their specific biological functions, including antihypertensive, antioxidant, antidiabetic, anticancer, anti-inflammatory, and anti-osteoporosis properties. Despite extensive in vitro research, the bioactivity of these peptides may be compromised in the gastrointestinal tract due to enzymatic hydrolysis before reaching the bloodstream or target cells. Therefore, understanding the fate of bioactive peptides during digestion is crucial before advancing to clinical trials and commercial applications. To exert their health-promoting effects, these peptides must maintain their bioactivity throughout digestion. Encapsulation has emerged as a promising strategy for protecting peptides in the gastrointestinal tract. This review examines the effects of in vitro simulated gastrointestinal digestion on peptide bioactivity and stability, highlighting recent research on encapsulation strategies designed to enhance their gastrointestinal stability. Furthermore, the review addresses existing research gaps and suggests future research directions to advance our understanding and the application of bioactive peptides.
Collapse
Affiliation(s)
- Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Sangsawad P, Chumee S, Laosam P, Roytrakul S, Katemala S, Sutheerawattananonda M. Pilot-Scale Production of Sericin-Derived Oligopeptides (SDOs) from Yellow Silk Cocoons: Peptide Characterization and Specifications. Foods 2025; 14:500. [PMID: 39942094 PMCID: PMC11818041 DOI: 10.3390/foods14030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Our previous research demonstrated the health benefits of sericin-derived oligopeptides (SDOs) from yellow silk cocoons, particularly their hypoglycemic and antihypertensive properties. This study aims to produce SDOs at a pilot scale, preparing them for large commercial production as a novel food ingredient, and investigates the impact of scale-up on their characteristics and specifications. We compared the productivity of SDOs generated from 25 L and 300 L batches via the hydrolysis of sericin using 5% Neutrase (E/S) at 50 °C for 4 h. The 300 L production scale outperformed the 25 L scale, achieving a hydrolysis degree (DH) of 8.63%, a solid recovery rate of 94.35%, and enhanced inhibitory actions for dipeptidyl peptidase IV (DPP-IV) and angiotensin-converting enzyme (ACE). The characterization of peptides was carried out in ultrafiltered SDOs. Peptides < 3 kDa demonstrated optimal enzyme inhibition and were then fractionated by size exclusion chromatography into nine distinct fractions. Of the nine fractions, F1, F8, and F9 had significant enzyme inhibitory activity. LC-MS/MS analysis revealed 32 unique peptide sequences, with YPDLPYH exhibiting significant dual inhibitory effects on both DPP-IV (IC50 1.35 mM) and ACE (IC50 18.10 μM). The maximum residue limit (MRL) for trace metals, pesticide residues, and microbiological contamination in SDOs complies with food regulations. SDOs exhibited stability at 4, 25, and 45 °C for six months, based on their physical characteristics and biological activity. Considering their investigated characteristics, SDOs could be manufactured at a pilot capacity and used as a functional food component in commercial applications designed to improve metabolic health.
Collapse
Affiliation(s)
- Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Postharvest Technology and Innovation in Animal Unit, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Surangkhanang Chumee
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Phanthipha Laosam
- Postharvest Technology and Innovation in Animal Unit, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Research and Development Institute, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Sasikan Katemala
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Manote Sutheerawattananonda
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
5
|
Leng J, Jiang Y, Zhou T, Zhang S, Zhu C, Wang B, Li L, Zhao W. Unveiling the slow digestion and peptide profiles of polymerised whey gel via heat and TGase crosslinking: An in vitro/vivo perspective. Food Chem 2025; 464:141829. [PMID: 39488046 DOI: 10.1016/j.foodchem.2024.141829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Polymerised whey is widely used in dairy products and can affect digestibility when its high-molecular-weight aggregates and gel structure are modified. This study investigated the digestibility, peptide profiles and satiety of modified whey protein isolate (MWPI) pre-heated with transglutaminase. Results showed that 43.06 % of MWPI was digested during the 4-h in vitro digestion, indicating a slow digestion rate. Compared with whey protein isolate (WPI), MWPI yielded 103 peptides with higher abundance following in vitro digestion, including 17 angiotensin-converting enzyme inhibitors and 1 dipeptidyl peptidase-4 inhibitor. Visual analytics indicated differential peptides located at distinct α-helix and β-sheet of β-lactoglobulin, α-lactalbumin and bovine serum albumin. MWPI gavage extended stomach retention time, decreased intestinal propulsion rate from 75.60 % (WPI group) to 33.72 % in 30 min and enhanced satiety within 120 min compared with WPI. Overall, whey polymerisation modulates protein-enzyme interactions, releasing different peptides and enhancing satiety.
Collapse
Affiliation(s)
- Juncai Leng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yiming Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Tingyi Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Shiqi Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Chenlu Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Beibei Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Li Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
6
|
Arámburo-Gálvez JG, Tinoco-Narez-Gil R, Mora-Melgem JA, Sánchez-Cárdenas CA, Gracia-Valenzuela MH, Flores-Mendoza LK, Figueroa-Salcido OG, Ontiveros N. In Silico Hydrolysis of Lupin ( Lupinus angustifolius L.) Conglutins with Plant Proteases Releases Antihypertensive and Antidiabetic Peptides That Are Bioavailable, Non-Toxic, and Gastrointestinal Digestion Stable. Int J Mol Sci 2024; 25:12866. [PMID: 39684577 DOI: 10.3390/ijms252312866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Lupin (Lupinus angustifolius L.) proteins are potential sources of bioactive peptides (LBPs) that can inhibit dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE-I) activity. However, the capacity of different enzymes to release LBPs, the pharmacokinetic and bioactivities of the peptides released, and their binding affinities with the active sites of DPP-IV and ECA-I are topics scarcely addressed. Therefore, we used in silico hydrolysis (BIOPEP-UWM platform) with various enzymes to predict the release of LBPs. Among the bioactive peptides identified in lupin proteins (n = 4813), 2062 and 1558 had DPP-IV and ACE-I inhibitory activity, respectively. Ficin, bromelain, and papain released the highest proportion of ACE-I (n = 433, 411, and 379, respectively) and DPP-IV (n = 556, 544, and 596, respectively) inhibitory peptides. LBPs with favorable pharmacokinetics and gastrointestinal stability tightly interacted with the active sites of ACE-I (-5.6 to -8.9 kcal/mol) and DPP-IV (-5.4 to -7.6 kcal/mol). Papain generated the most bioavailable LBPs (n = 459) with ACE-I (n = 223) and DPP-IV (n = 412) inhibitory activity. These peptides were non-toxic and gastrointestinal digestion stable. Notably, papain-based hydrolysis released some LBPs (n = 270) that inhibited both ACE-I and DPP-IV. Plant protease-based hydrolysis is a promising approach for producing lupin hydrolysates with ACE-I and DPP-IV inhibitory activities.
Collapse
Affiliation(s)
- Jesús Gilberto Arámburo-Gálvez
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | - Raúl Tinoco-Narez-Gil
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | - José Antonio Mora-Melgem
- Nutrition Sciences Postgraduate Program, Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80019, Sinaloa, Mexico
| | - Cesar Antonio Sánchez-Cárdenas
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Sinaloa, Mexico
| | - Martina Hilda Gracia-Valenzuela
- Laboratory for the Research and Detection of Biological Agents and Contaminants (CONAHCYT National Laboratory, LANIBIOC), Yaqui Valley Technological Institute, National Technological Institute of Mexico, Bácum 85276, Sonora, Mexico
| | - Lilian Karem Flores-Mendoza
- Clinical and Research Laboratory (LACIUS, C.N., CONAHCYT National Laboratory, LANIBIOC), Deparment of Chemical, Biological, and Agricultural Sciences (DC-QB), Faculty of Biological and Health Sciences, University of Sonora, Navojoa 85880, Sonora, Mexico
| | - Oscar Gerardo Figueroa-Salcido
- Integral Postgraduate Program in Biotechnology, Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Ciudad Universitaria, Culiacan 80010, Sinaloa, Mexico
| | - Noé Ontiveros
- Clinical and Research Laboratory (LACIUS, C.N., CONAHCYT National Laboratory, LANIBIOC), Deparment of Chemical, Biological, and Agricultural Sciences (DC-QB), Faculty of Biological and Health Sciences, University of Sonora, Navojoa 85880, Sonora, Mexico
| |
Collapse
|
7
|
Rodrigues MHP, Gräff CA, Tupuna-Yerovi DS, Schmitz C, Camargo de Lima J, Timmers LFSM, Lehn DN, Volken de Souza CF. The bioactive potential of cheese whey peptides from different animal origins (bovine, goat, sheep, buffalo, and camel): A systematic review and meta-analysis. Food Res Int 2024; 196:115053. [PMID: 39614489 DOI: 10.1016/j.foodres.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 12/01/2024]
Abstract
A systematic review and meta-analysis were conducted to compile information on the bioactive potential of peptides derived from cheese whey from various animal sources, including cattle, sheep, goats, buffaloes, and camels. The systematic search yielded 955 results, with the primary reasons for exclusion being studies that did not utilize cheese whey as a product or did not assess key bioactivities such as antioxidant, antihypertensive, antimicrobial, and anti-aging effects. Ultimately, 36 articles met the inclusion criteria. Among the methods used to evaluate the antioxidant potential of protein hydrolysates, the 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay was identified as the most effective. Peptides derived from cheese whey proteins demonstrated antimicrobial activity against both filamentous fungi and bacteria. However, the review revealed a significant gap in studies investigating the anti-aging properties of these peptides. Notably, β-lactoglobulin contains peptide sequences embedded within its three-dimensional structure that may exhibit various bioactive properties. Overall, the findings highlight that cheese whey, irrespective of its animal origin, is a high-value co-product with excellent potential for biotechnological applications, particularly in the production of bioactive peptides.
Collapse
Affiliation(s)
| | - Cláudia Andréia Gräff
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Caroline Schmitz
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Jeferson Camargo de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Daniel Neutzling Lehn
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
8
|
Duarte Villas Mishima M, Stampini Duarte Martino H, Silva Meneguelli T, Tako E. Effect of food derived bioactive peptides on gut health and inflammatory mediators in vivo: a systematic review. Crit Rev Food Sci Nutr 2024; 64:11974-11984. [PMID: 37574588 DOI: 10.1080/10408398.2023.2245469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Dietary proteins serve as sources of exogenous peptides, after being released from the protein and absorbed, the bioactive peptides can perform several functions in the body. The objective of the current systematic review is to answer the question "How does food derived bioactive peptides can impact on gut health and inflammatory mediators in vivo?" The search was performed at PubMed, Cochrane, and Scopus databases for experimental studies, and the risk of bias was assessed by the SYRCLE tool. The data analysis was conducted following the PRISMA guidelines. Eleven studies performed in animal models evaluating bioactive peptides derived from animal and plant sources were included and evaluated for limitations in heterogeneity, methodologies, absence of information regarding the allocation process, and investigators' blinding. The bioactive peptides demonstrated potential positive effects on inflammation and gut health. The main results identified were a reduction in TNF-α, NF-κB, and TLR4, an improvement in IgA production and in intestinal morphology, with an increase in villi surface area and goblet cell diameter, and Shannon and Simpson indexes were also increased. However, more in vivo studies are still necessary to better elucidate the anti-inflammatory activity and mechanisms by which peptides regulate gut health. PROSPERO (CRD42023416680).
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Ng WJ, Wong FC, Abd Manan F, Chow YL, Ooi AL, Ong MK, Zhang X, Chai TT. Antioxidant Peptides and Protein Hydrolysates from Tilapia: Cellular and In Vivo Evidences for Human Health Benefits. Foods 2024; 13:2945. [PMID: 39335873 PMCID: PMC11431209 DOI: 10.3390/foods13182945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Antioxidant peptides derived from aquatic organisms have attracted tremendous research interest due to their potential applications in human health. Tilapia is one of the most widely farmed aquaculture species globally. The current understanding of tilapia-derived antioxidant peptides is gradually expanding. This review discusses the current knowledge of peptides and protein hydrolysates derived from tilapia muscle, skin, and scales, whose antioxidant capacity has been validated in various cellular and in vivo models. To date, at least 16 peptides and several hydrolysates have been identified from tilapia that protect human and non-human cell models against oxidative injury. Tilapia hydrolysates and peptide mixtures have also shown protective effects in animal models of oxidative stress-associated diseases and exercise-induced oxidative injury and fatigue. The key mechanisms of tilapia hydrolysates and peptide mixtures involve enhancing antioxidant enzyme activities and suppressing radical production. Notably, such hydrolysates also exerted additional in vivo functions, such as anti-inflammatory, anti-diabetic, wound healing, and antiaging properties. Taken together, tilapia-derived antioxidant peptides and hydrolysates represent a valuable source of functional ingredients for applications in functional food, dietary supplements, and therapeutic applications. Continued research into their health benefits is warranted in the future.
Collapse
Affiliation(s)
- Wen-Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Yit-Lai Chow
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ai-Lin Ooi
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Mei-Kying Ong
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China;
- Era Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518115, China
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| |
Collapse
|
10
|
Annamalai J, Kasilingam H. BIO-PROSPECTING FOR ACTIVE COMPOUNDS: FTIR AND GCMS PROFILING OF ETHYL ACETATE-EXTRACTED SECONDARY METABOLITES FROM SEA WATER-ORIGIN ACINETOBACTER BAUMANNII MP-1. INDIAN DRUGS 2024; 61:59-68. [DOI: 10.53879/id.61.07.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
It is alarming and concerning that, as time progresses, due to lifestyle modifications and the emergence of resistant microbial strains, the need to explore novel drugs against them is escalating and becoming a trend. Natural products are versatile substances with remarkable qualities that could be manipulated to reap beneficial outcomes, if managed rigorously. Among the natural troves, the marine environment is one of the most jubilant environments as it harbors diverse ecosystems where organisms adapt various mechanisms and possess many complex molecules to tackle the harsh conditions around them. Bacteria are an omnipresent entity, and it has been proven previously that the bacteria from marine environments can produce secondary metabolites or marine natural products with many crucial biological applications. This study investigated the bioactive compounds present in the secondary metabolite (ethyl acetate extracted crude- EAEC) extracted from the antagonistic bacteria Acinetobacter baumannii (MP-1) isolated from seawater; concurrently, it also explored the possible pharmaceutical applications of the EAEC. FTIR analysis showed the presence of variety of functional groups and GC-MS spectroscopy unraveled the existence of a wide range of bioactive compounds, including the derivatives of oxazine, pentanoic acid, butanoic acid, dehydromevalonic lactone, etc. The identified compounds from the EAEC have all been previously recorded for their valuable (antibacterial, anticancer, antimalarial, and herbicidal) biological activities. It could be suggested that the EAEC from antagonistic bacterial strain MP-1 can be utilized as a drug after ascertaining its potential through further in vivo and in vitro trials.
Collapse
|
11
|
El Fadly EB, Salah AS, Abdella B, Al Ali A, AlShmrany H, ElBaz AM, Abdelatty NS, Khamis EF, Maagouz OF, Salamah MA, Saleh MN, Sakr HK, El-Kemary MA. Mapping a sustainable approach: biosynthesis of lactobacilli-silver nanocomposites using whey-based medium for antimicrobial and bioactivity applications. Microb Cell Fact 2024; 23:195. [PMID: 38971787 PMCID: PMC11227706 DOI: 10.1186/s12934-024-02428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/17/2024] [Indexed: 07/08/2024] Open
Abstract
This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.
Collapse
Affiliation(s)
- E B El Fadly
- Department of Dairy Sciences, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt.
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - A S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - B Abdella
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - A Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 57714, Bisha, Saudi Arabia
| | - H AlShmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince, Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - A M ElBaz
- Dairy Microbiology Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - N S Abdelatty
- Department of Dairy Sciences, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - E F Khamis
- Dairy Chemistry Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - O F Maagouz
- Dairy Chemistry Research Department, Agriculture Research Center, Animal Production Research Institute, Giza, 12611, Egypt
| | - M A Salamah
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - M N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - H K Sakr
- Agricultural Research Center, Food Technology Research Institute, Giza, 12611, Egypt
| | - M A El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt.
- Nile Valley University, Fayum, Egypt.
| |
Collapse
|
12
|
Hai-Na Z, Jun-Jie J, Guang-Meng X. Peptides derived from growth factors: Exploring their diverse impact from antimicrobial properties to neuroprotection. Biomed Pharmacother 2024; 176:116830. [PMID: 38824833 DOI: 10.1016/j.biopha.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Growth factor-derived peptides are bioactive molecules that play a crucial role in various physiological processes within the human body. Over the years, extensive research has revealed their diverse applications, ranging from antimicrobial properties to their potential in neuroprotection and treating various diseases. These peptides exhibit innate immune responses and have been found to possess potent antimicrobial properties against a wide range of pathogens. Growth factor-derived peptides have demonstrated the ability to promote neuronal survival, prevent cell death, and stimulate neural regeneration. As a result, they hold immense promise in the treatment of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, as well as in the management of traumatic brain injuries. Moreover, growth factor-derived peptides have shown potential for supporting tissue repair and wound healing processes. By enhancing cell proliferation and migration, these peptides contribute to the regeneration of damaged tissues and promote a more efficient healing response. The applications of growth factor-derived peptides extend beyond their therapeutic potential in health; they also have a role in various disease conditions. For example, researchers have explored their influence on cancer cells, where some peptides have demonstrated anti-cancer properties, inhibiting tumor growth and promoting apoptosis in cancer cells. Additionally, their immunomodulatory properties have been investigated for potential applications in autoimmune disorders. Despite the immense promise shown by growth factor-derived peptides, some challenges need to be addressed. Nevertheless, ongoing research and advancements in biotechnology offer promising avenues to overcome these obstacles. The review summarizes the foundational biology of growth factors and the intricate signaling pathways in various physiological processes as well as diseases such as cancer, neurodegenerative disorders, cardiovascular ailments, and metabolic syndromes.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Jiang Jun-Jie
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Xu Guang-Meng
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
13
|
Irazoqui JM, Santiago GM, Mainez ME, Amadio AF, Eberhardt MF. Enzymes for production of whey protein hydrolysates and other value-added products. Appl Microbiol Biotechnol 2024; 108:354. [PMID: 38819482 PMCID: PMC11142983 DOI: 10.1007/s00253-024-13117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.
Collapse
Affiliation(s)
- José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | | | | - Ariel Fernando Amadio
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | |
Collapse
|
14
|
Vera-Santander VE, Hernández-Figueroa RH, Arrioja-Bretón D, Jiménez-Munguía MT, Mani-López E, López-Malo A. Utilization of Whey for Eco-Friendly Bio-Preservation of Mexican-Style Fresh Cheeses: Antimicrobial Activity of Lactobacillus casei 21/1 Cell-Free Supernatants (CFS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:560. [PMID: 38791776 PMCID: PMC11121727 DOI: 10.3390/ijerph21050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Using whey, a by-product of the cheese-making process, is important for maximizing resource efficiency and promoting sustainable practices in the food industry. Reusing whey can help minimize environmental impact and produce bio-preservatives for foods with high bacterial loads, such as Mexican-style fresh cheeses. This research aims to evaluate the antimicrobial and physicochemical effect of CFS from Lactobacillus casei 21/1 produced in a conventional culture medium (MRS broth) and another medium using whey (WB medium) when applied in Mexican-style fresh cheese inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes). The CFSs (MRS or WB) were characterized for organic acids concentration, pH, and titratable acidity. By surface spreading, CFSs were tested on indicator bacteria inoculated in fresh cheese. Microbial counts were performed on inoculated cheeses during and after seven days of storage at 4 ± 1.0 °C. Moreover, pH and color were determined in cheeses with CFS treatment. Lactic and acetic acid were identified as the primary antimicrobial metabolites produced by the Lb. casei 21/1 fermentation in the food application. A longer storage time (7 days) led to significant reductions (p < 0.05) in the microbial population of the indicator bacteria inoculated in the cheese when it was treated with the CFSs (MRS or WB). S. enterica serovar Typhimurium was the most sensitive bacteria, decreasing 1.60 ± 0.04 log10 CFU/g with MRS-CFS, whereas WB-CFS reduced the microbial population of L. monocytogenes to 1.67 log10 CFU/g. E. coli and S. aureus were the most resistant at the end of storage. The cheese's pH with CFSs (MRS or WB) showed a significant reduction (p < 0.05) after CFS treatment, while the application of WB-CFS did not show greater differences in color (ΔE) compared with MRS-CFS. This study highlights the potential of CFS from Lb. casei 21/1 in the WB medium as an ecological bio-preservative for Mexican-style fresh cheese, aligning with the objectives of sustainable food production and guaranteeing food safety.
Collapse
Affiliation(s)
| | | | | | | | | | - Aurelio López-Malo
- Department Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Ex-Hacienda Santa Catarina Mártir S/N, San Andrés Cholula 72810, Puebla, Mexico; (V.E.V.-S.); (R.H.H.-F.); (E.M.-L.)
| |
Collapse
|
15
|
Pillai AT, Morya S, Kasankala LM. Emerging Trends in Bioavailability and Pharma-Nutraceutical Potential of Whey Bioactives. J Nutr Metab 2024; 2024:8455666. [PMID: 38633607 PMCID: PMC11023716 DOI: 10.1155/2024/8455666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Whey, a component of milk and a useful by-product of the dairy industry's casein and cheese-making, has been used for generations to augment animal feed. It contains a range of proteins, including α-lactalbumin, β-lactoglobulin, bovine serum albumin, heavy and light chain immunoglobulins, lactoferrin, glycomacropeptide, and lactoperoxidase. Whey proteins exhibit great potential as biopolymers for creating bioactive delivery systems owing to their distinct health-enhancing characteristics and the presence of numerous amino acid groups within their structures. Whey has considerable factors such as antitumor, anti-inflammatory, antihypertensive, hypolipidemic, antiviral, and antibacterial properties in addition to chelating. The global market of whey protein stood at USD 5.33 billion in 2021, with a projected compound annual growth rate of 10.48% spanning the interval from 2022 to 2030. The escalating demand for whey protein is intrinsically linked to the amplifying consciousness surrounding healthy lifestyles. Notably, protein supplements are recurrently endorsed by fitness and sports establishments, thereby accentuating the focal point of customers toward whey protein. This review focuses on nutritional composition, whey bioactives, and their bioavailability with potential health benefits.
Collapse
Affiliation(s)
- Adhithyan T. Pillai
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sonia Morya
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | | |
Collapse
|
16
|
Hu Y, Wu X, Zhou L, Liu J. Which is the optimal choice for neonates' formula or breast milk? NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:21. [PMID: 38488905 PMCID: PMC10942964 DOI: 10.1007/s13659-024-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intricate range of nutrients may be necessary. This paper provides a comprehensive review of the current research progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well as explores the relationship between the main components of milk globular membrane and infant growth. Additionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily nutritional needs during lactation.
Collapse
Affiliation(s)
- Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Xing Wu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
17
|
Shan H, Guo Y, Li J, Liu Z, Chen S, Dashnyam B, McClements DJ, Cao C, Xu X, Yuan B. Impact of Whey Protein Corona Formation around TiO 2 Nanoparticles on Their Physiochemical Properties and Gastrointestinal Fate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4958-4976. [PMID: 38381611 DOI: 10.1021/acs.jafc.3c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Previously, we found that whey proteins form biomolecular coronas around titanium dioxide (TiO2) nanoparticles. Here, the gastrointestinal fate of whey protein-coated TiO2 nanoparticles and their interactions with gut microbiota were investigated. The antioxidant activity of protein-coated nanoparticles was enhanced after simulated digestion. The structure of the whey proteins was changed after they adsorbed to the surfaces of the TiO2 nanoparticles, which reduced their hydrolysis under simulated gastrointestinal conditions. The presence of protein coronas also regulated the impact of the TiO2 nanoparticles on colonic fermentation, including promoting the production of short-chain fatty acids. Bare TiO2 nanoparticles significantly increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria, but the presence of protein coronas alleviated this effect. In particular, the proportion of beneficial bacteria, such as Bacteroides and Bifidobacterium, was enhanced for the coated nanoparticles. Our results suggest that the formation of a whey protein corona around TiO2 nanoparticles may have beneficial effects on their behavior within the colon. This study provides valuable new insights into the potential impact of protein coronas on the gastrointestinal fate of inorganic nanoparticles.
Collapse
Affiliation(s)
- Honghong Shan
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jin Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zimo Liu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Shaoqin Chen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Badamkhand Dashnyam
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
18
|
Hamed NS, Mbye M, Ayyash M, Ulusoy BH, Kamal-Eldin A. Camel Milk: Antimicrobial Agents, Fermented Products, and Shelf Life. Foods 2024; 13:381. [PMID: 38338516 PMCID: PMC10855775 DOI: 10.3390/foods13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The camel milk (CM) industry has witnessed a notable expansion in recent years. This expansion is primarily driven by the rising demand for CM and its fermented products. The perceived health and nutritional benefits of these products are mainly responsible for their increasing popularity. The composition of CM can vary significantly due to various factors, including the breed of the camel, its age, the stage of lactation, region, and season. CM contains several beneficial substances, including antimicrobial agents, such as lactoferrin, lysozyme, immunoglobulin G, lactoperoxidase, and N-acetyl-D-glucosaminidase, which protect it from contamination by spoilage and pathogenic bacteria, and contribute to its longer shelf life compared to bovine milk (BM). Nevertheless, certain harmful bacteria, such as Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli, have been detected in CM, which is a significant public health concern. Therefore, it is crucial to understand and monitor the microbial profile of CM and follow good manufacturing practices to guarantee its safety and quality. This review article explores various aspects of CM, including the types of beneficial and harmful bacteria present in it, the composition of the milk, its antimicrobial properties, its shelf life, and the production of fermented CM products.
Collapse
Affiliation(s)
- Nejat Shifamussa Hamed
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.S.H.); (M.M.); (M.A.)
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, Cyprus;
| | - Mustapha Mbye
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.S.H.); (M.M.); (M.A.)
| | - Mutamed Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.S.H.); (M.M.); (M.A.)
| | - Beyza Hatice Ulusoy
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Near East University, Nicosia 99138, Cyprus;
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.S.H.); (M.M.); (M.A.)
- National Water and Energy Center, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
19
|
Wang Y, Hernández-Alvarez AJ, Goycoolea FM, Martínez-Villaluenga C. A comparative study of the digestion behavior and functionality of protein from chia ( Salvia hispanica L.) ingredients and protein fractions. Curr Res Food Sci 2024; 8:100684. [PMID: 38323027 PMCID: PMC10845256 DOI: 10.1016/j.crfs.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Protein derived from chia (Salvia hispanica L.), characterized by a balanced amino acid composition, represents a potentially healthier and environmentally friendly alternative poised for innovation within the plant-based food sector. It was hypothesized that the growing location of chia seeds and processing techniques used might influence protein digestion patterns, which in turn could affect the biological functions of the digestion products. To examine this hypothesis, we assessed the gastrointestinal fate of degummed-defatted flour (DDF), protein concentrate (PC), and isolated albumin (Alb) and globulin (Glo) fractions. Furthermore, we compared the antioxidant and anti-inflammatory activities of the resulting digesta by means of in vitro and cellular assays. Post-gastrointestinal digestion, the PC exhibited elevated levels of soluble protein (7.6 and 6.3 % for Mexican and British PC, respectively) and peptides (24.8 and 27.9 %, respectively) of larger molecular sizes compared to DDF, Alb, and Glo. This can be attributed to differences in the extraction/fractionation processes. Leucine was found to be the most prevalent amino acids in all chia digesta. Such variations in the digestive outcomes of chia protein components significantly influenced the bioactivity of the intestinal digestates. During gastrointestinal transit, British Glo exhibited the best reactive oxygen species (ROS) inhibition activity in oxidative-stressed RAW264.7 macrophages, while Mexican digesta outperformed British samples in terms of ROS inhibition within the oxidative-stressed Caco-2 cells. Additionally, both Mexican and British Alb showed effectively anti-inflammatory potential, with keratinocyte chemoattractant (KC) inhibition rate of 82 and 91 %, respectively. Additionally, Mexican PC and Alb generally demonstrated an enhanced capacity to mitigate oxidative stress and inflammatory conditions in vitro. These findings highlight the substantial potential of chia seeds as functional food ingredients, resonating with the shifting preferences of health-conscious consumers.
Collapse
Affiliation(s)
- Yan Wang
- School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040, Madrid, Spain
| |
Collapse
|
20
|
Song Y, Wang Z, Ji H, Jiang Z, Li X, Du Z, Wei S, Sun Y. Fatty acid modification of casein bioactive peptides nano-assemblies, synthesis, characterization and anticarcinogenic effect. Int J Biol Macromol 2024; 254:127718. [PMID: 37918594 DOI: 10.1016/j.ijbiomac.2023.127718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
In this study, the nano-assemblies of bovine casein hydrolyzed peptides (HP) modified by fatty acids with various alkyl chain lengths (C8, C10, C12 and C14) were synthesized. The physicochemical properties of HP-C8-HP-C14 nano-assemblies were characterized using spectra, laser particle size analyzer, contact angle meter, scanning electron microscope (SEM) and cryo-transmission electron microscope (Cryo-TEM). HP-C8 and HP-C10 self-assembled into a hollow cube cage with an average size of ~500 nm, and the assembly of HP-C12 showed a flower-shaped morphology with more dispersed behavior, and droplet size was observed as ~20 nm. The in vitro cytotoxicity against human breast cancer cells MCF-7 was tested using CCK-8 assay and flow cytometry analysis. HP-C12 showed the highest cytotoxicity for MCF-7 cells with an inhibition rate of 66.03 % ± 0.35 % with an IC50 value of 7.4 μM among HP-Cn. HP-C8, HP-C10 and HP-C12 significantly affected on the migration, invasion and apoptosis of MCF-7 cells. The apoptosis mechanism may depend on the upregulation of anti-apoptotic protein Bcl-2 as well as pro-apoptotic proteins Bax and caspase-8. The dead MCF-7 cells were analyzed with UHPLC-MS/MS using untargeted metabolomics, revealing key metabolic pathways.
Collapse
Affiliation(s)
- Yang Song
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhichun Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Hang Ji
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhongyou Jiang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Zhongyao Du
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
21
|
Tufan E, Sivas GG, Gürel-Gökmen B, Yılmaz-Karaoğlu S, Dursun E, Çalışkan-Ak E, Muhan A, Özbeyli D, Şener G, Tunali-Akbay T. Whey protein concentrate ameliorates the methotrexate-induced liver and kidney damage. Br J Nutr 2023; 130:1704-1711. [PMID: 36950976 DOI: 10.1017/s0007114523000752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Methotrexate (MTX) is a cytotoxic immunosuppressant that is widely used in the treatment of tumours, rheumatoid arthritis and psoriasis. This study aims to evaluate the effects of whey proteins on MTX-induced liver and kidney damage by focusing on oxidant–antioxidant systems and eating habits. The study was conducted in four groups of thirty Sprague–Dawley rats (control, control + whey protein concentrate (WPC), MTX, MTX + WPC). A single dose of 20 mg/kg MTX was administered intraperitoneally to the MTX groups. Control and MTX groups were given 2 g/kg WPC by oral gavage every day for 10 d. At the end of day 10, blood samples were drawn and liver and kidney tissues were removed. MTX administration increased the lipid peroxidation level and decreased glutathione level, superoxide dismutase and glutathione-S-transferase activities in the liver and kidney. Administration of WPC significantly reduced the damage caused by MTX in the liver and kidney. While a decrease in serum urea level and an increase in serum creatinine level were detected in the MTX group, WPC administration reversed these results up to control group levels. Administration of WPC to the MTX group significantly reversed the histopathological damage scores of the liver and kidney. WPC administration ameliorated the MTX-induced oxidative damage in the liver and kidney tissues due to its antioxidant properties. Liver and kidney damage can be prevented by using whey proteins as a nutraceutical in MTX therapy. In conclusion, whey proteins demonstrated a protective effect against MTX-induced liver and kidney damage.
Collapse
Affiliation(s)
- Elif Tufan
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Güzin Göksun Sivas
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Begüm Gürel-Gökmen
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Sümeyye Yılmaz-Karaoğlu
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Ercan Dursun
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| | - Esin Çalışkan-Ak
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Histology and Embryology Department, İstanbul, Turkey
| | - Aleyna Muhan
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Histology and Embryology Department, İstanbul, Turkey
| | - Dilek Özbeyli
- Marmara University, Faculty of Vocational School of Health Services, İstanbul, Turkey
| | - Göksel Şener
- Fenerbahçe University, Faculty of Pharmacy, Pharmacology Department, İstanbul, Turkey
| | - Tuğba Tunali-Akbay
- Marmara University, Faculty of Dentistry, Basic Medical Sciences, Biochemistry Department, İstanbul, Turkey
| |
Collapse
|
22
|
Barenie MJ, Escalera A, Carter SJ, Grange HE, Paris HL, Krinsky D, Sogard AS, Schlader ZJ, Fly AD, Mickleborough TD. Grass-Fed and Non-Grass-Fed Whey Protein Consumption Do Not Attenuate Exercise-Induced Muscle Damage and Soreness in Resistance-Trained Individuals: A Randomized, Placebo-Controlled Trial. J Diet Suppl 2023; 21:344-373. [PMID: 37981793 DOI: 10.1080/19390211.2023.2282470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.
Collapse
Affiliation(s)
- Matthew J Barenie
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
- Center for the Study of Obesity, College of Public Health, University of AR for Medical Sciences, Little Rock, Arkansas, USA
| | - Albaro Escalera
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Hope E Grange
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, California, USA
| | - Danielle Krinsky
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, Ball State University, Muncie, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| |
Collapse
|
23
|
Jena R, Choudhury PK. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10189-w. [PMID: 37979040 DOI: 10.1007/s12602-023-10189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Collapse
Affiliation(s)
- Rajashree Jena
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Prasanta Kumar Choudhury
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
24
|
Kiprotich S, Dhakal J, Rasmussen C, Aldrich G. Assessment of the antifungal efficacy of whey fermentate alone or in combination with citrus extract to control Aspergillus flavus mold in semi-moist pet food for dogs. Front Microbiol 2023; 14:1188834. [PMID: 38029180 PMCID: PMC10646314 DOI: 10.3389/fmicb.2023.1188834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Semi-moist pet foods contain moisture levels ranging from 15 to 40%, making them ideal for mold growth and mycotoxin production. To control spoilage, synthetic mold inhibitors such as potassium sorbate have been used, but consumers prefer "natural" preservatives. Whey fermentate (WPF) is an efficient antifungal, but it requires large doses. Therefore, the objective of this study was to determine the antifungal effect of WPF alone or in combination with citrus extract oil (CEX) against Aspergillus flavus in semi-moist pet food. Nutritionally complete semi-moist pet foods were produced with WPF alone [0.25, 0.5, and 1.0% (w/w)] and in combination with CEX; 0.25% WPF+ 0.015% CEX, 0.25% WFP+ 0.15% CEX, 0.5% WPF+ 0.015% CEX, and 0.5% WFP+ 0.15% CEX (w/w). The negative control (NC) contained no antifungal additive and the positive control (PC) had potassium sorbate (0.1% w/w). The semi-moist pet food was thermally formed and was cut into 3 cm × 3 cm square pieces. Individual food pieces were inoculated with 0.1 mL of Aspergillus flavus (ATCC 204304) to achieve a final concentration of ~5.0 log CFU/piece. The inoculated pieces were individually incubated at 25°C. Fungal analysis was performed on day 3, 6, 9, 12, 15, 18, 21, 24, and 28 by surface plating on Potato Dextrose Agar (PDA) followed by incubation at 25°C for 72 h. The total log reductions were calculated by subtracting the initial inoculum from the final log counts on day 28. Higher log reductions of Aspergillus flavus (p < 0.05) were observed when WPF at 0.25 and 0.5% was combined with 0.15% CEX compared to when 0.015% CEX was used individually. All treatments were different from the NC (p < 0.05). Citrus extract at 0.15% potentiated the antifungal effect of WPF at 0.5% to give a similar log reduction (p > 0.05) to WPF at 1.0% in the food. In conclusion, CEX potentiated the antifungal efficacy and reduced the dose of WPF required to control Aspergillus flavus in semi-moist dog food.
Collapse
Affiliation(s)
- Samuel Kiprotich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Janak Dhakal
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Cynthia Rasmussen
- Kerry, Americas Region, Food Protection and Fermentation, Beloit, WI, United States
| | - Greg Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
25
|
Latoch A, Czarniecka-Skubina E, Moczkowska-Wyrwisz M. Marinades Based on Natural Ingredients as a Way to Improve the Quality and Shelf Life of Meat: A Review. Foods 2023; 12:3638. [PMID: 37835291 PMCID: PMC10572579 DOI: 10.3390/foods12193638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Marinating is a traditional method of improving the quality of meat, but it has been modified in response to consumer demand for "clean label" products. The aim of this review is to present scientific literature on the natural ingredients contained in marinades, the parameters of the marinating process, and certain mechanisms that bring about changes in meat. A review was carried out of publications from 2000 to 2023 available in Web of Science on the natural ingredients of meat marinades: fruit and vegetables, seasonings, fermented dairy products, wine, and beer. The review showed that natural marinades improve the sensory quality of meat and its culinary properties; they also extend its shelf life. They affect the safety of meat products by limiting the oxidation of fats and proteins. They also reduce biogenic amines and the formation of heterocyclic aromatic amines (HAAs) and polycyclic aromatic hydrocarbons (PAHs). This is possible due to the presence of biologically active substances and competitive microflora from dairy products. However, some marinades, especially those that are acidic, cause a slightly acidic flavour and an unfavourable colour change. Natural compounds in the ingredients of marinades are accepted by consumers. There are no results in the literature on the impact of natural marinades on the nutritional value and health-promoting potential of meat products, so it can be assumed that this is a future direction for scientific research.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| |
Collapse
|
26
|
Latoch A, Moczkowska-Wyrwisz M, Sałek P, Czarniecka-Skubina E. Effect of Marinating in Dairy-Fermented Products and Sous-Vide Cooking on the Protein Profile and Sensory Quality of Pork Longissimus Muscle. Foods 2023; 12:3257. [PMID: 37685190 PMCID: PMC10486606 DOI: 10.3390/foods12173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the study was to evaluate the effect of marinating (3 or 6 days) in kefir (KE), yogurt (YO) and buttermilk (BM) and sous-vide cooking (SV) at 60 or 80 °C on changes in the protein profile of pork in relation to its sensory quality. In the marinated raw meat, an increased share of some fractions of myofibrillar and cytoskeletal proteins and calpains were found. The greatest degradation of proteins, regardless of time, was caused by marinating in YO and KE and cooking SV at 80 °C. The lowest processing losses were in samples marinated in KE and YO and cooked SV at 60 °C, with marinating time having no significant effect. The odor, flavor, tenderness and juiciness of meat marinated in BM was better than in KE and YO. Meat marinated and cooked SV at 60 °C was rated better by the panelists. Changes in proteins significantly affect the formation of meat texture, tenderness and juiciness, which confirms the correlations. This is also reflected in the sensory evaluation. During the process of marinating and cooking meat, protein degradation should be taken into account, which can be a good tool for shaping the sensory quality of cooked pork.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| |
Collapse
|
27
|
Cicchi C, Paoli P, Modesti A, Mannelli F, Scicutella F, Buccioni A, Fontanarosa C, Luti S, Pazzagli L. Effect of Bovine Milk Peptides on Cell Inflammation, Proliferation and Differentiation: Milk Potential Benefits Are Preserved in an Unconventional Cow Feeding Strategy. BIOLOGY 2023; 12:1162. [PMID: 37759562 PMCID: PMC10525111 DOI: 10.3390/biology12091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Animal feeding through the reuse of agro-industrial by-products in one of the ultimate goals of sustainable agriculture. Olive oil pomace (OOP) produced as a waste product during olive oil milling has been used as an ingredient in the diet for Holstein lactating cows. Recent findings have shown no decrease in animal performance, feed intake or detrimental effect on rumen microbiota. In contrast, an improvement in C18 polyunsaturated fatty acids has been observed. In this work, the milk protein content from cows fed a commercial diet (CON) or an experimental one supplemented with OOP was determined and compared, and the peptides derived from the simulated gastrointestinal digestion of raw milk were analyzed. After fractionation via RP-HPLC, peptides were characterized for their biological activity on different cell lines. The ability to reduce both the intracellular ROS content and the expression of inflammatory markers, such as Cyclooxygenase, isoenzyme 2 (COX-2) and inducible Nitric Oxide Synthase (iNOS), as well as the remarkable properties to induce cell differentiation and to slow down the proliferation of human intestinal cancer cells, enable us to define them as bioactive peptides. In spite of there being no observed significant difference between the healthy activity of CON and OOP peptides, the results allow us to broaden the knowledge about the biological activity of these bioactive peptides and to confirm that agro-industrial by-products may be successfully incorporated into the feeding strategy of dairy cows.
Collapse
Affiliation(s)
- Costanza Cicchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Federica Mannelli
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Federica Scicutella
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Arianna Buccioni
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, 80138 Naples, Italy;
- Consorzio Interuniversitario I.N.B.B., Viale Medaglie D’Oro, 00136 Rome, Italy
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| |
Collapse
|
28
|
Helal A, Pierri S, Tagliazucchi D, Solieri L. Effect of Fermentation with Streptococcus thermophilus Strains on In Vitro Gastro-Intestinal Digestion of Whey Protein Concentrates. Microorganisms 2023; 11:1742. [PMID: 37512914 PMCID: PMC10386367 DOI: 10.3390/microorganisms11071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Three Streptococcus thermophilus strains, namely RBC6, RBC20, and RBN16, were proven to release bioactive peptides during whey protein concentrate (WPC) fermentation, resulting in WPC hydrolysates with biological activities. However, these bioactive peptides can break down during gastro-intestinal digestion (GID), hindering the health-promoting effect of fermented WPC hydrolysates in vivo. In this work, the effect of simulated GID on three WPC hydrolysates fermented with S. thermophilus strains, as well as on unfermented WPC was studied in terms of protein hydrolysis, biological activities, and peptidomics profiles, respectively. In general, WPC fermentation enhanced protein hydrolysis compared to unfermented WPC. After in vitro GID, WPC fermented with S. thermophilus RBC20 showed the highest antioxidant activity, whereas WPC fermented with strain RBC06 displayed the highest angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase IV (DPP-IV)-inhibitory activities. Peptidomics analysis revealed that all digested WPC samples were highly similar to each other in peptide profiles, and 85% of the 46 identified bioactive peptides were shared among fermented and unfermented samples. However, semi-quantitative analysis linked the observed differences in biological activities among the samples to differences in the amount of bioactive peptides. The anti-hypertensive peptides VPP and IPP, as well as the DPP-IV-inhibitory peptide APFPE, were quantified. In conclusion, WPC fermentation with S. thermophilus positively impacted protein hydrolysis and bioactive peptide release during GID.
Collapse
Affiliation(s)
- Ahmed Helal
- Department of Food and Dairy Sciences and Technology, Damanhour University, Damanhour 22516, Egypt
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
| | - Sara Pierri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
29
|
Bu T, Huang J, Yu Y, Sun P, Yang K. Whey Protein Hydrolysate Ameliorated High-Fat-Diet Induced Bone Loss via Suppressing Oxidative Stress and Regulating GSK-3β/Nrf2 Signaling Pathway. Nutrients 2023; 15:2863. [PMID: 37447191 DOI: 10.3390/nu15132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Long-term hypercaloric intake such as a high-fat diet (HFD) could act as negative regulators on bone remodeling, thereby inducing bone loss and bone microarchitecture destruction. Currently, food-derived natural compounds represent a promising strategy to attenuate HFD-induced bone loss. We previously prepared a whey protein hydrolysate (WPH) with osteogenic capacity. In this study, we continuously isolated and identified an osteogenic and antioxidant octapeptide TPEVDDA from WPH, which significantly promoted the alkaline phosphatase activities on MC3T3-E1 cells and exerted DPPH radical scavenging capacity. We then established an HFD-fed obese mice model with significantly imbalanced redox status and reduced bone mass and further evaluated the effects of different doses of WPH on ameliorating the HFD-induced bone loss and oxidative damages. Results showed that the administration of 2% and 4% WPH for 12 weeks significantly restored perirenal fat mass, improved serum lipid levels, reduced oxidative stress, and promoted the activity of antioxidant enzymes; meanwhile, WPH significantly preserved bone mass and bone mechanical properties, attenuated the degradation of trabecular microstructure, and regulated serum bone metabolism biomarkers. The protein levels of Runx2, Nrf2, and HO-1, as well as the phosphorylation level of GSK-3β in tibias, were notably activated by WPH. Overall, we found that the potential mechanism of WPH on ameliorating the HFD-induced bone loss mainly through its antioxidant and osteogenic capacity by activating Runx2 and GSK-3β/Nrf2 signaling pathway, demonstrating the potential of WPH to be used as a nutritional strategy for obesity and osteoporosis.
Collapse
Affiliation(s)
- Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ju Huang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Yu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
30
|
Liu F, Liu M, Zhang T, Zhao X, Wang X, Kong W, Cui L, Luo H, Guo L, Guo Y. Transportation of whey protein-derived peptides using Caco-2 cell model and identification of novel cholesterol-lowering peptides. Food Nutr Res 2023; 67:9079. [PMID: 37288087 PMCID: PMC10243119 DOI: 10.29219/fnr.v67.9079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 06/09/2023] Open
Abstract
Background The increasing morbidity and mortality of cardiovascular disease have become a major factor in human death. Serum cholesterol is considered to be an important risk factor for inducing coronary heart disease, atherosclerosis and other cardiovascular diseases. To screen intestinal absorbable functional small peptides with cholesterol-lowering activity by enzymatic hydrolysis of whey protein and develop cholesterol-based functional food that may become a substitute for chemically synthesized drugs, providing new ideas for diseases caused by high cholesterol. Objective This study aimed to evaluate the cholesterol-lowering activity of intestinal absorbable whey protein-derived peptides hydrolyzed by alkaline protease, trypsin and chymotrypsin, respectively. Method The whey protein hydrolysates acquired by enzymatic hydrolysis under optimal conditions were purified by a hollow fiber ultrafiltration membrane with a molecular weight cutoff of 10 kDa. The fractions obtained by Sephadex G-10 gel filtration chromatography were transported through a Caco-2 cell monolayer. The transported peptides were detected in the basolateral aspect of Caco-2 cell monolayers using ultra- performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Results His-Thr-Ser-Gly-Tyr (HTSGY), Ala-Val-Phe-Lys (AVFK) and Ala-Leu-Pro-Met (ALPM) were unreported peptides with cholesterol-lowering activity. The cholesterol-lowering activities of the three peptides did not change significantly during simulated gastrointestinal digestion. Conclusion This study not only provides theoretical support for the development of bioactive peptides that can be directly absorbed by the human body, but also provides new treatment ideas for hypercholesterolemia.
Collapse
Affiliation(s)
- Feifan Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Xuan Zhao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Xiaozhi Wang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Weimei Kong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Li Cui
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Haibo Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lili Guo
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, PR China
| |
Collapse
|
31
|
Irazoqui JM, Eberhardt MF, Santiago GM, Amadio AF. Characterization of novel proteases identified by metagenomic analysis from dairy stabilization ponds. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12591-4. [PMID: 37231159 DOI: 10.1007/s00253-023-12591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Cheese whey is the main by-product of dairy industries. It is used as a raw material for other value-added products, like whey protein concentrate. By using enzymes, this product can be further treated to obtain new higher value products, like whey protein hydrolysates. Proteases (EC: 3.4) represent a large segment of industrial enzymes, since they are used in several industries, including food. In this work, we describe three novel enzymes identified using a metagenomic approach. Metagenomic DNA from dairy industry stabilization ponds were sequenced, and the predicted genes were compared against the MEROPS database, focusing on families commercially used to produce whey protein hydrolysates. From a total of 849 candidates, 10 were selected for cloning and expression and three showed activities with both the chromogenic substrate, azocasein, and whey proteins. Particularly, Pr05, an enzyme from the yet uncultured phylum Patescibacteria, showed activity that is comparable to a commercial protease. All these novel enzymes could represent an alternative for dairy industries to produce value-added products from industrial by-products. KEY POINTS: • Over 19,000 proteases were predicted in a sequence-based metagenomic analysis. • Three proteases were successfully expressed and showed activity with whey proteins. • The enzyme Pr05 showed hydrolysis profiles of interest for food industry.
Collapse
Affiliation(s)
- José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | | | | - Ariel Fernando Amadio
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| |
Collapse
|
32
|
Abad I, Vignard J, Bouchenot C, Graikini D, Grasa L, Pérez MD, Mirey G, Sánchez L. Dairy By-Products and Lactoferrin Exert Antioxidant and Antigenotoxic Activity on Intestinal and Hepatic Cells. Foods 2023; 12:foods12102073. [PMID: 37238891 DOI: 10.3390/foods12102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The dairy industry generates a large volume of by-products containing bioactive compounds that may have added value. The aim of this study was to evaluate the antioxidant and antigenotoxic effects of milk-derived products, such as whey, buttermilk, and lactoferrin, in two human cell lines: Caco-2 as an intestinal barrier model and HepG2 as a hepatic cell line. First, the protective effect of dairy samples against the oxidative stress caused by menadione was analyzed. All these dairy fractions significantly reversed the oxidative stress, with the non-washed buttermilk fraction presenting the greatest antioxidant effect for Caco-2 cells and lactoferrin as the best antioxidant for HepG2 cells. At concentrations that did not impact cell viability, we found that the dairy sample with the highest antigenotoxic power against menadione, in both cell lines, was lactoferrin at the lowest concentration. Additionally, dairy by-products maintained their activity in a coculture of Caco-2 and HepG2, mimicking the intestinal-liver axis. This result suggests that the compounds responsible for the antioxidant activity could cross the Caco-2 barrier and reach HepG2 cells on the basal side, exerting their function on them. In conclusion, our results show that dairy by-products have antioxidant and antigenotoxic activities, which would allow revaluing their use in food specialties.
Collapse
Affiliation(s)
- Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Catherine Bouchenot
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Dimitra Graikini
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Laura Grasa
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Gladys Mirey
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
33
|
Onisei T, Tihăuan BM, Dolete G, Axinie Bucos M, Răscol M, Isvoranu G. In Vivo Acute Toxicity and Immunomodulation Assessment of a Novel Nutraceutical in Mice. Pharmaceutics 2023; 15:pharmaceutics15041292. [PMID: 37111777 PMCID: PMC10144505 DOI: 10.3390/pharmaceutics15041292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Achieving and maintaining a well-balanced immune system has righteously become an insightful task for the general population and an even more fundamental goal for those affected by immune-related diseases. Since our immune functions are indispensable in defending the body against pathogens, diseases and other external attacks, while playing a vital role in maintaining health and modulating the immune response, we require an on-point grasp of their shortcoming as a foundation for the development of functional foods and novel nutraceuticals. Seeing that immunoceuticals are considered effective in improving immune functions and reducing the incidence of immunological disorders, the main focus of this study was to assess the immunomodulatory properties and possible acute toxicity of a novel nutraceutical with active substances of natural origin on C57BL/6 mice for 21 days. We evaluated the potential hazards (microbial contamination and heavy metals) of the novel nutraceutical and addressed the acute toxicity according to OECD guidelines of a 2000 mg/kg dose on mice for 21 days. The immunomodulatory effect was assessed at three concentrations (50 mg/kg, 100 mg/kg and 200 mg/kg) by determining body and organ indexes through a leukocyte analysis; flow cytometry immunophenotyping of lymphocytes populations and their subpopulations (T lymphocytes (LyCD3+), cytotoxic suppressor T lymphocytes (CD3+CD8+), helper T lymphocytes (CD3+CD4+), B lymphocytes (CD3-CD19+) and NK cells (CD3-NK1.1.+); and the expression of the CD69 activation marker. The results obtained for the novel nutraceutical referred to as ImunoBoost indicated no acute toxicity, an increased number of lymphocytes and the stimulation of lymphocyte activation and proliferation, demonstrating its immunomodulatory effect. The safe human consumption dose was established at 30 mg/day.
Collapse
Affiliation(s)
- Tatiana Onisei
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Bianca-Maria Tihăuan
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mădălina Axinie Bucos
- Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Călugăreni, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Manuela Răscol
- The National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Gheorghița Isvoranu
- National Institute of Pathology Victor Babeş-Bucharest, 99-101 Spl. Independenței, 050096 Bucharest, Romania
| |
Collapse
|
34
|
Mishima MDV, Martino HSD, Kolba N, Shah DD, Grancieri M, Dos Santos KMO, Lima JP, Da Silva BP, Gonzalez de Mejia E, Tako E. Effects of Intra-Amniotic Administration of the Hydrolyzed Protein of Chia ( Salvia hispanica L.) and Lacticaseibacillus paracasei on Intestinal Functionality, Morphology, and Bacterial Populations, In Vivo ( Gallus gallus). Nutrients 2023; 15:nu15081831. [PMID: 37111052 PMCID: PMC10144735 DOI: 10.3390/nu15081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
As a protein source, chia contains high concentrations of bioactive peptides. Probiotics support a healthy digestive tract and immune system. Our study evaluated the effects of the intra-amniotic administration of the hydrolyzed chia protein and the probiotic Lacticaseibacillus paracasei on intestinal bacterial populations, the intestinal barrier, the inflammatory response, and brush border membrane functionality in ovo (Gallus gallus). Fertile broiler (Gallus gallus) eggs (n = 9/group) were divided into 5 groups: (NI) non-injected; (H2O) 18 MΩ H2O; (CP) 10 mg/mL hydrolyzed chia protein; (CPP) 10 mg/mL hydrolyzed chia protein + 106 colony-forming unit (CFU) L. paracasei; (P) 106 CFU L. paracasei. The intra-amniotic administration was performed on day 17 of incubation. At hatching (day 21), the animals were euthanized, and the duodenum and cecum content were collected. The probiotic downregulated the gene expression of NF-κβ, increased Lactobacillus and E. coli, and reduced Clostridium populations. The hydrolyzed chia protein downregulated the gene expression of TNF-α, increased OCLN, MUC2, and aminopeptidase, reduced Bifidobacterium, and increased Lactobacillus. The three experimental groups improved in terms of intestinal morphology. The current results suggest that the intra-amniotic administration of the hydrolyzed chia protein or a probiotic promoted positive changes in terms of the intestinal inflammation, barrier, and morphology, improving intestinal health.
Collapse
Affiliation(s)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Nikolai Kolba
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | | | - Janine Passos Lima
- Embrapa Agroindústria de Alimentos, Av. das Américas 29.501, Rio de Janeiro 23020-470, RJ, Brazil
| | - Bárbara Pereira Da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Av. Purdue, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science & Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elad Tako
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
36
|
Nassar AY, Meligy FY, Abd-Allah GM, Khallil WA, Sayed GA, Hanna RT, Nassar GA, Bakkar SM. Oral acetylated whey peptides (AWP) as a potent antioxidant, anti-inflammatory, and chelating agent in iron-overloaded rats' spleen. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
37
|
Runthala A, Mbye M, Ayyash M, Xu Y, Kamal-Eldin A. Caseins: Versatility of Their Micellar Organization in Relation to the Functional and Nutritional Properties of Milk. Molecules 2023; 28:molecules28052023. [PMID: 36903269 PMCID: PMC10004547 DOI: 10.3390/molecules28052023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
The milk of mammals is a complex fluid mixture of various proteins, minerals, lipids, and other micronutrients that play a critical role in providing nutrition and immunity to newborns. Casein proteins together with calcium phosphate form large colloidal particles, called casein micelles. Caseins and their micelles have received great scientific interest, but their versatility and role in the functional and nutritional properties of milk from different animal species are not fully understood. Caseins belong to a class of proteins that exhibit open and flexible conformations. Here, we discuss the key features that maintain the structures of the protein sequences in four selected animal species: cow, camel, human, and African elephant. The primary sequences of these proteins and their posttranslational modifications (phosphorylation and glycosylation) that determine their secondary structures have distinctively evolved in these different animal species, leading to differences in their structural, functional, and nutritional properties. The variability in the structures of milk caseins influence the properties of their dairy products, such as cheese and yogurt, as well as their digestibility and allergic properties. Such differences are beneficial to the development of different functionally improved casein molecules with variable biological and industrial utilities.
Collapse
Affiliation(s)
- Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vijayawada 522302, India
- Correspondence: (A.R.); (A.K.-E.); Tel.: +971-5-0138-9248 (A.K.-E.)
| | - Mustapha Mbye
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100871, China
| | - Afaf Kamal-Eldin
- Department of Food Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (A.R.); (A.K.-E.); Tel.: +971-5-0138-9248 (A.K.-E.)
| |
Collapse
|
38
|
Separation of α-Lactalbumin Enriched Fraction from Bovine Native Whey Concentrate by Combining Membrane and High-Pressure Processing. Foods 2023; 12:foods12030480. [PMID: 36766009 PMCID: PMC9914712 DOI: 10.3390/foods12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Whey exhibits interesting nutritional properties, but its high β-Lactoglobulin (β-Lg) content could be a concern in infant food applications. In this study, high-pressure processing (HPP) was assessed as a β-Lg removal strategy to generate an enriched α-Lactalbumin (α-La) fraction from bovine native whey concentrate. Different HPP treatment parameters were considered: initial pH (physiological and acidified), sample temperature (7-35 °C), pressure (0-600 MPa) and processing time (0-490 s). The conditions providing the best α-La yield and α-La purification degree balance (46.16% and 80.21%, respectively) were 4 min (600 MPa, 23 °C), despite the significant decrease of the surface hydrophobicity and the total thiol content indexes in the α-La-enriched fraction. Under our working conditions, the general effects of HPP on α-La and β-Lg agreed with results reported in other studies of cow milk or whey. Notwithstanding, our results also indicated that the use of native whey concentrate could improve the β-Lg precipitation degree and the α-La purification degree, in comparison to raw milk or whey. Future studies should include further characterization of the α-La-enriched fraction and the implementation of membrane concentration and HPP treatment to valorize cheese whey.
Collapse
|
39
|
Determination of toxic elemental levels in whey milk of different cattle and human using an innovative digestion method: risk assessment for children < 6.0 months to 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41923-41936. [PMID: 36640239 DOI: 10.1007/s11356-022-25059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023]
Abstract
In present study, the toxic elements, arsenic (As), cadmium (Cd), and lead (Pb), were determined in whey milk samples obtained from various cattle (cow, goat, buffalo, sheep, camel) and human subjects of different areas of Sindh, Pakistan, based on consuming drinking water (exposed area) and surface water (control/non-exposed area). The whey milk was separated from casein by lowering the pH, and heating in an ultrasonic bath at 60 °C for 5 min and centrifuged. The whey milk samples were treated with deep eutectic solvent, prepared from choline chloride-oxalic acid (ChCl-Ox) at different mole ratio. Effects of different parameters on digestion efficiency of whey milk samples, including time and temperature of electric hot plate, mole ratio, and volumes of deep eutectic solvent were examined. The total levels of all selected toxic elements were also detected in whole milk samples of all exposed and nonexposed cattle and human, after acid digestion method. The validity of the proposed method was established by a conventional acid digestion method of selected whey milk samples and spiked certified standards in replicate real whey milk samples. The resulted elements obtained after proposed and conventional heating system were determined by inductively coupled plasma-optical emission spectrometry. The % of all three toxic elements found in whey milk samples were 24 to 50% of their total content in milk samples of different cattle and human. The As, Cd, and Pb contents in cattle and human milk consumed contaminated groundwater was significantly higher (2- to 3-fold) than those values observed for milk samples of cattle, who receive drinking water from fresh canal water (p < 0.01). Estimating the daily intake, hazard quotient and carcinogenic risk for <6 month to 5 years old children, based on the concentrations of toxic elements in milk samples of different cattle and human..
Collapse
|
40
|
Hypoxia-Driven Changes in a Human Intestinal Organoid Model and the Protective Effects of Hydrolyzed Whey. Nutrients 2023; 15:nu15020393. [PMID: 36678267 PMCID: PMC9863820 DOI: 10.3390/nu15020393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Many whey proteins, peptides and protein-derived amino acids have been suggested to improve gut health through their anti-oxidant, anti-microbial, barrier-protective and immune-modulating effects. Interestingly, although the degree of hydrolysis influences peptide composition and, thereby, biological function, this important aspect is often overlooked. In the current study, we aimed to investigate the effects of whey protein fractions with different degrees of enzymatic hydrolysis on the intestinal epithelium in health and disease with a novel 2D human intestinal organoid (HIO) monolayer model. In addition, we aimed to assess the anti-microbial activity and immune effects of the whey protein fractions. Human intestinal organoids were cultured from adult small intestines, and a model enabling apical administration of nutritional components during hypoxia-induced intestinal inflammation and normoxia (control) in crypt-like and villus-like HIO was established. Subsequently, the potential beneficial effects of whey protein isolate (WPI) and two whey protein hydrolysates with a 27.7% degree of hydrolysis (DH28) and a 50.9% degree of hydrolysis (DH51) were assessed. In addition, possible immune modulatory effects on human peripheral immune cells and anti-microbial activity on four microbial strains of the whey protein fractions were investigated. Exposure to DH28 prevented paracellular barrier loss of crypt-like HIO following hypoxia-induced intestinal inflammation with a concomitant decrease in hypoxia inducible factor 1 alpha (HIF1α) mRNA expression. WPI increased Treg numbers and Treg expression of cluster of differentiation 25 (CD25) and CD69 and reduced CD4+ T cell proliferation, whereas no anti-microbial effects were observed. The observed biological effects were differentially mediated by diverse whey protein fractions, indicating that (degree of) hydrolysis influences their biological effects. Moreover, these new insights may provide opportunities to improve immune tolerance and promote intestinal health.
Collapse
|
41
|
Singh A, Duche RT, Wandhare AG, Sian JK, Singh BP, Sihag MK, Singh KS, Sangwan V, Talan S, Panwar H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob Proteins 2023; 15:44-62. [PMID: 36357656 PMCID: PMC9649404 DOI: 10.1007/s12602-022-10004-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The growing consumer awareness towards healthy and safe food has reformed food processing strategies. Nowadays, food processors are aiming at natural, effective, safe, and low-cost substitutes for enhancing the shelf life of food products. Milk, besides being a rich source of nutrition for infants and adults, serves as a readily available source of precious functional peptides. Due to the existence of high genetic variability in milk proteins, there is a great possibility to get bioactive peptides with varied properties. Among other bioactive agents, milk-originated antimicrobial peptides (AMPs) are gaining interest as attractive and safe additive conferring extended shelf life to minimally processed foods. These peptides display broad-spectrum antagonistic activity against bacteria, fungi, viruses, and protozoans. Microbial proteolytic activity, extracellular peptidases, food-grade enzymes, and recombinant DNA technology application are among few strategies to tailor specific peptides from milk and enhance their production. These bioprotective agents have a promising future in addressing the global concern of food safety along with the possibility to be incorporated into the food matrix without compromising overall consumer acceptance. Additionally, in conformity to the current consumer demands, these AMPs also possess functional properties needed for value addition. This review attempts to present the basic properties, synthesis approaches, action mechanism, current status, and prospects of antimicrobial peptide application in food, dairy, and pharma industry along with their role in ensuring the safety and health of consumers.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Rachael Terumbur Duche
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Federal University of Agriculture, Makurdi, Nigeria
| | - Arundhati Ganesh Wandhare
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Jaspreet Kaur Sian
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Punjab Agricultural University (PAU), Ludhiana, 141001 Punjab India
| | - Brij Pal Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123031 Haryana India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Kumar Siddharth Singh
- Institute for Microbiology, Gottfried Wilhelm Leibniz University, Herrenhäuser Str. 2, 30419 Hanover, Germany
| | - Vikas Sangwan
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Shreya Talan
- Dairy Microbiology Division, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001, Punjab, India.
| |
Collapse
|
42
|
Shen X, Xue S, Tan Y, Zhong W, Liang X, Wang J. Binding of Licochalcone A to Whey Protein Enhancing Its Antioxidant Activity and Maintaining Its Antibacterial Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15917-15927. [PMID: 36484772 DOI: 10.1021/acs.jafc.2c06125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Incorporating LA into whey protein by forming whey protein isolate-LA (WPI-LA) and polymerized whey protein-LA (PWP-LA) complexes is a good way to maintain its bioactivity and improve its functional performance within food matrices. Herein, we found that WPI and PWP were able to interact with LA as suggested by multi-spectroscopy, molecular docking, and molecular dynamics simulations. The interaction between whey protein and LA was a spontaneous non-covalent binding process, while PWP had a higher affinity for LA than WPI, resulting from its more negatively binding free energy with LA. Hydrogen bonds, van der Waals forces, and electrostatic interactions were responsible for WPI-LA interactions. Hydrophobic forces, van der Waals, and hydrogen bonds positively accounted for PWP-LA interactions. The antioxidant activity of LA was improved by complexation with whey proteins as identified by DPPH and ABTS. The antimicrobial efficiency of LA was partially screened by complexation with whey protein with MIC values increased by seven-fold compared to free LA but successfully recovered to its original efficiency upon isolating it from the complex. This work demonstrates the promising antioxidant and antibacterial activities of the whey protein-LA complex and provides a good candidate for developing a new class of natural functional ingredients for food systems.
Collapse
Affiliation(s)
- Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Shiqi Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Yuying Tan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, Florida33612, United States
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| |
Collapse
|
43
|
Corrêa APF, Veras FF, Lago CC, Noreña CPZ, Brandelli A. Microencapsulation upholds biological activities of sheep whey hydrolysates and protects against in vitro gastrointestinal digestion. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
44
|
Buey B, Layunta E, Latorre E, Mesonero JE. Potential role of milk bioactive peptides on the serotonergic system and the gut-brain axis. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Differential effects of oilseed protein hydrolysates in attenuating inflammation in murine macrophages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Feng Y, Yuan D, Cao C, Kong B, Sun F, Xia X, Liu Q. Changes of in vitro digestion rate and antioxidant activity of digestion products of ethanol-modified whey protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
47
|
Improving the Functional and Sensory Properties of Cookies by Ultrasonic Treatment of Whey Proteins. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6902592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The profiles of food products are one interesting link that adds a new functional component. Cookies became one of the remarkable foods as a result of their simple preparation, a protracted period, and a sensible acceptance by the population. The effects of sonication on physical and sensory characteristics of cookies to be enhanced were studied. The results showed that cookies prepared with 5 and 10% replacement of sonicated whey protein had significant differences in sensory evaluation especially crumb, but there were no significant differences in the physical characteristics, so we can conclude that sonication will improve sensory properties of cookies. Also, we can conclude that biscuit samples supplemented with 5 or 10% WPC were nutrient-rich. The results of the sensory evaluation showed that the cookie samples supplemented with 5% WPC performed better in most of the characteristics but decreased with an increase in the WPC level. The texture properties of the cookie samples indicated that the control cookies with WPC-supplemented cookies showed no significant differences in most studied properties. It can be concluded that the addition of sonicated whey protein enhanced the physiochemical and sensory properties of cookies.
Collapse
|
48
|
Antioxidant Potential of the Sweet Whey-Based Beverage Colada after the Digestive Process and Relationships with the Lipid and Protein Fractions. Antioxidants (Basel) 2022; 11:antiox11091827. [PMID: 36139901 PMCID: PMC9495724 DOI: 10.3390/antiox11091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Whey-based beverages could be an effective way of reusing a by-product of th cheese industry, mitigating environmental hazards and, at the same time, profiting a useful food with high nutritional and antioxidant properties. In this study, a traditional Ecuadorian beverage (Colada) was prepared combining sweet whey, Maracuyá and barley. Antioxidant properties before and after an in vitro digestion using the INFOGEST method were determined, and relationships with intestinal transformations of the lipid and protein fractions were analyzed. The digestive process had a positive effect on antioxidant properties based on increased values of ABTS and FRAP located in the bioaccessible fraction (BF), together with strong increments of total polyphenols. Moreover, pretreatment of Caco-2 cells with the BF of Colada significantly reduced ROS generation (p < 0.001) measured by the dichlorofluorescein assay. Substantial changes of the fatty acid profile occurred during digestion, such as a fall of saturated fatty acids and a rise of polyunsaturated. The protein profile, examined by SDS-PAGE and exclusion molecular chromatography in the BF, showed that the major part of the proteins were digested in the intestinal phase. Analysis of NanoLC-MS/MS revealed 18 antioxidant peptides originated from whey proteins, but also 16 peptides from barley with potential antioxidant properties. In conclusion, combining sweet whey with Maracuyá and barley constitutes an excellent nutritional beverage with a strong antioxidant potential.
Collapse
|
49
|
Barros M, Villadóniga C, Cantera A. Production of antioxidant whey hydrolysate using proteolytic extracts of Araujia sericifera var. hortorum latex. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
50
|
Wang H, Huang T, Liu K, Yu J, Yao G, Zhang W, Zhang H, Sun T. Protective effects of whey protein hydrolysate on Bifidobacterium animalis ssp. lactis Probio-M8 during freeze-drying and storage. J Dairy Sci 2022; 105:7308-7321. [PMID: 35931487 DOI: 10.3168/jds.2021-21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
We evaluated the potential of whey protein hydrolysate as a lyoprotectant for maintaining the cell viability of Bifidobacterium animalis ssp. lactis Probio-M8 during freeze-drying and subsequent storage. The moisture content and water activity of the lyophilized samples treated by different concentrations of whey protein hydrolysate were ≤5.23 ± 0.33 g/100 g and ≤0.102 ± 0.003, respectively. During storage at 25°C and 30°C, whey protein hydrolysate had a stronger protective effect on B. lactis Probio-M8 than the same concentration of whey protein. Using the Excel tool GinaFit, we estimated the microbial inactivation kinetics during storage. Whey protein hydrolysate reduced cell damage caused by an increase in temperature. Whey protein hydrolysate could protect cells by increasing the osmotic pressure as a compatible solute. Whey protein hydrolysate improved cell membrane integrity and reduced the amounts of reactive oxygen species and malondialdehyde produced. The findings indicated that whey protein hydrolysate was a novel antioxidant lyoprotectant that could protect probiotics during freeze-drying and storage.
Collapse
Affiliation(s)
- Haoqian Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Tian Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Kailong Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|