1
|
White S, Jackson-Davis A, Gordon K, Morris K, Dudley A, Abdallah-Ruiz A, Allgaier K, Sharpe K, Yenduri AK, Green K, Santos F. A Review of Non-thermal Interventions in Food Processing Technologies. J Food Prot 2025; 88:100508. [PMID: 40222655 DOI: 10.1016/j.jfp.2025.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Foodborne pathogens and spoilage microorganisms continue to be a concern throughout the food industry. As a result, these problematic microorganisms are the cause of foodborne outbreaks, foodborne illness, and premature spoilage-related issues. To address these, thermal technologies have been applied and have a documented history of controlling these microorganisms. Although beneficial, some of these technologies may result in adverse quality effects that can interfere with consumer acceptability. Processors of fresh produce also need technologies to mitigate pathogens with the ability to retain raw quality. In addition, thermal technologies can also result in the reduction or depletion of key nutrients. Consumers of today are health conscious and are concerned with key nutrients in food products necessary for their overall health; this reduction and depletion of nutrients could be considered unacceptable in the eyes of consumers. As a result of this, the food industry works to increase the use of nonthermal technologies to control pathogens and spoilage microorganisms in varying sections of the industry. This review paper will focus on the control of foodborne pathogens and spoilage organisms along with the effects on quality in various food products by the use of pulsed electric field, pulsed light, ultraviolet light, ozonation, cold atmospheric plasma, ultrasound, and ionizing radiation.
Collapse
Affiliation(s)
- Shecoya White
- Mississippi State University, Mississippi State, Mississippi 39762, United States.
| | - Armitra Jackson-Davis
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | - Kenisha Gordon
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kala Morris
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Aaron Dudley
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | | | - Katie Allgaier
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kyle Sharpe
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Ajay Kumar Yenduri
- Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Kaylyn Green
- Alabama Agricultural and Mechanical University, 4900 Meridian, Huntsville, AL 35811, United States
| | - Fernanda Santos
- North Carolina State University, Raleigh, NC 27607, United States
| |
Collapse
|
2
|
Mlambo B, Kutu FR, Belay ZA, Mphahlele RR, Suinyuy T, Mokwena L, Caleb OJ. Low-pressure cold plasma pretreatment: Impact on quality attributes of "Fan Retief" guava and efficacy against Colletotrichum gloeosporioides. J Food Sci 2025; 90:e70058. [PMID: 39980270 PMCID: PMC11842952 DOI: 10.1111/1750-3841.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025]
Abstract
This work investigated the impact of low-pressure cold plasma (CP) as a pretreatment with polyethylene terephthalate (PET) plastic trays or open corrugated cardboard (OCC) boxes on the overall quality of "Fan Retief" guava fruits stored for 28 days at 13°C. Untreated samples placed in PET and OCC served as control. Guava fruits followed typical climacteric responses, but CP-treated samples significantly slowed down respiration (RRCO2) and ethylene production rate during storage (p ≤ 0.05). On day 28, CP-treated samples retained the highest titratable acidity and total phenolics compared to untreated samples (p ≤ 0.05). Overall, CP pretreatment better maintained the relative abundance of characteristic volatile compounds for guava fruits during storage, effectively delayed decay incidence, and inhibited the growth of Colletotrichum gloeosporioides in vivo compared to control. PRACTICAL APPLICATION: This study demonstrated low-pressure cold plasma as a potential alternative phytosanitary tool for the postharvest handling of guava fruit.
Collapse
Affiliation(s)
- Bafana Mlambo
- School of Agricultural SciencesUniversity of MpumalangaMbombelaSouth Africa
- Agri‐Food Systems and Omics Laboratory, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (ARC) Infruitec‐NietvoorbijStellenboschSouth Africa
| | - Funso R. Kutu
- School of Agricultural SciencesUniversity of MpumalangaMbombelaSouth Africa
| | - Zinash A. Belay
- Agri‐Food Systems and Omics Laboratory, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (ARC) Infruitec‐NietvoorbijStellenboschSouth Africa
- Department of Food Science, Faculty of AgriSciencesStellenbosch UniversityStellenboschSouth Africa
| | | | - Terence Suinyuy
- School of Biology and Environmental SciencesUniversity of MpumalangaMbombelaSouth Africa
| | - Lucky Mokwena
- Central Analytical FacilityStellenbosch UniversityMatielandSouth Africa
| | - Oluwafemi James Caleb
- Department of Food Science, Faculty of AgriSciencesStellenbosch UniversityStellenboschSouth Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciencesStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
3
|
Ramezan Y, Kamkari A, Lashkari A, Moradi D, Tabrizi AN. A review on mechanisms and impacts of cold plasma treatment as a non-thermal technology on food pigments. Food Sci Nutr 2024; 12:1502-1527. [PMID: 38455202 PMCID: PMC10916563 DOI: 10.1002/fsn3.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Food characteristics like appearance and color, which are delicate parameters during food processing, are important determinants of product acceptance because of the growing trend toward more diverse and healthier diets worldwide, as well as the increase in population and its effects on food consumption. Cold plasma (CP), as a novel technology, has marked a new trend in agriculture and food processing due to the various advantages of meeting both the physicochemical and nutritional characteristics of food products with minimal changes in physical, chemical, nutritional, and sensorial properties. CP processing has a positive impact on food quality, including the preservation of natural food pigments. This article describes the influence of CP on natural food pigments and color changes in vegetables and fruits. Attributes of natural pigments, such as carotenoids, chlorophyll, anthocyanin, betalain, and myoglobin, are presented. In addition, the characteristics and mechanisms of CP processes were studied, and the effect of CP on mentioned pigments was investigated in recent literature, showing that the use of CP technology led to better preservation of pigments, improving their preservation and extraction yield. While certain modest and undesirable changes in color are documented, overall, the exposure of most food items to CP resulted in minor loss and even beneficial influence on color. More study is needed since not all elements of CP treatment are currently understood. The negative and positive effects of CP on natural food pigments in various products are discussed in this review.
Collapse
Affiliation(s)
- Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Amir Kamkari
- Department of Food Engineering, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Armita Lashkari
- Department of Food Science and TechnologyIslamic Azad University, Tehran North BranchTehranIran
| | - Donya Moradi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abbas Najafi Tabrizi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
4
|
Khalaj A, Ahmadi E, Mirzaei S, Ghaemizadeh F. Potential use of cold plasma treatment for disinfection and quality preservation of grape inoculated with Botrytis cinerea. Food Sci Nutr 2024; 12:1818-1833. [PMID: 38455198 PMCID: PMC10916599 DOI: 10.1002/fsn3.3876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024] Open
Abstract
Gray mold caused by Botrytis cinerea is a serious disease of grape (Vitis vinifera) during storage. The aim of this study is to evaluate the effect of atmosphere cold plasma (a novel and nonthermal technology) on inactivation of B. cinerea and preservation of chemical, physical, and mechanical characteristics of grape inoculated with B. cinerea. Herein, different time of cold plasma (0, 10, 20, and 40 s) was firstly considered to be the main factors, besides different storage time (1, 2, 3, 4, and 5 weeks) at 4°C. According to the results, plasma treatment exhibited inhibitory effect on gray mold percentage and microbial load of B. cinerea (log CFU g-1) during postharvest storage. So, in the last week, the gray mold percentage and microbial load in the control were 100% and 3.6 log CFU g-1, and in 40-s plasma were 4.5% and 2.53 log CFU g-1, respectively. Although the minimum infection and microbial load were observed in 40-s plasma, better postharvest quality preservation was observed in short-time cold plasma treatment (≤20 s). Forty-second plasma caused fruit tissue destruction and negatively decreased mechanical indices (Emod: 0.0028, Fmax = 1.78, and W = 3.18) and weight loss (91.9) in comparison with ≤20-s plasma, in which mechanical indices (Emod =0.0077, Fmax = 3.6, and W = 10.06) and weight loss (1/1) were higher. The long-time cold plasma treatment (40 s) had also maximum effects on color changes (10) and surface temperature (2.8°C). Although the highest TSS and TA were observed in 40-s Plasma, but different time of plasma treatments had no effect on pH. Altogether, these results indicate that the short-time cold plasma treatment can inactivate B. cinerea on grape berries and preserve crop quality properties.
Collapse
Affiliation(s)
- Ali Khalaj
- Department of Biosystems Engineering, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Ebrahim Ahmadi
- Department of Biosystems Engineering, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Sohiela Mirzaei
- Department of Plant Protection, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| | - Fahiemeh Ghaemizadeh
- Department of Horticultural Science, Faculty of AgricultureBu‐Ali Sina UniversityHamadanIran
| |
Collapse
|
5
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
6
|
Ali M, Cheng JH, Tazeddinova D, Aadil RM, Zeng XA, Goksen G, Lorenzo JM, Esua OJ, Manzoor MF. Effect of plasma-activated water and buffer solution combined with ultrasound on fungicide degradation and quality of cherry tomato during storage. ULTRASONICS SONOCHEMISTRY 2023; 97:106461. [PMID: 37269690 DOI: 10.1016/j.ultsonch.2023.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to examine plasma-activated buffer solution (PABS) and plasma-activated water (PAW) combined with ultrasonication (U) treatment on the reduction of chlorothalonil fungicide and the quality of tomato fruits during storage. To obtain PAW and PABS, an atmospheric air plasma jet was used to treat buffer solution and deionized water at different treatment times (5 and 10 min). For combined treatments, fruits were submerged in PAW and PABS, then sonicated for 15 min, and individual treatment without sonication. As per the results, the maximum chlorothalonil reduction of 89.29% was detected in PAW-U10, followed by 85.43% in PABS. At the end of the storage period, the maximum reduction of 97.25% was recorded in PAW-U10, followed by 93.14% in PABS-U10. PAW, PABS, and both combined with ultrasound did not significantly affect the overall tomato fruit quality in the storage period. Our results revealed that PAW combined with sonication had a significant impact on post-harvest agrochemical degradation and retention of tomato quality than PABS. Conclusively, the integrated hurdle technologies effectively reduce agrochemical residues, which helps to lower health hazards and foodborne illnesses.
Collapse
Affiliation(s)
- Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jun-Hu Cheng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, University of Uyo, Uyo 520101, Nigeria
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
7
|
Yang Z, Wu Q, Jiang F, Zheng D, Wu D, Chen K. Indirect treatment of plasma-processed air to decrease decay and microbiota of strawberry fruit caused by mechanical damage. Food Chem 2023; 408:135225. [PMID: 36549159 DOI: 10.1016/j.foodchem.2022.135225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Due to the soft texture of strawberry fruit, it is highly susceptible to mechanical damage during postharvest supply chains, resulting in decay and quality deterioration. Urgent investigation is needed on the treatment techniques to mitigate the impact of postharvest mechanical damage of strawberry fruit. In the present study, the effect of indirect plasma-processed air (PPA) pretreatment to decrease decay and microbiota of strawberry fruit caused by mechanical damage was investigated. The results show PPA pretreatment reduced the total counts of indigenous microbiota on the surface of intact and mechanical damaged strawberry fruit by 4.29 and 3.76 log10CFU/g at day 0, respectively, and reduced the counts of S. aureus and E. coli inoculated on strawberry fruit by 3.05-3.16 and 3.55-3.56 log10CFU/g, respectively. The disease incidence of fruit inoculated with Botrytis cinerea was also decreased by 6.67 %-18.89 % during storage. Besides, PPA pretreatment reduced the decay rate of strawberry fruit by 5.56 %-21.11 % during storage and did not significantly affect the firmness, color index of red grapes (CIRG) and total soluble solids (TSS) content of strawberry fruit. DHHP results indicate that the antioxidant activity of the strawberry fruit was increased. After PPA pretreatment, 39 metabolites were differentially accumulated in strawberry fruits, 37 of which were up-regulated, including flavonoids, phenolic acids and organic acid.
Collapse
Affiliation(s)
- Zhichao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qingyan Wu
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China
| | - Feng Jiang
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Dandan Zheng
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
8
|
Subrahmanyam K, Gul K, Sehrawat R, Allai FM. Impact of in-package cold plasma treatment on the physicochemical properties and shelf life of button mushrooms (Agaricus bisporus). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Effects of Atmospheric Cold Plasma Treatment on the Storage Quality and Chlorophyll Metabolism of Postharvest Tomato. Foods 2022; 11:foods11244088. [PMID: 36553830 PMCID: PMC9778118 DOI: 10.3390/foods11244088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Atmospheric cold plasma (ACP) is a potential green preservation technology, but its preservation mechanism is still unclear, and the effects of different plasma intensities on postharvest tomatoes are little studied. In this study, the effects of different ACP treatments (0 kV, 40 kV, 60 kV, and 80 kV) on the sensory quality, physiological indexes, key enzyme activities, and gene expression related to the chlorophyll metabolism of postharvest tomatoes were investigated during the storage time. The results showed that compared with the control group, the tomatoes in the plasma treatment group had a higher hardness and total soluble solid (TSS) and titratable acid (TA) contents, a lower respiratory intensity and weight loss rate, a higher brightness, and a lower red transformation rate, especially in the 60 kV treatment group. In addition, chlorophyll degradation, carotenoid accumulation, and chlorophyllase and pheophorbide a mono-oxygenase (PAO) enzyme activities in the postharvest tomatoes were inhibited in the 60 kV treatment group, and the expressions of three key genes related to chlorophyll metabolism, chlorophyll (CLH1), pheophytinase (PPH), and red chlorophyll catabolic reductase (RCCR) were down-regulated. The results of the correlation analysis also confirmed that the enzyme activity and gene expression of the chlorophyll metabolism were regulated by the ACP treatment, aiming to maintain the greenness of postharvest tomatoes.
Collapse
|
10
|
Jiang H, Lin Q, Shi W, Yu X, Wang S. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Front Nutr 2022; 9:1015980. [PMID: 36466425 PMCID: PMC9709125 DOI: 10.3389/fnut.2022.1015980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Cold plasma (CP) can be defined as partially or wholly ionized gas carrying myriads of highly reactive products, such as electrons, negative ions, positive ions, free radicals, excited or non-excited atoms, and photons at ambient temperature. It is generated at 30-60°C under atmospheric or reduced pressure (vacuum). In contrast to thermal plasma, it requires less power, exhibits electron temperatures much higher than the corresponding gas (macroscopic temperature), and does not present a local thermodynamic equilibrium. Dielectric barrier discharges (DBD) are one of the most convenient and efficient methods to produce CP. SCOPE AND APPROACH Cold plasma technology has the potential to replace traditional agri-food processing purification methods because of its low energy requirements and flexible system design. CP technology works by reducing bacteria levels and removing pests and mycotoxins from your produce at harvest. It can also catalyze physiological and biochemical reactions and modify materials. It can meet microbial food safety standards, improve the physical, nutritional, and sensory characteristics of the products, preserve unstable bioactive compounds, and modulate enzyme activities. This manuscript also discusses the quality characteristics of food components before/after CP treatment. KEY FINDINGS AND CONCLUSION In the past decade, CP treatments of food products have experienced increased popularity due to their potential contributions to non-thermal food processing. There is no doubt that CP treatment is a flexible approach with demonstrated efficacy for controlling many risks across food and agricultural sustainability sectors. In addition, CP technologies also can be applied in food-related areas, including modification of chemical structures and desensitization treatments. There is a need to fully assess the benefits and risks of stand-alone CP unit processes or their integration as a processing chain as soon as the economic, ecological, and consumer benefits and acceptability are considered.
Collapse
Affiliation(s)
- Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Wenqing Shi
- Shanxi Rural Science and Technology Development Centre, Xi’an, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
11
|
Rashvand M, Hajizadeh A, Akbarnia A, Abbaszadeh R, Nikzadfar M, Pathare PB. Effect of dielectric barrier discharge cold plasma on the bruise susceptibility of plum fruit. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahdi Rashvand
- School of Agriculture, Forestry, Food and Environmental Science University of Basilicata Potenza Italy
| | - Ali Hajizadeh
- Biosystem Engineering Department, Agricultural Research Institute Iranian Research Organization for Science and Technology (IRSOT) Tehran Iran
| | - Abbas Akbarnia
- Biosystem Engineering Department, Agricultural Research Institute Iranian Research Organization for Science and Technology (IRSOT) Tehran Iran
| | - Rouzbeh Abbaszadeh
- Biosystem Engineering Department, Agricultural Research Institute Iranian Research Organization for Science and Technology (IRSOT) Tehran Iran
| | - Mehrad Nikzadfar
- Biosystem Engineering Department, Agricultural Research Institute Iranian Research Organization for Science and Technology (IRSOT) Tehran Iran
| | - Pankaj B. Pathare
- Department of Soils, Water and Agricultural Engineering, College of Agricultural & Marine Sciences Sultan Qaboos University Muscat Oman
| |
Collapse
|
12
|
Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022; 11:foods11182818. [PMID: 36140945 PMCID: PMC9497965 DOI: 10.3390/foods11182818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.
Collapse
Affiliation(s)
- Bo Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| |
Collapse
|
13
|
Park SK, Lee DJ, Baik OD. Factors Influencing Bactericidal Efficacy using Atmospheric Cold Plasma (ACP) against Escherichia coli in Wheat Flour. Food Res Int 2022; 162:111985. [DOI: 10.1016/j.foodres.2022.111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022]
|
14
|
Wang Q, Pal RK, Yen HW, Naik SP, Orzeszko MK, Mazzeo A, Salvi D. Cold plasma from flexible and conformable paper-based electrodes for fresh produce sanitation: Evaluation of microbial inactivation and quality changes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Wu Q, Shen C, Li J, Wu D, Chen K. Application of indirect plasma-processed air on microbial inactivation and quality of yellow peaches during storage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Kaavya R, Pandiselvam R, Gavahian M, Tamanna R, Jain S, Dakshayani R, Khanashyam AC, Shrestha P, Kothakota A, Arun Prasath V, Mahendran R, Kumar M, Khaneghah AM, Nayik GA, Dar AH, Uddin J, Ansari MJ, Hemeg HA. Cold plasma: a promising technology for improving the rheological characteristics of food. Crit Rev Food Sci Nutr 2022; 63:11370-11384. [PMID: 35758273 DOI: 10.1080/10408398.2022.2090494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
At the beginning of the 21st century, many consumers show interest in purchasing safe, healthy, and nutritious foods. The intent requirement of end-users and many food product manufacturers are trying to feature a new processing technique for the healthy food supply. The non-thermal nature of cold plasma treatment is one of the leading breakthrough technologies for several food processing applications. The beneficial response of cold plasma processing on food quality characteristics is widely accepted as a substitution technique for new food manufacturing practices. This review aims to elaborate and offer crispy innovative ideas on cold plasma application in various food processing channels. It highlights the scientific approaches on the principle of generation and mechanism of cold plasma treatment on rheological properties of foods. It provides an overview of the behavior of cold plasma in terms of viscosity, crystallization, gelatinization, shear stress, and shear rate. Research reports highlighted that the cold plasma treated samples demonstrated a pseudoplastic behavior. The published literatures indicated that the cold plasma is a potential technology for modification of native starch to obtain desirable rheological properties. The adaptability and environmentally friendly nature of non-thermal cold plasma processing provide exclusive advantages compared to the traditional processing technique.
Collapse
Affiliation(s)
- R Kaavya
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - R Tamanna
- Innovation and Technology, Kraft Heinz Company, Chicago, Illinois, USA
| | - Surangna Jain
- Department of Biotechnology, Mahidol University, Bangkok, Thailand
| | - R Dakshayani
- Department of Food Processing and Quality Control, ThassimBeevi Abdul Kader College for Women, Ramanathapuram, Tamil Nadu, India
| | | | - Pratiksha Shrestha
- Department of Food Technology and Quality Control (DFTQC), National Food and Feed Reference Laboratory (NFFRL), Babarmahal, Nepal
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - V Arun Prasath
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - R Mahendran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, Jammu & Kashmir, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Awantipora, Jammu & Kashmir, India
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh), India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
17
|
Cold plasma-activated hydrogen peroxide aerosols inactivate Salmonella Typhimurium and Listeria innocua on smooth surfaces and stem scars of tomatoes: Modeling effects of hydrogen peroxide concentration, treatment time and dwell time. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Inactivation of Salmonella in steamed fish cake using an in-package combined treatment of cold plasma and ultraviolet-activated zinc oxide. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Ferreira BL, Granato D, Nunes IL. Uses of ionic liquids to obtain bioactive compounds: insights from the main international regulations for technological applications. Crit Rev Food Sci Nutr 2022; 63:9217-9232. [PMID: 35467994 DOI: 10.1080/10408398.2022.2067115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ionic liquids (IL) are innovative alternative solvents to recover bioactive compounds from plant-based sources to replace toxic volatile organic solvents (VOS). ILs are tailored-made solvents with chemical and thermal stabilities, nonvolatile and noninflammable. Although ILs are versatile, cost-effective, and sustainable solutions, the European Commission (EC) has no current regulation to approve extracts obtained with ILs to be applied in foods. Herein, this paper aims to assess the overview of ILs, regulamentation, applications, and its toxic effects, to be used as solvents for extract different bioactive compounds. Studies have suggested novel applications for ILs, such as 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium tetrafluoroborate and others, to obtain bioactive compounds, for instance phenolic compounds, lignans, alkaloids, carotenoids, polysaccharides, using modern approaches as ultrasound and microwave-assisted extraction. New IL methods increase the efficiency of recovering target compounds and decrease the extraction time and VOS consumption regarding the traditional techniques. Furthermore, to promote the large-scale use of IL in foods, it is essential to investigate individually the toxicity of each IL used in the extraction processes, aiming to obtain a GRAS stamp, due to the currently lack of regulamentation.
Collapse
Affiliation(s)
- Bruno L Ferreira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Itaciara L Nunes
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
20
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
21
|
Kim YE, Min SC. Consecutive treatments of cold plasma and intense pulsed light for microbial decontamination of fresh cabbage slices in plastic containers. Int J Food Microbiol 2022; 369:109626. [DOI: 10.1016/j.ijfoodmicro.2022.109626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
22
|
Zhou R, Rezaeimotlagh A, Zhou R, Zhang T, Wang P, Hong J, Soltani B, Mai-Prochnow A, Liao X, Ding T, Shao T, Thompson EW, Ostrikov K(K, Cullen PJ. In-package plasma: From reactive chemistry to innovative food preservation technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Pourbagher R, Abbaspour-Fard MH, Sohbatzadeh F, Rohani A. In vivo antibacterial effect of non-thermal atmospheric plasma on pseudomonas tolaasii, a causative agent of Agaricus bisporus blotch disease. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Pourbagher R, Abbaspour-Fard MH, Sohbatzadeh F, Rohani A. Inhibition of enzymes and Pseudomonas tolaasii growth on Agaricus bisporus following treatment with surface dielectric barrier discharge plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Limnaios A, Pathak N, Grossi Bovi G, Fröhling A, Valdramidis VP, Taoukis PS, Schlüter O. Effect of cold atmospheric pressure plasma processing on quality and shelf life of red currants. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Lee YJ, Yoon KS. Inactivating effect of dielectric barrier discharge plasma on
Escherichia coli
O157
:
H7
and
Staphylococcus aureus
in various dried products. J Food Saf 2021. [DOI: 10.1111/jfs.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yun Jin Lee
- Department of Food and Nutrition Kyung Hee University Seoul Republic of Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
27
|
Zhang Y, Zhang J, Zhang Y, Hu H, Luo S, Zhang L, Zhou H, Li P. Effects of in-package atmospheric cold plasma treatment on the qualitative, metabolic and microbial stability of fresh-cut pears. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4473-4480. [PMID: 33432579 DOI: 10.1002/jsfa.11085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The greatest hurdle to commercial marketing of fresh-cut fruits and vegetables is limited shelf life due to microbial hazards and quality deterioration. Atmospheric cold plasma (ACP) is an emerging non-thermal technology with significant potential to improve the safety and storability of fresh products. The objective of this study was to evaluate the effects of ACP, generated in sealed packaging, on the qualitative, metabolic and microbial stability of fresh-cut pears during simulated cold storage. RESULTS ACP treatments were effective in inhibiting the growth of mesophilic aerobic bacteria, yeast and mold, particularly CP3 (65 kV, 1 min), which could prolong shelf life to the greatest extent. While decontamination was not always associated with an increase in plasma intensity. Moreover, at 65 kV for 1 min, ACP treatment had the potential to retard respiration, and maintain organoleptic properties and other quality attributes. Additionally, peroxidase and pectin methylesterase (PME) activities were reduced immediately after treatments. These effects were dependent on treatment voltage and time, while a subsequent recovery in activity was only observed for PME. CONCLUSION The results obtained from this study will contribute to an understanding of the effects of in-package ACP treatments on the storability and microbial safety of fresh-cut pears. This knowledge could be beneficial in reducing quality losses for fresh-cut pears and the preservation of other products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Yuanyuan Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Huali Hu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Shufen Luo
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Leigang Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Hongsheng Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, PR China
| |
Collapse
|
28
|
Zhao Z, Wang X, Ma T. Properties of plasma-activated water with different activation time and its effects on the quality of button mushrooms (Agaricus bisporus). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Lee ES, Jeon YJ, Min SC. Microbial Inactivation and Quality Preservation of Chicken Breast Salad Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. Foods 2021; 10:1214. [PMID: 34072139 PMCID: PMC8226900 DOI: 10.3390/foods10061214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Microbiological safety of ready-to-eat foods is paramount for consumer acceptability. The effects of in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment on the microbiological safety and quality of model chicken salad (CS) were investigated in this study. CS, packaged in a commercial polyethylene terephthalate container, was treated with ADCP at 24 kV for 2 min. The inactivation of indigenous mesophilic bacteria, Salmonella, and Tulane virus in CS; growth of indigenous mesophilic bacteria and Salmonella in CS; and quality of CS during storage at 4 °C were then investigated. ADCP inactivated indigenous mesophilic bacteria, Salmonella, and Tulane virus by 1.2 ± 0.3 log CFU/g, 1.0-1.5 ± 0.2 log CFU/g, and 1.0 ± 0.1 log PFU/g, respectively. Furthermore, it effectively retarded the growth of the microorganisms, while not significantly affecting the color of chicken, romaine lettuce, and carrot, and the antioxidant capacity of all vegetables throughout storage at the tested temperatures (p > 0.05). The color, smell, and appearance of all vegetables evaluated on day 0 were not significantly different in the sensory test, regardless of the treatment (p > 0.05). Collectively, ADCP treatment effectively decontaminates packaged CS without altering its quality-related properties.
Collapse
Affiliation(s)
| | | | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Korea; (E.S.L.); (Y.J.J.)
| |
Collapse
|
31
|
Kang JH, Bai J, Min SC. Inactivation of Indigenous Microorganisms and Salmonella in Korean Rice Cakes by In-Package Cold Plasma Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073360. [PMID: 33805200 PMCID: PMC8036629 DOI: 10.3390/ijerph18073360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The antimicrobial effects of in-package cold plasma (CP) treatment on Korean rice cakes (KRC) were evaluated. The CP treatment (25 kV) inactivated indigenous mesophilic aerobic bacteria by 0.8–1.0 log CFU/g, irrespective of the position of KRC in the package. The addition of a shaking step during CP treatment increased the reduction in microbes by ~1 log CFU/g. The microbial inactivation efficiency increased significantly when the treatment time increased from 1 to 3 min. Microbial inactivation activity was highest for packages containing eight rice cakes. The optimized CP treatment achieved a 2.0 ± 0.1 log CFU/g reduction in indigenous bacteria. In addition, the optimum CP treatment inactivated indigenous yeast and molds and Salmonella in KRC by 1.7 ± 0.1 log CFU/g and 3.9 ± 0.3 log CFU/g, respectively. No significant changes in color and firmness were observed, and the surface temperature of KRC did not exceed 22 °C after CP treatment. Moreover, CP treatment damaged the cellular membrane of Salmonella, mainly by inducing lipid peroxidation. This study demonstrates the potential use of in-package CP treatment for the non-thermal microbial inactivation of KRC.
Collapse
|
32
|
El Kadri H, Costello KM, Thomas P, Wantock T, Sandison G, Harle T, Fabris AL, Gutierrez-Merino J, Velliou EG. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. Food Res Int 2021; 141:110126. [PMID: 33641993 DOI: 10.1016/j.foodres.2021.110126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a minimal food processing technology of increasing interest in the food industry, as it is mild in nature compared to traditional methods (e.g. pasteurisation) and thus can maintain the food's desirable qualities. However, due to this mild nature, the potential exists for post-treatment microbial survival and/or stress adaptation. Furthermore, biofilm inactivation by CAP is underexplored and mostly studied on specific foods or on plastic/polymer surfaces. Co-culture effects, biofilm age, and innate biofilm-associated resistance could all impact CAP efficacy, while studies on real foods are limited to the food product investigated without accounting for structural complexity. The effect of a Remote and Enclosed CAP device (Fourth State Medicine Ltd) was investigated on Escherichia coli and Listeria innocua grown as planktonic cells and as single or mixed bacterial biofilms of variable age, on a biphasic viscoelastic food model of controlled rheological and structural complexity. Post-CAP viability was assessed by plate counts, cell sublethal injury was quantified using flow cytometry, and biofilms were characterised and assessed using total protein content and microscopy techniques. A greater impact of CAP on planktonic cells was observed at higher air flow rates, where the ReCAP device operates in a mode more favourable to reactive oxygen species than reactive nitrogen species. Although planktonic E. coli was more susceptible to CAP than planktonic L. innocua, the opposite was observed in biofilm form. The efficacy of CAP was reduced with increasing biofilm age. Furthermore, E. coli produced much higher protein content in both single and mixed biofilms than L. innocua. Consequently, greater survival of L. innocua in mixed biofilms was attributed to a protective effect from E. coli. These results show that biofilm susceptibility to CAP is age and bacteria dependent, and that in mixed biofilms bacteria may become less susceptible to CAP. These findings are of significance to the food industry for the development of effective food decontamination methods using CAP.
Collapse
Affiliation(s)
- Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Phillip Thomas
- Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | | | | | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
33
|
Umair M, Jabbar S, Nasiru MM, Senan AM, Zhuang H, Zhang J. Sequential Application of High-Voltage Electric Field Cold Plasma Treatment and Acid Blanching Improves the Quality of Fresh Carrot Juice ( Daucus carota L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15311-15318. [PMID: 33300338 DOI: 10.1021/acs.jafc.0c03470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study was aimed to investigate the combined effect of acid blanching (AB) and high-voltage electric field cold plasma (HVCP) on carrot juice quality. Before juice extraction, carrots were separated into three parts: control, blanched (100 °C for 5 min) with non-acidified water, and blanched with acidified water (35 g/L citric acid at pH 1.34). Carrot juice was then subjected to dielectric barrier discharge at 80 kV for 4 min. Results indicated that AB treatment significantly influenced the efficiency of HVCP. AB-HVCP resulted in antimicrobial synergism, which is an outcome of acidified NO2-, H2O2, O-, and peroxynitrites (ONOO-) or its precursor OH/NO2, along with other species. In addition, plasma treatment also promotes the accumulation of coloring compounds, chlorogenic acid, and sugar contents by surface erosion of the epidermal layer, cis isomerization, rupturing of phenol-sugar and phenolic-cell matrix bonds, and depolymerized long-chain polysaccharides by cleavage of the glycoside bond. Therefore, AB-HVCP is a potential emerging hurdle strategy for fresh produce.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad 44000, Pakistan
| | - Mustapha M Nasiru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ahmed M Senan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Hong Zhuang
- Quality & Safety Assessment Research Unit, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Athens, Georgia 30605, United States
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
34
|
Ji Y, Hu W, Liao J, Jiang A, Xiu Z, Gaowa S, Guan Y, Yang X, Feng K, Liu C. Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5586-5595. [PMID: 32608515 DOI: 10.1002/jsfa.10611] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Blueberry is universally acknowledged as a kind of berry rich in antioxidants. Cold plasma, an emerging non-thermal treatment technology, has been proved to be able to maintain or improve the antioxidant level while inactivating the microorganisms on the surface of fruits and vegetables. Postharvest blueberries were treated with atmospheric cold plasma (ACP; 12 kV, 5 kHz) for 0 s (Control), 30 s (ACP-30), 60 s (ACP-60), and 90 s (ACP-90) in this study, and the effects of ACP on the antimicrobial properties, antioxidant activities, and reactive oxygen species (ROS) production were investigated during storage at 4 ± 1 °C for 40 days. RESULTS Total aerobic bacteria and mold populations on ACP-treated blueberries decreased significantly in a time-dependent manner (P < 0.05), and decreased by 0.34-1.24 and 0.57-0.87 log10 CFU g-1 respectively on ACP-60-treated blueberries during storage. The decay rate of blueberries was decreased by 5.8-11.7% and the decrease of blueberry firmness was slowed down by ACP-60. But the total phenol, anthocyanin, and ascorbic acid contents increased, and superoxide dismutase, catalase, and peroxidase activities were enhanced in ACP-treated blueberries. The free radical scavenging activity and total antioxidant capacity (T-AOC) were enhanced. Hydrogen peroxide (H2 O2 ) and superoxide anion (O2 - ) production rates declined by 27.3% and 41.3% at day 40 of storage, respectively. CONCLUSION It is suggested that ACP may be a promising non-thermal treatment technology for postharvest sterilization and preservation of blueberry under suitable conditions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Wenzhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Jia Liao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Aili Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Saren Gaowa
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Ke Feng
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Chenghui Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
- College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
35
|
Fan X, Song Y. Advanced Oxidation Process as a Postharvest Decontamination Technology To Improve Microbial Safety of Fresh Produce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12916-12926. [PMID: 32369356 DOI: 10.1021/acs.jafc.0c01381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fresh produce is frequently associated with outbreaks of foodborne diseases; thus, there is a need to develop effective intervention technologies and antimicrobial treatments to improve the microbial safety of fresh produce. Washing with chemical sanitizers, commonly used by the industry, is limited in its effectiveness and is viewed as a possible cross-contamination opportunity. This review discuses the advanced oxidation process (AOP), which involves generating highly reactive hydroxyl radicals to inactivate human pathogens. Ionizing irradiation, ultraviolet (UV) light, and cold plasma can be regarded as AOP; however, AOPs employing combinations of UV, H2O2, cold plasma, and ozone may be more promising because higher amounts of hydroxyl radicals are produced in comparison to the individual treatments and the combinative AOPs may be more consumer friendly than ionizing irradiation. When applied as a gaseous/aerosolized treatment, AOPs may have advantages over immersion treatments, considering the reactivity of hydroxyl radicals and presence of organic materials in wash water. Gaseous/aerosolized AOPs achieve up to 5 log reductions of pathogenic bacteria on fresh produce compared to reductions of 1-2 logs with aqueous sanitizers. Further research needs to be conducted on specific AOPs before being considered for commercialization, such as reduced formation of undesirable chemical byproducts, impact on quality, and scaled up studies.
Collapse
Affiliation(s)
- Xuetong Fan
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| | - Yuanyuan Song
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, United States
| |
Collapse
|
36
|
Costello KM, Smet C, Gutierrez-Merino J, Bussemaker M, Van Impe JF, Velliou EG. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol 2020; 337:108948. [PMID: 33197682 DOI: 10.1016/j.ijfoodmicro.2020.108948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Novel processing methods such as cold atmospheric plasma (CAP) and natural antimicrobials like nisin, are of interest to replace traditional food decontamination approaches as, due to their mild nature, they can maintain desirable food characteristics, i.e., taste, texture, and nutritional content. However, the microbial growth characteristics (planktonic growth/surface colonies) and/or the food structure itself (liquid/solid surface) can impact the inactivation efficacy of these novel processing methods. More specifically, cells grown as colonies on a solid(like) surface experience a completely different growth environment to cells grown planktonically in liquid, and thus could display a different response to novel processing treatments through stress adaptation and/or cross protection mechanisms. The order in which combined treatments are applied could also impact their efficacy, especially if the mechanisms of action are complementary. This work presents a fundamental study on the efficacy of CAP and nisin, alone and combined, as affected by food system structure. More specifically, Listeria innocua was grown planktonically (liquid broth) or on a viscoelastic Xanthan gum gel system (1.5% w/v) and treated with CAP, nisin, or a combination of the two. Both the inactivation system, i.e., liquid versus solid(like) surface and the growth characteristics, i.e., planktonic versus colony growth, were shown to impact the treatment efficacy. The combination of nisin and CAP was more effective than individual treatments, but only when nisin was applied before the CAP treatment. This study provides insight into the environmental stress response/adaptation of L. innocua grown on structured systems in response to natural antimicrobials and novel processing technologies, and is a step towards the faster delivery of these food decontamination methods from the bench to the food industry.
Collapse
Affiliation(s)
- Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Ghent, Belgium
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
37
|
Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186301] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This article evaluates the effects of in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment on microbial inactivation, nitrate and nitrite contents, oral toxicity, and storage quality of protein-coated boiled chicken breast cubes (CBCs). ADCP treatment at 24 kV for 3 min inactivated natural mesophilic aerobic bacteria, Salmonella, and Tulane virus in CBCs by 0.7 ± 0.2, 1.4 ± 0.1 log CFU/cube, and 1.1 ± 0.2 log PFU/cube, respectively. ADCP treatment did not affect the nitrite content of CBCs (p > 0.05). Furthermore, the hematological and blood biochemical parameters from toxicity tests indicated the toxicological safety of ADCP-treated CBCs. Microbial counts of natural bacteria and Salmonella in ADCP-treated CBCs were lower than the ADCP-untreated CBCs by 0.7–0.9 and 1.4–1.7 log CFU/cube, respectively, throughout post-treatment storage at 4 °C for 21 d. ADCP treatment did not alter the pH, color, total volatile basic nitrogen, lipid oxidation, and tenderness of CBCs during storage at 4 and 24 °C, and did not change the sensory properties of CBCs following a 3 d storage period at 4 °C (p > 0.05). Thus, ADCP treatment has the potential to be applied as a method to increase the microbiological safety of packaged ready-to-eat chicken products, leading to overall toxicological safety.
Collapse
|
38
|
Pan YW, Cheng JH, Sun DW. Inhibition of fruit softening by cold plasma treatments: affecting factors and applications. Crit Rev Food Sci Nutr 2020; 61:1935-1946. [PMID: 32539433 DOI: 10.1080/10408398.2020.1776210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Softening is a common phenomenon of texture changes associated with plant cell walls, inducing a decrease in the quality of fruit. Inhibiting the softening is effective to extend the shelf life of fruit. Cold plasma (CP), as a novel nonthermal technology, has been applied to keep the freshness of the fruit. This review centers on applying cold plasma treatments to the inhibition of fruit softening. Different pathways for inhibiting fruit softening by CP treatments, including maintenance of fruit firmness, reduction in the activities of enzymes, inactivation of fungal pathogens and lowering of respiration rates, are discussed. The biochemistry of fruit softening and the fundamental of cold plasma are also presented. In general, among all postharvest technologies, cold plasma is a promising method with many advantages, showing great potential in maintaining the quality and inhibiting the softening of the fruit. Future work should focus on process optimization to achieve better results in maintaining fruit freshness, and commercial applications of cold plasma technology should also be explored.
Collapse
Affiliation(s)
- Ya-Wen Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
39
|
Song Y, Fan X. Cold plasma enhances the efficacy of aerosolized hydrogen peroxide in reducing populations of Salmonella Typhimurium and Listeria innocua on grape tomatoes, apples, cantaloupe and romaine lettuce. Food Microbiol 2020; 87:103391. [PMID: 31948632 DOI: 10.1016/j.fm.2019.103391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/22/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
In the present study, we investigated whether cold plasma activation affected the efficacy of aerosolized hydrogen peroxide against S. Typhimurium and L. innocua. Stem scars and smooth surfaces of grape tomatoes, surfaces of Granny Smith apples and Romaine lettuce (both midrib and upper leaves) and cantaloupe rinds were inoculated with two-strain cocktails of S. Typhimurium and 3-strain cocktails of L. innocua. The inoculated samples were treated with 7.8% aerosolized H2O2 with and without cold plasma for various times. For all fresh produce items and surfaces, cold plasma significantly (P < 0.05) improved the efficacy of aerosolized H2O2 against Salmonella and L. innocua. Without cold plasma activation, H2O2 aerosols only reduced populations of Salmonella by 1.54-3.17 log CFU/piece while H2O2 with cold plasma achieved 2.35-5.50 log CFU/piece reductions of Salmonella. L. innocua was more sensitive to the cold plasma-activated H2O2 than Salmonella. Cold plasma activated H2O2 aerosols reduced Listeria populations by more than 5 log CFU/piece on all types and surfaces of fresh produce except for the tomato stem scar area. Without cold plasma, the reductions by H2O2 were only 1.35-3.77 log CFU/piece. Overall, our results demonstrated that cold plasma activation significantly enhanced the efficacy of H2O2 mist against bacteria on fresh produce.
Collapse
Affiliation(s)
- Yuanyuan Song
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA.
| |
Collapse
|
40
|
Feizollahi E, Misra NN, Roopesh MS. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 2020; 61:666-689. [PMID: 32208859 DOI: 10.1080/10408398.2020.1743967] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atmospheric cold plasma (ACP) is an emerging technology in the food industry with a huge antimicrobial potential to improve safety and extend the shelf life of food products. Dielectric barrier discharge (DBD) is a popular approach for generating ACP. Thanks to the numerous advantages of DBD ACP, it is proving to be successful in a number of applications, including microbial decontamination of foods. The antimicrobial efficacy of DBD ACP is influenced by multiple factors. This review presents an overview of ACP sources, with an emphasis on DBD, and an analysis of their antimicrobial efficacy in foods in open atmosphere and in-package modes. Specifically, the influence of process, product, and microbiological factors influencing the antimicrobial efficacy of DBD ACP are critically reviewed. DBD ACP is a promising technology that can improve food safety with minimal impact on food quality under optimal conditions. Once the issues pertinent to scale-up of plasma sources are appropriately addressed, the DBD ACP technology will find wider adaptation in food industry.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, NS, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
41
|
Yadav B, Spinelli AC, Misra NN, Tsui YY, McMullen LM, Roopesh MS. Effect of in-package atmospheric cold plasma discharge on microbial safety and quality of ready-to-eat ham in modified atmospheric packaging during storage. J Food Sci 2020; 85:1203-1212. [PMID: 32118300 DOI: 10.1111/1750-3841.15072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes is often responsible for postprocessing contamination of ready-to-eat (RTE) products including cooked ham. As an emerging technology, atmospheric cold plasma (ACP) has the potential to inactivate L. monocytogenes in packaged RTE meats. The objectives of this study were to evaluate the effect of treatment time, modified atmosphere gas compositions (MAP), ham formulation, and post-treatment storage (1 and 7 days at 4 °C) on the reduction of a five-strain cocktail of L. monocytogenes and quality changes in ham subjected to in-package ACP treatment. Initial average cells population on ham surfaces were 8 log CFU/cm2 . The ACP treatment time and gas composition significantly (P < 0.05) influenced the inactivation of L. monocytogenes, irrespective of ham formulations. When MAP1 (20% O2 + 40% CO2 + 40% N2 ) was used, there was a significantly higher log reduction (>2 log reduction) in L. monocytogenes on ham in comparison to MAP2 (50% CO2 + 50% N2 ) and MAP3 (100% CO2 ), irrespective of ham formulation. Addition of preservatives (that is, 0.1% sodium diacetate and 1.4% sodium lactate) or bacteriocins (that is, 0.05% of a partially purified culture ferment from Carnobacterium maltaromaticum UAL 307) did not significantly reduce cell counts of L. monocytogenes after ACP treatment. Regardless of type of ham, storage of 24 hr after ACP treatment significantly reduced cells counts of L. monocytogenes to approximately 4 log CFU/cm2 . Following 7 days of storage after ACP treatment, L. monocytogenes counts were below the detection limit (>6 log reduction) when samples were stored in MAP1. However, there were significant changes in lipid oxidation and color after post-treatment storage. In conclusion, the antimicrobial efficacy of ACP is strongly influenced by gas composition inside the package and post-treatment storage. PRACTICAL APPLICATION: Surface contamination of RTE ham with L. monocytogenes may occur during processing steps such as slicing and packaging. In-package ACP is an emerging nonthermal technology, which can be used as a postpackaging decontamination step in industrial settings. This study demonstrated the influence of in-package gas composition, treatment time, post-treatment storage, and ham formulation on L. monocytogenes inactivation efficacy of ACP. Results of present study will be helpful to optimize in-package ACP treatment and storage conditions to reduce L. monocytogenes, while maintaining the quality of ham.
Collapse
Affiliation(s)
- Barun Yadav
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| | - Ana Claudia Spinelli
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada.,Dept. of Food Science, Univ. of Campinas UNICAMP, Campinas, São Paulo, Brazil
| | - N N Misra
- Dept. of Electrical Engineering, Dalhousie Univ., Halifax, Nova Scotia, Canada.,Ingenium Naturae Pvt. Ltd., Mumbai, India
| | - Ying Y Tsui
- Dept. of Electrical & Computer Engineering, Univ. of Alberta, Edmonton, Alberta, Canada
| | - Lynn M McMullen
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| | - M S Roopesh
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Zhao N, Ge L, Huang Y, Wang Y, Wang Y, Lai H, Wang Y, Zhu Y, Zhang J. Impact of cold plasma processing on quality parameters of packaged fermented vegetable (radish paocai) in comparison with pasteurization processing: Insight into safety and storage stability of products. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Liu X, Zhang X, Zhang X, Li F, Tian Y, Du M, Zhao H, Shao L. Antibacterial activity of
Osmunda japonica
(Thunb) polysaccharides and its effect on tomato quality maintenance during storage. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaochen Liu
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Xiuling Zhang
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Xueting Zhang
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Fengfeng Li
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Yaqin Tian
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Meiling Du
- College of Food Science Northeast Agricultural University Changjiang Road 600 Xiangfang District Harbin Heilongjiang Province 150030 China
| | - Hengtian Zhao
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences 138# Haping Road Nangang District Harbin Heilongjiang Province 150080 China
| | - Lingling Shao
- Northeast Institute of Geography and Agroecology Chinese Academy of Sciences 138# Haping Road Nangang District Harbin Heilongjiang Province 150080 China
| |
Collapse
|
44
|
Mir S, Siddiqui M, Dar B, Shah M, Wani M, Roohinejad S, Annor G, Mallikarjunan K, Chin C, Ali A. Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. J Appl Microbiol 2019; 129:474-485. [DOI: 10.1111/jam.14541] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 11/30/2022]
Affiliation(s)
- S.A. Mir
- Department of Food Science & Technology Government College for Women Srinagar Jammu and Kashmir India
| | - M.W. Siddiqui
- Department of Food Science and Post‐Harvest Technology Bihar Agricultural University Sabour India
| | - B.N. Dar
- Department of Food Science & Technology Government College for Women Srinagar Jammu and Kashmir India
| | - M.A. Shah
- Department of Food Science and Technology Government College for Women Jammu Jammu and Kashmir India
| | - M.H. Wani
- Govt. Industrial Training Institute Pulwama India
| | - S. Roohinejad
- Department of Food Science and Nutrition University of Minnesota St. Paul MN USA
- Division of Food and Nutrition, Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - G.A. Annor
- Govt. Industrial Training Institute Pulwama India
| | | | - C.F. Chin
- Centre of Excellence for Postharvest Biotechnology (CEPB) School of Biosciences The University of Nottingham Malaysia Campus Semenyih Selangor Malaysia
| | - A. Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB) School of Biosciences The University of Nottingham Malaysia Campus Semenyih Selangor Malaysia
| |
Collapse
|
45
|
Esua OJ, Chin NL, Yusof YA, Sukor R. Combination of ultrasound and ultraviolet‐C irradiation on kinetics of color, firmness, weight loss, and total phenolic content changes in tomatoes during storage. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Okon Johnson Esua
- Department of Process and Food Engineering, Faculty of Engineering Universiti Putra Malaysia 43400 UPM, Serdang, Selangor Malaysia
- Department of Food Science, Faculty of Food Science and Technology Universiti Putra Malaysia 43400 UPM, Serdang, Selangor Malaysia
| | - Nyuk Ling Chin
- Department of Process and Food Engineering, Faculty of Engineering Universiti Putra Malaysia 43400 UPM, Serdang, Selangor Malaysia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering Universiti Putra Malaysia 43400 UPM, Serdang, Selangor Malaysia
| | - Rashidah Sukor
- Department of Food Science, Faculty of Food Science and Technology Universiti Putra Malaysia 43400 UPM, Serdang, Selangor Malaysia
| |
Collapse
|
46
|
Starek A, Pawłat J, Chudzik B, Kwiatkowski M, Terebun P, Sagan A, Andrejko D. Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Sci Rep 2019; 9:8407. [PMID: 31182762 PMCID: PMC6558055 DOI: 10.1038/s41598-019-44946-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/21/2019] [Indexed: 01/24/2023] Open
Abstract
The Cold Atmospheric pressure Plasma (CAP) technology is an emerging technology used for conditioning and microbiological decontamination of biomaterials including food. A novel tool for inactivation of juice background spoilage microorganisms, as well as high count of inoculated yeast while maintaining physicochemical properties in tomato juice - CAP technology was utilized in this study. Dry matter content and pH were not significantly influenced by CAP generated in GlidArc reactor. Small increase of lycopene, and slight loss of vitamin C content were observed.
Collapse
Affiliation(s)
- Agnieszka Starek
- Department of Biological Bases of Food and Feed Technologies of University of Life Sciences in Lublin, Głęboka 28, 20-612, Lublin, Poland
| | - Joanna Pawłat
- Institiute of Electrical Engineering and Electrotechnologies of Lublin, University of Technology, Nadbystrzycka 38a, 20-618, Lublin, Poland.
| | - Barbara Chudzik
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Michał Kwiatkowski
- Institiute of Electrical Engineering and Electrotechnologies of Lublin, University of Technology, Nadbystrzycka 38a, 20-618, Lublin, Poland
| | - Piotr Terebun
- Institiute of Electrical Engineering and Electrotechnologies of Lublin, University of Technology, Nadbystrzycka 38a, 20-618, Lublin, Poland
| | - Agnieszka Sagan
- Department of Biological Bases of Food and Feed Technologies of University of Life Sciences in Lublin, Głęboka 28, 20-612, Lublin, Poland
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies of University of Life Sciences in Lublin, Głęboka 28, 20-612, Lublin, Poland
| |
Collapse
|
47
|
Šimončicová J, Kryštofová S, Medvecká V, Ďurišová K, Kaliňáková B. Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:5117-5129. [DOI: 10.1007/s00253-019-09877-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
|
48
|
Roh SH, Lee SY, Park HH, Lee ES, Min SC. Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment. Int J Food Microbiol 2019; 293:24-33. [PMID: 30634068 DOI: 10.1016/j.ijfoodmicro.2018.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/10/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
The effects of surface coating, microbial loading, surface-to-volume ratio, sample stacking, mixing of samples with romaine lettuce, and shaking of the samples on the inactivation of Salmonella contaminating boiled chicken breast (BCB) cubes using in-package atmospheric dielectric barrier discharge cold plasma (ADCP) treatment at 38.7 kV were investigated. Whey protein coating increased the ADCP treatment efficacy in inactivating Salmonella on BCB cubes; the D-value increased from 0.2 to 1.3 min when the initial inoculum concentration increased from 3.8 to 5.7 log CFU/sample. ADCP decontaminated stacked BCB samples uniformly, and shaking during the treatment increased the inactivation rate. The concentrations of chicken protein isolate, water, and soybean oil in a chicken breast model food that resulted in the highest Salmonella reduction (1.7 log CFU/sample) were 20.5%, 68.9%, and 10.6%, respectively. ADCP treatment did not affect the color and tenderness of the model food, irrespective of its composition. The present study indicated that ADCP is a feasible technology to decontaminate prepackaged ready-to-eat meat cube products.
Collapse
Affiliation(s)
- Si Hyeon Roh
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Seung Young Lee
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Hyeon Hwa Park
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Eun Song Lee
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sea C Min
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
49
|
|
50
|
Kim SY, Bang IH, Min SC. Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|