1
|
Chen Z, Zhao Y, Feng X, Zhang L, Tian X, Ibrahim SA, Huang W, Liu Y. Effect of physical modification on the immunomodulatory activity of carboxymethyl pachymaran. Int J Biol Macromol 2025; 310:143253. [PMID: 40253046 DOI: 10.1016/j.ijbiomac.2025.143253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/29/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Carboxymethyl pachymaran (CMP) was modified by high temperature (HT), high pressure (HP) and gamma irradiation (GI) to obtain HT-CMP, HP-CMP, and GI-CMP samples, respectively. The effects of different modification methods on the immunomodulatory activity of CMPs were evaluated by cell culture in vitro and animal in vivo tests. The modified CMPs showed a stronger immunomodulatory activity than that of CMP in vitro. The modified CMPs improved the proliferative and phagocytic capacities, the ROS release, the TNF-α cytokine secretion of RAW264.7 compared with the CMP. For in vivo test, we found that the CMP and modified CMPs were able to enhance the immune function in mice with cyclophosphamide (CTX) induced by immunosuppression. All the CMPs could increase the cytokine levels (IL-2, IL-6, IFN-γ, TNF-α) and elevate the mRNA expression of NF-κB and TLRs. Furthermore, CMP, HT-CMP and GI-CMP had an ameliorative effect on intestinal flora disorders and could restore the richness and diversity of intestinal flora. Our results provided a theoretical foundation for the potential development of CMP-based immunomodulatory drugs.
Collapse
Affiliation(s)
- Zhaoxi Chen
- College of Food Science and Technology, Huazhong Agricultural University & Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Yalin Zhao
- College of Food Science and Technology, Huazhong Agricultural University & Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, United States
| | - Lijia Zhang
- College of Food Science and Technology, Huazhong Agricultural University & Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Xiaoju Tian
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Salam A Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University & Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University & Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Xie R, Wu X, Hu J, Chen W, Zhao K, Li H, Chen L, Du H, Liu Y, Zhang J. Insights into the Metabolite Differentiation Mechanism Between Chinese Dry-Cured Fatty Ham and Lean Ham Through UPLC-MS/MS-Based Untargeted Metabolomics. Foods 2025; 14:505. [PMID: 39942098 PMCID: PMC11816373 DOI: 10.3390/foods14030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
To understand the impact and mechanism of removing fat and skin tissue on the nutritional metabolism of Chinese dry cured ham, the differential metabolites (DMs) profile between lean ham (LH) and fatty ham (FH) was explored though untargeted metabolomics based on UPLC-MS/MS. The results showed significant differences of the metabolite profiles between FH and LH. A total of 450 defined metabolites were detected, and 266 metabolites among them had significantly different abundances between the two hams, mainly including organic acids and derivatives, and lipids and lipid-like molecules, as well as organoheterocyclic compounds. Furthermore, 131 metabolites were identified as DMs, among which 101 and 30 DMs showed remarkably higher contents in FH and LH, respectively. The further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that DMs can be mostly enriched in the pathways of ABC transporters, amino acid biosynthesis, protein digestion and absorption, aminoacyl-tRNA biosynthesis, and 2-oxocarboxylic acid metabolism. Moreover, the metabolic network of DMs revealed that the prominent DMs in FH, such as 9(S)-HODE, 9,10-EpOME, 13-Oxo-ODE, L-palmitoyl carnitine, and D-fructose, were primarily involved in the endogenous oxidation and degradation of fat and glycogen. Nevertheless, the dominant DMs in LH, such as 2-isopropylmalic acid, indolelactic acid, and hydroxyisocaproic acid, were mainly the microbial metabolites of amino acids and derivates. These findings could help us understand how fat-deficiency affects the nutritional metabolism of Chinese dry-cured hams from a metabolic perspective.
Collapse
Affiliation(s)
- Ruoyu Xie
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Xiaoli Wu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Jun Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Wenxuan Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Ke Zhao
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Huanhuan Li
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Lihong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Jin Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.W.); (J.H.); (W.C.); (K.Z.); (H.L.); (L.C.)
| |
Collapse
|
3
|
Yi Z, Yang B, Wan F, Lu J, Liu D, Lin L, Xu Y, Cen Z, Fan M, Liu W, Lu Q, Jiang G, Zhang Y, Song E, Gao J, Ye D. Chinese medicine Linggui Zhugan formula protects against diabetic kidney disease in close association with inhibition of proteinase 3-mediated podocyte apoptosis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118650. [PMID: 39094755 DOI: 10.1016/j.jep.2024.118650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Linggui-Zhugan (LGZG) comprises four herbs and is a classic formula in traditional Chinese medicine. There is strong clinical evidence of its pleiotropic effects in the prevention of diabetes and its related complications. Although several classes of drugs are currently available for clinical management of diabetic kidney disease (DKD), tight glycemic and/or hypertension control may not prevent disease progression. This study evaluated the therapeutic effect of the ethnopharmacological agent LGZG on DKD. AIM OF THE STUDY This study aimed to investigate the effects of LGZG formula with standard quality control on experimental DKD and its related metabolic disorders in animal model. Meanwhile, the present study aimed to investigate regulatory effects of LGZG on renal proteinase 3 (PR3) to reveal mechanisms underlying renoprotective benefits of LGZG. MATERIALS AND METHODS LGZG decoction was fingerprinted by high-performance liquid chromatography for quality control. An experimental model of DKD was induced in C57 BL/6J mice by a combination of high-fat diet feeding, uninephrectomy, and intraperitoneal injection of streptozocin. The LGZG decoction was administrated by daily oral gavage. RESULTS Treatment with LGZG formula significantly attenuated DKD-like traits (including severe albuminuria, mesangial matrix expansion, and podocyte loss) and metabolic dysfunction (disordered body composition and dyslipidemia) in mice. RNA sequencing data revealed a close association of LGZG treatment with marked modulation of signaling pathways related to podocyte injury and cell apoptosis. Mechanistically, LGZG suppressed the DKD-triggered increase in renal PR3 and podocyte apoptosis. In-vitro incubation of mouse immortalized podocytes with LGZG-medicated serum attenuated PR3-mediated apoptosis. CONCLUSION Our data demonstrated that the LGZG formula protected against DKD in mice and was closely associated with its inhibitory effects on PR3-mediated podocyte apoptosis.
Collapse
Affiliation(s)
- Zixuan Yi
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bei Yang
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fangyu Wan
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Lu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongyang Liu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Lin
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhikang Cen
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqi Fan
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhan Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuying Zhang
- Department of Obstetrics, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Erfei Song
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong Province, China; Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, The University of Hong Kong and Jinan University, Guangzhou, 510630, Guangdong Province, China
| | - Jie Gao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Dewei Ye
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
4
|
Guan P, Ding C, Lu J, Bai W, Liu J, Lian J, Song Z, Chen H, Jia Y. Influence of electrohydrodynamics on the drying characteristics, microstructure and volatile composition of apricot abalone mushroom ( Pleurotus eryngii). Curr Res Food Sci 2024; 9:100856. [PMID: 39319108 PMCID: PMC11421372 DOI: 10.1016/j.crfs.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
The study explored the use of current fluid dynamics drying technology for apricot abalone mushroom, examining how different output voltages (15, 25, and 35 kV) affected drying characteristics, microstructure, and volatile components. Comparisons were made with samples dried using hot air drying (HAD) and natural air drying (AD). Results revealed that HAD had the fastest drying rate at 0.29664(g·h-1). However, apricot abalone mushroom treated with electrohydrodynamic drying (EHD) maintained a color closer to fresh samples, exhibited a 21% increase in the ordered structure of protein secondary structure, a 12.5-fold increase in bound water content, and the most stable cell structure compared to HAD and AD treatments. A total of 83 volatile organic compounds were identified in the apricot abalone mushroom, with alcohols and aldehydes being the most prominent in terms of threshold and relative content, peaking in the 35 kV treatment group. These findings provide both experimental and theoretical insights into applying current fluid dynamics for drying apricot abalone mushroom.
Collapse
Affiliation(s)
- Peng Guan
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
- College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Jingli Lu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Wurile Bai
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Jiaqi Liu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Junjun Lian
- College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Zhiqing Song
- College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Hao Chen
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yun Jia
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
5
|
Kim HS, Baek SH. Ultra-high performance liquid chromatography-tandem mass spectrometry assay for simultaneous determination of 22 marker compounds in traditional herbal medicine Ojeoksan. J Pharm Biomed Anal 2024; 246:116193. [PMID: 38729089 DOI: 10.1016/j.jpba.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Traditional herbal medicines (THMs) have long been in use worldwide and are considered safe for use as tonics or complementary treatments for many diseases. Advanced quality control methods for THMs are required in the regulatory framework of modern medicines. In this study, an ultra-high performance liquid chromatography-tandem mass spectrometry assay was established for the simultaneous determination of 22 marker compounds in Ojeoksan (OJS), which is composed of 15 herbal substances. All marker compounds were analyzed within 20 min and successfully identified via scheduled multiple reaction monitoring. The method validation revealed excellent performance characteristics of the method such as specificity, linearity, sensitivity, precision, and accuracy, demonstrating its suitability for intended use. The developed method was applied to samples of commercial OJS tablet and soft-extract dosage forms. The 14 marker compounds corresponding to 12 component herbal substances were determined in the samples; ephedirine, albiflorin, paeoniflorin, ferulic acid, hesperidine, neohesperidin, cinnamic acid, platycodin D, 6-gingerol, atractylenolide III, glycyrrhizin, honokiol, decursin, and magnolol. A fast and easy assay method with sufficient discrimination power was established. As a novel assay, this method can contribute to the quality control of OJS products.
Collapse
Affiliation(s)
- Hee-Seo Kim
- Department of Biohealth Regulatory Science and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| | - Seung-Hoon Baek
- Department of Biohealth Regulatory Science and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea; Department of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
6
|
Li C, Zou Y, Liao G, Zheng Z, Chen G, Zhong Y, Wang G. Identification of characteristic flavor compounds and small molecule metabolites during the ripening process of Nuodeng ham by GC-IMS, GC-MS combined with metabolomics. Food Chem 2024; 440:138188. [PMID: 38100964 DOI: 10.1016/j.foodchem.2023.138188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
To investigate effects of metabolites and volatile compounds on the quality of Nuodeng ham, gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography-Q exactive orbitrap-mass spectrometry (UHPLC-QE-MS), and gas chromatography-ion transfer spectroscopy (GC-IMS) were used to analyze the differences of free fatty acids, small molecule metabolites and volatile compounds of Nuodeng ham at different ripening stages (the first, second and third year sample). 40 free fatty acids were detected. 757 and 300 metabolites were detected in positive and negative ion modes, respectively. 48 differential metabolites (VIP ≥ 1.5, P < 0.05) might important components affecting flavor differences of Nuodeng ham. Metabolic pathways revealed that fermenting-ripening of ham was associated with 31 metabolic pathways, among, 19 pathways were significant (Impact > 0.01, P < 0.05). 58 volatile compounds were identified, combined with PCA and PLS-DA, 15 flavor markers were screened out. These findings provide a scientific basis for further research on the flavor formation mechanism of Nuodeng ham.
Collapse
Affiliation(s)
- Cong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yingling Zou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| | - Zhijie Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghui Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yanru Zhong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
7
|
Lu M, Yin J, Xu T, Dai X, Liu T, Zhang Y, Wang S, Liu Y, Shi H, Zhang Y, Mo F, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Fuling-Zexie formula attenuates hyperuricemia-induced nephropathy and inhibits JAK2/STAT3 signaling and NLRP3 inflammasome activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117262. [PMID: 37788785 DOI: 10.1016/j.jep.2023.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuling-Zexie (FZ) formula, a traditional Chinese herbal prescription composed of Poria cocos (Schwan.) Wolf. (Poria), Pueraria lobate (Willd.) Howe. (Puerariae Lobatae Radix), Alisma orientale (Sam.) Julep. (Alismatis Rhizoma), and Atractylodes lancea (Thunb.) Dc. (Atractylodis Rhizoma), has been clinically used to ameliorate hyperuricemia (HUA) and its associated renal injury. AIM OF STUDY This study aims to explore the action and mechanism of FZ on renal inflammation and dysfunction caused by HUA. MATERIALS AND METHODS FZ was orally administered to rapid HUA mouse induced by potassium oxonate (PO) and hypoxanthine (HX) for 7 days. Serum levels of uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), xanthine oxidase (XOD), adenosine deaminase (ADA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urine levels of UA, CRE and urinary albumin were determined by biochemical assays. Serum levels of interleukin (IL)-1β and IL-6 were tested by ELISA. Hematoxylin-eosin and Masson staining were used to examine kidney and liver histopathological alterations. The expressions of renal glucose transporter 9 (GLUT9), ATP-binding cassette subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), phospho-janus kinase 2 (p-JAK2), p-signal transducer and activator of transcription 3 (p-STAT3), suppression of cytokine signaling 3 (SOCS3), NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cleaved-cysteinyl aspartate specific proteinase-1 (cleaved-Cas-1) were detected by western blots. The potential protein targets and pathways of FZ intervention on HUA were predicted by network pharmacology. The constituents in FZ aqueous extract were analyzed by UPLC-MS. RESULTS FZ reduced serum UA, CRE, BUN, and urinary albumin and increased urine UA, CRE levels in HUA mice. In addition, the treatment with FZ to HUA mice inhibited the elevated serum levels of XOD and ADA, and regulated renal urate transports including OAT1, GLUT9 and ABCG2. FZ also attenuated kidney inflammation and fibrosis and downregulated the expressions of IL-1β, p-JAK2, p-STAT3, SOCS3, IL-6, NLRP3, ASC, and cleaved-Cas-1. Thirteen compounds were identified in the FG, including L-phenylalanine, D-tryptophan, 3'-hydroxypuerarin, Puerarin, 3'-Methoxy Puerarin, Daidzin, Pueroside A, formononetin-8-C- [xylosyl (1→6)]-glucoside, Ononin, Alisol I 23-acetate, 16-oxo-alisol A, Alisol C and Alisol A. CONCLUSION FZ inhibits serum UA generation and promotes urine UA excretion as well as attenuates kidney inflammation and fibrosis in HUA mouse with nephropathy. The underlying mechanism of its action may be associated with suppression of the JAK2/STAT3 signaling pathway and NLRP3 inflammasome activation. This formula may offer a novel source for developing anti-HUA drugs.
Collapse
Affiliation(s)
- Meixi Lu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Fangfang Mo
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Zhao Y, Zhao M, Wang Z, Zhao C, Zhang Y, Wang M. Danggui Shaoyao San: Chemical characterization and inhibition of oxidative stress and inflammation to treat CCl 4-induced hepatic fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116870. [PMID: 37423517 DOI: 10.1016/j.jep.2023.116870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Shaoyao San (DSS) has effective in treating hepatic ascites and liver disease. AIM OF THE STUDY To explore the chemical characterization of DSS and protective effect on CCl4-induced hepatic fibrosis and its mechanism, especially its anti-oxidative stress and anti-inflammation. MATERIALS AND METHODS The chemical characterization of DSS was determined by HPLC-Q-Exactive Orbitrap MS. And the antioxidant activity of DSS in vitro was determined. The hepatic fibrosis model was established using intragastric administration of 40% CCl4/soybean oil (v/v) twice weekly for 13 weeks. From 6th week, the DSS group and the positive control group were given DSS (2, 4, 8 g/kg/d) and silymarin (50 mg/kg/d), respectively. The livers of rats were examined histologically by H&E. The ALT, AST, ALB and TBIL were determined, and hepatic fibrosis markers (HA, LN, CIV, PIIINP), oxidative stress (SOD, MDA, GST, GSH) and inflammatory factor (IL-6, TNF-α) were tested using ELISA kits. In addition, the levels of TAC, TOS, LOOH and AOPP in the liver were also determined. RESULTS The chemical characterization of DSS was determined by HPLC-Q-Exactive Orbitrap MS. The results show that DSS mainly includes triterpenoids, monoterpenes, phenols, sesquiterpenes, butyl phthalide, etc., and DSS has good antioxidant activity in vitro. In addition, the ALT, AST and TBIL of rats were remarkably reduced after treatment with DSS at three doses. Liver histopathological analysis showed that DSS alleviated the inflammatory infiltration, hepatocyte swelling, necrosis and hepatic fibrosis induced by CCl4. DSS significantly decreased HA, IV-C, PIIINP and LN. Further determination showed that DSS significantly increased TAC, OSI and decreased TOC, LOOH and MDA, indicating that DSS could regulate redox balance and reduce lipid peroxidation in vivo. DSS also increased the activity of GST, SOD and GSH concentration. In addition, DSS also reduced IL-6 and TNF-α. CONCLUSIONS In this study, we described the chemical characterization of DSS and found that it has good antioxidant activity. We proved that DSS has the functions of reducing oxidative stress, anti-inflammatory, protecting liver cells and reducing hepatic fibrosis.
Collapse
Affiliation(s)
- Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Zheyong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Miao Wang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Hsiung SY, Deng SX, Li J, Huang SY, Liaw CK, Huang SY, Wang CC, Hsieh YSY. Machine learning-based monosaccharide profiling for tissue-specific classification of Wolfiporia extensa samples. Carbohydr Polym 2023; 322:121338. [PMID: 37839831 DOI: 10.1016/j.carbpol.2023.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 10/17/2023]
Abstract
Machine learning (ML) has been used for many clinical decision-making processes and diagnostic procedures in bioinformatics applications. We examined eight algorithms, including linear discriminant analysis (LDA), logistic regression (LR), k-nearest neighbor (KNN), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), Naïve Bayes classifier (NB), and artificial neural network (ANN) models, to evaluate their classification and prediction capabilities for four tissue types in Wolfiporia extensa using their monosaccharide composition profiles. All 8 ML-based models were assessed as exemplary models with AUC exceeding 0.8. Five models, namely LDA, KNN, RF, GBM, and ANN, performed excellently in the four-tissue-type classification (AUC > 0.9). Additionally, all eight models were evaluated as good predictive models with AUC value > 0.8 in the three-tissue-type classification. Notably, all 8 ML-based methods outperformed the single linear discriminant analysis (LDA) plotting method. For large sample sizes, the ML-based methods perform better than traditional regression techniques and could potentially increase the accuracy in identifying tissue samples of W. extensa.
Collapse
Affiliation(s)
- Shih-Yi Hsiung
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shun-Xin Deng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Jing Li
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Sheng-Yao Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chen-Kun Liaw
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Su-Yun Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE106 91, Sweden.
| |
Collapse
|
10
|
Chen Z, Zhao Y, Feng X, Zhang L, Ibrahim SA, Huang W, Liu Y. Effects of degradation on the physicochemical and antioxidant properties of carboxymethyl pachymaran. Int J Biol Macromol 2023:125560. [PMID: 37364805 DOI: 10.1016/j.ijbiomac.2023.125560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Poria cocos (Schw.) Wolf is a well-known edible and medicinal fungus. The polysaccharide in the sclerotium of P. cocos was extracted and prepared into carboxymethyl pachymaran (CMP). Three different degradation treatments including high temperature (HT), high pressure (HP) and gamma irradiation (GI) were used to process CMP. The changes in physicochemical properties and antioxidant activities of CMP were then comparatively investigated. We found that the molecular weights of HT-CMP, HP-CMP, and GI-CMP decreased from 787.9 kDa to 429.8, 569.5 and 6.0 kDa, respectively. Degradation treatments had no effect on the main chains of →3-β-D-Glcp-(1 → while changed the branched sugar residues. The polysaccharide chains of CMP were depolymerized after high pressure and gamma irradiation treatments. The three degradation methods improved the stability of CMP solution while decreased the thermal stability of CMP. In addition, we found that the GI-CMP with lowest molecular weight had the best antioxidant activity. Our results suggest that gamma irradiation treatment could degrade CMP as functional foods with strong antioxidant activity.
Collapse
Affiliation(s)
- Zhaoxi Chen
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Yalin Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, United States
| | - Lijia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Salam A Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
Xie Q, Jia X, Zhang W, Xu Y, Zhu M, Zhao Z, Hao J, Li H, Du J, Liu Y, Feng H, Li H. Effects of Poria cocos extract and protein powder mixture on glucolipid metabolism and rhythm changes in obese mice. Food Sci Nutr 2023; 11:2356-2371. [PMID: 37181308 PMCID: PMC10171496 DOI: 10.1002/fsn3.3245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 03/11/2023] Open
Abstract
Herein, we explored the effects of Poria cocos extract, protein powder mixture, and their combined intervention on weight loss in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice were selected and fed a HFD for 8 weeks; obese mice that were successfully modeled were divided into modeling and five intervention groups, and given the corresponding treatment for 10 weeks. Body weight, fat, and muscle tissue, blood glucose, lipids, inflammatory factors, and other glucose and lipid metabolism-related indicators were measured to evaluate the effect of P. cocos and protein powder intervention on weight loss in obese mice. The body weight of the intervention group was reduced compared with the HFD group. Fat content of mice in F3PM group decreased significantly (p < .05). Levels of blood glucose, lipids, adiponectin, leptin, and inflammatory factors, including interleukin-1 β and tumor necrosis factor- α showed improvement. Lipoprotein lipase (lower about 2.97 pg/ml, vs. HFD mice 10.65 mmoL/ml) and sterol regulatory element-binding transcription factor (lower about 1413.63 pg/ml, vs. HFD mice 3915.33 pg/ml) levels in liver tissue were decreased. The respiratory exchange rate (RER) of mice in the HFD and subject intervention groups had no circadian rhythm and was maintained at approximately 0.80. The protein powder mixture (PM) group had the lowest RER (p < .05), the P. cocos extract (FL) and F1PM groups had similar RER to the HFD group (p < .05), and the F2PM group had a higher RER than the HFD group (p < .05). And food intake and energy metabolism returned to circadian rhythm, with an increase in the dose of P. cocos extract, the feeding rhythms of F1PM, F2PM, and F3PM were closer to that of the normal diet (ND) group. Feeding intervention with P. cocos and protein powder improved fat distribution, glucolipid metabolism, and energy metabolism, with the combination of F3PM showing more diverse benefits.
Collapse
Affiliation(s)
- Qiaoling Xie
- School of Public HealthXiamen UniversityXiamenChina
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Wei Zhang
- School of Public HealthXiamen UniversityXiamenChina
| | - Yuhan Xu
- School of Public HealthXiamen UniversityXiamenChina
| | - Meizhen Zhu
- School of Public HealthXiamen UniversityXiamenChina
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd.HohhotChina
- Yili Innovation CenterInner Mongolia Yili Industrial Group Co., Ltd.HohhotChina
| | - Hongwei Li
- School of Public HealthXiamen UniversityXiamenChina
| |
Collapse
|
12
|
Liu X, Zhong C, Xie J, Liu H, Xie Z, Zhang S, Jin J. Geographical region traceability of Poria cocos and correlation between environmental factors and biomarkers based on a metabolomic approach. Food Chem 2023; 417:135817. [PMID: 36905692 DOI: 10.1016/j.foodchem.2023.135817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
The edible values of P. cocos from different origins vary significantly, therefore, it is important to investigate the traceability of geographical regions and identify the geographical biomarkers of P. cocos. The metabolites of P. cocos of the different geographical origins were assessed using liquid chromatography tandem-mass spectrometry, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA). The OPLS-DA could clearly discriminate the metabolites of P. cocos from the three cultivation regions (YN, Yunnan; AH, Anhui; JZ, Hunan). Finally, three carbohydrates, four amino acids, and four triterpenoids were selected as biomarkers for P. cocos origin tracing. Correlation matrix analysis revealed that the contents of biomarkers were closely related to geographical origin. Altitude, temperature, and soil fertility were the main factors responsible for the differences in biomarker profiles in P. cocos. The metabolomics approach provides an effective strategy for tracing and identifying the biomarkers of P. cocos from different geographical origins.
Collapse
Affiliation(s)
- Xiaoliu Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Jing Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Hao Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Zhenni Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| |
Collapse
|
13
|
Chen S, Zhang H, Yang L, Zhang S, Jiang H. Optimization of Ultrasonic-Assisted Extraction Conditions for Bioactive Components and Antioxidant Activity of Poria cocos (Schw.) Wolf by an RSM-ANN-GA Hybrid Approach. Foods 2023; 12:foods12030619. [PMID: 36766147 PMCID: PMC9914185 DOI: 10.3390/foods12030619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, a response surface methodology and an artificial neural network coupled with a genetic algorithm (RSM-ANN-GA) was used to predict and estimate the optimized ultrasonic-assisted extraction conditions of Poria cocos. The ingredient yield and antioxidant potential were determined with different independent variables of ethanol concentration (X1; 25-75%), extraction time (X2; 30-50 min), and extraction solution volume (mL) (X3; 20-60 mL). The optimal conditions were predicted by the RSM-ANN-GA model to be 55.53% ethanol concentration for 48.64 min in 60.00 mL solvent for four triterpenoid acids, and 40.49% ethanol concentration for 30.25 min in 20.00 mL solvent for antioxidant activity and total polysaccharide and phenolic contents. The evaluation of the two modeling strategies showed that RSM-ANN-GA provided better predictability and greater accuracy than the response surface methodology for ultrasonic-assisted extraction of P. cocos. These findings provided guidance on efficient extraction of P. cocos and a feasible analysis/modeling optimization process for the extraction of natural products.
Collapse
Affiliation(s)
| | | | | | | | - Haiyang Jiang
- Correspondence: ; Tel.: +86-010-62734478; Fax: +86-010-62731032
| |
Collapse
|
14
|
Yang Z, Liao G, Wan D, Kong W, Li C, Gu D, Pu Y, Ge C, Wang G. Combined application of high-throughput sequencing and LC-MS/MS-based metabolomics to evaluate the formation of Zn-protoporphyrin in Nuodeng ham. Food Res Int 2022; 162:112209. [DOI: 10.1016/j.foodres.2022.112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
15
|
Zhao Q, Bian X, Shan C, Cheng J, Wang C, Xu Y, Xu M, Yan H, Qian D, Duan J. Quantitative analysis of nutrients for nucleosides, nucleobases and amino acids hidden behind five distinct regions-derived Poria cocos using ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry. J Sep Sci 2022; 45:4039-4051. [PMID: 36084259 DOI: 10.1002/jssc.202200516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Poria cocos is an edible fungus used as a health product and traditional Chinese medicinal preparation. Nevertheless, little is known about its nutrients. In this study, ultra-high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry was conducted to quantify nucleosides, nucleobases, and amino acids in 32 batches of Poria cocos samples collected from Anhui, Sichuan, Hubei, Hunan and Guizhou. Subsequently, the linearity, precision, repeatability, stability, and recovery of our methods were validated. Samples from different regions were clearly separated by partial least squares discriminant analysis and cluster analysis. Our results suggested that Poria cocos samples from different geographical environments differed in nucleosides, nucleobases, and amino acids. The plot of variable importance for projection disclosed differential compositions of L-Leucine, Uridine, L-Asparagine, L-Glutamine, L-phenylalanine, L-Ornithine monohydrochloride, L-Hydroxyproline, Taurine and Inosine in Poria cocos from five regions. We found the highest content of total analytes, total amino acids and total non-essential amino acids in Poria cocos from Anhui, total essential amino acids in the Sichuan samples and total nucleosides in Hunan samples. Overall, we determined the content of Poria cocos-derived nucleosides, nucleobases, and amino acids, providing the foothold for further chemical mining and use of Poria cocos. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiulong Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaokun Bian
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| | - Chenxiao Shan
- Institute of TCM-Related Comorbid Depression, Nanjing, 210023, China
| | - Jiaxin Cheng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China
| | - Chunxue Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China
| | - Yi Xu
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| | - Min Xu
- Institute of TCM-Related Comorbid Depression, Nanjing, 210023, China
| | - Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing, 210023, China
| | - Dawei Qian
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| | - Jinao Duan
- Yancheng NO.1 People's Hospital, Yancheng, 224000, China
| |
Collapse
|
16
|
Yang Y, Li L, Li N, Li F, Fan W, He Y, Wang Z, Yang L. Rapid analysis of differential chemical compositions of Poria cocos using thin-layer chromatography spray ionization-mass spectrometry. Analyst 2022; 147:3072-3080. [DOI: 10.1039/d2an00565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple analytical strategy for determining the chemical composition of Poria cocos using thin-layer chromatography spray ionization-mass spectrometry (TLCSI-MS).
Collapse
Affiliation(s)
- Ying Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Na Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China
| |
Collapse
|
17
|
Fan S, Li B, Tian Y, Feng W, Niu L. Comprehensive characterization and identification of chemical constituents in Yangwei decoction using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Sep Sci 2021; 45:1006-1019. [PMID: 34962084 DOI: 10.1002/jssc.202100723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022]
Abstract
Yangwei decoction, a classical traditional Chinese medicine prescription, has been widely used to treat exogenous cold and internal injury with damp stagnation for many centuries. However, its systematic chemical profiling remains ambiguous, which has hampered the interpretation of pharmacology and the mechanism of its formula. In the present study, a ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry method was successfully established for the first time to separate and identify the complicated components of Yangwei decoction. The accurate mass data of the protonated molecules, deprotonated molecules, and fragment ions were detected in positive and negative ion modes. A total of 226 compounds in Yangwei decoction were tentatively identified and unambiguously characterized by comparing their retention times and mass spectrometry data with those of reference standards and literature, including 24 lignans, 18 alkaloids, 9 phenylpropanoid glycosides, 76 flavonoids, 59 triterpenoids, 17 organic acids, 7 gingerols, 8 lactones, and 8 other compounds. The present study provides a novel method of constituents characterization for well-known Chinese medicine prescriptions. The study aims to lay a robust foundation for future research, providing the holistic quality control and pharmacology of Yangwei decoction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuaishuai Fan
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China
| | - Baolin Li
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Yurou Tian
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Wei Feng
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| | - Liying Niu
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Hebei, P. R. China.,Hebei TCM Formula Granule Technology Innovation Center & TCM Formula Granule Research Center of Hebei Province University & TCM Quality Evaluation and Standardization Engineering Research Center, Hebei, P. R. China
| |
Collapse
|
18
|
Zhang L, Yin M, Feng X, Ibrahim SA, Liu Y, Huang W. Anti-Inflammatory Activity of Four Triterpenoids Isolated from Poriae Cutis. Foods 2021; 10:foods10123155. [PMID: 34945705 PMCID: PMC8700795 DOI: 10.3390/foods10123155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, triterpenoid compounds from Poriae Cutis were separated by high-speed countercurrent chromatography (HSCCC) and identified using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) and nuclear magnetic resonance (NMR). The in vitro anti-inflammatory activities of the purified triterpenoids on RAW 264.7 cells were also investigated. Triterpenoids, poricoic acid B, poricoic acid A, dehydrotrametenolic acid, and dehydroeburicoic acid were obtained; their levels of purity were 90%, 92%, 93%, and 96%, respectively. The results indicated that poricoic acid B had higher anti-inflammatory activity than those of poricoic acid A by inhibiting the generation of NO in lipopolysaccharide (LPS)-induced RAW 264.7 cells. However, dehydrotrametenolic acid and dehydroeburicoic acid had no anti-inflammatory activity. In addition, the production of cytokines (TNF-α, IL-1β, and IL-6) in cells treated with poricoic acid B decreased in a dose-dependent manner in the concentration range from 10 to 40 μg/mL. The results provide evidence for the use of Poriae Cutis as a natural anti-inflammatory agent in medicines and functional foods.
Collapse
Affiliation(s)
- Lijia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Mengzhou Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 171 Carver Hall, Greensboro, NC 27411, USA;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
- Correspondence: ; Tel.: +86-136-5980-7072
| |
Collapse
|
19
|
Mou Y, Wang X, Wang T, Wang Y, Wang H, Zhao H, Chen Q, Xia L, Zhang Y. Clinical application and pharmacological mechanism of Wuling powder in the treatment of ascites: A systematic review and network pharmacological analysis. Biomed Pharmacother 2021; 146:112506. [PMID: 34883450 DOI: 10.1016/j.biopha.2021.112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/30/2023] Open
Abstract
Ascites is one of the common complications in patients with decompensated liver cirrhosis and liver cancer. Wuling powder (WLP) is a classic prescription for the treatment of water retention caused by bladder gasification. It is also widely used in the treatment of ascites. This systematic review aimed to evaluate the clinical efficacy of WLP and determine its effective chemical components based on a large number of related pieces of literature. The pharmacological effects and chemical constituents of WLP were summarized. Besides, the clinical research status of WLP in the treatment of ascites caused by liver cancer and cirrhosis was analyzed. The key targets and pathways of WLP in the treatment of ascites based on network pharmacology analysis were also discussed. Furthermore, the core components and core targets of WLP in the treatment of ascites using molecular docking were verified and the interaction sites were predicted, to provide a theoretical and scientific basis for the clinical application of WLP.
Collapse
Affiliation(s)
- Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - XueZhen Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Lei Xia
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| |
Collapse
|
20
|
Zhang J, Guo H, Yan F, Yuan S, Li S, Zhu P, Chen W, Peng C, Peng D. An UPLC - Q - Orbitrap method for pharmacokinetics and tissue distribution of four triterpenoids in rats after oral administration of Poria cocos ethanol extracts. J Pharm Biomed Anal 2021; 203:114237. [PMID: 34242946 DOI: 10.1016/j.jpba.2021.114237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Poria cocos (Schw.) Wolf, is a fungus that is widely used as medicine and dietary supplement in China. But its action mechanism is still not very clear. In this paper, a rapid, specific and sensitive high performace liquid chromatography coupled with hybrid quadrupole - orbitrap mass sepctrometry (UPLC - Q - Orbitrap MS) method has been developed and validated to simultaneously determine of four triterpenoids including Dehydrotumulosic acid (DTA), Dehydropachymic acid (DPA), Pachymic acid (PA), Dehydrotrametenolic acid (DMA) from Poria cocos in rat plasma and tissues. The analyte was extracted from rat plasma and tissue homogenates by protein precipitation with acetonitrile using glibenclamide as the internal standard (IS). Chromatographic separation was carried out on ACQUITY UPLC BEH - C18 column (2.1 mm × 50 mm, 1.7 μm) with a mobile phase composed of acetonitrile - water (containing 1.0 mmol/L ammonium acetate) using gradient elution at a flow rate of 0.2 mL/min. Electrospray ionization (ESI -) under negative ion mode was used, and its quantization was performed with multiple reaction monitoring (MRM) mode. The method was fully validated and successfully applied to pharmacokinetics and tissue distribution study in rats after oral administration of ethanol extracts of Poria cocos. Compared with that of plasma exporsure, triterpenoids could be detected in various tissues with a relatively high degree of tissue distribution. After oral administration, the concentration orders in seven different tissues were ranked as DTA > PA > DPA > DMA in intestine and stomach, wheras DTA > DMA > PA > DPA in heart, liver, spleen, lung and kidney tissues, which is speculated that DPA, PA may be converted into DMA in vivo. In conclusion, this results may provide a material basis for study of the pharmacological actions of triterpenoids in Poria cocos.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China.
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Fulong Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Siyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Pengling Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China.
| |
Collapse
|
21
|
Wang B, Feng X, Liu S, Qiu F, Lu X, Li Z. Comprehensive Quality Assessment of Kaixin Powder by HPLC-DAD Quantification and HPLC-QTOF-MS/MS Confirmation. ACS OMEGA 2021; 6:11319-11326. [PMID: 34056287 PMCID: PMC8153899 DOI: 10.1021/acsomega.1c00289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Kaixin Powder (KXP) is a classic formula for treating morbid forgetfulness in ancient China. To guarantee the efficacy and safety of KXP, a simple and accurate HPLC-DAD method has been established and validated for the quantitative analysis of seven bioactive compounds in KXP. Dehydrotumulosic acid (DTU) and dehydrotrametenolic acid (DTR) were quantified in KXP for the first time. Good chromatographic separation was conducted on a Kromasil 100-5 C18 column (250 mm × 4.6 mm, 5 μm) by gradient elution using mobile phases containing acetonitrile and 0.1% formic acid aqueous solution at different detection wavelengths. The calibration curves of each compound showed good linearity (r ≥ 0.9990), and the LOD and LOQ were in the ranges of 0.01-0.10 and 0.03-0.40 μg/mL, respectively. The relative standard deviations (RSDs) of intra-day and inter-day precisions were in the ranges of 0.45-1.74% and 0.56-2.32%, respectively. All recoveries were in the range of 93.6-105.5% with an RSD no more than 2.77%. These quantification results of seven compounds determined in the samples were further confirmed by HPLC-QTOF-MS/MS. This study provides a useful and simple method for analyzing the major bioactive compounds and improves the quality assessment research of KXP.
Collapse
|
22
|
Jiang F, Wang T, Li S, Jiang Y, Chen Z, Liu W. Effect of Fluorofenidone Against Paraquat-Induced Pulmonary Fibrosis Based on Metabolomics and Network Pharmacology. Med Sci Monit 2021; 27:e930166. [PMID: 33790218 PMCID: PMC8023277 DOI: 10.12659/msm.930166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fluorofenidone (AKF-PD) is an anti-fibrotic small-molecule compound. Its mechanism of action on paraquat (PQ)-induced pulmonary fibrosis is still unclear. MATERIAL AND METHODS Forty-eight SD rats were divided into 4 groups: control group, PQ group, PQ+AKF-PD group, and AKF-PD group. The pathological changes of lung tissues were observed by Masson and HE staining. The UPLC-QTOF-MS analysis was performed to detect the differences in metabolites among groups, then the possible mechanisms of the anti-pulmonary fibrosis effects of fluorofenidone were further revealed by network pharmacology analysis. Biological methods were used to verify the results of the network pharmacology analysis. RESULTS The results showed that fluorofenidone treatment significantly alleviated paraquat-induced pulmonary fibrosis. Metabolomics analysis showed that 18 metabolites were disordered in the serum of paraquat-poisoned rats, of which 13 were restored following fluorofenidone treatment. Network pharmacology analysis showed that the drug screened a total of 12 targets and mainly involved multiple signaling pathways and metabolic pathways to jointly exert anti-pulmonary fibrosis effects. Autophagy is the main pathway of fluorofenidone in treatment pulmonary fibrosis. The western blot results showed that fluorofenidone upregulated the expression of LC3-II/I and E-cadherin, and downregulated the expression of p62, alpha-SMA, and TGF-ß1, which validated that fluorofenidone could inhibit the development of paraquat-induced pulmonary fibrosis by increasing autophagy. CONCLUSIONS In conclusion, metabolomics combined with network pharmacology research strategy revealed that fluorofenidone has a multi-target and multi-path mechanism of action in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Feiya Jiang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Tongtong Wang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Sha Li
- Department of Pharmacy, Changsha Stomatological Hospital, Changsha, Hunan, China (mainland)
| | - Yu Jiang
- Emergency Medical Research Institute, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Zhuo Chen
- Xiangya College of Pharmacy, Central South University, Changsha, Hunan, China (mainland)
| | - Wen Liu
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan, China (mainland)
| |
Collapse
|
23
|
Zhang Y, Zhao M, Liu T, Zhu W, Zhao C, Wang M. Rapid characterization of the chemical constituents of Yinchen Wuling Powder by UPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. J Pharm Biomed Anal 2021; 198:114022. [PMID: 33744466 DOI: 10.1016/j.jpba.2021.114022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Yinchen Wuling Powder (YCWLP) is a classic Chinese medicine prescription with a long history and has been commonly used for treating jaundice hepatitis, liver fibrosis, hyperlipidemia and early diabetes in clinical applications. However, the chemical composition of YCWLP is still unclear. In order to obtain the chemical profile of YCWLP, a systematic ultra-performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry (UPLC-FT-ICR-MS) method was developed in this study. As a result, a total of 138 compounds including terpenoid acids, organic acids, flavonoids, sesquiterpenes, coumarins and anthraquinones were identified by comparing the retention time, molecular ions and fragmentation behaviors with the reference compounds or the in-house database. This study comprehensively elucidated the chemical basis of YCWLP and provided a scientific basis for further quality control and pharmacology research.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Wenjing Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
24
|
Yang M, Zhao Y, Qin Y, Xu R, Yang Z, Peng H. Untargeted Metabolomics and Targeted Quantitative Analysis of Temporal and Spatial Variations in Specialized Metabolites Accumulation in Poria cocos (Schw.) Wolf (Fushen). FRONTIERS IN PLANT SCIENCE 2021; 12:713490. [PMID: 34621284 PMCID: PMC8490877 DOI: 10.3389/fpls.2021.713490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/19/2021] [Indexed: 05/07/2023]
Abstract
Poria cocos (Schw.) Wolf is a saprophytic fungus that grows around the roots of old, dead pine trees. Fushen, derived from the sclerotium of P. cocos but also containing a young host pine root, has been widely used as a medicine and food in China, Japan, Korea, Southeast Asian countries, and some European countries. However, the compound variations at the different growth periods and in the different parts of Fushen have not previously been investigated. In this study, an untargeted metabolomics approach based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and targeted quantitative analysis was utilized to characterize the temporal and spatial variations in the accumulation of specialized metabolites in Fushen. There were 119 specialized metabolites tentatively identified using the UPLC-Q/TOF-MS. The nine growth periods of Fushen were divided into four groups using partial least squares discrimination analysis (PLS-DA). Four different parts of the Fushen [fulingpi (FP), the outside of baifuling (BO), the inside of baifuling (BI), and fushenmu (FM)] were clearly discriminated using a PLS-DA and orthogonal partial least squares discrimination analysis (OPLS-DA). Markers for the different growth periods and parts of Fushen were also screened. In addition, the quantitative method was successfully applied to simultaneously determine 13 major triterpenoid acids in the nine growth periods and four parts. The quantitative results indicated that the samples in January, March, and April, i.e., the late growth period, had the highest content levels for the 13 triterpenoid acids. The pachymic acid, dehydropachymic acid, and dehydrotumulosic acid contents in the FM were higher than those in other three parts in March, whereas the poricoic acid B, poricoic acid A, polyporenic acid C, dehydrotratrametenolic acid, dehydroeburicoic acid, and eburicoic acid in FP were higher beginning in October. These findings reveal characteristics in temporal and spatial distribution of specialized metabolites in Fushen and provide guidance for the identification of harvesting times and for further quality evaluations.
Collapse
Affiliation(s)
- Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yujiao Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Yujiao Zhao
| | - Yuejian Qin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Huasheng Peng
| |
Collapse
|
25
|
Holistic quality evaluation of Saposhnikoviae Radix (Saposhnikovia divaricata) by reversed-phase ultra-high performance liquid chromatography and hydrophilic interaction chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry-based untargeted metabolomics. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Nie A, Chao Y, Zhang X, Jia W, Zhou Z, Zhu C. Phytochemistry and Pharmacological Activities of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. Front Pharmacol 2020; 11:505249. [PMID: 33071776 PMCID: PMC7533546 DOI: 10.3389/fphar.2020.505249] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Poria cocos is the dried sclerotium of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb., which was the current accepted name and was formerly known as Macrohyporia cocos (Schwein.) I. Johans. & Ryvarden, Pachyma cocos (Schwein.) Fr., Poria cocos F.A. Wolf and Sclerotium cocos Schwein. It is one of the most important crude drugs in traditional Chinese medicine, with a wide range of applications in ameliorating phlegm and edema, relieving nephrosis and chronic gastritis and improving uneasiness of minds. Its extensive pharmacological effects have attracted considerable attention in recent years. However, there is no systematic review focusing on the chemical compounds and pharmacological activities of Poria cocos. Therefore, this review aimed to provide the latest information on the chemical compounds and pharmacological effects of Poria cocos, exploring the therapeutic potential of these compounds. We obtained the information of Poria cocos from electronic databases such as SCI finder, PubMed, Web of Science, CNKI, WanFang DATA and Google Scholar. Up to now, two main active ingredients, triterpenes and polysaccharides of Poria cocos, have been identified from Poria cocos. It has been reported that they have pharmacological effects on anti-tumor, anti-bacterial, anti-oxidant, anti-inflammatory, immunomodulation, and liver and kidney protection. The review summarizes the phytochemistry and pharmacological properties of Poria cocos, which suggest that researchers should focus on the development of new drugs about Poria cocos to make them exert greater therapeutic potential.
Collapse
Affiliation(s)
- Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Chao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenrui Jia
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Zhao X, Zhang X, Ye B, Yan H, Zhao Y, Liu L. Effect of unsaturated fatty acids on glycation product formation pathways (Ⅰ) the role of oleic acid. Food Res Int 2020; 136:109560. [PMID: 32846604 DOI: 10.1016/j.foodres.2020.109560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Research on advanced glycation end-products (AGEs) and their formation pathways in food processing has gradually increased because AGEs are associated with human health, especially with involvement of lipids. In this study, radicals and glycation products were detected via electron spin resonance (ESR) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) respectively. The correlation of important intermediates was used to explain the effect of oleic acid (OA) on the glycation products and pathways. The results indicated OA participation decreased the content of stable radicals and glycosyl compounds in Maillard Reaction (MR). The oxidation of OA produced active radicals, and electron transfer caused lysine to transform radical form. These radicals participated in the formation of fructosyllysine (FL) with glucose (Glc) via the MR. The participation of OA is acted as inhibiting the way of Glc autoxidation and promoting the glycation pathway from FL to 3-deoxyglucosone (3-DG) to fluorescent-AGEs. Orthogonal projection to latent structures discriminant analysis results indicated that 3-DG, D-glucosone and methylglyoxal are key products in discriminating the glycation reaction.
Collapse
Affiliation(s)
- Xin Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Xiaoyu Zhang
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Bo Ye
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China; Liaoning Modern Agricultural Engineering Center, Changjiang North Street No. 39, 110031 Shenyang, China
| | - Haixia Yan
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Yingbo Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China.
| |
Collapse
|
28
|
Xie C, Yan S, Zhang Z, Gong W, Zhu Z, Zhou Y, Yan L, Hu Z, Ai L, Peng Y. Mapping the metabolic signatures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted metabolomics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|