1
|
Choręziak A, Rosiejka D, Michałowska J, Bogdański P. Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources-An Overview. Nutrients 2025; 17:1148. [PMID: 40218906 PMCID: PMC11990347 DOI: 10.3390/nu17071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Protein is a fundamental macronutrient in the human diet. It supplies our organisms with essential amino acids, which are needed for the growth and maintenance of cells and tissues. Conventional protein sources, despite their complete amino acid profiles and excellent digestibility, have a proven negative impact on the environment. Furthermore, their production poses many ethical challenges. This review aims to present nutritional, more ethical, and environmentally friendly alternatives that could serve as potential protein sources for the population. The available literature on alternative protein sources has been analyzed. Based on the research conducted, various products have been identified and described, including plant-based protein sources such as soybeans, peas, faba beans, lupins, and hemp seeds; aquatic sources such as algae, microalgae, and water lentils; as well as insect-based and microbial protein sources, and cell-cultured meat. Despite numerous advantages, such as a lower environmental impact, higher ethical standards of production, and beneficial nutritional profiles, alternative protein sources are not without limitations. These include lower bioavailability of certain amino acids, the presence of antinutritional compounds, technological challenges, and issues related to consumer acceptance. Nevertheless, with proper dietary composition, optimization of production processes, and further technological advancements, presented alternatives can constitute valuable and sustainable protein sources for the growing global population.
Collapse
Affiliation(s)
| | | | - Joanna Michałowska
- Department of Obesity and Metabolic Disorders Treatment and Clinical Dietetics, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | | |
Collapse
|
2
|
Daas MC, van 't Veer P, Temme EH, Kuijsten A, Gurinović M, Biesbroek S. Diversity of dietary protein patterns across Europe - Impact on nutritional quality and environmental sustainability. Curr Res Food Sci 2025; 10:101019. [PMID: 40151663 PMCID: PMC11946498 DOI: 10.1016/j.crfs.2025.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025] Open
Abstract
Transitioning from animal-based to plant-rich diets could potentially improve both human and planetary health, but a thorough understanding of the protein component in the diet is essential. This research aimed to identify dietary protein patterns in the European adult population and evaluate differences in nutritional quality and environmental sustainability. Individual-level food consumption data were obtained from 25 European countries (40,101 participants, 18-64 years), available from the EFSA Comprehensive European Food Consumption Database. We applied statistical clustering to classify individuals according to their consumption of 24 protein source food groups. The patterns were evaluated for nutrient requirements, the Nutrient Rich Diet (NRD) 15.3 score, greenhouse gas emissions (GHGE) and land use (LU). Six patterns emerged: Common (42.2%), Fast-food (19.5%), Traditional (14.8%), Health-conscious (12.0%), Milk-rich (9.8%) and Plant-forward (1.6%), with country-specific variations. Most patterns obtained 64-69% of their protein intake from animal products, except for the Plant-forward pattern (52%). The Plant-forward pattern achieved the highest NRD15.3 (+11%), and lowest GHGE (-20%) and LU (-25%) compared to the population average and was most commonly consumed in Austria, Finland, Spain, Portugal and Belgium (4.1-4.5%). The Health-conscious pattern also scored high in nutritional quality (NRD15.3: +9%), whereas the Traditional pattern showed higher environmental impacts (GHGE: +5%, LU: +7%). These findings highlight the diversity of dietary protein patterns across Europe, each with unique nutritional profiles and varying environmental impacts. The Plant-forward pattern provides a promising example for healthier, more sustainable diets, but tailored approaches that consider the cultural and demographic contexts of individual countries are needed to optimize health and environmental outcomes for all patterns.
Collapse
Affiliation(s)
- Merel C. Daas
- Division of Human Nutrition and Health, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Pieter van 't Veer
- Division of Human Nutrition and Health, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Elisabeth H.M. Temme
- Division of Human Nutrition and Health, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
- Centre for Prevention, Lifestyle and Health, Department for Healthy and Sustainable Nutrition, National Institute for Public Health and the Environment (RIVM), 3721 MA, Bilthoven, the Netherlands
| | - Anneleen Kuijsten
- Division of Human Nutrition and Health, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Mirjana Gurinović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
- Capacity Development in Nutrition (CAPNUTRA), Belgrade, Serbia
| | - Sander Biesbroek
- Division of Human Nutrition and Health, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
3
|
Molina-Gilarranz I, Cebrián-Lloret V, Recio I, Martínez-Sanz M. Impact of structure and composition on the digestibility and nutritional quality of alternative protein-rich extracts from the green seaweed Ulva lacinulata. Food Res Int 2025; 201:115646. [PMID: 39849785 DOI: 10.1016/j.foodres.2024.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study reports on the nutritional quality of protein-polysaccharide extracts obtained from the green seaweed Ulva lacinulata, through a previously optimized method, evaluating the impact of their distinct composition and structure. Protein solubility was strongly influenced by protein-polysaccharide interactions, being higher in extracts with lower polysaccharide content. This, in turn, had a significant impact on the in vitro protein digestibility. In particular, protein digestibility was found to be higher in those extracts with higher protein content, reaching approximately 62-75 %, hence largely improving the digestibility of the native seaweed (ca. 25 %). The protein nutritional quality in the native seaweed was relatively poor, as suggested by the low Digestible Indispensable Amino Acid Score (DIAAS) (ca. 18 for adults), with histidine being the limiting amino acid. On the other hand, the extracts showed significantly greater DIAAS values, especially in those with lower polysaccharide content (up to 31), with lysine being the limiting amino acid. These findings provide the basis for the design of seaweed-based protein-rich ingredients with enhanced protein digestibility and nutritional quality, for their implementation in the food industry.
Collapse
Affiliation(s)
- Irene Molina-Gilarranz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain; Escuela de Doctorado, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente, 2, 28049 Madrid, Spain
| | - Vera Cebrián-Lloret
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Marta Martínez-Sanz
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM, CEI UAM + CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Broeckx L, Frooninckx L, Berrens S, Goossens S, ter Heide C, Wuyts A, Dallaire-Lamontagne M, Van Miert S. Macronutrient-Based Predictive Modelling of Bioconversion Efficiency in Black Soldier Fly Larvae ( Hermetia illucens) Through Artificial Substrates. INSECTS 2025; 16:77. [PMID: 39859658 PMCID: PMC11766144 DOI: 10.3390/insects16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
This study explores the optimisation of rearing substrates for black soldier fly larvae (BSFL). First, the ideal dry matter content of substrates was determined, comparing the standard 30% dry matter (DM) with substrates hydrated to their maximum water holding capacity (WHC). Substrates at maximal WHC yielded significantly higher larval survival rates (p = 0.0006). Consequently, the WHC approach was adopted for further experiments. Using these hydrated artificial substrates, fractional factorial designs based on central composite and Box-Behnken designs were employed to assess the impact of macronutrient composition on bioconversion efficiency. The results demonstrated significant main, interaction, and quadratic effects on bioconversion efficiency. Validation with real-life substrates of varied protein content, including indigestible feather meal, affirmed the predictive model's accuracy after accounting for protein source digestibility. This research underscores the importance of optimal hydration and macronutrient composition in enhancing BSFL growth and bioconversion efficiency.
Collapse
Affiliation(s)
- Laurens Broeckx
- Centre of Expertise Sustainable Biomass and Chemistry, Campus Geel, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (L.F.); (S.B.); (S.G.); (C.t.H.); (A.W.); (S.V.M.)
| | - Lotte Frooninckx
- Centre of Expertise Sustainable Biomass and Chemistry, Campus Geel, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (L.F.); (S.B.); (S.G.); (C.t.H.); (A.W.); (S.V.M.)
| | - Siebe Berrens
- Centre of Expertise Sustainable Biomass and Chemistry, Campus Geel, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (L.F.); (S.B.); (S.G.); (C.t.H.); (A.W.); (S.V.M.)
| | - Sarah Goossens
- Centre of Expertise Sustainable Biomass and Chemistry, Campus Geel, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (L.F.); (S.B.); (S.G.); (C.t.H.); (A.W.); (S.V.M.)
| | - Carmen ter Heide
- Centre of Expertise Sustainable Biomass and Chemistry, Campus Geel, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (L.F.); (S.B.); (S.G.); (C.t.H.); (A.W.); (S.V.M.)
| | - Ann Wuyts
- Centre of Expertise Sustainable Biomass and Chemistry, Campus Geel, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (L.F.); (S.B.); (S.G.); (C.t.H.); (A.W.); (S.V.M.)
| | - Mariève Dallaire-Lamontagne
- Département des Sciences Animales, Faculté des Sciences de L’Agriculture et de L’Alimentation, Université Laval, 2425 rue de l’Agriculture, Québec, QC G1V 0A6, Canada;
| | - Sabine Van Miert
- Centre of Expertise Sustainable Biomass and Chemistry, Campus Geel, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440 Geel, Belgium; (L.F.); (S.B.); (S.G.); (C.t.H.); (A.W.); (S.V.M.)
| |
Collapse
|
5
|
Sözeri Atik D, Huppertz T. Plant-based cheese analogs: structure, texture, and functionality. Crit Rev Food Sci Nutr 2025:1-17. [PMID: 39784502 DOI: 10.1080/10408398.2024.2449234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Plant-based cheese analogs have been developed using plant-based ingredients to mimic the appearance, structure, and flavor of conventional cheeses. Due to the complex composition and structure of cheese, developing plant-based cheese analogs that completely replicate its physicochemical, structural, sensory, and nutritional features is a highly challenging endeavor. Therefore, the design of the structure of plant-based cheese analogs requires a critical evaluation of the functional features of the selected ingredients and the specialized combination of these ingredients to create a desired structure. This review provides a comprehensive understanding of the structure, texture, and functionality of plant-based cheese analogs, covering the formulation and the characteristic properties of the end-use product, such as rheological behavior and microstructural properties, as well as tribology perspectives. Subsequently, the melting and stretchability characteristics of these products have been assessed to comprehend the response of plant-based cheese substitutes when subjected to heat.
Collapse
Affiliation(s)
- Didem Sözeri Atik
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Thom Huppertz
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- FrieslandCampina, Amersfoort, The Netherlands
| |
Collapse
|
6
|
Unis R, Gnaim R, Kashyap M, Shamis O, Gnayem N, Gozin M, Liberzon A, Gnaim J, Golberg A. Bioconversion of bread waste into high-quality proteins and biopolymers by fermentation of archaea Haloferax mediterranei. Front Microbiol 2024; 15:1491333. [PMID: 39777146 PMCID: PMC11703665 DOI: 10.3389/fmicb.2024.1491333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025] Open
Abstract
The valorization of bread waste into high-quality protein and biopolymers using the halophilic microorganism Haloferax mediterranei presents a sustainable approach to food waste management and resource optimization. This study successfully coproduced protein and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biopolymer with a biomass content of 8.0 ± 0.1 g L-1 and a productivity of 11.1 mg L-1 h-1. The fermentation process employed 3.0% w/v of enzymatically hydrolyzed bread waste. The amino acid profile of the cell biomass revealed a total content of 358 g kg-1 of biomass dry weight (DW), including 147 g kg-1 DW of essential amino acids. The protein quality, assessed through in-vitro enzyme digestion, indicated a high-quality protein with a digestibility value of 0.91 and a protein digestibility-corrected amino acid score (PDCAAS) of 0.78. The PHBV biopolymer component (36.0 ± 6.3% w/w) consisted of a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate in a 91:9 mol% ratio. This bioconversion process not only mitigates food waste but also generates valuable biomaterials.
Collapse
Affiliation(s)
- Razan Unis
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Rima Gnaim
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Mrinal Kashyap
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Olga Shamis
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Nabeel Gnayem
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Michael Gozin
- Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Combustion Science, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | - Jallal Gnaim
- The Triangle Regional R&D Center (TRDC), Kfar Qari, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Khalaf MM, Gouda M, Abou Taleb MF, Heakal FET, Abd El-Lateef HM. Fabrication of smart nanogel based on carrageenan and green coffee extract as a long-term antifouling agent to improve biofilm prevention in food production. Food Chem 2024; 461:140719. [PMID: 39146677 DOI: 10.1016/j.foodchem.2024.140719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
This study investigates the extract of the bioactive compounds from green coffee extract (GCE) and the loading of two different concentrations of GCE (1% and 2%) onto carrageenan nanogels (CAR NGs) to compare their antibacterial and antibiofilm effects with unloaded nanogels (NGs). The bioactive compounds of GCE were characterized using GC-MS analysis. The GCE1 and GCE2 were successfully deposited onto the surface of CAR NGs. The antibacterial and antibiofilm potential of prepared NGs were conducted against some foodborne pathogens (E. coli O157, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes). The results of GC-MS analysis indicated that there were identified 16 bioactive compounds in GCE, including caffeine (36.27%), Dodemorph (9.04%), and D-Glycero-d-ido-heptose (2.44%), contributing to its antimicrobial properties. The antibacterial coatings demonstrated a notable antimicrobial effect, showing zone of inhibition (ZOI) diameters of up to 37 mm for GCE2 loaded CAR NGs. The minimum inhibitory concentration (MIC) values for GCE2 loaded CAR NGs were 80 ppm for E. coli O157, and 120 ppm for S. enterica, S. aureus, and L. monocytogenes, achieving complete bacterial inactivation within 10-15 min of exposure. Both GCE1 and GCE2 loaded CAR NGs significantly reduced biofilm cell densities on stainless steel (SS) materials for E. coli O157, S. enterica, S. aureus, and L. monocytogenes, with reductions ranging from 60% to 95%. Specifically, biofilm densities were reduced by up to 95% for E. coli O157, 89% for S. enterica, 85% for S. aureus, and 80% for L. monocytogenes. Results of the toxicity evaluation indicated that the NGs were non-toxic and biocompatible, with predicted EC50 values proved their biocompatibility and safety. These results recommended that GCE loaded CAR NGs are promising as natural antimicrobial agents for enhancing food safety and extending shelf life. Further, the study concluded that incorporating GCE into CAR NGs is an effective strategy for developing sustainable antimicrobial coatings for the food industry and manufacturing.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
8
|
He J, Tang M, Zhong F, Deng J, Li W, Zhang L, Lin Q, Xia X, Li J, Guo T. Current trends and possibilities of typical microbial protein production approaches: a review. Crit Rev Biotechnol 2024; 44:1515-1532. [PMID: 38566484 DOI: 10.1080/07388551.2024.2332927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.
Collapse
Affiliation(s)
- JinTao He
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Min Tang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - FeiFei Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Changsha Institute for Food and Drug Control, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Lin Zhang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - QinLu Lin
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Juan Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
9
|
Lai XJ, Chen JQ, Nie J, Guo PF, Faisal Manzoor M, Huang YY, Li J, Lin SY, Zeng XA, Wang R. Enhancement of extraction efficiency and functional properties of chickpea protein isolate using pulsed electric field combined with ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2024; 111:107089. [PMID: 39353337 PMCID: PMC11471670 DOI: 10.1016/j.ultsonch.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Chickpea protein isolate (CPI) is a promising dietary protein with the advantages of low allergenicity, easy digestion and balanced composition of essential amino acids. However, due to the thick skin of chickpeas, the extraction of CPI is challenging, resulting in lower efficiency of the alkaline extraction-isoelectric precipitation (AE-IEP) method. Therefore, the present study investigated the effect of pulsed electric field combined with ultrasound (PEF-US) treatment on the extraction efficiency of CPI and the functional properties was characterized. Parameter optimization was carried out using response surface methodology (RSM), with the following optimized conditions: pulse duration of 87 s, electric field intensity of 0.9 kV/cm, ultrasonic time of 15 min, and ultrasonic power of 325 W. Under the optimized conditions, the yield of CPI after combined (PEF-US) treatment was 13.52 ± 0.13 %, which was a 47.28 % improvement over the AE-IEP method. This yield was better than that obtained with either individual PEF or US treatment. Additionally, the functional properties (solubility, emulsification, and foaming) of CPI were significantly enhanced compared to AE-IEP. However, the stability of emulsification and foaming did not show significant differences among the four methods. The PEF-US method efficiently extracts CPI with excellent functional properties, enabling the production of proteins as desired functional additives in the food industry.
Collapse
Affiliation(s)
- Xin-Jue Lai
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jian-Quan Chen
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jing Nie
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Pei-Feng Guo
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yan-Yan Huang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jian Li
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Song-Yi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-An Zeng
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Rui Wang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
10
|
Zaharioudakis K, Salmas CE, Andritsos ND, Leontiou AA, Moschovas D, Karydis-Messinis A, Triantafyllou E, Avgeropoulos A, Zafeiropoulos NE, Proestos C, Giannakas AE. Investigating the Synergistic Effects of Carvacrol and Citral-Edible Polysaccharide-Based Nanoemulgels on Shelf Life Extension of Chalkidiki Green Table Olives. Gels 2024; 10:722. [PMID: 39590078 PMCID: PMC11594034 DOI: 10.3390/gels10110722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Modern bioeconomy and sustainability demands lead food technology in the development of novel biobased edible food preservatives. Herein, the development and characterization of novel polysaccharide (xanthan gum and kappa-carrageenan)-based nanoemulgels (NGs) enhanced with essential oil derivatives; pure citral (CT); pure carvacrol (CV); and various CT:CV ratios (25:75, 50:50, and 75:25) are presented. The obtained NGs are applied as active edible coatings for extending the shelf life of Protected Designation of Origin (PDO) green table olives of Chalkidiki. The zeta potential demonstrated the high stability of the treatments, while light scattering measurement and scanning electron microscopy images confirmed the <100 nm droplet size. EC50 indicated high antioxidant activity for all the tested samples. The fractional inhibitory concentration (FIC) confirmed the synergistic effect of NG with a CT:CV ratio at 50:50 against Staphylococcus aureus and at CT:CV ratios 25:75 and 75:25 against E. coli O157:H7. NG coatings with CT:CV ratios at 50:50 and at 25:75 effectively controlled the weight loss at 0.5%, maintained stable pH levels, and preserved the visual quality of green olives on day 21. The synergistic effect between CT and CV was confirmed as they reduced the spoilage microorganisms of yeasts and molds by 2-log [CFU/g] compared to the control and almost 1 log [CFU/g] difference from pure CT and CV-based NGs without affecting the growth of beneficial lactic acid bacteria crucial for fermentation. NGs with CT:CV ratios at 50:50 and at 25:75 demonstrated superior effectiveness in preventing discoloration and maintaining the main sensory attributes. Overall, shelf life extension was achieved in 21 compared to only 7 of the uncoated ones. Finally, this study demonstrates the potential of polysaccharide-based NGs in mixtures of CT and CV for the shelf life extension of fermented food products.
Collapse
Affiliation(s)
- Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Nikolaos D. Andritsos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| | - Areti A. Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Eleni Triantafyllou
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (E.T.); (A.A.); (N.E.Z.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (N.D.A.); (A.A.L.)
| |
Collapse
|
11
|
Nascimento LGL, da Silva RR, Odelli D, Doumert B, Martins E, Casanova F, Marie R, Carvalho AF, Delaplace G, de Sá Peixoto Junior PP. Acid gelation of high-concentrated casein micelles and pea proteins mixed systems. Food Res Int 2024; 196:114982. [PMID: 39614534 DOI: 10.1016/j.foodres.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 12/01/2024]
Abstract
The increased demand for plant-based products brings a new challenge to the food industry. Especially, proteins from soy, chickpea, and pea are being highly demanded as food ingredients. However, they still present some drawbacks such as poor techno-functional properties and remarkable beany flavor that hamper their wider application. Contrarily, milk products such as yogurt and cheeses are highly consumed and accepted worldwide. Therefore, the association of plant proteins, such as pea with milk proteins is an interesting strategy to incorporate more plant-based proteins into people's diet. However, this strategy can largely impact gel formation and final structure. This study aims to develop mixed casein micelles (CMs) and pea proteins gel at high concentrations in four protein ratios, 80:20, 60:40, 40:60, and 20:80 by acidification. The effect of a thermal treatment before gelation was also evaluated. The replacement of CMs for pea proteins disturbed the gel formation at the beginning of acidification, demand more time to increase the G*, being this effect more pronounced as more casein is replaced in the system. Despite of this effect, the final gel elasticity was higher in the presence of pea proteins for the ratios 80:20 and 60:40, probably due to the formation of pea network. It is hypothesized that pea proteins can form a network when surrounded by CMs, however, CMs restrict pea proteins aggregation. This study describes that the final characteristics of mixed gels can be tailored by changing protein ratios and applying thermal treatment before acidification, opening the possibility for the development of innovative food products.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil; Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France
| | - Raiane Rodrigues da Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bertrand Doumert
- Université de Lille, CNRS, INRA, Centrale Lille, ENSCL, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Federico Casanova
- Food Production Engineering, DTU Food, Technical University of Denmark, Søltofts Plads227, Dk-2800 Lyngby, Denmark
| | - Rodolphe Marie
- Food Production Engineering, DTU Food, Technical University of Denmark, Søltofts Plads227, Dk-2800 Lyngby, Denmark
| | - Antônio Fernandes Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Guillaume Delaplace
- Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France
| | - Paulo Peres de Sá Peixoto Junior
- Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France
| |
Collapse
|
12
|
Kim JW, Kim HS. Extraction and characterization of mung bean proteins using different alkaline solutions. Food Sci Biotechnol 2024; 33:3047-3056. [PMID: 39220314 PMCID: PMC11364732 DOI: 10.1007/s10068-024-01624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the effects of alkaline solutions on the production and characteristics of mung bean proteins (MBPs). MBPs were prepared using alkaline solutions of NaOH, NaHCO3, and Na2CO3 and designated MPN, MPH, and MPC, respectively. The yield, protein recovery, and crude protein content of MBP were not significantly different at different alkali concentrations (0.01-0.1%). Although there was no significant difference in MBP yield between alkali types, protein recovery and crude protein content increased in the following order: MPN > MPC > MPH. The essential and branched-chain amino acid contents, molecular weight distribution, and ζ-potential did not differ between MBPs. Regarding MBP pH-dependent solubility, MPN solubility was lower at pH 6-8 than that of MPH and MPC. This pattern was commonly observed for other physical properties. Overall, MBP was prepared using NaHCO3, and Na2CO3 and its functional properties were better when Na2CO3 was used than when NaOH was used. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01624-x.
Collapse
Affiliation(s)
- Jae Won Kim
- Department of Food Science and Biotechnology, Graduate School, Kyonggi University, Suwon, 16227 Korea
| | - Hyun-Seok Kim
- Department of Food Science and Biotechnology, Graduate School, Kyonggi University, Suwon, 16227 Korea
- Major of Food Science and Biotechnology, Division of Bio-convergence, Kyonggi University, Suwon, 16227 Korea
| |
Collapse
|
13
|
Ramos LCDS, Dos Santos J, Batista LF, Rodrigues JMMDO, Simiqueli AA, Pires ACDS, Minim VPR, Minim LA, Vidigal MCTR. Technical-functional and surface properties of white common bean proteins (Phaseolus vulgaris L.): Effect of pH, protein concentration, and guar gum presence. Food Res Int 2024; 192:114809. [PMID: 39147506 DOI: 10.1016/j.foodres.2024.114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Legumes are abundant sources of proteins, and white common bean proteins play an important role in air-water interface properties. This study aims to investigate the technical-functional properties of white common bean protein isolate (BPI) as a function of pH, protein concentration, and guar gum (GG) presence. BPI physicochemical properties were analyzed in terms of solubility, zeta potential, and mean particle diameter at pH ranging from 2 to 9, in addition to water-holding capacity (WHC), oil-holding capacity (OHC), and thermogravimetric analysis. Protein dispersions were evaluated in terms of dynamic, interfacial, and foam-forming properties. BPI showed higher solubility (>80 %) at pH 2 and above 7. Zeta potential and mean diameter ranged from 15.43 to -34.08 mV and from 129.55 to 139.90 nm, respectively. BPI exhibited WHC and OHC of 1.37 and 4.97 g/g, respectively. Thermograms indicated decomposition temperature (295.81 °C) and mass loss (64.73 %). Flow curves indicated pseudoplastic behavior, with higher η100 values observed in treatments containing guar gum. The behavior was predominantly viscous (tg δ > 1) at lower frequencies, at all pH levels, shifting to predominantly elastic at higher frequencies. Equilibrium surface tension (γeq) ranged from 43.87 to 41.95 mN.m-1 and did not decrease with increasing protein concentration under all pH conditions. All treatments exhibited ϕ < 15°, indicating predominantly elastic surface films. Foaming properties were influenced by higher protein concentration and guar gum addition, and the potential formation of protein-polysaccharide complexes favored the kinetic stability of the system.
Collapse
Affiliation(s)
| | - Jucenir Dos Santos
- Department of Food Technology, Federal University of Viçosa, Peter Henry Rolfs Avenue, 36570-900 Viçosa, MG, Brazil
| | - Laís Fernanda Batista
- Department of Food Technology, Federal University of Viçosa, Peter Henry Rolfs Avenue, 36570-900 Viçosa, MG, Brazil
| | | | - Andréa Alves Simiqueli
- Department of Pharmacy, Federal University of Juiz de Fora, Governador Valadares campus (UFJF-GV), 35032-620 Governador Valadares, MG, Brazil
| | | | | | - Luis Antonio Minim
- Department of Food Technology, Federal University of Viçosa, Peter Henry Rolfs Avenue, 36570-900 Viçosa, MG, Brazil
| | | |
Collapse
|
14
|
Marín-Sánchez J, Berzosa A, Álvarez I, Sánchez-Gimeno C, Raso J. Pulsed Electric Fields Effects on Proteins: Extraction, Structural Modification, and Enhancing Enzymatic Activity. Bioelectricity 2024; 6:154-166. [PMID: 39372091 PMCID: PMC11447477 DOI: 10.1089/bioe.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Pulsed electric field (PEF) is an innovative physical method for food processing characterized by low energy consumption and short processing time. This technology represents a sustainable procedure to extend food shelf-life, enhance mass transfer, or modify food structure. The main mechanism of action of PEF for food processing is the increment of the permeability of the cell membranes by electroporation. However, it has also been shown that PEF may modify the technological and functional properties of proteins. Generating a high-intensity electric field necessitates the flow of an electric current that may have side effects such as electrochemical reactions and temperature increments due to the Joule effect that may affect food components such as proteins. This article presents a critical review of the knowledge on the extraction of proteins assisted by PEF and the impact of these treatments on protein composition, structure, and functionality. The required research for understanding what happens to a protein when it is under the action of a high-intensity electric field and to know if the mechanism of action of PEF on proteins is different from thermal or electrochemical effects is underlying.
Collapse
Affiliation(s)
- J. Marín-Sánchez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - A. Berzosa
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - I. Álvarez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - C. Sánchez-Gimeno
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - J. Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
15
|
Nadar CG, Fletcher A, Moreira BRDA, Hine D, Yadav S. Waste to protein: A systematic review of a century of advancement in microbial fermentation of agro-industrial byproducts. Compr Rev Food Sci Food Saf 2024; 23:e13375. [PMID: 38865211 DOI: 10.1111/1541-4337.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Increasing global consumption of protein over the last five decades, coupled with concerns about the impact on emissions of animal-based protein production, has created interest in alternative protein sources. Microbial proteins (MPs), derived through the fermentation of agro-industrial byproducts, present a promising option. This review assesses a century of advancements in this domain. We conducted a comprehensive review and meta-analysis, examining 347 relevant research papers to identify trends, technological advancements, and key influencing factors in the production of MP. The analysis covered the types of feedstocks and microbes, fermentation methods, and the implications of nucleic acid content on the food-grade quality of proteins. A conditional inference tree model and Bayesian factor were used to ascertain the impact of various parameters on protein content. Out of all the studied parameters, such as type of feedstock (lignocellulose, free sugars, gases, and others), type of fermentation (solid, liquid, gas), type of microbe (bacteria, fungi, yeast, and mix), and operating parameters (temperature, time, and pH), the type of fermentation and microbe were identified as the largest influences on protein content. Gas and liquid fermentation demonstrated higher protein content, averaging 52% and 42%, respectively. Among microbes, bacterial species produced a higher protein content of 51%. The suitable operating parameters, such as pH, time, and temperature, were also identified for different microbes. The results point to opportunities for continued innovation in feedstock, microbes, and regulatory alignment to fully realize the potential of MP in contributing to global food security and sustainability goals.
Collapse
Affiliation(s)
- Cresha Gracy Nadar
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Andrew Fletcher
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | | | - Damian Hine
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Sudhir Yadav
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
16
|
Kamei M, Nishibe M, Horie F, Kusakabe Y. Development and validation of Japanese version of alternative food neophobia scale (J-FNS-A): association with willingness to eat alternative protein foods. Front Nutr 2024; 11:1356210. [PMID: 38863584 PMCID: PMC11165137 DOI: 10.3389/fnut.2024.1356210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Food neophobia (FN) is a psychological trait that inhibits one's willingness to eat unfamiliar foods. It is related to the acceptance of insect foods and cultured meat, which are major protein alternatives to conventional meat, and is an important personality trait for understanding the near-future food industry. However, the factor structure of Pliner and Hobden's FN scale (FNS) is unstable due to respondents' cultural backgrounds. Thus, we aimed to develop a Japanese version based on the alternative FNS (FNS-A), the most recent revised version, and to examine its validity. Methods Four online surveys (preliminary 1: n = 202; preliminary 2: n = 207; main: n = 1,079; follow-up: n = 500) were conducted on the FNS-A. For the main survey, Japanese respondents (aged 20-69 years) answered the Japanese version of the FNS-A (J-FNS-A), their willingness to eat (WTE), and their familiarity with hamburgers containing regular protein foods (ground beef, tofu) and alternative protein foods (soy meat, cultured meat, cricket powder, algae powder, and mealworm powder). Results Consistent with the FNS-A, confirmatory factor analysis assuming a two-dimensional structure (approach and avoidance) showed satisfactory model fit indices. The mean J-FNS-A score (Cronbach's α for 8 items = 0.83) was 4.15 [standard deviation (SD) = 0.93]. J-FNS-A scores were not associated with age and gender, whereas a greater than moderate association was found with WTE hamburgers containing alternative protein foods (rs = -0.42 to -0.33). The strength of these negative associations increased as food familiarity decreased (r = 0.94). The test-retest reliability at 1 month was also satisfactory (r = 0.79). Discussion The validity of the J-FNS-A was confirmed. Higher J-FNS-A scores (mean = 41.51, SD = 9.25, converted to Pliner and Hobden's FNS score) of the respondents suggest that Japanese people prefer conservative foods. This scale could predict the negative attitudes toward foods with low familiarity, such as alternative proteins. The J-FNS-A appears to be a useful psychological tool for assessing Japanese food neophobia tendencies and predicting novel food choices of Japanese individuals.
Collapse
Affiliation(s)
- Mio Kamei
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
17
|
Candice Costa Silva J, Medeiros Santos N, de Sousa Silva N, Cristina Silveira Martins A, Maria Gomes Dutra L, Eduardo Alves Dantas C, Dos Santos Lima M, Fechine Tavares J, Sobral da Silva M, Mangueira do Nascimento Y, Ferreira da Silva E, Eduardo Vasconcelos de Oliveira C, Elieidy Gomes de Oliveira M, Elias Pereira D, Carolina Dos Santos Costa A, Carlo Rufino Freitas J, Késsia Barbosa Soares J, Bordin Viera V. Characterization of flours from the aroeira leaf (Schinus terebinthifolius Raddi), obtained by different drying methods. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124126. [PMID: 38688175 DOI: 10.1016/j.jchromb.2024.124126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The present work aimed at the development and characterization of aroeira leaf flour (Schinus terebinthifolius Raddi), obtained by lyophilization and drying in an air circulation oven. The technological, physical, physico-chemical, morphological, functional, and microbiological aspects were analyzed. Physico-chemical analysis identified the following properties with values provided respectively for fresh leaves (FOin) and flours (FES and FLIO): low water activity (0.984, 0.370, 0.387 g/100 g), moisture (64.52, 5.37, 7.97 g /100 g), ash (2.69, 6.51, and 6.89 g/100 g), pH (0.89, 4.45, 4.48 g/100 g), lipids (0.84, 1.67, 5.23 g/100 g), protein (3.29, 8.23, 14.12 g/100 g), carbohydrates (17.02, 53.12, 33.02 g/100 g), ascorbic acid (19.70, 34.20, 36.90 mg/100 g). Sources of fiber from plant leaves and flours (11.64, 25.1, 32.89 g/100 g) showed increased levels of luminosity. For NMR, the presence of aliphatic and aromatic compounds with olefinic hydrogens and a derivative of gallic acid were detected. The most abundant minerals detected were potassium and calcium. Micrographs identified the presence of irregular, non-uniform, and sponge-like particles. The main sugars detected were: fructose, glucose, and maltose. Malic, succinic, citric, lactic, and formic acids were found. Fifteen phenolic compounds were identified in the samples, highlighting: kaempferol, catechin, and caffeic acid. The values found for phenolics were (447, 716.66, 493.31 mg EAG/100 g), flavonoids (267.60, 267.60, 286.26 EC/100 g). Antioxidant activity was higher using the ABTS method rather than FRAP for analysis of FOin, FES, and FLIO. Since the flours of the aroeira leaf have an abundant matrix of nutrients with bioactive properties and antioxidant activity, they have a potential for technological and functional use when added to food.
Collapse
Affiliation(s)
| | - Nayane Medeiros Santos
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil
| | - Nayara de Sousa Silva
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil
| | | | - Larissa Maria Gomes Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil.
| | - Carlos Eduardo Alves Dantas
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina 56302-100, Brazil
| | - Josean Fechine Tavares
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Yuri Mangueira do Nascimento
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | | | | | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | | | - Juliana Késsia Barbosa Soares
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Vanessa Bordin Viera
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil; Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| |
Collapse
|
18
|
Jones D, Celis-Morales C, Gray SR, Morrison DJ, Ozanne SE, Jain M, Mattin LR, Burden S. Effect of Sustainably Sourced Protein Consumption on Nutrient Intake and Gut Health in Older Adults: A Systematic Review. Nutrients 2024; 16:1398. [PMID: 38732644 PMCID: PMC11085519 DOI: 10.3390/nu16091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Diet is integral to the healthy ageing process and certain diets can mitigate prolonged and deleterious inflammation. This review aims to assess the impact of diets high in sustainably sourced proteins on nutrient intake, gut, and age-related health in older adults. A systematic search of the literature was conducted on 5 September 2023 across multiple databases and sources. Studies assessing sustainably sourced protein consumption in community dwelling older adults (≥65 years) were included. Risk of bias (RoB) was assessed using 'RoB 2.0' and 'ROBINS-E'. Narrative synthesis was performed due to heterogeneity of studies. Twelve studies involving 12,166 older adults were included. Nine studies (n = 10,391) assessed habitual dietary intake and had some RoB concerns, whilst three studies (n = 1812), two with low and one with high RoB, conducted plant-based dietary interventions. Increased adherence to sustainably sourced diets was associated with improved gut microbial factors (n = 4640), healthier food group intake (n = 2142), and increased fibre and vegetable protein intake (n = 1078). Sustainably sourced diets positively impacted on gut microbiota and healthier intake of food groups, although effects on inflammatory outcomes and health status were inconclusive. Future research should focus on dietary interventions combining sustainable proteins and fibre to evaluate gut barrier function and consider inflammatory and body composition outcomes in older adults.
Collapse
Affiliation(s)
- Debra Jones
- School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Carlos Celis-Morales
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (C.C.-M.); (S.R.G.); (M.J.)
| | - Stuart R. Gray
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (C.C.-M.); (S.R.G.); (M.J.)
| | - Douglas J. Morrison
- Scottish Universities Environmental Research Centre (SUERC), University of Glasgow, Glasgow G75 0QF, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK;
| | - Mahek Jain
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (C.C.-M.); (S.R.G.); (M.J.)
- Scottish Universities Environmental Research Centre (SUERC), University of Glasgow, Glasgow G75 0QF, UK;
| | - Lewis R. Mattin
- School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Sorrel Burden
- School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
- Salford Care Organisation, Northern Care Alliance NHS Trust, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
19
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
20
|
Mirón-Mérida VA, Soria-Hernández C, Richards-Chávez A, Ochoa-García JC, Rodríguez-López JL, Chuck-Hernández C. The Effect of Ultrasound on the Extraction and Functionality of Proteins from Duckweed ( Lemna minor). Molecules 2024; 29:1122. [PMID: 38474634 DOI: 10.3390/molecules29051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The inclusion of protein in the regular human diet is important for the prevention of several chronic diseases. In the search for novel alternative protein sources, plant-based proteins are widely explored from a sustainable and ecological point of view. Duckweed (Lemna minor), also known as water lentil, is an aquatic plant with potential applications for human consumption due to its protein content and carbohydrate contents. Among all the conventional and novel protein extraction methods, the utilization of ultrasound has attracted the attention of scientists because of its effects on improving protein extraction and its functionalities. In this work, a Box-Behnken experimental design was proposed to optimize the alkaline extraction of protein from duckweed. In addition, an exploration of the effects of ultrasound on the morphological, structural, and functional properties of the extracted protein was also addressed. The optimal extraction parameters were a pH of 11.5 and an ultrasound amplitude and processing time of 60% and 20 min, respectively. These process conditions doubled the protein content extracted in comparison to the value from the initial duckweed sample. Furthermore, the application of ultrasound during the extraction of protein generated changes in the FTIR spectra, color, and structure of the duckweed protein, which resulted in improvements in its solubility, emulsifying properties, and foaming capacity.
Collapse
Affiliation(s)
- Vicente Antonio Mirón-Mérida
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Cintya Soria-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Alejandro Richards-Chávez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Juan Carlos Ochoa-García
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Jorge Luis Rodríguez-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Cristina Chuck-Hernández
- Instituto para la Investigación en Obesidad, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Sur Tecnológico, Monterrey 64849, Mexico
| |
Collapse
|
21
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
22
|
Moon SK, Jeong EJ, Tonog G, Jin CM, Lee JS, Kim H. Comprehensive workflow encompassing discovery, verification, and quantification of indicator peptide in snail mucin using LC-quadrupole Orbitrap high-resolution tandem mass spectrometry. Food Res Int 2024; 180:114054. [PMID: 38395548 DOI: 10.1016/j.foodres.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Peptidomics analysis was conducted using high-resolution tandem mass spectrometry (MS2) to determine the peptide profile of snail-derived mucin extract (SM). The study was also aimed to identify an indicator peptide and validate a quantification method for this peptide. The peptide profiling and identification were conducted using discovery-based peptidomics analysis employing data-dependent acquisition, whereas the selected peptides were verified and quantified using parallel reaction monitoring acquisition. Among the 16 identified peptides, the selected octapeptide (TEAPLNPK) was quantified via precursor ion ionization (m/z 435.2400), followed by quantification of the corresponding quantifier ion fragment (m/z 639.3824) using MS2. The quantification method was optimized and validated in terms of specificity, linearity, accuracy, precision, and limit of detection/quantification. The validated method accurately quantified the TEAPLNPK content in the SM as 7.5 ± 0.2 μg/g. Our study not only identifies an indicator peptide from SM but also introduces a novel validation method, involving precursor ion ionization and quantification of specific fragments. Our findings may serve as a comprehensive workflow for the monitoring, selection, and quantification of indicator peptides from diverse food resources.
Collapse
Affiliation(s)
- Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Genevieve Tonog
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Cheng-Min Jin
- Analysis and Research Department, NeuroVIS, Inc., 593-8 Dongtangiheung-ro, Hwaseong 18469, South Korea
| | - Jeong-Seok Lee
- Age at Labs Inc., 55, Digital-ro 32-gil, Guro-gu, Seoul 08379, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
23
|
Pereira RN, Rodrigues R, Avelar Z, Leite AC, Leal R, Pereira RS, Vicente A. Electrical Fields in the Processing of Protein-Based Foods. Foods 2024; 13:577. [PMID: 38397554 PMCID: PMC10887823 DOI: 10.3390/foods13040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones from emergent plant- and microbial-based sources. Currently, numerous scientific studies are underway, contributing to the emerging body of knowledge about the effects on protein properties. In this review, "Electric Field Processing" acknowledges the broader range of technologies that fall under the umbrella of using the direct passage of electrical current in food material, giving particular focus to the ones that are industrially implemented. The structural and biological effects of electric field processing (thermal and non-thermal) on protein fractions from various sources will be addressed. For a more comprehensive contextualization of the significance of these effects, both conventional and alternative protein sources, along with their respective ingredients, will be introduced initially.
Collapse
Affiliation(s)
- Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Zita Avelar
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ana Catarina Leite
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Rita Leal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ricardo S. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - António Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Fu DW, Fu JJ, Xu H, Shao ZW, Zhou DY, Zhu BW, Song L. Glycation-induced enhancement of yeast cell protein for improved stability and curcumin delivery in Pickering high internal phase emulsions. Int J Biol Macromol 2024; 257:128652. [PMID: 38065454 DOI: 10.1016/j.ijbiomac.2023.128652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Pickering high internal phase emulsions (HIPEs) have gained significant attention for various applications within the food industry. Yeast cell protein (YCP), derived from spent brewer's yeast, stands out as a preferred stabilizing agent due to its cost-effectiveness, abundance, and safety profile. However, challenges persist in utilizing YCP, notably its instability under high salt concentration, thermal processing, and proximity to its isoelectric point. This study aimed to enhance YCP's emulsifying properties through glycation with glucose and evaluate its efficacy as a stabilizer for curcumin (CUR)-loaded HIPEs. The results revealed that glycation increased YCP's surface hydrophobicity, exposing hydrophobic groups. This augmentation, along with steric hindrance from grafted glucose molecules, improved emulsifying properties, resulting in a thicker interfacial layer around oil droplets. This fortified interfacial layer, in synergy with steric hindrance, bolstered resistance to pH changes, salt ions, and thermal degradation. Moreover, HIPEs stabilized with glycated YCP exhibited reduced oxidation rates and improved CUR protection. In vitro digestion studies demonstrated enhanced CUR bioaccessibility, attributed to a faster release of fatty acids. This study underscores the efficacy of glycation as a strategic approach to augment the applicability of biomass proteins, exemplified by glycated YCP, in formulating stable and functional HIPEs for diverse food applications.
Collapse
Affiliation(s)
- Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Jing-Jing Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, PR China
| | - Hang Xu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Zhen-Wen Shao
- Qingdao Seawit Life Science Co. Ltd., Qingdao, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, PR China.
| |
Collapse
|
25
|
Tome D, Xipsiti M, Shertukde SP, Calvez J, Vasilopoulou D, Wijesinha-Bettoni R, Owino VO. Context and Perspectives for Establishing a Novel Database for Protein Quality of Human Foods, as Proposed by a Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Expert Technical Meeting in October 2022. J Nutr 2024; 154:294-299. [PMID: 38160807 DOI: 10.1016/j.tjnut.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
United Nations agencies have a long history of leading work on establishing global human nutrient requirements. Dietary protein contributes to metabolism and homeostasis and plays an essential role in human health for growth, maintenance, reproduction, and immune function (or immunity). Accurately defining the quantity and quality of protein provided by foods and diets required to meet human nutritional needs is essential to achieving global environmental and nutrition goals. There have been many scientific developments related to protein quality over the past decades, with the preferred method being the scoring approach that relates the capacity of protein sources to provide an adequate amount and proportion of nitrogen and indispensable amino acids (IAAs) in a bioavailable form (often referred to as digestibility). Questions surrounding the scoring approach and IAA metabolic availability have been discussed during past and recent expert consultations. Recently, an Food and Agriculture Organization of the United Nations/International Atomic Energy Agency technical meeting, held in Vienna, 10-13 October, 2022, reviewed and updated evidence and related methods on protein requirements and protein quality assessment and designed a framework for the development of a Protein Digestibility Database to aid dialog on the evaluation of protein quality and protein sufficiency in different populations. The database should be a living document and align with national food compositional databases.
Collapse
Affiliation(s)
- Daniel Tome
- Université Paris-Saclay, AgroParisTech, France.
| | - Maria Xipsiti
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Shruti P Shertukde
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Juliane Calvez
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Dafni Vasilopoulou
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Ramani Wijesinha-Bettoni
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Victor O Owino
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
26
|
Conway A, Jaiswal S, Jaiswal AK. The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods 2024; 13:387. [PMID: 38338521 PMCID: PMC10855650 DOI: 10.3390/foods13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
Entomophagy describes the practice of eating insects. Insects are considered extremely nutritious in many countries worldwide. However, there is a lethargic uptake of this practice in Europe where consuming insects and insect-based foodstuffs is often regarded with disgust. Such perceptions and concerns are often due to a lack of exposure to and availability of food-grade insects as a food source and are often driven by neophobia and cultural norms. In recent years, due to accelerating climate change, an urgency to develop alternate safe and sustainable food-sources has emerged. There are currently over 2000 species of insects approved by the World Health Organization as safe to eat and suitable for human consumption. This review article provides an updated overview of the potential of edible insects as a safe, palatable, and sustainable food source. Furthermore, legislation, food safety issues, and the nutritional composition of invertebrates including, but not limited, to crickets (Orthoptera) and mealworms (Coleoptera) are also explored within this review. This article also discusses insect farming methods and the potential upscaling of the industry with regard to future prospects for insects as a sustainable food source. Finally, the topics addressed in this article are areas of potential concern to current and future consumers of edible insects.
Collapse
Affiliation(s)
- Ann Conway
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| |
Collapse
|
27
|
Zhao M, Ma J, Zhang L, Qi H. Engineering strategies for enhanced heterologous protein production by Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:32. [PMID: 38247006 PMCID: PMC10801990 DOI: 10.1186/s12934-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Microbial proteins are promising substitutes for animal- and plant-based proteins. S. cerevisiae, a generally recognized as safe (GRAS) microorganism, has been frequently employed to generate heterologous proteins. However, constructing a universal yeast chassis for efficient protein production is still a challenge due to the varying properties of different proteins. With progress in synthetic biology, a multitude of molecular biology tools and metabolic engineering strategies have been employed to alleviate these issues. This review first analyses the advantages of protein production by S. cerevisiae. The most recent advances in improving heterologous protein yield are summarized and discussed in terms of protein hyperexpression systems, protein secretion engineering, glycosylation pathway engineering and systems metabolic engineering. Furthermore, the prospects for efficient and sustainable heterologous protein production by S. cerevisiae are also provided.
Collapse
Affiliation(s)
- Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jianfan Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
28
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
29
|
He S. Study on Physicochemical Properties of Food Protein. Molecules 2023; 28:8145. [PMID: 38138633 PMCID: PMC10745840 DOI: 10.3390/molecules28248145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
As the global population continues to grow, the demand for sustainable and nutritious food sources has never been higher [...].
Collapse
Affiliation(s)
- Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
30
|
Lu S, Xiong W, Yao Y, Zhang J, Wang L. Investigating the physicochemical properties and air-water interface adsorption behavior of transglutaminase-crosslinking rapeseed protein isolate. Food Res Int 2023; 174:113505. [PMID: 37986500 DOI: 10.1016/j.foodres.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Improving the technical functionality to adapt to the application of complex food systems is an important challenge for the development of plant protein ingredients. Herein, the correlation between the physicochemical properties and interfacial adsorption behavior of rapeseed protein isolate (RPI) at the air-water interface after transglutaminase (TG) treatment was investigated. The results of cross-linking degree, Fourier transform infrared spectroscopy (FTIR) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the TG enzyme was able to catalyse cross-linking between lysine and glutamine residues of RPI. The foaming capacity of RPI was enhanced from 120 % to 150 % after TG cross-linking 5 h, whereas the average size (210-219 nm) of the RPI determined by dynamic light scattering did not change significantly. Besides, the hydrophobicity tended to increase overall under the enzyme treatment, while the surface electrostatic potential decreased. The former indicates the unfolding of the protein and reduces the kinetic barriers to protein adsorption at the air-water interface, with a consequent increase in disulfide bonding and surface pressure. Furthermore, as the enzyme treatment time increased, a significant increase in protein content of foam by 33.86 %. These findings provide novel insight into the foaming mechanism of TG cross-linking RPI.
Collapse
Affiliation(s)
- Shanshan Lu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Wenfei Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yijun Yao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Jing Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
31
|
Nascimento LGL, Queiroz LS, Petersen HO, Marie R, Silva NFN, Mohammadifar MA, de Sá Peixoto Júnior PP, Delaplace G, de Carvalho AF, Casanova F. High-intensity ultrasound treatment on casein: Pea mixed systems: Effect on gelling properties. Food Chem 2023; 422:136178. [PMID: 37119595 DOI: 10.1016/j.foodchem.2023.136178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
This study aimed to investigate the suitability of the application of high-intensity ultrasounds (HIUS) to improve the acid induced gelation of mixed protein systems formed by casein micelles (CMs) and pea. The protein suspensions were prepared in different protein ratios CMs: pea (100:0, 80:20, 50:50, 20:80, 0:100) at 8% (w/w) total protein concentration. In the suspensions, the ultrasound treatment produced an increase in solubility, surface hydrophobicity, and a decrease in the samples' viscosity, with more remarkable differences in protein blends in which pea protein was the major component. However, the replacement of 20% of CMs for pea proteins highly affected the gel elasticity. Hence, the creation of smaller and more hydrophobic building blocks before acidification due to the HIUS treatment increased the elasticity of the gels up to 10 times. Therefore, high-intensity ultrasounds are a suitable green technique to increase the gelling properties of CMs: pea systems.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil; Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, Villeneuve d'Ascq, France
| | - Lucas Sales Queiroz
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil; Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Heidi Olander Petersen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | | | - Mohammed Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | | | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, Villeneuve d'Ascq, France
| | - Antônio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
32
|
Stoodley IL, Williams LM, Wood LG. Effects of Plant-Based Protein Interventions, with and without an Exercise Component, on Body Composition, Strength and Physical Function in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2023; 15:4060. [PMID: 37764843 PMCID: PMC10537483 DOI: 10.3390/nu15184060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Maintaining muscle mass, strength, and function is crucial for our aging population. Exercise and dietary protein intake are recommended strategies; however, animal proteins have been the most studied. Plant-based protein sources have lower digestibility and incomplete amino acid profiles. However new innovative plant-based proteins and products may have overcome these issues. Therefore, this systematic review aimed to synthesize the current research and evaluate the effects of plant-based protein interventions compared to placebo on body composition, strength, and physical function in older adults (≥60 years old). The secondary aim was whether exercise improved the effectiveness of plant-based protein on these outcomes. Randomized controlled trials up to January 2023 were identified through Medline, EMBASE, CINAHL, and Cochrane Library databases. Studies contained a plant-protein intervention, and assessed body composition, strength, and/or physical function. Thirteen articles were included, all using soy protein (0.6-60 g daily), from 12 weeks to 1 year. Narrative summary reported positive effects on muscle mass over time, with no significant differences compared to controls (no intervention, exercise only, animal protein, or exercise + animal protein interventions). There was limited impact on strength and function. Meta-analysis showed that plant-protein interventions were comparable to controls, in all outcomes. In conclusion, plant-protein interventions improved muscle mass over time, and were comparable to other interventions, warranting further investigation as an anabolic stimulus in this vulnerable population.
Collapse
Affiliation(s)
- Isobel L. Stoodley
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; (I.L.S.); (L.M.W.)
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lily M. Williams
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; (I.L.S.); (L.M.W.)
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Lisa G. Wood
- Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; (I.L.S.); (L.M.W.)
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
33
|
Espinosa-Ramírez J, Mondragón-Portocarrero AC, Rodríguez JA, Lorenzo JM, Santos EM. Algae as a potential source of protein meat alternatives. Front Nutr 2023; 10:1254300. [PMID: 37743912 PMCID: PMC10513374 DOI: 10.3389/fnut.2023.1254300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
With the rise of plant-based meat alternatives, there is a growing need for sustainable and nutritious sources of protein. Alga is a rich protein source, and initial studies show that it can be a good component in developing protein meat alternatives. However, there are certain limitations in their use as the need for efficient and optimal technical process in large-scale protein extraction and purification, as well as overcoming certain negative effects such as potentially harmful compounds, allergenicity issues, or sensorial affections, especially in color but also in textural and flavor characteristics. This review offers a vision of the fledgling research about using alga protein in the development of meat alternatives or supplementing meat products.
Collapse
Affiliation(s)
| | - Alicia C. Mondragón-Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Quimica Analitica Nutricion y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jose A. Rodríguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | | | - Eva M. Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| |
Collapse
|
34
|
Ashfaq A, Osama K, Yousuf O, Younis K. Sustainable Nonfarm Approaches to Achieve Zero Hunger and Its Unveiled Reality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37399190 DOI: 10.1021/acs.jafc.2c09095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Millions of people worldwide are deprived of sufficient, safe, and nutritious food required for an everyday and healthy life. The hunger crisis is worsening over time, even though many attempts have been made to minimize it. Increasing world population and competition for natural resources, climate change, natural disasters, urbanization, poverty, and illiteracy are the main causes that need to be addressed to reduce the hunger crisis. Various nonfarm technologies are being used to eradicate hunger but their long-term impact on the environment should also be considered. The real sustainability of several novel technologies being implemented to deal with hunger is an issue to tackle. This paper discusses the potential applications of storage facilities, underutilized crops, waste valorization, food preservation, nutritionally enriched novel food products, and technological advancement in food processing to achieve zero hunger. An attempt has also been made to address the sustainability of various nonfarm technology utilized to minimize the global hunger crisis.
Collapse
Affiliation(s)
- Alweera Ashfaq
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Khwaja Osama
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Owais Yousuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Kaiser Younis
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| |
Collapse
|
35
|
McClements IF, McClements DJ. Designing healthier plant-based foods: Fortification, digestion, and bioavailability. Food Res Int 2023; 169:112853. [PMID: 37254427 DOI: 10.1016/j.foodres.2023.112853] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Many consumers are incorporating more plant-based foods into their diets as a result of concerns about the environmental, ethical, and health impacts of animal sourced foods like meat, seafood, egg, and dairy products. Foods derived from animals negatively impact the environment by increasing greenhouse gas emissions, land use, water use, pollution, deforestation, and biodiversity loss. The livestock industry confines and slaughters billions of livestock animals each year. There are concerns about the negative impacts of some animal sourced foods, such as red meat and processed meat, on human health. The livestock industry is a major user of antibiotics, which is leading to a rise in the resistance of several pathogenic microorganisms to antibiotics. It is often assumed that a plant-based diet is healthier than one containing more animal sourced foods, but this is not necessarily the case. Eating more fresh fruits, vegetables, nuts, and whole grain cereals has been linked to improved health outcomes but it is unclear whether next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs are healthier than the products they are designed to replace. Many of these new products are highly processed foods that contain high levels of saturated fat, sugar, starch, and salt, and low levels of micronutrients, nutraceuticals, and dietary fibers. Moreover, they are often rapidly digested in the gastrointestinal tract because processing disrupts plant tissues and releases the macronutrients. Consequently, it is important to formulate plant-based foods to reduce the levels of nutrients linked to adverse health effects and increase the levels linked to beneficial health effects. Moreover, it is important to design the food matrix so that the macronutrients are not digested and absorbed too quickly, but the micronutrients are highly bioavailable. In this article, we discuss how next-generation plant-based foods can be made healthier by controlling their nutrient profile, digestibility, and bioavailability.
Collapse
|
36
|
Rivero-Pino F, Villanueva Á, Montserrat-de-la-Paz S, Sanchez-Fidalgo S, Millán-Linares MC. Evidence of Immunomodulatory Food-Protein Derived Peptides in Human Nutritional Interventions: Review on the Outcomes and Potential Limitations. Nutrients 2023; 15:2681. [PMID: 37375585 DOI: 10.3390/nu15122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The immune system is somehow related to all the metabolic pathways, in a bidirectional way, and the nutritional interventions affecting these pathways might have a relevant impact on the inflammatory status of the individuals. Food-derived peptides have been demonstrated to exert several bioactivities by in vitro or animal studies. Their potential to be used as functional food is promising, considering the simplicity of their production and the high value of the products obtained. However, the number of human studies performed until now to demonstrate effects in vivo is still scarce. Several factors must be taken into consideration to carry out a high-quality human study to demonstrate immunomodulatory-promoting properties of a test item. This review aims to summarize the recent human studies published in which the purpose was to demonstrate bioactivity of protein hydrolysates, highlighting the main results and the limitations that can restrict the relevance of the studies. Results collected are promising, although in some studies, physiological changes could not be observed. When responses were observed, they sometimes did not refer to relevant parameters and the immunomodulatory properties could not be clearly established with the current evidence. Well-designed clinical trials are needed in order to evaluate the role of protein hydrolysates in immunonutrition.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Álvaro Villanueva
- Department of Food & Health, Instituto de la Grasa (IG-CSIC), Campus Universitario Pablo de Olavide, Ctra. Utrera Km. 1, 41013 Seville, Spain
| | - Sergio Montserrat-de-la-Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Susana Sanchez-Fidalgo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C Millán-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
37
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
38
|
Diaz-Bustamante ML, Keppler JK, Reyes LH, Alvarez Solano OA. Trends and prospects in dairy protein replacement in yogurt and cheese. Heliyon 2023; 9:e16974. [PMID: 37346362 PMCID: PMC10279912 DOI: 10.1016/j.heliyon.2023.e16974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
There is a growing demand for nutritional, functional, and eco-friendly dairy products, which has increased the need for research regarding alternative and sustainable protein sources. Plant-based, single-cell (SCP), and recombinant proteins are being explored as alternatives to dairy proteins. Plant-Based Proteins (PBPs) are commonly used to replace total dairy protein. However, PBPs are generally mixed with dairy proteins to improve their functional properties, which makes them dependent on animal protein sources. In contrast, single-Cell Proteins (SCPs) and recombinant dairy proteins are promising alternatives for dairy protein replacement since they provide nutritional components, essential amino acids, and high protein yield and can use industrial and agricultural waste as carbon sources. Although alternative protein sources offer numerous advantages over conventional dairy proteins, several technical and sensory challenges must be addressed to fully incorporate them into cheese and yogurt products. Future research can focus on improving the functional and sensory properties of alternative protein sources and developing new processing technologies to optimize their use in dairy products. This review highlights the current status of alternative dairy proteins in cheese and yogurt, their functional properties, and the challenges of their use in these products.
Collapse
Affiliation(s)
- Martha L. Diaz-Bustamante
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Julia K. Keppler
- AFSG: Laboratory of Food Process Engineering, Wageningen University & Research, Wageningen, Netherlands
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Oscar Alberto Alvarez Solano
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
39
|
Webb P, Somers NK, Thilsted SH. Seaweed's contribution to food security in low- and middle-income countries: Benefits from production, processing and trade. GLOBAL FOOD SECURITY 2023. [DOI: 10.1016/j.gfs.2023.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
40
|
Nogueira Silva NF, Silva SH, Baron D, Oliveira Neves IC, Casanova F. Pereskia aculeata Miller as a Novel Food Source: A Review. Foods 2023; 12:foods12112092. [PMID: 37297337 DOI: 10.3390/foods12112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Pereskia aculeata Miller is an edible plant species belonging to the Cactaceae family. It has the potential to be used in the food and pharmaceutical industries due to its nutritional characteristics, bioactive compounds, and mucilage content. Pereskia aculeata Miller is native to the Neotropical region, where it is traditionally employed as food in rural communities, being popularly known as 'ora-pro-nobis' (OPN) or the Barbados gooseberry. The leaves of OPN are distinguished by their nontoxicity and nutritional richness, including, on a dry basis, 23% proteins, 31% carbohydrates, 14% minerals, 8% lipids, and 4% soluble dietary fibers, besides vitamins A, C, and E, and phenolic, carotenoid, and flavonoid compounds. The OPN leaves and fruits also contain mucilage composed of arabinogalactan biopolymer that presents technofunctional properties such as thickener, gelling, and emulsifier agent. Moreover, OPN is generally used for pharmacological purposes in Brazilian folk medicine, which has been attributed to its bioactive molecules with metabolic, anti-inflammatory, antioxidant, and antimicrobial properties. Therefore, in the face of the growing research and industrial interests in OPN as a novel food source, the present work reviews its botanical, nutritional, bioactive, and technofunctional properties, which are relevant for the development of healthy and innovative food products and ingredients.
Collapse
Affiliation(s)
- Naaman Francisco Nogueira Silva
- Centro de Ciências da Natureza, Universidade Federal de São Carlos (UFSCar), Buri 18290-000, SP, Brazil
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba 38025-180, MG, Brazil
| | - Sérgio Henrique Silva
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba 38025-180, MG, Brazil
| | - Daniel Baron
- Centro de Ciências da Natureza, Universidade Federal de São Carlos (UFSCar), Buri 18290-000, SP, Brazil
| | | | - Federico Casanova
- Food Production Engineering Group, DTU Food, Technical University of Denmark, Søltofts Plads 227, Dk-2800 Lyngby, Denmark
| |
Collapse
|
41
|
López-Pedrouso M, Lorenzo JM, Alché JDD, Moreira R, Franco D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. BIOLOGY 2023; 12:biology12050714. [PMID: 37237526 DOI: 10.3390/biology12050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
In recent years, novel food is becoming an emerging trend increasingly more demanding in developed countries. Food proteins from vegetables (pulses, legumes, cereals), fungi, bacteria and insects are being researched to introduce them in meat alternatives, beverages, baked products and others. One of the most complex challenges for introducing novel foods on the market is to ensure food safety. New alimentary scenarios drive the detection of novel allergens that need to be identified and quantified with the aim of appropriate labelling. Allergenic reactions are mostly caused by proteins of great abundance in foods, most frequently of small molecular mass, glycosylated, water-soluble and with high stability to proteolysis. The most relevant plant and animal food allergens, such as lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, tropomyosins and parvalbumins from fruits, vegetables, nuts, milk, eggs, shellfish and fish, have been investigated. New methods for massive screening in search of potential allergens must be developed, particularly concerning protein databases and other online tools. Moreover, several bioinformatic tools based on sequence alignment, motif identification or 3-D structure predictions should be implemented as well. Finally, targeted proteomics will become a powerful technology for the quantification of these hazardous proteins. The ultimate objective is to build an effective and resilient surveillance network with this cutting-edge technology.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15872 A Coruña, Spain
| | - José M Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
42
|
Ma J, Sun Y, Meng D, Zhou Z, Zhang Y, Yang R. Yeast proteins: The novel and sustainable alternative protein in food applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
43
|
Amagliani L, van de Langerijt TM, Morgenegg C, Bovetto L, Schmitt C. Influence of charged and non-charged co-solutes on the heat-induced aggregation of soy and pea proteins at pH 7.0. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Razzak MA, Cho SJ. Physicochemical and functional properties of capsaicin loaded cricket protein isolate and alginate complexes. J Colloid Interface Sci 2023; 641:653-665. [PMID: 36963258 DOI: 10.1016/j.jcis.2023.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/26/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
As people become more aware of the health benefits of foods and their nutritional benefits for preventing diseases and promoting health, the demand for functional foods rich in proteins, fiber, and bioactives like capsaicin (CAP) is constantly rising. This study hypothesized that the electrostatic complexes developed by cricket protein isolate (CPI) and alginate (AL) could be utilized to encapsulate CAP, making it more water-soluble and protecting it at acidic pHs. Quantitative analysis revealed that CAP was efficiently encapsulated into the CPI-AL complexes with a maximum encapsulation efficiency of 91%, improving its aqueous solubility 45-fold. In vitro release tests showed that CAP was retained at acidic pHs (3.0 and 5.0) in CPI-AL complexes but released steadily at neutral pH (7.4), which will protect CAP in the stomach while enabling its release in the small intestine. Moreover, the antioxidant activity of CAP-CPI-AL complexes was superior to that of their individual bare equivalents. The complexes also demonstrated enhanced emulsifying capabilities and stability at acidic pHs (2.0-5.0) as the CPI fraction in the complexes increased. Our findings thus contribute to the growing body of knowledge that validates protein-polysaccharide complexation as a promising strategy for developing edible delivery systems.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea; Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea.; Department of Food Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea; Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea..
| |
Collapse
|
45
|
Co-Extraction of Flaxseed Protein and Polysaccharide with a High Emulsifying and Foaming Property: Enrichment through the Sequence Extraction Approach. Foods 2023; 12:foods12061256. [PMID: 36981182 PMCID: PMC10048294 DOI: 10.3390/foods12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
A new focus with respect to the extraction of plant protein is that ingredient enrichment should target functionality instead of pursuing purity. Herein, the sequence aqueous extraction method was used to co-enrich five protein-polysaccharide natural fractions from flaxseed meal, and their composition, structure, and functional properties were investigated. The total recovery rate of flaxseed protein obtained by the sequence extraction approach was more than 80%, which was far higher than the existing reports. The defatted flaxseed meal was soaked by deionized water to obtain fraction 1 (supernatant), and the residue was further treated to get fraction 2 (supernatant) and 3 (precipitate) through weak alkali solubilization. Part of the fraction 2 was taken out, followed by adjusting its pH to 4.2. After centrifuging, the albumin-rich supernatant and precipitate with protein content of 73.05% were gained and labeled as fraction 4 and fraction 5. The solubility of fraction 2 and 4 exceeded 90%, and the foaming ability and stability of fraction 5 were 12.76 times and 9.89 times higher than commercial flaxseed protein, respectively. The emulsifying properties of fractions 1, 2, and 5 were all greater than that of commercial sodium caseinate, implying that these fractions could be utilized as high-efficiency emulsifiers. Cryo-SEM results showed that polysaccharides in fractions were beneficial to the formation of network structure and induced the formation of tighter and smoother interfacial layers, which could prevent emulsion flocculation, disproportionation, and coalescence. This study provides a reference to promote the high-value utilization of flaxseed meals.
Collapse
|
46
|
Ohmic vs. conventional heating: Influence of moderate electric fields on properties of potato protein isolate gels. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
47
|
Tzompa-Sosa DA, Sogari G, Copelotti E, Andreani G, Schouteten JJ, Moruzzo R, Liu A, Li J, Mancini S. What motivates consumers to accept whole and processed mealworms in their diets? A five-country study. FUTURE FOODS 2023. [DOI: 10.1016/j.fufo.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
48
|
Zhang K, Zang M, Wang S, Zhang Z, Li D, Li X. Development of meat analogs: Focus on the current status and challenges of regulatory legislation. Compr Rev Food Sci Food Saf 2023; 22:1006-1029. [PMID: 36582054 DOI: 10.1111/1541-4337.13098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022]
Abstract
Population growth and the rising enthusiasm for meat consumption in developing countries have increased the global demand for animal protein. The limited increase in traditional meat production, which results in high resource consumption, greenhouse gas emissions, and zoonotic diseases, has affected the sustainable supply of meat protein. The technological development and commercialization of meat analogs derived from plant and microbial proteins provide a strategy for solving the abovementioned problems. However, before these innovative foods are marketed, they should comply with regulations and standards to ensure food safety and consumer rights. This review briefly summarizes the global development status and challenges of plant- and fungi-based meat analog products. It focuses on the current status, characteristics, and disputes in the regulations and standards worldwide for plant- and fungi-based meat analogs and proposes suggestions for perfecting the regulatory system from the perspective of ensuring safety and supporting innovation. Although plant- and fungi-based meat analogs have had a history of safe usage as foods for a certain period around the world, the nomenclature and product standards are uncertain, which affects product innovation and global sales. Regulatory authorities should promptly formulate and revise regulations or standards to clarify the naming of meat analogs and product standards, especially the use of animal-derived ingredients and limits of nutrients (e.g., protein, fat, vitamins, and minerals) to continuously introduce start-up products to the market.
Collapse
Affiliation(s)
- Kaihua Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Mingwu Zang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Shouwei Wang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Zheqi Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Dan Li
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| | - Xiaoman Li
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Science, Beijing, China
| |
Collapse
|
49
|
Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci 2023; 313:102863. [PMID: 36868168 DOI: 10.1016/j.cis.2023.102863] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Emulsions are thermodynamically unstable systems that tend to separate into two immiscible phases over time. The interfacial layer formed by the emulsifiers adsorbed at the oil-water interface plays an important role in the emulsion stability. The interfacial layer properties of emulsion droplets have been considered the cutting-in points that influence emulsion stability, a traditional motif of physical chemistry and colloid chemistry of particular significance in relation to the food science and technology sector. Although many attempts have shown that high interfacial viscoelasticity may contribute to long-term emulsion stability, a universal relationship for all cases between the interfacial layer features at the microscopic scale and the bulk physical stability of the emulsion at the macroscopic scale remains to be established. Not only that, but integrating the cognition from different scales of emulsions and establishing a unified single model to fill the gap in awareness between scales also remain challenging. In this review, we present a comprehensive overview of recent progress in the general science of emulsion stability with a peculiar focus on interfacial layer characteristics in relation to the formation and stabilization of food emulsions, where the natural origin and edible safety of emulsifiers and stabilizers are highly requested. This review begins with a general overview of the construction and destruction of interfacial layers in emulsions to highlight the most important physicochemical characteristics of interfacial layers (formation kinetics, surface load, interactions among adsorbed emulsifiers, thickness and structure, and shear and dilatational rheology), and their roles in controlling emulsion stability. Subsequently, the structural effects of a series of typically dietary emulsifiers (small-molecule surfactants,proteins, polysaccharides, protein-polysaccharide complexes, and particles) on oil-water interfaces in food emulsions are emphasized. Finally, the main protocols developed for modifying the structural characteristics of adsorbed emulsifiers at multiple scales and improving the stability of emulsions are highlighted. Overall, this paper aims to comprehensively study the literature findings in the past decade and find out the commonality of multi-scale structures of emulsifiers, so as to deeply understand the common characteristics and emulsification stability behaviour of adsorption emulsifiers with different interfacial layer structures. It is difficult to say that there has been significant progress in the underlying principles and technologies in the general science of emulsion stability over the last decade or two. However, the correlation between interfacial layer properties and physical stability of food emulsions promotes revealing the role of interfacial rheological properties in emulsion stability, providing guidance on controlling the bulk properties by tuning the interfacial layer functionality.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, P.O. Box 5109, Beijing 100193, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China..
| |
Collapse
|
50
|
Healy LE, Zhu X, Pojić M, Sullivan C, Tiwari U, Curtin J, Tiwari BK. Biomolecules from Macroalgae-Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules 2023; 13:386. [PMID: 36830755 PMCID: PMC9953460 DOI: 10.3390/biom13020386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Seaweed is in the spotlight as a promising source of nutrition for humans as the search for sustainable food production systems continues. Seaweed has a well-documented rich nutritional profile containing compounds such as polyphenols, carotenoids and polysaccharides as well as proteins, fatty acids and minerals. Seaweed processing for the extraction of functional ingredients such as alginate, agar, and carrageenan is well-established. Novel pretreatments such as ultrasound assisted extraction or high-pressure processing can be incorporated to more efficiently extract these targeted ingredients. The scope of products that can be created using seaweed are wide ranging: from bread and noodles to yoghurt and milk and even as an ingredient to enhance the nutritional profile and stability of meat products. There are opportunities for food producers in this area to develop novel food products using seaweed. This review paper discusses the unique properties of seaweed as a food, the processes involved in seaweed aquaculture, and the products that can be developed from this marine biomass. Challenges facing the industry such as consumer hesitation around seaweed products, the safety of seaweed, and processing hurdles will also be discussed.
Collapse
Affiliation(s)
- Laura E. Healy
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Belfield, D02 V583 Dublin, Ireland
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Carl Sullivan
- Faculty of Computing, Digital and Data, School of Mathematics and Statistics, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Uma Tiwari
- School of Food Science and Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - James Curtin
- Faculty of Engineering & Built Environment, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | | |
Collapse
|