1
|
Liu R, Wu T, Zhou W, Zhu A, Liao W, Ding K. A Novel Polysaccharide from the Flowers of Lilium lancifolium Alleviates Pulmonary Fibrosis In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7774-7787. [PMID: 40114341 DOI: 10.1021/acs.jafc.4c11703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Lily flowers are widely used in China for lung nourishment; however, their active ingredients remain unknown. To address this question, we isolated a novel polysaccharide (L005-B) from the flowers of Lilium lancifolium. Its backbone is comprised of Glcp, Galp, and 1,2-linked α-Rhap. The branch is composed of Xyl and T-α-Glcp residues substituted at the C-4 position of Rhap, along with portions of Glcp, Galp, Araf, and GlcpA residues substituted at the C-4 position of glucose or the C-3 position of galactose. Bioactivity study showed that L005-B alleviated fibrosis-associated protein (fibronectin, collagen, α-SMA) expression in TGF-β1-induced human fibroblast cells (MRC-5). Moreover, L005-B significantly inhibited the epithelial-mesenchymal transition of the human alveolar type II epithelial cell. More importantly, L005-B dramatically improved bleomycin-induced histopathological changes and attenuated the pulmonary index and hydroxyproline contents. Taken together, our findings revealed that L005-B may serve as a promising leading compound for the development of novel antipulmonary fibrosis therapeutics.
Collapse
Affiliation(s)
- Renjie Liu
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
| | - Tong Wu
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
| | - Wanqi Zhou
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anming Zhu
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenfeng Liao
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
| | - Kan Ding
- Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19Auquan Road, Beijing 100049, China
- ZhongShan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China
| |
Collapse
|
2
|
Breda C, Nascimento A, Meghwar P, Lisboa H, Aires A, Rosa E, Ferreira L, Barros AN. Phenolic Composition and Antioxidant Activity of Edible Flowers: Insights from Synergistic Effects and Multivariate Analysis. Antioxidants (Basel) 2025; 14:282. [PMID: 40227247 PMCID: PMC11939731 DOI: 10.3390/antiox14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The phenolic composition and antioxidant activity of four edible flowers-Orange marigold, yellow marigold, rose geranium, and Rosa de Santa Teresinha-were evaluated to explore their potential as natural antioxidants. Rosa de Santa Teresinha exhibited the highest total phenol content (83.34 ± 2.09 mg GA g-1 DW) and ortho-diphenol content (168.91 ± 0.15 mg GA g-1 DW), while the marigolds showed significantly lower levels (~17 mg GA g-1 DW for total phenols). Antioxidant activity, determined via ABTS, DPPH, and FRAP assays, ranged from 0.11 to 0.96 mmol Trolox g-1 DW, with rose geranium and Rosa de Santa Teresinha achieving the highest values. Theoretical antioxidant contributions, calculated based on the identified phenolic compounds, accounted for only a small fraction of the measured activity, with observed values exceeding predictions by factors of 56 to 1416, indicating the presence of synergistic interactions and additional bioactive compounds. Multivariate analyses (PCA and PLS regression) identified luteolin-7-O-glucoside and quercetin-3-O-galactoside as primary contributors to antioxidant capacity. These results underscore the importance of synergistic effects in edible flowers and highlight their potential as functional ingredients for nutraceutical applications.
Collapse
Affiliation(s)
- Cristiana Breda
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Amanda Nascimento
- Unidade Académica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso 882, Campina Grande 58429-900, PA, Brazil; (A.N.); (H.L.)
| | - Parkash Meghwar
- Department of Food Science and Technology, University of Karachi, Karachi 75270, Pakistan;
| | - Hugo Lisboa
- Unidade Académica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso 882, Campina Grande 58429-900, PA, Brazil; (A.N.); (H.L.)
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Luís Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; (C.B.); (A.A.); (E.R.); (L.F.)
| |
Collapse
|
3
|
Samkaria S, Kumari P. Wild Edible Flowers of Indian Himalayan Region, Their Traditional Uses and Potential Health Benefits: A Way Forward for Food and Nutritional Security. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:60. [PMID: 39928195 DOI: 10.1007/s11130-025-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Wild edible flowers (WEFs) have long been an integral part of the diets and cultures of various communities worldwide. WEFs have untapped potential for use in human diets as food, supplements, or additives. These flowers contain compounds like flavonoids, carotenoids, nutrients, and minerals that contribute to their health-promoting properties. The Indian Himalayan Region (IHR), known for its biodiversity, hosts a wide array of underutilized WEFs with significant potential as food sources. Indigenous communities have long recognized the nutritional and medicinal benefits of these flowers, incorporating them into traditional medicine and culinary practices. However, systematic research on the nutritional and phytochemical properties of WEFs in this region remains limited. Therefore, gaining novel insights into the nutraceutical compounds of these flowers is crucial, highlighting their significance in promoting consumption. This review article focuses on the nutritional and phytochemical profiles of WEFs and their associated health benefits.The review also addresses the issue of toxicity in wildflowers, as well as various limitations on their consumption. Additionally, it explores the traditional and contemporary uses of these flowers in the IHR, highlighting the importance of preserving traditional knowledge and biodiversity.
Collapse
Affiliation(s)
- Shubham Samkaria
- Division of Agrotechnology, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Poonam Kumari
- Division of Agrotechnology, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
4
|
Książkiewicz M, Karczewska M, Nawrot F, Korybalska K, Studzińska-Sroka E. Traditionally Used Edible Flowers as a Source of Neuroactive, Antioxidant, and Anti-Inflammatory Extracts and Bioactive Compounds: A Narrative Review. Molecules 2025; 30:677. [PMID: 39942781 PMCID: PMC11820717 DOI: 10.3390/molecules30030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Edible flowers are becoming a popular addition to diets. As science has progressed, it has been proven that in addition to their aesthetic value, they possess pharmacological effects and health-promoting properties. Several edible flowers are used in medicine, and the available literature data indicate their broad biological activity. This review focuses on pharmacological knowledge about the neuroactive, antioxidant, and anti-inflammatory potential of 15 traditionally used edible flowers. It also describes their traditionally uses and summarizes research findings on their chemical composition.
Collapse
Affiliation(s)
- Maciej Książkiewicz
- Section “Pharmacognosy”, The Student Scientific Society of Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Michalina Karczewska
- Section “Pharmacognosy”, The Student Scientific Society of Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Filip Nawrot
- Section “Pharmacognosy”, The Student Scientific Society of Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznan University of Medical Science, Rokietnicka 8 Str., 60-806 Poznań, Poland
| | - Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland;
| |
Collapse
|
5
|
Cheng B, Liu X, Liu Y, Luo L, Pan H, Zhang Q, Yu C. Targeted metabolite and molecular profiling of carotenoids in rose petals: A step forward towards functional food applications. Food Chem 2025; 464:141675. [PMID: 39426265 DOI: 10.1016/j.foodchem.2024.141675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Given the increasing consumer demand for natural and functional foods, rose petals offer a promising novel ingredient for food innovation, especially yellow and orange rose petals rich in carotenoids, making them ideal for food processing and color retention. Despite their potential, the metabolic profile of carotenoids in roses has not yet been fully explored. Therefore, the present study aimed to provide a comprehensive analysis of carotenoid metabolism in rose petals during three developmental stages. The results revealed that orange rose petals had the highest carotenoid content of 488.85 μg/g, with xanthophylls being identified as the primary carotenoid constituents (70.40 %) in roses for the first time. Furthermore, two genes, RhBCH1 and RhCCD4, were identified to be involved in the regulation of carotenoid biosynthesis in roses. Overall, this study demonstrates the enormous potential of rose petals as functional food ingredients, providing a theoretical basis for breeding high-carotenoid rose varieties.
Collapse
Affiliation(s)
- Bixuan Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xinying Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yuchen Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Manivel D, Paramasivam R, Roy S. Optimizing Edible Sorghum Bowls: Effects of Roasting and Edible Flower Powder Enhancement on Technological, Nutritional, Antioxidant, and Functional Properties. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:1771084. [PMID: 39816945 PMCID: PMC11729517 DOI: 10.1155/ijfo/1771084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
The widespread reliance on single-use plastics (SUPs) has fostered a global throwaway culture, especially in the food packaging industry, where convenience and low cost have driven their adoption, posing serious environmental threats, particularly to marine ecosystems and biodiversity. Edible and ecofriendly packaging made from millet, specifically sorghum (Sorghum bicolor (L.) Moench), is a promising solution to mitigate SUP consumption and promote sustainability. This study explores the development of edible sorghum bowls, enhanced through roasting and incorporating 3 g of hibiscus and rose flower powders. The standardized sorghum bowl was analyzed for nutritional value; optical, technological, functional, and mechanical properties; and shelf life, and the results were discussed. The bowls, 18.5 g of average weight, dimensions of 10.2 cm, and a thickness of 3 mm, were baked in a unique bowl-shaped mold at 80°C for 7 min. Enhancing the bowls with flower powder improved their optical properties and nutrient content. The addition of flower powder also increased phytochemical levels, according to qualitative analysis, while roasting sorghum reduced tannin and phytic acid content. The IC50 values revealed that hibiscus (47.74 mg/mL) and rose (39.87 mg/mL) enrichment boosted antioxidant activity. Sensory evaluations favored roasted bowls across all attributes, while Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyzer (TGA) analyses confirmed significant structural changes. The enhanced bowls exhibited greater hardness and hold hot or cold snacks for 90 min without compromising structural integrity. Additionally, these bowls demonstrated an extended shelf life, low microbial count (1 × 101CFU/g), reduced toxicity (3%-10% mortality in brine shrimp assays), and complete biodegradation within 15 days in wet soil. These findings indicate that sorghum-based edible bowls present a nutritious, viable, less toxic alternative to SUPs, appealing to a broad demographic, especially in the food and tourism sector, and contributing to environmental conservation by reducing plastic waste and suitable for wide consumption.
Collapse
Affiliation(s)
- Devatha Manivel
- Department of Food Science and Nutrition, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Raajeswari Paramasivam
- Department of Food Science and Nutrition, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
7
|
Song R, Shen M, Wang Y, Sun Y, Ma J, Deng Q, Ren X, Li X, Zheng Y, He Y, Zhang F, Li M, Yao J, Sun M, Liu W, She G. Correlation analysis and modeling application from objective indicators to subjective evaluation of scented tea: A case study of rose tea. Food Chem 2025; 462:140963. [PMID: 39208739 DOI: 10.1016/j.foodchem.2024.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Different scented teas provide various choices for consumers from appearance, aroma, flavor and others. Aiming to define advantages and market positions of different scented teas and promote optimization of market structure, characteristics for scented tea favored by consumers and outstanding attributes of different scented teas should be clarified. Rose tea was taken as study object. Sensory evaluation and consumer acceptance were investigated. GC-MS and HPLC fingerprints were established. Physicochemical characteristics were determined. RGB integration analysis was inventively proposed for correlation analysis. The volatile compounds with spicy, green or herbal odor as camphene, β-phenethyl acetate, eugenol, and physicochemical parameters as antioxidant capacity, reducing sugar content, pH showed positive correlation with popular sensory properties. Six models for consumer preference by objective description were built through GA-SVR (accuracy = 1), and APP was developed. The research mode of scented tea has been successfully established to study multiple subjective characteristics with measurable objective parameters.
Collapse
Affiliation(s)
- Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meng Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Youyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
8
|
Marchioni I, Rodolfi M, Najar B, Ruffoni B, Machado J, Pistelli L. Phytonutritional compounds and antioxidant activity of eight new edible flowers. Nat Prod Res 2024; 38:3728-3734. [PMID: 37749955 DOI: 10.1080/14786419.2023.2261140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
In the last years, special attention has been given to the nutritional properties of food, and the edible flowers (EFs) represent an uncommon fresh product to characterise, with the aim to explore new species with peculiar aesthetic and the aromatic features. This work investigated some nutritional properties of eight new EFs, such as Begonia boliviensis A.DC. (pink and white varieties), Dahlia pinnata Cav., Salvia farinacea Benth., S. × jamensis J.Compton, S. 'Purple Queen' Tulbaghia simmleri Beauv. 'Alba', T. violacea Harv. 'Alba', chosen for their different colours and corolla morphologies. Primary and secondary metabolites have been determined. The highest protein content was found in T. violacea 'Alba' and D. pinnata. The Salvia species showed the highest soluble sugar content. The two Tulbaghia species were notable for hexose and ascorbic acid content. D. pinnata showed the highest polyphenols, flavonoids and carotenoid content, with the highest antiradical activity.
Collapse
Affiliation(s)
| | | | - Basma Najar
- Faculty of Pharmacy, ULB, Bruxelles, Belgium
| | - Barbara Ruffoni
- Research Center for Vegetable and Ornamental Crops (CREA), Sanremo, Italy
| | - Jean Machado
- Department of Agriculture, Food, Environment, University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food, Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Li Z, Zhang J, Yang L, Li X, Meng Q, Li Y, Yao S, Wei W, Bi Q, Qu H, An Y, Guo DA. Intelligent chemical profiling of 73 edible flowers by liquid chromatography-high resolution mass spectrometry combined with HRMS database and their authentication based on large-scale fingerprints. Food Chem 2024; 446:138683. [PMID: 38428081 DOI: 10.1016/j.foodchem.2024.138683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
A commercial high-resolution MS database "TCM-PCDL" was innovatively introduced to automatically identify multi-components in 73 edible flowers rapidly and accurately by liquid chromatography-high resolution mass spectrometry, which can be time-consuming and labor-intensive in traditional manual method. The database encompasses over 2565 natural products with various energy levels. Unknown compounds can be identified through direct matching and scoring MS2 spectra with database. A total of 870 compounds were identified from 73 flowers, with polyphenols constituting up to 75%. Focusing on polyphenols, a high performance liquid chromatography (HPLC) method was developed to generate fingerprints from 510 batches, establishing an "HPLC database" that enabled accurate authentication using similarity scores and rankings. This method demonstrated an accuracy rate of 100% when applied to 30 unknown samples. For flowers prone to confusion, additional statistical analysis methods could be employed as aids in authentication. This study provides valuable insights for large-scale sample chemical profiling and authentication.
Collapse
Affiliation(s)
- Ziqing Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Lin Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Qian Meng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yun Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Shuai Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Wenlong Wei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Qirui Bi
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Hua Qu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yaling An
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
10
|
Ragupathy S, Thirugnanasambandam A, Henry T, Vinayagam V, Sneha R, Newmaster SG. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Foods 2024; 13:1862. [PMID: 38928803 PMCID: PMC11203286 DOI: 10.3390/foods13121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Thomas Henry
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Varathan Vinayagam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Ragupathy Sneha
- College of Medicine, American University of Antigua, Jobberwock Beach Road, Coolidge P.O. Box W1451, Antigua;
| | - Steven G. Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| |
Collapse
|
11
|
Rao V, Poonia A. Bioactive compounds, nanoparticles synthesis, health benefits and potential utilization of edible flowers for the development of functional dairy products: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1053-1068. [PMID: 38562597 PMCID: PMC10981638 DOI: 10.1007/s13197-023-05853-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 04/04/2024]
Abstract
The food sector faces difficulty meeting the expectations for high-quality food items with safe and clean perceptions in light of customers' increased concern and economic sanctions of synthetic and hazardous chemicals. Besides their widespread use as decoration, flowers are known to be consumed as a traditional food or a component of complementary therapy in many different civilizations worldwide. Because of their nutritional importance as a source of nutrients, proteins, essential amino acids, bioactive compounds, etc., many edible flowers can be viewed as a food source rather than just a delicacy or decoration. Polyphenols, flavonoids, and carotenoids are the phytochemicals that make up the bioactive components of edible flowers. These substances have anti-inflammatory, antibacterial, and antioxidant properties that can improve the nutritional profile of dairy products. Nanoparticles have become a cutting-edge strategy to make use of these advantages. In addition to encapsulating and protecting medicinal substances, nanoparticles made from edible flowers also enable regulated release, increasing bioavailability and durability. Numerous opportunities exist for the addition of edible flower- nanoparticles to dairy products. Their inclusion can add distinctive flavours, colours, and sensations, boosting the consumer's sensory perception. This review quotes the recent studies and discusses different aspects such as nanoparticle synthesis, quantification and characterization, health benefits, novel ingredient for the development of functional food, and the bioactive compounds for different varieties of edible flowers.Kindly check and confirm the edit made in the title. The final title is : "Bioactive compounds,nanoparticles synthesis, health benefits andpotential utilization of edible flowers for thedevelopment of functional dairy products: areview". Graphical abstract
Collapse
Affiliation(s)
- Vasundhara Rao
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Amrita Poonia
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
12
|
Meng Q, Zhang J, Li X, Li Y, Shen X, Li Z, Xu M, Yao C, Chu P, Cui YJ, Guo DA. ASAP-MS combined with mass spectrum similarity and binary code for rapid and intelligent authentication of 78 edible flowers. Food Chem 2024; 436:137776. [PMID: 37862980 DOI: 10.1016/j.foodchem.2023.137776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
This is the first report to use Atmospheric Pressure Solids Analysis Probe (ASAP) for rapid and intelligent authentication of 78 edible flowers. Mass spectra of 451 batches were collected, with each run for 1-2 min. Experimental raw data was automatically extracted and aligned to create a MS database, based on which flowers were identified by MS similarity scores and rankings. To avoid background interference, top 25 ions of each flower were screened and gathered into an m/z pool containing 292 ions (+) and 399 ions (-). Binary sequence IDs were then generated by automatically assigning "1″ for presence and "0″ for absence, resulting in 78 binary codes. Binary code similarity with 78 IDs was used for authentication. Above two approaches were automatically performed by MATLAB, and compared to k-nearest neighbor model, and samples were all successfully identified (100 %). The proposed method provides a high-throughput authentication approach for large-scale food samples.
Collapse
Affiliation(s)
- Qian Meng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Xiaolan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yun Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Xuanjing Shen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Ziqing Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Meng Xu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Changliang Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Pengfei Chu
- Waters Technology (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Ya-Jun Cui
- Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China.
| |
Collapse
|
13
|
Chatzimitakos T, Athanasiadis V, Kotsou K, Makrygiannis I, Bozinou E, Lalas SI. Evaluation of the Nutritional Value of Prunus dulcis Blossoms and the Antioxidant Compounds of Their Extracted Oil Using Green Extraction Method. APPLIED SCIENCES 2024; 14:2001. [DOI: 10.3390/app14052001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Edible blossoms and extracted oils from various parts of plants have gained the interest of researchers in recent years due to their strong antioxidant activity and their high content of vitamins. In addition, they contain a plethora of polyphenols, and they do not have high caloric content. The blossoms of Prunus dulcis (i.e., almond tree) are edible; however, they have not been examined in terms of nutritional value. The present study aimed to examine the nutritional value of almond blossoms, as well as their extracted oil. The fat content of the blossoms was 1.75 g/100 g dry weight (dw), while the defatted blossoms were found to contain 1.34 g/100 g dw of crude protein and 29.97 g/100 g dw of carbohydrates. In addition, the blossom oil was tested for its composition of fatty acids, polyphenols, and total carotenoids. According to the results, several important fatty acids for human health were identified, such as oleic (25.17%), linoleic (15.64%), and linolenic (10.15%). Simultaneously, a low oxidation index (COX), i.e., 4.05, and many monounsaturated (25.17%) and unsaturated (67.56%) fats were detected, while both polyphenols (51.86 mg GAE/kg) and carotenoids were in abundance. Finally, the combination of simple stirring with ultrasound (a green extraction method) was found to be the most appropriate method to ensure maximum amounts of various antioxidant compounds in the blossom extracts (i.e., polyphenols and L-ascorbic acid). After optimization, the total polyphenol content increased by 23.98% and L-ascorbic acid content by 6.96%. In addition, antioxidant activity was tested by different antioxidant assays and specifically FRAP, DPPH, and H2O2, which showed a corresponding increase (14.46, 17.23, and 8.79%, respectively). Therefore, it can be concluded that Prunus dulcis blossoms, besides being edible, are also highly nutritious, and their oil has nutritional value and deserves further exploration.
Collapse
Affiliation(s)
- Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Vassilis Athanasiadis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Konstantina Kotsou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Ioannis Makrygiannis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Eleni Bozinou
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| | - Stavros I. Lalas
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece
| |
Collapse
|
14
|
Giannetti V, Biancolillo A, Marini F, Boccacci Mariani M, Livi G. Characterization of the aroma profile of edible flowers using HS-SPME/GC-MS and chemometrics. Food Res Int 2024; 178:114001. [PMID: 38309925 DOI: 10.1016/j.foodres.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
In recent years the consumption of edible flowers has gained new popularity, and their use seems destined to grow thanks to their potential as functional elements and their ability to impart aroma to traditional foods. In this study, the volatile profile of several edible flowers was investigated to identify characteristic compounds to be used as product markers. 85 samples belonging to four cultivars were analyzed by HS-SPME/GC-MS. A PLS-DA was used to build a model capable of differentiating the investigated classes. The resulting model correctly predicted over 95% of the validation samples, highlighting a significant difference between the four types of edible flowers. The VIP analysis highlighted 29 compounds relevant for the characterization of different flowers, many of which were biologically active. The study aims to broaden the framework of objectively measurable tools useful for enhancing the qualitative peculiarity of one product compared to another and offering growth opportunities to emerging food chains.
Collapse
Affiliation(s)
- Vanessa Giannetti
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, Rome 00161, Italy.
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio 67100, Coppito, L'Aquila, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Maurizio Boccacci Mariani
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, Rome 00161, Italy
| | - Greta Livi
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano 9, Rome 00161, Italy
| |
Collapse
|
15
|
Castillo-Carrión M, Martínez-Espinosa R, Pérez-Álvarez JÁ, Fernández-López J, Viuda-Martos M, Lucas-González R. Nutritional, Fatty Acids, (Poly)phenols and Technological Properties of Flower Powders from Fuchsia hybrida and Alcea rosea. Foods 2024; 13:237. [PMID: 38254537 PMCID: PMC10814466 DOI: 10.3390/foods13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Fuchsia hybrida (pena pena) and Alcea rosea L. (malvagoma) are predominant flowers in the "Horchata" infusion, a traditional beverage in southern Ecuador, to which some medicinal properties are attributed. However, there is very little published information about these two flower species. The current study aimed to obtain two dehydrated powders of these flowers and to determine their chemical composition, physicochemical and technological properties, polyphenols, and fatty acids profile. In both powdered flowers, carbohydrates predominated, with a significant content of dietary fiber and fructose. The fat content was low, mainly comprising polyunsaturated fats (62% pena pena and 52% malvagoma), with a significant presence of omega-3 (C18:3n-3,6,9) and omega-6 (C18:2n-6,9) fatty acids, showing a better n-6/n-3 balance in the malvagoma flowers. Pena pena flowers are highlighted by high anthocyanin and ellagic acid amounts, whereas malvagoma contains a high content of flavanones. In conclusion, the studied powder flowers, could be used in the formulation of new foods or as source of anthocyanins as food colorants.
Collapse
Affiliation(s)
- Maritza Castillo-Carrión
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador; (M.C.-C.); (R.M.-E.)
| | - Ruth Martínez-Espinosa
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador; (M.C.-C.); (R.M.-E.)
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Juana Fernández-López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
| | - Raquel Lucas-González
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UHM), Miguel Hernández University, 03312 Alicante, Spain; (J.Á.P.-Á.); (J.F.-L.); (M.V.-M.)
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avda. Galicia No. 4, 32900 Ourense, Spain
| |
Collapse
|
16
|
Castaldo L, Lombardi S, Izzo L, Ritieni A. Exploring the Chemical Composition of Female Zucchini Flowers for Their Possible Use as Nutraceutical Ingredient. Antioxidants (Basel) 2023; 12:2108. [PMID: 38136227 PMCID: PMC10740746 DOI: 10.3390/antiox12122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The zucchini (Cucurbita pepo L.) plant is well known for its fruits; however, its edible flowers appear to contain several active molecules, including polyphenols, which display poor bioaccessibility after gastrointestinal digestion (GiD). This study explores the bioaccessibility of polyphenols and antioxidant capacity within zucchini flower extracts during simulated GiD. Two nutraceutical formulations, non-acid-resistant (NAcR) and acid-resistant (AcR) capsules containing an aqueous extract of zucchini flowers, were employed in this investigation. Additionally, high-resolution mass spectrometry (Q-Orbitrap HRMS) was utilized for a comprehensive analysis of their polyphenolic constituents. Predominantly, rutin and isorhamnetin-3-rutinoside were the most prevalent compounds detected in the samples (514.62 and 318.59 mg/kg, respectively). Following in vitro GiD, the extract encapsulated in AcR capsules exhibited enhanced bioaccessibility during both the duodenal (189.2 and 162.5 mg GAE/100 g, respectively) and colonic stages (477.4 and 344.7 mg GAE/100 g, respectively) when compared with the extract encapsulated in NAcR capsules. This suggests that gastric acidity adversely impacted the release of polyphenols from NAcR capsules. In conclusion, the aqueous zucchini flower extract emerges as a promising and readily accessible source of dietary polyphenols. Moreover, the utilization of AcR capsules presents a potential nutraceutical formulation strategy to improve polyphenol bioaccessibility, enhancing its applicability in promoting health and well-being.
Collapse
Affiliation(s)
| | | | - Luana Izzo
- Food Laboratory, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (S.L.); (A.R.)
| | | |
Collapse
|
17
|
Zumsteg J, Bossard E, Gourguillon L, Villette C, Heintz D. Comparison of nocturnal and diurnal metabolomes of rose flowers and leaves. Metabolomics 2023; 20:4. [PMID: 38066353 DOI: 10.1007/s11306-023-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Roses are one of the most essential ornamental flowers and are commonly used in perfumery, cosmetics, and food. They are rich in bioactive compounds, which are of interest for therapeutic effects. OBJECTIVES The objective of this study was to understand the kinds of changes that occur between the nocturnal and diurnal metabolism of rose and to suggest hypotheses. METHODS Reversed-phase ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry or triple quadrupole mass spectrometry (TQ MS/MS) was used for nontargeted metabolomics and hormonal profiling respectively. For metabolite annotation, accurate mass spectra were compared with those in databases. RESULTS The hormonal profile of flowers showed an increase in jasmonate at night, while that of leaves indicated an increase in the salicylic acid pathway. Nontargeted analyses of the flower revealed a switch in the plant's defense mechanisms from glycosylated metabolites during the day to acid metabolites at night. In leaves, a significant decrease in flavonoids was observed at night in favor of acid metabolism to maintain a level of protection. Moreover, it might be possible to place back some of the annotated molecules on the shikimate pathway. CONCLUSION The influence of day and night on the metabolome of rose flowers and leaves has been clearly demonstrated. The hormonal modulations occurring during the night and at day are consistent with the plant circadian cycle. A proposed management of the sesquiterpenoid and triterpenoid biosynthetic pathway may explain these changes in the flower. In leaves, the metabolic differences may reflect night-time regulation in favor of the salicylic acid pathway.
Collapse
Affiliation(s)
- Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Elodie Bossard
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Lorène Gourguillon
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
18
|
Hegde A, Gupta S, Kumari P, Joshi R, Srivatsan V. Wild Edible Flowers of Western Himalayas: Nutritional Characterization, UHPLC-QTOF-IMS-Based Phytochemical Profiling, Antioxidant Properties, and In Vitro Bioaccessibility of Polyphenols. ACS OMEGA 2023; 8:40212-40228. [PMID: 37929082 PMCID: PMC10620890 DOI: 10.1021/acsomega.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023]
Abstract
Four edible flowers commonly consumed in the Western Himalayan region, namely, Bauhinia variegata (Kachnar), Tropaeolum majus (Nasturtium), Matricaria chamomilla (Chamomile), and Tagetes erecta (Marigold), were characterized for their nutritional and phytochemical composition. Through the UHPLC-QTOF-IMS-based metabolomics approach, 131 compounds were tentatively identified consisting of phenolic acids, flavonoid glycosides, terpenoids, amino acids, and fatty acid derivatives. Kaempferol and quercetin glycosides for Kachnar, apigenin glycosides and caffeoylquinic acid derivatives for Chamomile, patulin and quercetin derivatives for Marigold, cyanidin and delphinidin glycosides for Nasturtium were the predicted marker metabolites identified through non-targeted metabolomics. Kachnar and Chamomile scored best in terms of macronutrients and essential micronutrients, respectively. Nasturtium contained high concentrations of α-linolenic acid, anthocyanins, and lutein. Kachnar contained the highest total phenolic acids (63.36 ± 0.38 mg GAE g-1), while Marigold contained the highest total flavonoids (118.90 ± 1.30 mg QUE g-1). Marigolds possessed excellent free radical scavenging and metal chelation activities. Chamomile exhibited strong α-glucosidase inhibition activity, followed by Nasturtium. The in vitro gastrointestinal digestibility of flower extracts indicated that the bioaccessibility of phenolic acids was higher than that of flavonoids. Polyphenols from Nasturtium and Chamomile showed the highest bioaccessibility. The study is an attempt to characterize traditionally consumed edible flowers and promote their wider utilization in gastronomy and nutraceuticals.
Collapse
Affiliation(s)
- Athrinandan
S. Hegde
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Smriti Gupta
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Poonam Kumari
- Division
of Agrotechnology, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Robin Joshi
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Vidyashankar Srivatsan
- Applied
Phycology and Food Technology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC)
Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
19
|
Zhang Q, Cheng Z, Fan Y, Zhang D, Wang M, Zhang J, Sommano S, Wu X, Long C. Ethnobotanical study on edible flowers in Xishuangbanna, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:43. [PMID: 37777741 PMCID: PMC10542681 DOI: 10.1186/s13002-023-00608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Edible flowers (EFs) represent valuable sources of both food and medicinal resources, holding the promise to enhance human well-being. Unfortunately, their significance is often overlooked. Ethnobotanical studies on the EFs are lacking in comparison with their botanical and phytochemical research. The practice of consuming flowers as food has a rich culture and long history in China, especially among different linguistic groups in Xishuangbanna, Yunnan. However, economic activities have led to a decline of this tradition. Consequently, preserving the traditional knowledge and culture tied to the EFs in Xishuangbanna becomes both essential and pressing. METHODS The field ethnobotanical survey was conducted in Xishuangbanna during five visits in April 2021 and May 2023, covering 48 villages and 19 local markets of all three county-level areas and 9 different linguistic groups. By conducting a comprehensive literature review and on-site field surveys, relevant information regarding the EFs of Xishuangbanna was systematically collected and documented. Additionally, the relative frequency of citation (RFC) values were calculated from the survey data. RESULTS A total of 212 taxa (including species and varieties) of EFs from 58 families and 141 genera were documented in the study area. The edible parts of flowers were classified into 13 categories including peduncle, petal, flower buds, inflorescence as a whole, and etc. They were consumed in 21 ways and as 8 types of food. The inflorescence was the most commonly consumed category, accounting for 85 species (40.1%) of the total categories. They always eat flowers as vegetables (184 species, 86.8%). The preparing form of stir-frying was the preferred food preparation method (138, 65.1%). The Xishuangbanna locals had profound knowledge of which EFs required specific processing to remove their toxicity or bitterness. The dishes can be made from either exclusively from the flowers themselves or by incorporating them alongside other plant parts like stems and leaves. Some EFs with high RFC value, such as Musa acuminata and Bauhinia variegata var. candida, showed significant cultural meanings. These edible flowers occupy specific positions in local traditional culture. CONCLUSION Traditional knowledge regarding edible flowers holds substantial significance and serves as a representative element of the flower-eating culture in Xishuangbanna. Nevertheless, this knowledge and cultural practice are currently decreasing. Serving as a bridge between tradition and modernity, the flower-eating culture, which derives from local people's practical experience, shows the potential of EFs and can be applied to the conservation of biocultural diversity, healthy food systems, and sustainable development.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanxiao Fan
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Dezheng Zhang
- School of Ethnology and Sociology, Yunnan University, Kunming, 650091, China
| | - Miaomiao Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Jihai Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Sarana Sommano
- Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Xianjin Wu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China.
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
20
|
Liu X, Wang S, Cui L, Zhou H, Liu Y, Meng L, Chen S, Xi X, Zhang Y, Kang W. Flowers: precious food and medicine resources. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Dos Santos Silva LY, da Silva Ramos A, Cavalcante DN, Kinupp VF, da Silva Rodrigues JV, Ventura BML, de Oliveira Mendes TA, Sanches EA, Campelo PH, de Araújo Bezerra J. Hibiscus acetosella: An Unconventional Alternative Edible Flower Rich in Bioactive Compounds. Molecules 2023; 28:4819. [PMID: 37375373 DOI: 10.3390/molecules28124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The interest in the consumption of edible flowers has increased since they represent a rich source of bioactive compounds, which are significantly beneficial to human health. The objective of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers presented pH value of 2.8 ± 0.00, soluble solids content of 3.4 ± 0.0 °Brix, high moisture content of about 91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was better than the results observed for other edible flowers (507.8 ± 2.7 μM TE and 783.9 ± 30.8 μM TE, respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives, kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting that the extract has no directly harmful effects to cells. The important bioactive compound identified in this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential without showing cytotoxicity.
Collapse
Affiliation(s)
- Laila Yasmim Dos Santos Silva
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Andrezza da Silva Ramos
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Débora Nogueira Cavalcante
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Valdely Ferreira Kinupp
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | | | | | | | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers, Materials Physics Department, Federal University of Amazonas, Manaus 69067-005, Brazil
| | | | - Jaqueline de Araújo Bezerra
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| |
Collapse
|
22
|
Edorh Tossa P, Belorgey M, Dashbaldan S, Pączkowski C, Szakiel A. Flowers and Inflorescences of Selected Medicinal Plants as a Source of Triterpenoids and Phytosterols. PLANTS (BASEL, SWITZERLAND) 2023; 12:1838. [PMID: 37176893 PMCID: PMC10181404 DOI: 10.3390/plants12091838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Steroids and triterpenoids are compounds valued for their various biological and pharmacological properties; however, their content in medicinal and edible plants is often understudied. Flowers have been consumed since the ancient times as a part of traditional cuisine and as alternative medicines. Currently, the interest in medicinal and edible flowers is growing since contemporary consumers are incessantly seeking innovative natural sources of bioactive compounds. The aim of this report was the GC-MS (gas-chromatography-mass spectrometry) analysis of steroid and triterpenoid content in flowers, inflorescences and leaves of several plants (Berberis vulgaris L., Crataegus laevigata (Poir.) DC., Pulsatilla vulgaris Mill., Rosa rugosa Thunb., Sambucus nigra L. and Vinca minor L.), applied in herbal medicine in various forms, including isolated flowers (Flos), inflorescences (Inflorescentia) or aerial parts (Herba, i.e., combined flowers, leaves and stems). The most abundant source of triterpenoids was V. minor flowers (6.3 mg/g d.w.), whereas the steroids were prevailing in P. vulgaris flowers (1.8 and 1.1 mg/g). The profiles of triterpenoid acids and neutral triterpenoids in C. laevigata and S. nigra inflorescences were particularly diverse, involving compounds belonging to lupane-, oleanane- and ursane-type skeletons. The obtained results revealed that some flowers can constitute an abundant source of phytosterols and bioactive triterpenoids, valuable for utilization in functional foods, dietary supplements and cosmetic products.
Collapse
Affiliation(s)
- Pauline Edorh Tossa
- Clermont Auvergne Institut National Polytechnique, SIGMA Clermont, Campus des Cézeaux CS 20265, 63178 Aubière, France
| | - Morgan Belorgey
- Faculté de Pharmacie, Université Clermont Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand, France
| | - Soyol Dashbaldan
- School of Industrial Technology, Mongolian University of Science and Technology, 8th Khoroo, Baga Toiruu 34, Sukhbaatar District, Ulaanbaatar 14191, Mongolia;
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland;
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland;
| |
Collapse
|
23
|
Coyago-Cruz E, Guachamin A, Vera E, Moya M, Heredia-Moya J, Beltrán E. Physicochemical characteristics and antioxidant capacity of Ecuadorian paramo flowers. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Ecuador is a megadiverse country with a wide variety of floral species that have been little studied. In this context, the study's objective was to evaluate the physicochemical characteristics and the antioxidant activity of several floral species of paramo of Pichincha Province in Ecuador. Thus, the weight, size, color, pH, soluble solids, moisture and ash of fresh flower was quantified. In addition, carotenoids, phenolic compounds and antioxidant activity were quantified in lyophilized powder. The results obtained showed that the flowers of Werneria nubigena were the longest (43,80 cm); Brugmansia x candida the widest (9,88cm) and heaviest (9,22g); Tristerix longebracteatus presented high soluble solids content (21,5 °Brix), Lupinus microphyllus high pH (14,00), Ceanothus maritimus high titratable acidity (0,26%), Castilleja integrifolia high ash content (6,42%) and Bidens ferulifolia high moisture content (95,73%). In addition, the highest ranges of total carotenoids and total phenolics were presented by yellow Bidens ferulifolia (24,81 µg β-carotene/g PS) and Fuchsia vulcania (531,77 mg EAG /g PS), respectively. Finally, it was found in Bomarea multiflora high values of antioxidant capacity (182,08 trolox eq. µmol/ g PS). These results suggest that the paramo flowers contain essential bioactive compounds that could be used for food, medicinal and cosmetic purposes.
Keywords: Bioactive compounds, carotenoids, phenolic compounds, Andean flowers
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Universidad Politécnica Salesiana, Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Sede Quito, Campus El Girón, Grupo de Investigación y Desarrollo en Ciencias Aplicadas a los Recursos Biológicos, Av. 12 de octubre N2422 y Wilson, Quito, 170109, Ecuador; ;
| | - Aida Guachamin
- Universidad Politécnica Salesiana, Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Sede Quito, Campus El Girón, Grupo de Investigación y Desarrollo en Ciencias Aplicadas a los Recursos Biológicos, Av. 12 de octubre N2422 y Wilson, Quito, 170109, Ecuador;
| | - Edwin Vera
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Av. 12 de octubre N2422 y Veintimilla, Quito, 170109, Ecuador;
| | - Melany Moya
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Carrera de Obstetricia, Iquique, Luis Sodiro N14-121, Quito, 170136, Ecuador;
| | - Jorge Heredia-Moya
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Biomédica (CENBIO), Quito, 170527, Ecuador;
| | - Elena Beltrán
- Investigación de Alimentos (CIAL), Facultad de Ciencias de la Ingeniería e Industrias, Ingeniería de Alimentos, Quito, código postal, Ecuador;
| |
Collapse
|
24
|
Baibuch S, Zema P, Bonifazi E, Cabrera G, Mondragón Portocarrero ADC, Campos C, Malec L. Effect of the Drying Method and Optimization of Extraction on Antioxidant Activity and Phenolic of Rose Petals. Antioxidants (Basel) 2023; 12:antiox12030681. [PMID: 36978929 PMCID: PMC10045785 DOI: 10.3390/antiox12030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The effect of freeze and hot air drying methods on the retention of total phenolics, antioxidant activity (AA), and color of different cultivars of rose petals was analyzed. Both methods similarly preserved the phenolic content and AA, while freeze drying showed better red color retention. Furthermore, the conditions of total phenolics and AA extraction from two rose cultivars, Lovely Red and Malu, were optimized by response surface methodology through a Box–Behnken design. The solvent exhibited a major effect on the total phenolic content (TPC) and AA. The selected parameters were ethanol 38%, 75 °C, and 30 min. Under these conditions, the predicted values for Lovely Red were 189.3 mg GA/g dw (TPC) and 535.6 mg Trolox/g dw (AA), and those for Malu were 108.5 mg GA/g dw (TPC) and 320.7 mg Trolox/g dw (AA). The experimental values were close to the predicted values, demonstrating the suitability of the model. Ultrasound-assisted extraction increased the AA of the extracts but not the TPC. Fifteen compounds were identified in the Lovely Red cultivar, with no differences between the two drying methods. The results obtained suggest that the analyzed cultivars, particularly the red ones, can be considered a natural source of powerful antioxidant compounds.
Collapse
Affiliation(s)
- Sabrina Baibuch
- Industries Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Institute of Food Technology and Chemical Processes, Faculty of Exact and Natural Sciences, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | - Paula Zema
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Evelyn Bonifazi
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Microanalysis and Physical Methods Applied to Organic Chemistry Unit, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | - Gabriela Cabrera
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Microanalysis and Physical Methods Applied to Organic Chemistry Unit, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | | | - Carmen Campos
- Industries Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Institute of Food Technology and Chemical Processes, Faculty of Exact and Natural Sciences, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | - Laura Malec
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-(11)-5285-8540
| |
Collapse
|
25
|
Owis AI, Sherif NH, Hassan AA, El-Naggar EMB, El-Khashab IH, El-Ghaly ES. Tropaeolum majus L. and low dose gamma radiation suppress liver carcinoma development via EGFR-HER2 signaling pathway. Nat Prod Res 2023; 37:1030-1035. [PMID: 35834717 DOI: 10.1080/14786419.2022.2098958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancers around the world and remain asymptomatic in early stage. An alcoholic extract prepared from leaves of Tropaeolum majus L. (Tropaeolaceae) was assessed for its potential activity against diethylnitrosamine-induced liver carcinoma in vivo. Oral administration of the extract significantly decreased the inflammatory marker translation NF-kB and supressed HCC progression in combination with 0.5 Gy gamma radiation via EGF-HER-2 pathway. Histopathological and immunohistopathological features also showed the recovery of a hepatic architecture. Immunohistochemical study showed the T. majus and LDR enhancement effect on proapoptotic markers (caspase-3 and Bax) and inhibition of anti-apoptotic factor (BCl2). HPLC-DAD-MSn analysis of the extract revealed the annotation of twelve compounds. T. majus could mediate a defensive influence against diethylnitrosamine-induced hepatocarcinogenesis and serve as a respectable option in amelioration of the hepatocellular carcinoma development in combination with low dose of gamma radiation.
Collapse
Affiliation(s)
- Asmaa I Owis
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Noheir H Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Iman H El-Khashab
- Department of Zoology, Faculty of Girls, Ain Shams University, Cairo, Egypt
| | - El-Sayed El-Ghaly
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
26
|
Pensamiento-Niño CA, Castañeda-Ovando A, Añorve-Morga J, Hernández-Fuentes AD, Aguilar-Arteaga K, Ojeda-Ramírez D. Edible Flowers and Their Relationship with Human Health: Biological Activities. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
| | | | - Javier Añorve-Morga
- Chemistry Department, Universidad Autonoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Alma D. Hernández-Fuentes
- Veterinary Medicine and Agroindustry Engineering Departments, Universidad Autonoma del Estado de Hidalgo, Tulancingo, Mexico
| | - Karina Aguilar-Arteaga
- Agroindustry Engineering Department, Universidad Politécnica de Francisco, Madero, Francisco Madero, Mexico
| | - Deyanira Ojeda-Ramírez
- Veterinary Medicine and Agroindustry Engineering Departments, Universidad Autonoma del Estado de Hidalgo, Tulancingo, Mexico
| |
Collapse
|
27
|
Wilczyńska A, Kukułowicz A, Lewandowska A. Effect of Packaging on Microbial Quality of Edible Flowers During Refrigerated Storage. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/159037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Hegde AS, Gupta S, Sharma S, Srivatsan V, Kumari P. Edible rose flowers: A doorway to gastronomic and nutraceutical research. Food Res Int 2022; 162:111977. [DOI: 10.1016/j.foodres.2022.111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
29
|
Pezo L, Lončar B, Šovljanski O, Tomić A, Travičić V, Pezo M, Aćimović M. Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type-An Artificial Neural Network Approach. Life (Basel) 2022; 12:1722. [PMID: 36362877 PMCID: PMC9694612 DOI: 10.3390/life12111722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/21/2024] Open
Abstract
Predicting yield is essential for producers, stakeholders and international interchange demand. The majority of the divergence in yield and essential oil content is associated with environmental aspects, including weather conditions, soil variety and cultivation techniques. Therefore, aniseed production was examined in this study. The categorical input variables for artificial neural network modelling were growing year (two successive growing years), growing locality (three different locations in Vojvodina Province, Serbia) and fertilization type (six different treatments). The output variables were morphological and quality parameters, with agricultural importance such as plant height, umbel diameter, number of umbels, number of seeds per umbel, 1000-seed weight, seed yield per plant, plant weight, harvest index, yield per ha, essential oil (EO) yield, germination energy, total germination, EO content, as well as the share of EOs compounds, including limonene, cis-dihydro carvone, methyl chavicol, carvone, cis-anethole, trans-anethole, β-elemene, α-himachalene, trans-β-farnesene, γ-himachalene, trans-muurola-4(14),5-diene, α-zingiberene, β-himachalene, β-bisabolene, trans-pseudoisoeugenyl 2-methylbutyrate and epoxy-pseudoisoeugenyl 2-methylbutyrate. The ANN model predicted agricultural parameters accurately, showing r2 values between 0.555 and 0.918, while r2 values for the forecasting of essential oil content were between 0.379 and 0.908. According to global sensitivity analysis, the fertilization type was a more influential variable to agricultural parameters, while the location site was more influential to essential oils content.
Collapse
Affiliation(s)
- Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Biljana Lončar
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Vanja Travičić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Milada Pezo
- Department of Thermal Engineering and Energy, “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| |
Collapse
|
30
|
Yasar B, Kutlu G, Tornuk F. Edible flowers as sources of bioactive compounds: Determination of phenolic extraction conditions. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Dujmović M, Radman S, Opačić N, Fabek Uher S, Mikuličin V, Voća S, Šic Žlabur J. Edible Flower Species as a Promising Source of Specialized Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:2529. [PMID: 36235395 PMCID: PMC9570977 DOI: 10.3390/plants11192529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Eating habits are changing over time and new innovative nutrient-rich foods will play a great role in the future. Awareness of the importance of a healthy diet is growing, so consumers are looking for new creative food products rich in phytochemicals, i.e., specialized metabolites (SM). The consumption of fruits, vegetables and aromatic species occupies an important place in the daily diet, but different edible flower species are still neglected and unexplored. Flowers are rich in SM, have strong antioxidant capacities and also possess significant functional and biological values with favorable impacts on human health. The main aim of this study was to evaluate the content of SM and the antioxidant capacities of the edible flower species: Calendula officinalis L. (common marigold), Tagetes erecta L. (African marigold), Tropaeolum majus L. (nasturtium), Cucurbita pepo L. convar. giromontiina (zucchini) and Centaurea cyanus L. (cornflower). The obtained results showed the highest content of ascorbic acid (129.70 mg/100 g fw) and anthocyanins (1012.09 mg/kg) recorded for cornflower, phenolic compounds (898.19 mg GAE/100 g fw) and carotenoids (0.58 mg/g) for African marigold and total chlorophylls (0.75 mg/g) for common marigold. In addition to the esthetic impression of the food, they represent an important source of SM and thus can have a significant impact if incorporated in the daily diet.
Collapse
Affiliation(s)
- Mia Dujmović
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Radman
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Nevena Opačić
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sanja Fabek Uher
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Vida Mikuličin
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Sandra Voća
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Scariot V, Ferrante A, Romano D. Editorial: Edible flowers: Understanding the effect of genotype, preharvest, and postharvest on quality, safety, and consumption. FRONTIERS IN PLANT SCIENCE 2022; 13:1025196. [PMID: 36176674 PMCID: PMC9513602 DOI: 10.3389/fpls.2022.1025196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Valentina Scariot
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Daniela Romano
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
34
|
In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The incorporation of edible flowers in the human diet and culinary preparations dates back to ancient times. Nowadays, edible flowers have gained great attention due to their health-promoting and nutritive effects and their widespread acceptance by consumers. Therefore, edible flowers are ideal candidates for use in the design and development of functional foods and dietary supplements, representing a new and promising trend in the food industry. Thus, the present study attempts to assess the potential of various edible flowers against oxidative stress by applying a combination of in vitro, in silico and spectroscopic techniques. Specifically, the spectroscopic profiles of edible flower extracts were evaluated using ATR-FTIR spectroscopy, while their total phenolic contents and antioxidant/antiradical activities were determined spectrophotometrically. The most abundant phytochemicals in the studied flowers were examined as enzyme inhibitors through molecular docking studies over targets that mediate antioxidant mechanisms in vivo. Based on the results, the red China rose followed by the orange Mexican marigold exhibited the highest TPCs and antioxidant activities. All samples showed the characteristic FTIR band of the skeletal vibration of phenolic aromatic rings. Phenolic compounds seem to exhibit antioxidant activity with respect to NADPH oxidase, myeloperoxidase (MP), cytochrome P450 and, to a lesser extent, xanthine oxidase (XO) enzymes.
Collapse
|
35
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Neuroprotective Profile of Edible Flowers of Borage (Borago officinalis L.) in Two Different Models: Caenorhabditis elegans and Neuro-2a Cells. Antioxidants (Basel) 2022; 11:antiox11071244. [PMID: 35883735 PMCID: PMC9312273 DOI: 10.3390/antiox11071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The flowers of Borago officinalis L. (Boraginaceae), commonly known as borage, are widely used as a culinary ingredient. The aim of this study was to assess the potential benefits of fresh borage flower extract related to antioxidant, neuroprotective and anti-aging properties. The extract was obtained by Soxhlet extraction with ethanol as a solvent, and fatty acids were detected by GC-FID. The antioxidant activity was evaluated in vitro through the DPPH, FRAP and ORAC assays. Regarding the fatty acid (FA) composition, the extract showed high amounts of polyunsaturated FA. The Neuro-2a cell line was used to determine the cytoprotective capacity of the extract subjected to oxidative stress (H2O2). Moreover, the model organism Caenorhabditis elegans was used to assess antioxidant activity, delayed ageing as well as cytoprotection and reduced β-amyloid toxicity. Cells treated with the extract and H2O2 showed a better response to oxidative stress than the control group, particularly in terms of mitochondrial activity (MTT assay), redox state (ROS formation) and the activity of antioxidant enzymes (catalase and superoxide dismutase). B. officinalis flower extract showed promising antioxidant activity in the selected models, without causing toxicity. Hence, the results obtained support the antioxidant properties of borage flowers in different bioassays using living organisms.
Collapse
|
37
|
Jakubczyk K, Koprowska K, Gottschling A, Janda-Milczarek K. Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete's Dietary Supplement. Nutrients 2022; 14:2470. [PMID: 35745200 PMCID: PMC9231144 DOI: 10.3390/nu14122470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/18/2023] Open
Abstract
Edible flowers have been gaining popularity among researchers, nutritionists and chefs all around the world. Nowadays, flowers are used to make food look and/or taste better; however, they are also a very good source of valuable nutrients (antioxidants, vitamins, proteins, fats, carbohydrates, macro and microelements). The aim of our study was to determine the content of dietary fibre and total protein in selected edible flowers; we also compared the nutritional content of petals, differentiating between the representatives of the Oleaceae and Asteraceae families, as well as herbaceous vs. woody plants. The study material consisted of petals of 12 edible flower species (Magnolia × soulangeana, Sambucus nigra L., Syringa vulgaris L. (white and violet flowers), Robinia pseudoacacia, Forsythia × intermedia, Cichorium intybus L., Bellis perennis, Tussilago farfara L., Taraxacum officinale F.H. Wiggers coll., Centaurea cyanus L., Calendula officinalis). Dietary fibre content was determined by the enzymatic-gravimetric method and ranged from 13.22 (Magnolia × soulangeana) to 62.33 (Calendula officinalis L.) g/100 g. For insoluble dietary fibre (IDF), the values ranged from 8.69 (Magnolia × soulangeana) to 57.54 (Calendula officinalis L.) g/100 g, and the content of soluble dietary fibre (SDF) was between 1.35 (Syringa vulgaris L.-white flowers) and 7.46 (Centaurea cyanus L) g/100 g. Flowers were also shown to be a good, though underappreciated, source of plant protein, with content ranging from 8.70 (Calendula officinalis L.) to 21.61 (Magnolia × soulangeana) g/100 g dry matter (Kjeldahl method). Considerable amounts of protein were found in the flowers of the olive family (Oleaceae) and woody plants, which can enrich the daily diet, especially vegan and vegetarian. Edible flowers of the Asteraceae family, especially the herbaceous representatives, contained high levels of both total dietary fibre and its insoluble fraction; therefore, they can be a rich source of these nutrients in the daily diet of athletes, which would perform a prebiotic function for gut bacteria.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.K.); (A.G.); (K.J.-M.)
| | | | | | | |
Collapse
|
38
|
Izcara S, Perestrelo R, Morante-Zarcero S, Câmara JS, Sierra I. High throughput analytical approach based on μQuEChERS combined with UHPLC-PDA for analysis of bioactive secondary metabolites in edible flowers. Food Chem 2022; 393:133371. [PMID: 35661599 DOI: 10.1016/j.foodchem.2022.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Mallow blue (Malva sylvestris L.), hibiscus (Hibiscus rosa-sinensis L.) and nasturtium (Tropaeolum majus L.), are common edible flowers rich in bioactive secondary metabolites (BASMs) whose use in sophisticated gastronomy present currently as increasing trend. In this study the BASMs profile of these edible flowers was established using an emerging green extraction technique, μQuEChERS followed by ultra-high performance liquid chromatography coupled to a photodiode array detection system (UHPLC-PDA). After validation the μQuEChERS/UHPLC-PDA methodology allow to identify that apigenin and epigallocatechin gallate are the most abundant BASMs in mallow blue flowers, while catechin and dicaffeoylquinic acid are predominant in hibiscus flowers, and myricitrin and dicaffeoylquinic acid in nasturtium flowers. Total polyphenol content is the highest in the extract of hibiscus. Nasturtium shows the greatest radical scavenging activity. The results revealed that these flowers constitute a potential source of BASMs with different bioactive properties suggesting its use in design of new functional foods.
Collapse
Affiliation(s)
- Sergio Izcara
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sonia Morante-Zarcero
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Isabel Sierra
- ESCET- Escuela Superior de Ciencias Experimentales y Tecnología, Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
39
|
Zawiślak A, Francik R, Francik S, Knapczyk A. Impact of Drying Conditions on Antioxidant Activity of Red Clover ( Trifolium pratense), Sweet Violet ( Viola odorata) and Elderberry Flowers ( Sambucus nigra). MATERIALS 2022; 15:ma15093317. [PMID: 35591648 PMCID: PMC9105381 DOI: 10.3390/ma15093317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Flowers of red clover (Trifolium pratense), sweet violet (Viola odorata) and elderflowers (Sambucus nigra) were dried by means of air drying at 30 °C and 50 °C and by freeze drying. The content of polyphenols was determined using the Folin–Ciocalteu reagent, while anthocyanins were quantified by the pH differential method. Antioxidant activities of aqueous and ethanolic extracts of the dried flowers were measured by the DPPH and ABTS assays, as well as FRAP and reducing power methods. The highest amount of polyphenols was determined in the ethanolic extracts of fresh red clover flowers (854.76 mg/100 g), while the highest concentration of anthocyanins was determined in the aqueous extracts of fresh sweet violet flowers (99.41 mg/100 g). The results showed that, in general, the extracts of red clover flower were characterized by the highest antioxidant activity, while the sweet violet extracts had the poorest antioxidant properties, although these values fluctuated depending on the method used. There was strong correlation between antioxidant activity and TPC (r = 0.9196, FRAP method). In most cases, freeze drying was found to be the best conservation method, retaining well the antioxidant properties of the tested flowers and the compounds determining these properties.
Collapse
Affiliation(s)
- Agnieszka Zawiślak
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
- Correspondence:
| | - Renata Francik
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
- Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
| | - Sławomir Francik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (S.F.); (A.K.)
| | - Adrian Knapczyk
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (S.F.); (A.K.)
| |
Collapse
|
40
|
Amrouche TA, Yang X, Güven EÇ, Huang W, Chen Q, Wu L, Zhu Y, Liu Y, Wang Y, Lu B. Contribution of edible flowers to the Mediterranean diet: Phytonutrients, bioactivity evaluation and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Thanina Amel Amrouche
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Esra Çapanoğlu Güven
- Faculty of Chemical and Metallurgical Engineering Food Engineering Department Istanbul Technical University Maslak Istanbul Turkey
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic Department of Applied Technology Hangzhou China
| | - Qi Chen
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuhang Zhu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Key Laboratory for Agro‐Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality
- Fuli Institute of Food Science Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| |
Collapse
|
41
|
|
42
|
Appolloni E, Pennisi G, Zauli I, Carotti L, Paucek I, Quaini S, Orsini F, Gianquinto G. Beyond vegetables: effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:472-487. [PMID: 34462916 PMCID: PMC9292972 DOI: 10.1002/jsfa.11513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 05/11/2023]
Abstract
Specialized metabolites from plants are important for human health due to their antioxidant properties. Light is one of the main factors modulating the biosynthesis of specialized metabolites, determining the cascade response activated by photoreceptors and the consequent modulation of expressed genes and biosynthetic pathways. Recent developments in light emitting diode (LED) technology have enabled improvements in artificial light applications for horticulture. In particular, the possibility to select specific spectral light compositions, intensities and photoperiods has been associated with altered metabolite content in a variety of crops. This review aims to analyze the effects of indoor LED lighting recipes and management on the specialized metabolite content in different groups of crop plants (namely medicinal and aromatic plants, microgreens and edible flowers), focusing on the literature from the last 5 years. The literature collection produced a total of 40 papers, which were analyzed according to the effects of artificial LED lighting on the content of anthocyanins, carotenoids, phenols, tocopherols, glycosides, and terpenes, and ranked on a scale of 1 to 3. Most studies applied a combination of red and blue light (22%) or monochromatic blue (23%), with a 16 h day-1 photoperiod (78%) and an intensity greater than 200 μmol m-2 s-1 (77%). These treatment features were often the most efficient in enhancing specialized metabolite content, although large variations in performance were observed, according to the species considered and the compound analyzed. The review aims to provide valuable indications for the definition of the most promising spectral components toward the achievement of nutrient-rich indoor-grown products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Appolloni
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giuseppina Pennisi
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ilaria Zauli
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Laura Carotti
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ivan Paucek
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | | | - Francesco Orsini
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giorgio Gianquinto
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| |
Collapse
|
43
|
Pires EDO, Di Gioia F, Rouphael Y, Ferreira ICFR, Caleja C, Barros L, Petropoulos SA. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021; 26:6940. [PMID: 34834031 PMCID: PMC8619536 DOI: 10.3390/molecules26226940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Edible flowers are becoming very popular, as consumers are seeking healthier and more attractive food products that can improve their diet aesthetics and diversify their dietary sources of micronutrients. The great variety of flowers that can be eaten is also associated with high variability in chemical composition, especially in bioactive compounds content that may significantly contribute to human health. The advanced analytical techniques allowed us to reveal the chemical composition of edible flowers and identify new compounds and effects that were not known until recently. Considering the numerous species of edible flowers, the present review aims to categorize the various species depending on their chemical composition and also to present the main groups of compounds that are usually present in the species that are most commonly used for culinary purposes. Moreover, special attention is given to those species that contain potentially toxic or poisonous compounds as their integration in human diets should be carefully considered. In conclusion, the present review provides useful information regarding the chemical composition and the main groups of chemical compounds that are present in the flowers of the most common species.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 38446 Volos, Greece
| |
Collapse
|
44
|
Pires EO, Caleja C, Garcia CC, Ferreira IC, Barros L. Current status of genus Impatiens: Bioactive compounds and natural pigments with health benefits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Devecchi A, Demasi S, Saba F, Rosato R, Gambino R, Ponzo V, De Francesco A, Massarenti P, Bo S, Scariot V. Compositional Characteristics and Antioxidant Activity of Edible Rose Flowers and Their Effect on Phenolic Urinary Excretion. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/142639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
López‐Agama I, Ramos‐García MDL, Zamilpa A, Bautista‐Baños S, Ventura‐Aguilar RI. Comparative analysis of the antioxidant compounds of raw edible flowers and ethanolic extracts of
Cucurbita pepo
,
Tagetes erecta
, and
Erythrina americana
during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Isis López‐Agama
- Facultad de Nutrición Universidad Autónoma del Estado de Morelos Calle Iztaccihuatl S/N, Col. Los Volcanes Cuernavaca Morelos62350Mexico
| | - Margarita de Lorena Ramos‐García
- Facultad de Nutrición Universidad Autónoma del Estado de Morelos Calle Iztaccihuatl S/N, Col. Los Volcanes Cuernavaca Morelos62350Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur Instituto Mexicano del Seguro Social Argentina 1, Col. Centro Xochitepec Morelos62790Mexico
| | - Silvia Bautista‐Baños
- Centro de Desarrollo de Productos Bióticos Instituto Politécnico Nacional Carretera Yautepec‐Jojutla, km. 6, CEPROBI 8, San Isidro Yautepec Morelos62731Mexico
| | - Rosa Isela Ventura‐Aguilar
- CONACYT‐Centro de Desarrollo de Productos Bióticos Instituto Politécnico Nacional Carretera Yautepec‐Jojutla, km. 6, CEPROBI 8, San Isidro Yautepec Morelos62731Mexico
| |
Collapse
|
47
|
Traversari S, Pistelli L, Del Ministro B, Cacini S, Costamagna G, Ginepro M, Marchioni I, Orlandini A, Massa D. Combined effect of silicon and non-thermal plasma treatments on yield, mineral content, and nutraceutical proprieties of edible flowers of Begonia cucullata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1014-1021. [PMID: 34273738 DOI: 10.1016/j.plaphy.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/21/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Edible flowers are becoming popular as a nutraceutical and functional food that can contribute to human nutrition with high antioxidant molecules and mineral elements. While comparative studies between different flower species have been performed, less is known about the best agronomical practices to increase yield and nutraceutical proprieties of blooms. Silicon stimulates plant resistance against stress and promotes plant growth while non-thermal plasma (NTP) technology has been applied for the disinfection and decontamination of water, as well as for increasing plant production and quality. The application of silicon and NTP technology through nutrient solution and spraying was investigated in edible flowers given that the combination of these treatments may play a role in promoting their nutritional and nutraceutical proprieties. The treatments were applied on two varieties of Begonia cucullata Willd. (white and red flowers) to explore their effects on different flower pigmentations. Plants with red flowers showed higher nutraceutical proprieties than the white ones but yielded a lower flower number. While the NTP treatment did not improve flower yield and quality, the silicon treatment increased anthocyanins and dry weight percentage in red flowers. NTP treatment increased zinc concentration, while it decreased potassium, magnesium, and manganese, and increased silicon concentration in white flowers. The combination of silicon and NTP showed negative effects on some nutraceutical proprieties of red flowers thus highlighting that the two treatments cannot be combined in edible flower production. In conclusion, the positive effect of silicon use in edible flower production has been demonstrated while the NTP technology showed contrasting results and its use should be explored in greater depth, including a consideration of its role in biotic attack prevention and reduced chemical input.
Collapse
Affiliation(s)
- Silvia Traversari
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy.
| | - Laura Pistelli
- Department of Agriculture, Food and Agro-environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Bianca Del Ministro
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| | - Sonia Cacini
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| | - Giulia Costamagna
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Marco Ginepro
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Ilaria Marchioni
- Department of Agriculture, Food and Agro-environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandro Orlandini
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| | - Daniele Massa
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Fiori 8, 51017, Pescia (PT), Italy
| |
Collapse
|
48
|
Mlcek J, Plaskova A, Jurikova T, Sochor J, Baron M, Ercisli S. Chemical, Nutritional and Sensory Characteristics of Six Ornamental Edible Flowers Species. Foods 2021; 10:2053. [PMID: 34574164 PMCID: PMC8472405 DOI: 10.3390/foods10092053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Ornamental edible flowers can be used as novel nutraceutical sources with valuable biological properties. The purpose of this study was to establish nutritional, chemical, and sensory characteristics, antioxidant capacity (AC), and the relationship between their bioactive components and AC. The selected flowers Begonia × tuberhybrida, Tropaeolum majus, Calendula officinalis, Rosa, Hemerocallis, and Tagetes patula, can be easily collected due to their larger size. Their methanolic extracts were spectrophotometrically determined for polyphenols, flavonoids, and AC. Mineral elements were analyzed by atomic-absorption spectroscopy; crude protein was quantified by the Kjeldahl method. Eventually, 30 panelists evaluated sensory properties in 11 attributes. In addition, this study may serve to popularize selected blossoms. In flowers the contents of minerals were in this order: K > Ca > P > Mg > Na > Zn > Mn > Fe > Cu > Mo. AC ranged between 4.11 and 7.94 g of ascorbic acid equivalents/kg of fresh mass. The correlation coefficients between AC-total phenolics and AC-total flavonoids were r = 0.73* and r = 0.58*, respectively. It is also possible to observe a strong correlation between mineral elements and bioactive compounds. Hemerocallis was rated as the best and most tasteful; additionally, it exhibited the highest AC, total phenolic and flavonoid contents.
Collapse
Affiliation(s)
- Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Anna Plaskova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Tunde Jurikova
- Institute for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Dražovská 4, 949 74 Nitra, Slovakia
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
49
|
Pires EDO, Pereira E, Carocho M, Pereira C, Dias MI, Calhelha RC, Ćirić A, Soković M, Garcia CC, Ferreira ICFR, Caleja C, Barros L. Study on the Potential Application of Impatiens balsamina L. Flowers Extract as a Natural Colouring Ingredient in a Pastry Product. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9062. [PMID: 34501651 PMCID: PMC8431334 DOI: 10.3390/ijerph18179062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023]
Abstract
Flowers of the genus Impatiens are classified as edible; however, their inclusion in the human diet is not yet a common practice. Its attractive colours have stirred great interest by the food industry. In this sense, rose (BP) and orange (BO) I. balsamina flowers were nutritionally studied, followed by an in-depth chemical study profile. The non-anthocyanin and anthocyanin profiles of extracts of both flower varieties were also determined by high-performance liquid chromatography coupled to a diode array and mass spectrometry detector (HPLC-DAD-ESI/MS). The results demonstrated that both varieties presented significant amounts of phenolic compounds, having identified nine non-anthocyanin compounds and 14 anthocyanin compounds. BP extract stood out in its bioactive properties (antioxidant and antimicrobial potential) and was selected for incorporation in "bombocas" filling. Its performance as a colouring ingredient was compared with the control formulations (white filling) and with E163 (anthocyanins) colorant. The incorporation of the natural ingredient did not cause changes in the chemical and nutritional composition of the product; and although the colour conferred was lighter than presented by the formulation with E163 (suggesting a more natural aspect), the higher antioxidant activity could meet the expectations of the current high-demand consumer.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira 85884-000, PR, Brazil;
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Ana Ćirić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.Ć.); (M.S.)
| | - Carolina C. Garcia
- Departamento Acadêmico de Alimentos (DAALM), Câmpus Medianeira, Universidade Tecnológica Federal do Paraná (UTFPR), CEP, Medianeira 85884-000, PR, Brazil;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (E.P.); (M.C.); (C.P.); (M.I.D.); (R.C.C.); (I.C.F.R.F.)
| |
Collapse
|
50
|
Lima TA, Tosta CL, de Souza LS, Lovatti BP, Rosa TR, Hayashide I, Simas NK, Filgueiras PR, Kuster RM. Analytical methods to assess larvicidal compounds in extracts from Dendranthema x grandiflorum (Ramat.) Kitam. residues. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|