1
|
Cushnie TPT, Luang-In V, Sexton DW. Necrophages and necrophiles: a review of their antibacterial defenses and biotechnological potential. Crit Rev Biotechnol 2025; 45:625-642. [PMID: 39198023 DOI: 10.1080/07388551.2024.2389175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/01/2024]
Abstract
With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene sarcotoxin IA to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham, Thailand
| | - Vijitra Luang-In
- Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Maha Sarakham, Thailand
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Yeh WJ, Yan C, Wu CH. Photoprotective Effects of Phytochemicals on Blue Light-Induced Retinal Damage: Current Evidence and Future Perspectives. Nutrients 2025; 17:331. [PMID: 39861461 PMCID: PMC11768023 DOI: 10.3390/nu17020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The widespread use of light-emitting diodes (LEDs) has increased blue light (BL) exposure, raising concerns about its potential adverse effects on ocular health. Prolonged exposure to BL has been implicated in the pathogenesis of various retinal disorders, including age-related macular degeneration (AMD), primarily through mechanisms involving oxidative stress and inflammation mediated by the overproduction of reactive oxygen species (ROS). This review synthesizes current evidence on the photoprotective properties of dietary bioactive compounds, (e.g., anthocyanins, curcumin, quercetin, myricetin, and resveratrol), with a focus on their potential to mitigate BL-induced retinal damage. Accumulating research suggests that dietary antioxidants, particularly polyphenols, may offer photoprotective benefits. These phytochemicals act by neutralizing ROS and enhancing the retina's endogenous antioxidant capacity. Based on these findings, this review advocates for a food-first approach in future investigations, emphasizing the development of evidence-based dietary recommendations to bolster retinal health and mitigate the risk of BL-related ocular diseases. Considering the current lack of empirical clinical studies examining the impact of BL on human ocular health, future research in the field of BL hazard should prioritize two key approaches: conducting large-scale epidemiological dietary surveys and implementing clinical trials on functional ingredients that have demonstrated beneficial effects against photodamage in preclinical animal studies.
Collapse
Affiliation(s)
| | | | - Chi-Hao Wu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-J.Y.); (C.Y.)
| |
Collapse
|
3
|
Koh N, Kim DK. Synergistic antibacterial effect of 405 nm blue light-emitting diodes (LEDs) and gelatin film for inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium on stainless steel and fresh fruit peel. Int J Food Microbiol 2025; 427:110961. [PMID: 39532024 DOI: 10.1016/j.ijfoodmicro.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
A combined antibacterial effect of 405 nm blue LEDs (BL) and gelatin film (G) was investigated on stainless steel (SUS) and fresh fruit peel for the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium. On the SUS, the sum of the individual treatments of G for 20 min and BL at 20 J/cm2 was <1 log reduction (log CFU/cm2). In comparison, combination treatment of G and BL (G + BL) at 20 J/cm2 exhibited 2.37 and 3.09 log reduction on E. coli O157:H7 and S. Typhimurium. The G + BL treatment only increased a propidium iodide (PI) uptake, indicating that cell membrane damage occurred. In the G + BL treatment, reactive oxygen species (ROS) scavenging assay confirmed that ROS involved in the bactericidal mechanism. On orange peel, the G + BL treatment at 40 J/cm2 resulted in a 3.05 and 3.17 log reduction on E. coli O157:H7 and S. Typhimurium. In contrast, the individual treatment of G for 40 min led to reductions of 0.63 log CFU/cm2 for E. coli O157:H7 and 0.50 log CFU/cm2 for S. Typhimurium, while the BL treatment at 40 J/cm2 achieved reductions of 0.78 and 0.69 log CFU/cm2, respectively. A synergistic bactericidal effect was similarly observed in the combined treatment groups for both apple and grapefruit peels. In a color and texture analysis, G did not affect hardness, toughness, and visual color of fruit.
Collapse
Affiliation(s)
- Naeun Koh
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Keyvan E, Donmez S, Kahraman HA, Tutun H, Calişkan Z, Rugji J, Keyvan N, Şen E, Gumus H. Novel Photodynamic Inactivation Strategy for Salmonella Enteritidis PT4 on Eggshells: Exploiting the Antimicrobial Potential of Curcumin and Carvacrol. Vet Med Sci 2025; 11:e70135. [PMID: 39821598 PMCID: PMC11740504 DOI: 10.1002/vms3.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 01/19/2025] Open
Abstract
Photodynamic inactivation (PDI) is a new and promising strategy for eliminating foodborne pathogenic bacteria in food preservation, reducing associated health risks for consumers. This study aimed to develop an innovative PDI-based system to inactivate Salmonella Enteritidis PT4 on eggshells. The system includes 405 nm light-emitting diodes (LEDs) and the application of curcumin or carvacrol as photosensitizers. The antibacterial activity of the system was investigated in eggshells inoculated with S. Enteritidis PT4 at different temperatures (4, 25, and 37°C) and exposure times (15, 30, and 45 min). Carvacrol + LEDs application was completely inhibited S. Enteritdis PT4 at 4 (after 30 min), 25, and 37°C at the 45th min. Curcumin + LED completely inhibited bacterial growth after 45 min at 4 and 25°C. The results showed that simultaneous use of carvacrol or curcumin with LEDs at various temperatures exhibited significant antibacterial activity against the bacteria depending on the exposure time. The application of curcumin or carvacrol sourced via PDI in the originally developed system resulted in any significant changes in egg quality parameters and sensory properties. This study demonstrated that PDI-based system using curcumin or carvacrol as photosensitizers could be a potential tool for decontamination of eggs contaminated with S. Enteritidis PT4.
Collapse
Affiliation(s)
- Erhan Keyvan
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Soner Donmez
- Bucak School of HealthBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Hidayet Tutun
- Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Zuhal Calişkan
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Nilay Keyvan
- Department of Food Science and Technology, Institute of Health ScienceBurdur Mehmet Akif UniversityBurdurTurkey
| | - Erdi Şen
- Department of Food Hygiene and Technology, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Hidir Gumus
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| |
Collapse
|
5
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
6
|
Wayan Arnata I, Anggreni AAMD, Arda G, Masruchin N, Sartika D, Fahma F, Firmanda A. Minimizing food oxidation using aromatic polymer: From lignin into nano-lignin. Food Res Int 2024; 197:115159. [PMID: 39593371 DOI: 10.1016/j.foodres.2024.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
Food loss and waste caused by oxidation result in environmental and economic losses and health threats. Lignin is an abundant aromatic polymer with varied antioxidant capacity, which can reduce food oxidation caused by radical species exposure. The lignin antioxidant strength can be influenced by source, type, structure, processing, degradation products, chemical modifications, and particle size. Lignin in micro- or nano-particles has high reactivity and is associated with increased surface area to improve antioxidant capacity. Lignin can be used as a food additive to suppress lipid and protein oxidation, although its effect on fruit/vegetable oxidation needs to be discussed. The lignin antioxidant properties are promising to be applied in food industries, such as food additives, animal feed supplements, and antioxidant packaging designs. However, there are challenges and limitations to consider, such as the potential for toxicity reactions in some individuals and the need for further research to understand its effects on different food products fully. As a feed nutrition, lignin can improve meat quality. Meanwhile, loading lignin in the packaging matrix can extend the food shelf life through antioxidant and antimicrobial activities, and UV-block. Lignin also improves packaging properties (conventional and 3D-printing fabrication) to maintain food quality, e.g., changes in mechanical properties, hydrophobicity, water vapor permeability, and other influences. This article reviews lignin's role as a natural antioxidant in the food industry. Future directions and discussions relate to prooxidative mechanisms, toxicity, fruit and vegetable preservation mechanisms, inhibition of protein oxidation, activity to food enzymes (fruit ripening enzyme activators and inhibitors of cellulase and β-glucosidase enzyme), dispersity in packaging matrices, and material diversification for 3D printing.
Collapse
Affiliation(s)
- I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia.
| | - Anak Agung Made Dewi Anggreni
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Gede Arda
- Department of Agricultural Engineering and Biosystem, Faculty of Agricultural Technology, Udayana University, Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Bogor, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Farah Fahma
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16680, Indonesia
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16680, Indonesia; Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok 16424, Indonesia
| |
Collapse
|
7
|
Pan Y, Zhang L, Fu B, Zhuo J, Zhao P, Xi J, Yang D, Yao L, Wang J. Integrated self-assembly and cross-linking technology engineered photodynamic antimicrobial film for efficient preservation of perishable foods. Food Chem 2024; 460:140543. [PMID: 39053268 DOI: 10.1016/j.foodchem.2024.140543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
A new antibacterial film was constructed to combat the severe spoilage of fruits and vegetables caused by microorganisms. Specifically, photoresponsive cinnamaldehyde-tannic‑iron acetate nanospheres (CTF NPs) were prepared using ultrasonic-triggered irreversible equilibrium self-assembly and ionic cross-linking co-driven processes and were integrated into the matrix of κ-carrageenan (KC) (CTF-KC films) as functional fillers. The CTF0.4-KC film (KC film doped with 0.4 mg/mL CTF NPs) showed a 99.99% bactericidal rate against both E. coli and S. aureus, extended the storage period of cherry tomatoes from 20 to 32 days. The introduction of CTF enhanced the barrier, thermal stability, and mechanical strength properties, albeit with a slight compromise on transparency. Furthermore, the biosafety of the CTF0.4-KC film was confirmed through hemolysis and cytotoxicity tests. Together, the aforementioned results demonstrated the outstanding antibacterial and fresh-keeping properties of CTF0.4-KC. These desirable properties highlight the potential use of CTF0.4-KC films in food preservation applications.
Collapse
Affiliation(s)
- Yifan Pan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bangfeng Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peng Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Guo H, Sun H, Fang Y, Qin H, Wang X, Zhang Y, Zhao M, Wu H, Zhou X, Liu Y. Eco-friendly film with highly efficient sterilization for food preservation by incorporating natural products into starch/polyvinyl alcohol matrix. Int J Biol Macromol 2024; 278:135047. [PMID: 39182859 DOI: 10.1016/j.ijbiomac.2024.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
An advanced biodegradable packaging film with antimicrobial and fresh-maintaining functions was constructed by incorporating berberine and L-arginine into the starch/polyvinyl alcohol (PVA) film matrix. The film was endowed with a dual antibacterial capacity thanks to the intrinsic antibacterial capability of berberine and cascaded photodynamic sterilization. The aggregated berberine presents an excellent photodynamic activity to generate reactive oxygen species (ROS), which further triggers the NO release from L-arginine. Under the synergetic action of ROS and NO, the as-prepared film not only has an antibacterial efficiency of over 99 % against both S. aureus and E. coli but also delays fruit ripening through antagonistic effects on ethylene to extend the shelf life of food. Meanwhile, the as-prepared film presents UV-shielding properties, thermal stability, and considerable mechanical properties. Specifically, the packaging film exhibits good biocompatibility and is biodegradable, with a degradation rate of 56 % within 16 days, which has great potential for improving food safety and environmental events.
Collapse
Affiliation(s)
- Hanqiong Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hanyue Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaomin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
9
|
Zhang Y, Ma Z, Chen J, Yang Z, Ren Y, Tian J, Zhang Y, Guo M, Guo J, Song Y, Feng Y, Liu G. Electromagnetic wave-based technology for ready-to-eat foods preservation: a review of applications, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39275803 DOI: 10.1080/10408398.2024.2399294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In recent years, the ready-to-eat foods market has grown significantly due to its high nutritional value and convenience. However, these foods are also at risk of microbial contamination, which poses food safety hazards. Additionally, traditional high-temperature sterilization methods can cause food safety and nutritional health problems such as protein denaturation and lipid oxidation. Therefore, exploring and developing effective sterilization technologies is imperative to ensure food safety and nutritional properties, and protect consumers from potential foodborne diseases. This paper focuses on electromagnetic wave-based pasteurization technologies, including thermal processing technologies such as microwave, radio frequency, and infrared, as well as non-thermal processing technologies like ultraviolet, irradiation, pulsed light, and photodynamic inactivation. Furthermore, it also reviews the antibacterial mechanisms, advantages, disadvantages, and recent applications of these technologies in ready-to-eat foods, and summarizes their limitations and prospects. By comparing the limitations of traditional high-temperature sterilization methods, this paper highlights the significant advantages of these pasteurization techniques in effectively inhibiting microbial growth, slowing lipid oxidation, and preserving food nutrition and flavor. This review may contribute to the industrial application and process optimization of these pasteurization technologies, providing an optimal choice for preserving various types of ready-to-eat foods.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhiming Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiaxin Chen
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhongshuai Yang
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yue Ren
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jing Tian
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
10
|
Chu Z, Wang H, Dong B. Research on Food Preservation Based on Antibacterial Technology: Progress and Future Prospects. Molecules 2024; 29:3318. [PMID: 39064897 PMCID: PMC11279653 DOI: 10.3390/molecules29143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The nutrients present in food are not only prone to a series of physicochemical reactions but also provide conditions for the growth and reproduction of foodborne microorganisms. In recent years, many innovative methods from different fields have been introduced into food preservation, which extends the shelf life while maximizing the preservation of the original ingredients and properties of food. In this field, there is a lack of a systematic summary of new technologies emerging. In view of this, we overview the innovative methods applied to the field of food preservation in recent 3 years, focusing on a variety of technological approaches such as antimicrobial photodynamic therapy based on nanotechnology, electromagnetic radiation sterilization based on radiation technology, and antimicrobial peptides based on biomolecules. We also discuss the preservation mechanism and the application of the different methods to specific categories of products. We evaluated their advantages and limitations in the food industry, describing their development prospects. In addition, as microorganisms are the main causes of food spoilage, our review also has reference significance for clinical antibacterial treatment.
Collapse
Affiliation(s)
- Zejing Chu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Biao Dong
- College of Electronic Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
de Souza Grilo MM, Schaffner DW, Tavares da Silva R, Saraiva KLA, Carvalho RDSF, Bovo F, de Souza Pedrosa GT, Magnani M. Ozone and photodynamic inactivation of norovirus surrogate bacteriophage MS2 in fresh Brazilian berries and surfaces. Food Microbiol 2024; 119:104453. [PMID: 38225042 DOI: 10.1016/j.fm.2023.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
This study assessed the efficacy of ozone (bubble diffusion in water; 6.25 ppm) and photodynamic inactivation (PDT) using curcumin (75 μM) as photosensitizer (LED emission 430-470 nm; 33.6 mW/cm2 irradiance; 16.1, 20.2, and 24.2 J/cm2 light dose) against the Norovirus surrogate bacteriophage MS2 in Brazilian berries (black mulberry and pitanga) and surfaces (glass and stainless steel). Contaminated berries and surfaces were immersed in ozonized water or exposed to PDT-curcumin for different time intervals. Transmission electron microscopy was used to assess the effects of the treatments on MS2 viral particles. The MS2 inactivation by ozone and PDT-curcumin varied with the fruit and the surface tested. Ozone reduced the MS2 titer up to 3.6 log PFU/g in black mulberry and 4.1 log PFU/g in pitanga. On surfaces, the MS2 reduction by ozone reached 3.6 and 4.8 log PFU/cm2 on glass and stainless steel, respectively. PDT-curcumin reduced the MS2 3.2 and 4.8 log PFU/g in black mulberry and pitanga and 2.7 and 3.3 log PFU/cm2 on glass and stainless steel, respectively. MS2 particles were disintegrated by exposure of MS2 to ozone and PDT-curcumin on pitanga. Results can contribute to establishing effective practices for controlling NoV in fruits and surfaces, estimated based on MS2 bacteriophage behavior.
Collapse
Affiliation(s)
- Maria Mayara de Souza Grilo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | | | | | - Fernanda Bovo
- Uniararas - Hermínio Ometto Foundation University Center, Av. Dr. Maximiliano Baruto, 500, 13607-339, Araras, São Paulo, Brazil
| | - Geany Targino de Souza Pedrosa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, Campus I, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
12
|
Rodrigues VC, Santos ARD, Bona E, Freitas CF, Silva JVDO, Malacarne LC, Machinski Junior M, Abreu Filho BAD, Mikcha JMG. Optimization of the Erythrosine-mediated photodynamic therapy against Escherichia coli using response surface methodology. Photodiagnosis Photodyn Ther 2024; 45:103916. [PMID: 38042237 DOI: 10.1016/j.pdpdt.2023.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND The efficacy of photodynamic therapy (PDT) depends on the combination of light and a photosensitizer for inactivation of microorganisms. However, finding the ideal conditions for the factors involved in this technique is time and cost-consuming. The rotational composite central design (RCCD) is a tool that can be allied with PDT to achieve precise results within a shorter working time. METHODS This study used the response surface methodology to optimize the parameters of PDT mediated by Erythrosine (ERY) and green light-emitting diodes (LED) in different Escherichia coli strains by applying RCCD. RESULTS The RCCD predicted optimum values of ERY and light exposure on PDT. According to the experimental results, the light exposure time showed the most significant influence on the inactivation of the evaluated bacteria. The optimized operating conditions were validated in laboratory tests, and no viable cells were recovered with ERY at 116 µmol L-1 and 30 min of light (33.34 J cm2) for E. coli ATCC 25922, 108 µmol L-1 and 40 min (44.38 J cm2) for E. coli ATCC 35218, and 108 µmol L-1 and 29.3 min (32.5 J cm2) for E. coli O157:H7 EDL 933. CONCLUSION The adjusted polynomial models provided accurate information on the combined effects of ERY and lighting time with green LED on PDT. The application of the RCCD, in addition to reducing the number of experiments, also allows for increased quantity and quality of the results. Therefore, surface response methodology combined with PDT is a promising approach to inactivate E. coli.
Collapse
Affiliation(s)
- Vanessa Carvalho Rodrigues
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil.
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology, Federal Technology University, Campo Mourão, Paraná, Brazil; Post-Graduation Program of Chemistry, Federal Technology University, Curitiba, Paraná, Brazil
| | - Camila Fabiano Freitas
- Departament of Chemistry, State University of Maringá, Maringá, Paraná, Brazil; Departament of Chemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | - Miguel Machinski Junior
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Benicio Alves de Abreu Filho
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Jane Martha Graton Mikcha
- Postgraduate program of Food Science, State University of Maringá, Av. Colombo, 5790 - Jd. Universitário, Maringá 87020-900, Paraná, Brazil; Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
13
|
Prasad A, Wynands E, Roche SM, Romo-Bernal C, Allan N, Olson M, Levengood S, Andersen R, Loebel N, Sabino CP, Ross JA. Photodynamic Inactivation of Foodborne Bacteria: Screening of 32 Potential Photosensitizers. Foods 2024; 13:453. [PMID: 38338588 PMCID: PMC10855769 DOI: 10.3390/foods13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The development of novel antimicrobial technologies for the food industry represents an important strategy to improve food safety. Antimicrobial photodynamic disinfection (aPDD) is a method that can inactivate microbes without the use of harsh chemicals. aPDD involves the administration of a non-toxic, light-sensitive substance, known as a photosensitizer, followed by exposure to visible light at a specific wavelength. The objective of this study was to screen the antimicrobial photodynamic efficacy of 32 food-safe pigments tested as candidate photosensitizers (PSs) against pathogenic and food-spoilage bacterial suspensions as well as biofilms grown on relevant food contact surfaces. This screening evaluated the minimum bactericidal concentration (MBC), minimum biofilm eradication concentration (MBEC), and colony forming unit (CFU) reduction against Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas fragi, and Brochothrix thermosphacta. Based on multiple characteristics, including solubility and the ability to reduce the biofilms by at least 3 log10 CFU/sample, 4 out of the 32 PSs were selected for further optimization against S. enterica and MRSA, including sunset yellow, curcumin, riboflavin-5'-phosphate (R-5-P), and erythrosin B. Optimized factors included the PS concentration, irradiance, and time of light exposure. Finally, 0.1% w/v R-5-P, irradiated with a 445 nm LED at 55.5 J/cm2, yielded a "max kill" (upwards of 3 to 7 log10 CFU/sample) against S. enterica and MRSA biofilms grown on metallic food contact surfaces, proving its potential for industrial applications. Overall, the aPDD method shows substantial promise as an alternative to existing disinfection technologies used in the food processing industry.
Collapse
Affiliation(s)
- Amritha Prasad
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Erin Wynands
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Steven M. Roche
- ACER Consulting, Guelph, ON N1G 5L3, Canada; (E.W.); (S.M.R.)
| | - Cristina Romo-Bernal
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicholas Allan
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Merle Olson
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| | - Sheeny Levengood
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Roger Andersen
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Nicolas Loebel
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
| | - Caetano P. Sabino
- Ondine Biomedical Inc., Bothell, WA 98011, USA; (C.R.-B.); (S.L.); (R.A.); (N.L.); (C.P.S.)
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo 05508-000, SP, Brazil
| | - Joseph A. Ross
- Chinook Contract Research Inc., Airdrie, AB T4A 0C3, Canada; (A.P.); (N.A.); (M.O.)
| |
Collapse
|
14
|
Minor M, Sabillón L. Effectiveness of Ultra-High Irradiance Blue-Light-Emitting Diodes to Control Salmonella Contamination Adhered to Dry Stainless Steel Surfaces. Microorganisms 2024; 12:103. [PMID: 38257930 PMCID: PMC10819507 DOI: 10.3390/microorganisms12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Controlling Salmonella contamination in dry food processing environments represents a significant challenge due to their tolerance to desiccation stress and enhanced thermal resistance. Blue light is emerging as a safer alternative to UV irradiation for surface decontamination. In the present study, the antimicrobial efficacy of ultra-high irradiance (UHI) blue light, generated by light-emitting diodes (LEDs) at wavelengths of 405 nm (841.6 mW/cm2) and 460 nm (614.9 mW/cm2), was evaluated against a five-serovar cocktail of Salmonella enterica dry cells on clean and soiled stainless steel (SS) surfaces. Inoculated coupons were subjected to blue light irradiation treatments at equivalent energy doses ranging from 221 to 1106 J/cm2. Wheat flour was used as a model food soil system. To determine the bactericidal mechanisms of blue light, the intracellular concentration of reactive oxygen species (ROS) in Salmonella cells and the temperature changes on SS surfaces were also measured. The treatment energy dose had a significant effect on Salmonella inactivation levels. On clean SS surfaces, the reduction in Salmonella counts ranged from 0.8 to 7.4 log CFU/cm2, while, on soiled coupons, the inactivation levels varied from 1.2 to 4.2 log CFU/cm2. Blue LED treatments triggered a significant generation of ROS within Salmonella cells, as well as a substantial temperature increase in SS surfaces. However, in the presence of organic matter, the oxidative stress in Salmonella cells declined significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold the antimicrobial effectiveness observed on clean SS. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. These results indicate that LEDs emitting UHI blue light could represent a novel cost- and time-effective alternative for controlling microbial contamination in dry food processing environments.
Collapse
Affiliation(s)
- Martha Minor
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Luis Sabillón
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
15
|
Ying X, Li T, Deng S, Brennan C, Benjakul S, Liu H, Wang F, Xie X, Liu D, Li J, Xiao G, Ma L. Advancements in nonthermal physical field technologies for prefabricated aquatic food: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13290. [PMID: 38284591 DOI: 10.1111/1541-4337.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Huifan Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
16
|
DeFlorio W, Liu S, Arcot Y, Ulugun B, Wang X, Min Y, Cisneros-Zevallos L, Akbulut M. Durable superhydrophobic coatings for stainless-steel: An effective defense against Escherichia coli and Listeria fouling in the post-harvest environment. Food Res Int 2023; 173:113227. [PMID: 37803546 DOI: 10.1016/j.foodres.2023.113227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Increasing concerns revolve around bacterial cross-contamination of leafy green vegetables via food-contact surfaces. Given that stainless-steel is among the commonly used food-contact surfaces, this study reports a coating strategy enhancing its hygiene and microbiological safety through an antifouling approach via superhydrophobicity. The developed method involves growing a nickel-nanodiamond nanocomposite film on 304 stainless-steel via electroplating and sequential functionalization of the outer surface layer with nonpolar organosilane molecules via polydopamine moieties. The resultant superhydrophobic stainless-steel surfaces had a static water contact angle of 156.3 ± 1.9° with only 2.3 ± 0.5° contact angle hysteresis. Application of the coating to stainless-steel was demonstrated to yield 2.3 ± 0.6 log10 and 2.0 ± 0.9 log10 reductions in the number of adherent gram-negative Escherichia coli O157:H7 and gram-positive Listeria innocua cells, respectively. These population reductions were shown to be statistically significant (α = 0.05). Coated stainless-steel also resisted fouling when contacted with contaminated romaine lettuce leaves and maintained significant non-wetting character when abraded with sand or contacted with high concentration surfactant solutions. The incorporation of superhydrophobic stainless-steel surfaces into food processing equipment used for washing and packaging leafy green vegetables has the potential to mitigate the transmission of pathogenic bacteria within food production facilities.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yashwanth Arcot
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Beril Ulugun
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xunhao Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
17
|
Munir Z, Molinar C, Banche G, Argenziano M, Magnano G, Cavallo L, Mandras N, Cavalli R, Guiot C. Encapsulation in Oxygen-Loaded Nanobubbles Enhances the Antimicrobial Effectiveness of Photoactivated Curcumin. Int J Mol Sci 2023; 24:15595. [PMID: 37958582 PMCID: PMC10650092 DOI: 10.3390/ijms242115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In both healthcare and agriculture, antibiotic resistance is an alarming issue. Biocompatible and biodegradable ingredients (e.g., curcumin) are given priority in "green" criteria supported by the Next Generation EU platform. The solubility and stability of curcumin would be significantly improved if it were enclosed in nanobubbles (NB), and photoactivation with the correct wavelength of light can increase its antibacterial efficacy. A continuous release of curcumin over a prolonged period was provided by using innovative chitosan-shelled carriers, i.e., curcumin-containing nanobubbles (Curc-CS-NBs) and oxygen-loaded curcumin-containing nanobubbles (Curc-Oxy-CS-NBs). The results demonstrated that after photoactivation, both types of NBs exhibited increased effectiveness. For Staphylococcus aureus, the minimum inhibitory concentration (MIC) for Curc-CS-NBs remained at 46 µg/mL following photodynamic activation, whereas it drastically dropped to 12 µg/mL for Curc-Oxy-CS-NBs. Enterococcus faecalis shows a decreased MIC for Curc-CS-NB and Curc-Oxy-CS-NB (23 and 46 µg/mL, respectively). All bacterial strains were more effectively killed by NBs that had both oxygen and LED irradiation. A combination of Curc-Oxy-CS-NB and photodynamic stimulation led to a killing of microorganisms due to ROS-induced bacterial membrane leakage. This approach was particularly effective against Escherichia coli. In conclusion, this work shows that Curc-CS-NBs and Curc-Oxy-CS-exhibit extremely powerful antibacterial properties and represent a potential strategy to prevent antibiotic resistance and encourage the use of eco-friendly substitutes in agriculture and healthcare.
Collapse
Affiliation(s)
- Zunaira Munir
- Department of Neurosciences, University of Turin, 10125 Torino, Italy; (Z.M.); (C.G.)
| | - Chiara Molinar
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy; (G.B.); (L.C.)
| | - Monica Argenziano
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Greta Magnano
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy; (G.B.); (L.C.)
| | - Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy; (G.B.); (L.C.)
| | - Roberta Cavalli
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy; (C.M.); (M.A.); (G.M.); (R.C.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10125 Torino, Italy; (Z.M.); (C.G.)
| |
Collapse
|
18
|
Jiang M, Gan Y, Li Y, Qi Y, Zhou Z, Fang X, Jiao J, Han X, Gao W, Zhao J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int J Biol Macromol 2023; 250:126153. [PMID: 37558039 DOI: 10.1016/j.ijbiomac.2023.126153] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
In recent years, a wide attention has been paid to curcumin in medicine due to its excellent physiological activities, including anti-inflammatory, antioxidant, antibacterial, and nerve damage repair. However, the low solubility, poor stability, and rapid metabolism of curcumin make its bioavailability low, which affects its development and application. As a unique biopolymer structure, protein-polysaccharide (PRO-POL)-based delivery system has the advantages of low toxicity, biocompatibility, biodegradability, and delayed release. Many scholars have investigated PRO-POL -based delivery systems to improve the bioavailability of curcumin. In this paper, we focus on the interactions between different proteins (e.g. casein, whey protein, soybean protein isolate, pea protein, zein, etc.) and polysaccharides (chitosan, sodium alginate, hyaluronic acid, pectin, etc.) and their effects on complexes diameter, surface charge, encapsulation drive, and release characteristics. The mechanism of the PRO-POL-based delivery system to enhance the bioavailability of curcumin is highlighted. In addition, the application of PRO-POL complexes loaded with curcumin is summarized, aiming to provide a reference for the construction and application of PRO-POL delivery systems.
Collapse
Affiliation(s)
- Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China; Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
19
|
Minor M, Sabillón L. Effectiveness of Ultra-High Irradiance Blue Light-Emitting Diodes in Inactivating Escherichia coli O157:H7 on Dry Stainless Steel and Cast-Iron Surfaces. Foods 2023; 12:3072. [PMID: 37628070 PMCID: PMC10453762 DOI: 10.3390/foods12163072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The use of blue light-emitting diodes (LEDs) is emerging as a promising dry decontamination method. In the present study, LEDs emitting ultra-high irradiance (UHI) density at 405 nm (842 mW/cm2) and 460 nm (615 mW/cm2) were used to deliver high-intensity photoinactivation treatments ranging from 221 to 1107 J/cm2. The efficacy of these treatments to inactivate E. coli O157:H7 dry cells was evaluated on clean and soiled stainless steel and cast-iron surfaces. On clean metal surfaces, the 405 and 460 nm LED treatment with a 221 J/cm2 dose resulted in E. coli reductions ranging from 2.0 to 4.1 log CFU/cm2. Increasing the treatment energy dose to 665 J/cm2 caused further significant reductions (>8 log CFU/cm2) in the E. coli population. LED treatments triggered a significant production of intracellular reactive oxygen species (ROS) in E. coli cells, as well as a significant temperature increase on metal surfaces. In the presence of organic matter, intracellular ROS generation in E. coli cells dropped significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold antimicrobial effectiveness. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. This study showed that LEDs emitting monochromatic blue light at UHI levels may serve as a viable and time-effective method for surface decontamination in dry food processing environments.
Collapse
Affiliation(s)
- Martha Minor
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Luis Sabillón
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
20
|
Lan X, Liu Y, Wang L, Wang H, Hu Z, Dong H, Yu Z, Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem 2023; 424:136464. [PMID: 37247602 DOI: 10.1016/j.foodchem.2023.136464] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
As a natural polyphenol, curcumin has been used as an alternative to synthetic preservatives in food preservation. Different from previous reviews that mainly focus on the pH-responsive discoloration of curcumin to detect changes in food quality in real time, this paper focuses on the perspective of the delivery system and photosensitization of curcumin for food preservation. The delivery system is an effective means to overcome the challenges of curcumin like instability, hydrophobicity, and low bioavailability. Curcumin as a photosensitizer can effectively sterilize to preserve food. The practical fresh-keeping effects of the delivery system and photosensitization of curcumin on foods (fruits/vegetables, animal-derived food, and grain) were summarized comprehensively, including shelf-life extension, maintenance of physicochemical properties, nutritional quality, and sensory. Future research should focus on the development of novel curcumin-loaded materials used for food preservation, and most importantly, the biosafety and accumulation toxicity associated with these materials should be explored.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Hao Dong
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhiwen Yu
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
Stura I, Munir Z, Cavallo L, Torri L, Mandras N, Banche G, Spagnolo R, Pertusio R, Cavalli R, Guiot C. Combining Blue Light and Yellow Curcumin to Obtain a "Green" Tool for Berry Preservation against Bacterial Contamination: A Preliminary Investigation. Foods 2023; 12:foods12102038. [PMID: 37238856 DOI: 10.3390/foods12102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Background: According to recent studies, tens of millions of tons of fruit are wasted each year in Europe in primary production and home/service consumption. Among fruits, berries are most critical because they have a shorter shelf life and a softer, more delicate, and often edible skin. Curcumin is a natural polyphenolic compound extracted from the spice turmeric (Curcuma longa L.) which exhibits antioxidant, photophysical, and antimicrobial properties that can be further enhanced by photodynamic inactivation of pathogens when irradiated with blue or ultraviolet light. Materials and methods: Multiple experiments were performed in which berry samples were sprayed with a complex of β-cyclodextrin containing 0.5 or 1 mg/mL of curcumin. Photodynamic inactivation was induced by irradiation with blue LED light. Antimicrobial effectiveness was assessed with microbiological assays. The expected effects of oxidation, curcumin solution deterioration, and alteration of the volatile compounds were investigated as well. Results: The treatment with photoactivated curcumin solutions reduced the bacterial load (3.1 vs. 2.5 colony forming units/mL (UFC/ml) in the control and treated groups; p-value = 0.01), without altering the fruit organoleptic and antioxidant properties. Conclusions: The explored method is a promising approach to extend berries' shelf life in an easy and green way. However, further investigations of the preservation and general properties of treated berries are still needed.
Collapse
Affiliation(s)
- Ilaria Stura
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| | - Zunaira Munir
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy
| | - Luisa Torri
- University of Gastronomic Sciences, 12042 Pollenzo, Italy
| | - Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy
| | - Rita Spagnolo
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy
| | - Raffaele Pertusio
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| | - Roberta Cavalli
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| |
Collapse
|
22
|
Mušković M, Pokrajac R, Malatesti N. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals (Basel) 2023; 16:613. [PMID: 37111370 PMCID: PMC10143496 DOI: 10.3390/ph16040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.
Collapse
Affiliation(s)
| | | | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.M.); (R.P.)
| |
Collapse
|
23
|
Zhang W, Su P, Ma J, Gong M, Ma L, Wang J. A singlet state oxygen generation model based on the Monte Carlo method of visible antibacterial blue light inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112628. [PMID: 36610348 DOI: 10.1016/j.jphotobiol.2022.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Visible antibacterial blue light (VABL) has received much attention recently as a nondestructive inactivation approach. However, due to the sparse distribution of bacteria, the light energy evaluation method used in existing studies is inaccurate. Thus, the sensitivity of microorganisms to VABL in different experiments cannot be compared. In this paper, a Monte Carlo-based photon transport model with the optimized scattering phase function was constructed. The model calculated the spatial light energy distribution and the temporal distribution of cumulative singlet state oxygen (CSO) under various cell and medium parameters. The simulation results show that when the cells are sparsely distributed, <30% of light energy from the light source is absorbed by microbes and participates in photochemical reactions. The CSO produced increases with cell density and cell size. Little light energy is available, and thus, the concentration of CSO produced is insufficient to inactivate microbes at deeper depths. As the light intensity and inactivation time increased, the production of singlet state oxygen tended to level off. The model proposed here can quantify the generation of singlet state oxygen and provide a more accurate light energy guide for the VABL inactivation process.
Collapse
Affiliation(s)
- Wanqing Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ping Su
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianshe Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mali Gong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liya Ma
- Shenzhen Baoan Women and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Jing Wang
- College of Water Conservancy, Yunnan Agricultural University, Kunming 650000, China
| |
Collapse
|
24
|
Zhu S, Ukwatta RH, Cai X, Zheng Y, Xue F, Li C, Wang L. The physiochemical and photodynamic inactivation properties of corn starch/erythrosine B composite film and its application on pork preservation. Int J Biol Macromol 2023; 225:112-122. [PMID: 36513176 DOI: 10.1016/j.ijbiomac.2022.12.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
This study explored the effect of erythrosine B (EB) as a photosensitizer in corn starch (CS) film and its physicochemical properties and photodynamic bacteriostatic ability against Staphylococcus aureus, Escherichia coli, and Salmonella both in vitro and inoculated on pork under the irradiation of D65 light-emitting diode (LED) (400-800 nm). The study revealed that the physiochemical properties of CS films: moisture content, water solubility, and water vapor transmission were improved with the addition of EB. In addition, the elasticity and the thermal stability of the film were enhanced. The results showed that the CS-EB films stimulated a maximum of 26.36 μg/mL hydrogen peroxide and 74.5 μg/g hydroxyl radical under irradiation. The CS composite films with a 5 % concentration of EB inhibited the bacterial growth by 4.7 Log CFU/mL in vitro after 30 min of illumination, and 2.4 Log CFU/mL on the pork samples under the same experimental condition. Moreover, the antibacterial ability was enhanced with the increase in EB concentration. Overall, the CS-EB composite films can inhibit the growth of bacteria through photodynamic inactivation and has the potential to become a new type of environmentally friendly packaging material.
Collapse
Affiliation(s)
- Shengyu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | | | - Xingru Cai
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yalu Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, CA 95616, USA.
| |
Collapse
|
25
|
Zhi J, Tang Q, Wu S, Kong B, Jiang J, Li Z, Wang Y, Xue C. Degradation of curcumin‐mediated photodynamic technology (PDT) on polycyclic aromatic hydrocarbons in oysters and toxicity evaluation of PDT‐treated oysters. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jinjin Zhi
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Qingjuan Tang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Shuangjie Wu
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Jiali Jiang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Zhaojie Li
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Yuming Wang
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Changhu Xue
- College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| |
Collapse
|
26
|
Chlorophyllin-Based 405 nm Light Photodynamic Improved Fresh-Cut Pakchoi Quality at Postharvest and Inhibited the Formation of Biofilm. Foods 2022; 11:foods11162541. [PMID: 36010540 PMCID: PMC9407260 DOI: 10.3390/foods11162541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of chlorophyllin-based photodynamic inactivation (Chl-PDI) on biofilm formation and fresh-cut pakchoi quality during storage. Firstly, Chl-based PDI reduced the amount of biofilm in an in vivo experiment and inactivated the food spoilage bacteria. Antibacterial mechanism analysis indicated that the bacterial extracellular polysaccharides and extracellular proteins were vulnerable targets for attacks by the Chl-based PDI. Then, the food spoilage microorganisms (Pseudomonas reinekei and Pseudomonas palleroniana) were inoculated onto the surface of fresh-cut pakchoi. We used chlorophyllin (1 × 10−5 mol/L) and 405 nm light (22.27 J/cm2 per day) to investigate the effect of Chl-based PDI treatment on fresh-cut pakchoi quality during storage. The results showed that Chl-based PDI increased the visual quality and the content of chlorophyll, VC, total soluble solids, and SOD activity and decreased the occurrence of leaf yellowing and POD activity. These suggest that Chl-based PDI can be used for the preservation of fresh-cut pakchoi and has the potential to inhibit biofilm formation of food spoilage bacteria. It is of great significance for the effective processing and traditional vegetable preservation.
Collapse
|
27
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Edible coatings and application of photodynamics in ricotta cheese preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
The Antimicrobial Photoinactivation Effect on Escherichia coli through the Action of Inverted Cationic Porphyrin-Cyclodextrin Conjugates. Microorganisms 2022; 10:microorganisms10040718. [PMID: 35456769 PMCID: PMC9026372 DOI: 10.3390/microorganisms10040718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic action has been used for diverse biomedical applications, such as treating a broad range of bacterial infections. Based on the combination of light, dioxygen, and photosensitizer (PS), the photodynamic inactivation (PDI) approach led to the formation of reactive oxygen species (ROS) and represented a non-invasive, non-toxic, repeatable procedure for pathogen photoinactivation. To this end, different tetrapyrrolic macrocycles, such as porphyrin (Por) dyes, have been used as PSs for PDI against microorganisms, mainly bacteria. Still, there is significant room for improvement, especially new PS molecules. Herein, unsymmetrical new pyridinone (3−5) and thiopyridyl Pors (7) were prepared with α-, β-, or γ-cyclodextrin (CD) units, following their quaternization to perform the corresponding free-base Pors (3a−5a and 7a), and were compared with the already-known Pors 6a and 8a, both bearing thiopyridinium and CD units. These water-soluble porphyrins were evaluated as PSs, and their photophysical and photochemical properties and photodynamic effects on E. coli were assessed. The presence of one CD unit and three positive charges on the Por structure (3a−5a and 7a) enhanced their aqueous solubility. The photoactivity of the cationic Pors 3a−5a and 6a−8a ensured their potential against the Gram-negative bacterium E. coli. Within each series of methoxypyridinium vs thiopyridinium dyes, the best PDI efficiency was achieved for 5a with a bacterial viability reduction of 3.5 log10 (50 mW cm−2, 60 min of light irradiation) and for 8a with a total bacterial viability reduction (>8 log10, 25 mW cm−2, 30 min of light irradiation). Here, the presence of the methoxypyridinium units is less effective against E. coli when compared with the thiopyridinium moieties. This study allows for the conclusion that the peripheral charge position, quaternized substituent type/CD unit, and affinity to the outer bacterial structures play an important role in the photoinactivation efficiency of E. coli, evidencing that these features should be further addressed in the pursuit for optimised PS for the antimicrobial PDI of pathogenic microorganisms.
Collapse
|
30
|
Munir Z, Banche G, Cavallo L, Mandras N, Roana J, Pertusio R, Ficiarà E, Cavalli R, Guiot C. Exploitation of the Antibacterial Properties of Photoactivated Curcumin as ‘Green’ Tool for Food Preservation. Int J Mol Sci 2022; 23:ijms23052600. [PMID: 35269742 PMCID: PMC8910554 DOI: 10.3390/ijms23052600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
In the search for non-chemical and green methods to counteract the bacterial contamination of foods, the use of natural substances with antimicrobial properties and light irradiation at proper light waves has been extensively investigated. In particular, the combination of both techniques, called photodynamic inactivation (PDI), is based on the fact that some natural substances act as photosensitizers, i.e., produce bioactive effects under irradiation. Notably, curcumin is a potent natural antibacterial and effective photosensitizer that is able to induce photodynamic activation in the visible light range (specifically for blue light). Some practical applications have been investigated with particular reference to food preservation from bacterial contaminants.
Collapse
Affiliation(s)
- Zunaira Munir
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
| | - Giuliana Banche
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
| | - Lorenza Cavallo
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
| | - Narcisa Mandras
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
- Correspondence: (N.M.); (E.F.)
| | - Janira Roana
- Bacteriology and Mycology Laboratory, Department of Public Health and Pediatric Science, University of Torino, Via Santena 9, 10126 Turin, Italy; (G.B.); (L.C.); (J.R.)
| | - Raffaele Pertusio
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
| | - Eleonora Ficiarà
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
- Correspondence: (N.M.); (E.F.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (R.P.); (C.G.)
| |
Collapse
|
31
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Liu D, Gu W, Wang L, Sun J. Photodynamic inactivation and its application in food preservation. Crit Rev Food Sci Nutr 2021; 63:2042-2056. [PMID: 34459290 DOI: 10.1080/10408398.2021.1969892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Food incidents caused by various foodborne pathogenic bacteria are posing a major threat to human health. The traditional thermal and chemical-based procedures applied for microbial control in the food industry cause adverse effects on food quality and bacterial resistance. As a new means of innovative sterilization technology, photodynamic inactivation (PDI) has gained significant attention due to excellent sterilization effect, environmental friendliness, safety, and low cost. This review analyses new developments in recent years for PDI systems applied to the food preservation. The fundamentals of photosensitization mechanism, the development of photosensitizers and light source selection are discussed. The application of PDI in food preservation are presented, with the main emphasis on the natural photosensitizers and its application to inactivate in vitro and in vivo microorganisms in food matrixes such as fresh vegetable, fruits, seafood, and poultry. The challenges and future research directions facing the application of this technology to food systems have been proposed. This review will provide reference for combating microbial contamination in food industry.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| |
Collapse
|
33
|
Ryu V, Ruiz-Ramirez S, Chuesiang P, McLandsborough LA, McClements DJ, Corradini MG. Use of Micellar Delivery Systems to Enhance Curcumin's Stability and Microbial Photoinactivation Capacity. Foods 2021; 10:foods10081777. [PMID: 34441554 PMCID: PMC8394612 DOI: 10.3390/foods10081777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial photoinactivation using ultraviolet (UV) or visible light can be enhanced by photosensitizers. This study assessed the efficacy of encapsulating a food-grade photosensitizer (curcumin) in surfactant micelles on its water dispersibility, chemical stability, and antimicrobial activity. Stock curcumin-surfactant solutions were prepared with Surfynol 465 (S465) or Tween 80 (T80) (5 mM sodium citrate buffer). The antimicrobial activity of curcumin-loaded surfactant solutions was determined by monitoring the inactivation of Escherichia coli O157: H7 and Listeria innocua after 5-min irradiation with UV-A light (λ = 365 nm). The solutions mixed with the bacterial suspensions contained 1 µM curcumin and each surfactant below, near, and above their critical micelle concentrations (CMCs). The addition of surfactants at any level to the curcumin solution enhanced its dispersibility, stability, and efficacy as a photosensitizer, thereby enhancing its antimicrobial activity. Gram-positive bacteria were more susceptible than Gram-negative bacteria when curcumin-loaded micelles were used against them. The photoinactivation efficacy of curcumin-surfactant solutions depended on the pH of the solution (low > high), surfactant type (S465 > T80), and the amount of surfactant present (below CMC ≥ near CMC > above CMC = unencapsulated curcumin). This result suggests that excessive partitioning of curcumin into micelles reduced its ability to interact with microbial cells. Synergistic antimicrobial activity was observed when S465 was present below or near the CMC with curcumin at pH 3.5, which could be attributed to a more effective interaction of the photosensitizer with the cell membranes as supported by the fluorescence lifetime micrographs. The use of a micelle-based delivery system facilitates adsorption and generation of reactive oxygen species in the immediate environment of the microbial cell, enhancing photoinactivation.
Collapse
Affiliation(s)
- Victor Ryu
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; (V.R.); (S.R.-R.); (D.J.M.)
| | - Silvette Ruiz-Ramirez
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; (V.R.); (S.R.-R.); (D.J.M.)
| | - Piyanan Chuesiang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Lynne A. McLandsborough
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; (V.R.); (S.R.-R.); (D.J.M.)
- Correspondence: (L.A.M.); (M.G.C.); Tel.: +1-413-545-1016 (L.A.M.); +1-519-824-4120 (ext. 53344) (M.G.C.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; (V.R.); (S.R.-R.); (D.J.M.)
| | - Maria G. Corradini
- Food Science Department and Arrell Food Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: (L.A.M.); (M.G.C.); Tel.: +1-413-545-1016 (L.A.M.); +1-519-824-4120 (ext. 53344) (M.G.C.)
| |
Collapse
|