1
|
Liu C, Liao Y, Jiang H, Tang Q, He C, Wang Y, Ren M, Wang C, Chen S, Tan L, Wan X, Chen D. Theabrownin: The 'rich hue' of Chinese dark tea, its extraction, and role in regulating inflammation and immune response. Food Res Int 2025; 209:116185. [PMID: 40253125 DOI: 10.1016/j.foodres.2025.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Theabrownin (TB) is one of the most representative bioactive components in Chinese dark tea, often referred to as the "gold in dark tea." The complex macromolecular structure of TB is influenced by its source (tea materials), extraction, separation, and purification methods, which affect its final structure and bioactivity. In recent years, research on TB has surged, becoming a hotspot in the field of tea functional components and health research. Extensive studies on its health benefits indicate that TB is a crucial active ingredient in dark tea with substantial potential for application in food, health care, industry, and medical fields. This review summarizes the formation of TB during dark tea manufacturing, especially the "piling" stage, extraction methods, various purification techniques, and the physicochemical properties of TB. Additionally, it comprehensively reviews recent research on TB's role in typical inflammation and immune imbalance-induced diseases such as colitis, atherosclerosis, non-alcoholic fatty liver disease, and innate immune diseases. The review concludes with a comparative summary of the biological activities of TB from the five major types of Chinese dark tea in terms of anti-inflammatory and immune regulatory effects.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Yihong Liao
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Hanrui Jiang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Qian Tang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Chunlei He
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Mengyi Ren
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Chenbo Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Shengxiang Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Liqiang Tan
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China.
| |
Collapse
|
2
|
Wang M, Xu D, Xu Y, Zheng W, Zhang S, Luo L, Wen J, Zhang Y. Impact of solid-state fermentation inoculated with Eurotium cristatum on the main composition and flavor of three kinds of Pu-erh tea. Int J Food Microbiol 2025; 436:111186. [PMID: 40250220 DOI: 10.1016/j.ijfoodmicro.2025.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025]
Abstract
This study aims to address the problems of strong bitterness, astringency, and inferior taste in Pu'er tea made from young tea trees. First, four strains of Eurotium cristatum were isolated and screened by the static suspension isolation method using tea infusion as the culture medium and identified through morphological and molecular analysis. One of the strains was selected for the solid - state fermentation of raw Pu'er tea, Pu'er black tea, and Pu'er green tea. The fermentation conditions were optimized via response - surface experimental design. The results showed that the optimized fermentation time, temperature, and relative humidity for the three types of tea were 10 days, 30 °C, 45 %; 5 days, 30 °C, 40 %; and 10 days, 35 °C, 40 % respectively. Sensory evaluation indicated that after fermentation, the color of the tea leaves and tea soup deepened. And the freshness of raw Pu'er tea and green Pu'er tea decreased, while a subtle moldy aroma aroma was introduced after fermentation. The astringency and bitterness were effectively reduced. Chemical analysis revealed that, except for the stable caffeine level, the levels of components such as tea polyphenols and catechins changed significantly. Correlation analysis demonstrated a strong correlation between the color, aroma, and taste of the tea and the contents of various chemical components. GC - MS analysis identified 370 volatile compounds, 262 of which showed differences before and after fermentation. In conclusion, solid - state fermentation with E.cristatum can affect the chemical composition of the three types of tea, improve their taste and flavor, and offer a new approach for enhancing the quality of tea from young tea trees.
Collapse
Affiliation(s)
- Mengqin Wang
- QuanZhou Woman's and Children's Hospital, No. 700, Fengze Street, Quanzhou City, Fujian Province, China
| | - Da Xu
- Yunnan Normal University, No.1, Yuhua Area, Chenggong District, Kunming, Yunnan Province 650500, China
| | - Yuan Xu
- Xinyang Normal University, No.237 Nanhu Road, Xinyang City, Henan Province 464000, China
| | - Wenwei Zheng
- QuanZhou Woman's and Children's Hospital, No. 700, Fengze Street, Quanzhou City, Fujian Province, China
| | - Shuyin Zhang
- Yunnan Normal University, No.1, Yuhua Area, Chenggong District, Kunming, Yunnan Province 650500, China
| | - Liyuan Luo
- Minnan University of Science and Technology Baogai Mountain Scenic Spot, Shishi, Quanzhou, Fujian 362700,China
| | - Jiangong Wen
- Yunnan Normal University, No.1, Yuhua Area, Chenggong District, Kunming, Yunnan Province 650500, China
| | - Yunfeng Zhang
- Yunnan Normal University, No.1, Yuhua Area, Chenggong District, Kunming, Yunnan Province 650500, China; School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, Yunnan 653100, China.
| |
Collapse
|
3
|
Sun YY, Yan ZS, Gao Y, Liang XX, Dong YY, Yang XY, Dang MY, Bai D, Wu XX. Substance basis and fermentation mechanism study of the analgesic and anti-inflammatory effects of Tibetan medicine Wuwei Ganlu based on JiuQu fermentation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119565. [PMID: 40015538 DOI: 10.1016/j.jep.2025.119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuwei Ganlu, as an integral part of the Tibetan medical system known as "Sowa Rigpa" originates from the formulations documented in the "Four Tantras". It is recognized by UNESCO as an intangible cultural heritage, representing a body of traditional knowledge and practice. Fermentation, a crucial step in the preparation of Wuwei Ganlu, has not been fully understood in terms of its mechanisms and its impact on the material basis and pharmacological efficacy of the medicine. AIM OF THE STUDY By investigating the effects of fermentation on the chemical components and pharmacological activities of Tibetan medicine Wuwei Ganlu, this study aims to reveal the scientific basis for the enhanced efficacy induced by fermentation. MATERIALS AND METHODS An analgesic and anti-inflammatory animal model was employed to investigate the effects of Tibetan medicine Wuwei Ganlu at different fermentation stages (from 0 to 5 days) on the number of twisting and serum IL-6 levels in mice, aiming to explore the influence of fermentation on the potentiation of its analgesic and anti-inflammatory effects. Based on this, a systematic analysis of the substance basis of Wuwei Ganlu before and after fermentation was conducted using UPLC-Q-Exactive Orbitrap MS and HPLC-MS/MS methods, identifying key differences in the substance composition and determining the indicative components. Additionally, fungal community changes before and after fermentation were studied using ITS rRNA sequencing, which revealed the differences in the fungal community. The integrity of the plant cell walls in Wuwei Ganlu before and after fermentation was examined under a microscope, and the effects of fermentation on the plant cell walls and cellulase activity were assessed by measuring the enzyme activity during the fermentation process. Finally, the fermentation mechanism of Wuwei Ganlu was further corroborated by studying the changes in content and transformation patterns of specific components, including Rutin, Quercitrin, Hyperoside, Quercetin, and Ephedrine, under the same fermentation conditions. RESULTS The analgesic and anti-inflammatory experiments indicated that fermentation significantly enhanced the analgesic and anti-inflammatory effects of Tibetan medicine Wuwei Ganlu, as evidenced by a marked reduction in the number of twisting and IL-6 levels (P < 0.05). Fermentation caused significant changes in the Chemical Compotents of Wuwei Ganlu, increasing the levels of Ephedrine (19.69%), Rutin (16.71%), Quercitrin (21.54%), Quercetin (132.54%), and Hyperoside (110.16%). Fungal community analysis revealed that Saccharomycetaceae was the dominant fungal genus during fermentation, with its abundance significantly increasing after fermentation, while Aspergillus showed relatively low abundance on day 3 of fermentation. The cellulase produced by Saccharomycetaceae promoted the hydrolysis of the plant cell walls. Microscopic observation demonstrated that fermentation led to plant cell walls rupture and fiber structure transparency in the raw materials, which enhanced cellulase activity between days 1 and 3, promoting the release of Ephedrine, Rutin, Quercitrin, Quercetin, and Hyperoside. Under the catalytic action of JiuQu fermentation starter, Rutin, Quercitrin, and Hyperoside were hydrolyzed into Quercetin, while Ephedrine was transformed into Methylephedrone and Cathinone, confirming the fermentation-induced transformation pathways of these compotents. The heatmap of the correlation between chemical components, microbial community, and pharmacological indicators showed that the abundance of Saccharomycetaceae in the fermented samples was significantly correlated with the Twisting inhibition rate and IL-6 levels in mice, as well as Ephedrine and Quercetin, suggesting that Ephedrine and Quercetin may have potential analgesic and anti-inflammatory effects. CONCLUSION The fermentation process significantly enhances the analgesic and anti-inflammatory effects, primarily due to the chemical components changes in Tibetan medicine Wuwei Ganlu induced by fermentation. Fermentation regulates the abundance of dominant microbial communities, particularly Saccharomycetaceae species, and enhances cellulase activity. This enhances the breakdown of plant cell walls, promoting the release of chemical components. Additionally, fermentation facilitates the conversion of glycosides (water-soluble) into aglycones (lipid-soluble), such as the hydrolysis of Rutin, Hyperoside, and hypericin into Quercetin. In summary, the fermentation mechanism of Wuwei Ganlu involves an increase in Saccharomycetaceae abundance and enhanced cellulase activity under the influence of JiuQu fermentation, leading to plant cell walls breakdown and the subsequent release of chemical components. Moreover, the conversion of glycosides to lipid-soluble aglycones during fermentation enhances transdermal absorption, which may also contribute to the potentiation of its effects.
Collapse
Affiliation(s)
- Yang-Yang Sun
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zheng-Shen Yan
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuan Gao
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Xue Liang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ying-Ying Dong
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Yun Yang
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Meng-Ya Dang
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Bai
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Xia Wu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Cui P, Li J, Yao T, Gan Z. Fungal community composition and function in different Chinese post-fermented teas. Sci Rep 2025; 15:8514. [PMID: 40074817 PMCID: PMC11903669 DOI: 10.1038/s41598-025-93420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Chinese post-fermented teas are produced through special fermentation by microorganisms, with fungi significantly contributing to their flavor and sensory characteristics. Here, the fungal community structure and function were investigated using Illumina HiSeq sequencing of the fungal ITS rDNA region across different post-fermented teas, including Fuzhuan, Qingzhuan, Tianjian black, Liupao, and raw and ripened Pu-erh. Additionally, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology was used to compare the volatile components of tea samples, and moisture content, pH, total nitrogen, carbon-nitrogen ratio, and total sulfur were measured. All the tea samples were slightly acidic, with pH values of 5.56-6.43, and Ascomycota was the most dominant phylum, representing over 90% of the relative abundance. However, there were significant differences at the genus level in the six typical post-fermented teas. Aspergillus was the most dominant genus in Fuzhuan (91.16%), Qingzhuan (54.89%), Tianjian (64.11%), and Liupao (47.43%) teas, whereas Debaryomyces and Blastobotrys were the most dominant genera in raw (35.67%) and ripened (78.88%) Pu-erh tea, respectively. A functional prediction analysis revealed that most fungal gene functions were involved in metabolism. A total of 26 main volatile components were detected, which differed in composition among six tea samples. This is the first comparative analysis of fungal communities and volatile components in different typical Chinese post-fermented teas, and the results will aid the design of better culturing strategies for the specific dominant fungal species and the influence of fungi on aroma types of post-fermented teas.
Collapse
Affiliation(s)
- Pu Cui
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Jia Li
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Ting Yao
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China
- College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, China
- Huizhou Mushroom Industry and Microbial Technology Innovation Center, Huangshan University, Huangshan, Anhui, China
| | - Zhuoting Gan
- The Rural Revitalization Collaborative Technical Service Center of Anhui Province, Huangshan University, Huangshan, Anhui, China.
- School of Tourism, Huangshan University, Huangshan, Anhui, China.
| |
Collapse
|
5
|
Yang W, Chen R, Sun L, Li Q, Lai X, Zhang Z, Lai Z, Hao M, Li Q, Lin S, Ni H, Sun S. Effects of Pile-Fermentation Duration on the Taste Quality of Single-Cultivar Large-Leaf Dark Tea: Insights from Metabolomics and Microbiomics. Foods 2025; 14:670. [PMID: 40002114 PMCID: PMC11854364 DOI: 10.3390/foods14040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The pile-fermentation conditions and raw materials used play a vital role in determining the stability and quality of dark tea. In this study, sensory quality evaluation, metabolomics, and microbiomics techniques were used to investigate the effect of pile-fermentation duration on the taste quality of single-cultivar large-leaf dark tea (SLDT) and its underlying metabolite and microbial mechanisms. The study revealed that a 60-day duration resulted in a better SLDT sensory quality, with astringency and bitterness significantly reduced and sweetness increased. Catechins and theaflavins with ester structures, L-epicatechin, methyl gallate, protocatechuic acid, gallic acid, salicin, chlorogenic acid, and neochlorogenic acid were key taste metabolites contributing to the reduction of astringency and bitterness. Salicylic acid and D-sorbitol helped form the sweetness. Correlation analysis found out Aspergillus, Thermomyces, Bacillus, Staphylococcus, and Micrococcaceae were core functional microorganisms linked to these metabolites, helping to foster the higher quality of SLDT. Microorganisms shaped the taste quality of SLDT through metabolic processes and enzyme secretion during pile-fermentation. This study provided insights into the metabolite basis and microbiological mechanisms of SLDT taste formation and offered guidance for optimizing production processes to improve the stability and quality of dark tea.
Collapse
Affiliation(s)
- Wanying Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Mengjiao Hao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (S.L.)
| | - Sen Lin
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (S.L.)
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| |
Collapse
|
6
|
Qiu Y, Liu X, Huang Z, Lyu F, Hu X, Han S, Ren H, Zhang A. Effect of Eurotium cristatum fermentation on chemical composition and hypoglycemic and sedative activities of Anji Baicha (Camellia sinensis). J Food Sci 2025; 90:e70042. [PMID: 39902923 DOI: 10.1111/1750-3841.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Anji Baicha (Camellia sinensis), one of the top 10 teas in China, possesses old leaves rich in bioactive ingredients yet is frequently discarded due to inferior taste. This study evaluated the effects of fermentation with Eurotium cristatum, a probiotic known to enhance bioactivity, on the primary nutrients and on the hypoglycemic and sedative properties of old leaves of Anji Baicha. Results indicated a considerable reduction in free amino acids and tea polyphenols post-fermentation. Conversely, the concentrations of flavonoids and theabrownins increased significantly, showing a positive correlation with the in vitro hypoglycemic effect. The contents of L-theanine and γ-aminobutyric acid (γ-GABA), known for their sedative effects, increased after fermentation, while caffeine and glutamate, renowned for their neural stimulation effect, decreased. Molecular docking revealed that L-theanine and γ-GABA may act as a sedative and sleep aid by competing for receptors with caffeine and glutamate, specifically NMDAR2A. This study not only introduces a novel approach for utilizing old leaves of Anji Baicha but also establishes a foundation for further investigating the hypoglycemic, sedative, and sleep-aiding effects of tea fermented with Eurotium cristatum. PRACTICAL APPLICATION: This research offers a sustainable solution for repurposing the underutilized old leaves of Anji Baicha, enhancing their market value and contributing to the circular economy within the tea industry. The fermented tea could be integrated into health-conscious food and beverage products, targeting consumers seeking natural hypoglycemic and sleep-aiding alternatives. Additionally, the findings open avenues for the development of functional teas that cater to specific health needs, such as diabetes management and sleep improvement.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaolin Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhiye Huang
- Anji Hecha Biotechnology Co., Hangzhou, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xinyu Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shenghua Han
- Hangzhou Huadan Agri-product Co., Hangzhou, China
| | - Hao Ren
- Xianyang Center for Food and Drug Control, Shaanxi, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Li Y, Liang J, Liang L. Identification of non-volatile compounds during the pile fermentation process of Liupao tea using widely targeted metabolomics based on UPLC-QTOF-MS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:377-388. [PMID: 39868396 PMCID: PMC11757836 DOI: 10.1007/s13197-024-06036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 01/28/2025]
Abstract
Pile fermentation plays a crucial role in the formation of the unique flavor of Liupao tea, which can effectively reduce the bitterness of the tea and promote the formation of red tea soup. In this study, the non-volatiles changes of Liupao tea during pile fermentation processing were fully analyzed by UPLC-QTOF-MS/MS. A total of 271 metabolites with significant differences were identified in Liupao tea during pile fermentation(P < 0.01, VIP > 1), and their trends were grouped into 10 subclasses by K-means analysis. Three differential metabolites Choline Alfoscerate, N1-Methyl-4-pyridone-5-carboxamide, and 2-Aminovalienone were shared among the three different pile fermentation periods. The results provided valuable information for understanding the dynamic changes of non-volatile substances during the pile fermentation process of Liupao tea. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06036-7.
Collapse
Affiliation(s)
- Ya Li
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| | - Jianfeng Liang
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| | - Lili Liang
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| |
Collapse
|
8
|
Chen S, Zhang M, Luo S, Ning M, Chen Y, Tan L, Tang X, Liu X, Zheng L, Saarloos A, Zhang T, Liu C. Multi-Omics analysis reveals the sensory quality and fungal communities of Tibetan teas produced by wet- and dry-piling fermentation. Food Res Int 2025; 201:115690. [PMID: 39849727 DOI: 10.1016/j.foodres.2025.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Ya'an Tibetan tea, a dark tea with a rich historical heritage, is typically processed using two primary piling fermentation methods: wet piling with rolled leaves (moisture content around 60%) and dry piling with sun-dried or baked green tea leaves (moisture content below 30%). This study employed sensory evaluation, targeted and non-targeted metabolomics, and fungal Internal Transcribed Spacer (ITS) sequencing to investigate changes in quality components and fungal composition in Tibetan tea processed by both wet and dry-piling methods. The results revealed that 3,7-Dimethyl-1,5,7-octatriene-3-ol and D-limonene were identified as key volatile metabolites contributing to the aroma variations between the dry and wet-piled teas. More pronounced differences were observed in non-volatile components, with 407 differential metabolites identified between the wet- and dry-piled teas. Linear discriminant analysis effect size (LEfSe) identified Rhizomucor, Aspergillus, Thermomyces, Setophoma, and Debaryomyces as the key fungal genera with significant differences between the two piling methods, also dominating in abundance and playing a crucial role in the fermentation process of Tibetan tea. Correlation analysis between microbial communities and differential metabolites showed that Debaryomyces, Thermomyces, and Setophoma were significant contributors to the aroma differences between the teas produced by the two piling methods, while Rhizomucor and Aspergillus had a greater influence on non-volatile metabolites. Since Rhizomucor and Aspergillus were the most dominant fungi in the wet (63.05%) and dry-piled (68.70%) samples, respectively, and showed opposite correlations with major non-volatile differential metabolites, they may underlie the flavor differences between the two piled teas, such as mellowness, thickness, and sweet aftertaste. This study sheds light on the chemical and fungal mechanisms underlying the quality formation of Ya'an Tibetan tea processed by wet and dry piling methods, providing theoretical guidance for the improvement, standardization, and potential enhancement of production efficiency of Ya'an Tibetan tea production.
Collapse
Affiliation(s)
- Shengxiang Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Mengxue Zhang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Shijie Luo
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Meiyi Ning
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yuxi Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Liqiang Tan
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xiaobo Tang
- Tea Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Xiao Liu
- Tea Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Liang Zheng
- Division of Toxicology, Wageningen University and Research, Wageningen, NL 6703 HE, the Netherlands
| | - Aafke Saarloos
- Division of Toxicology, Wageningen University and Research, Wageningen, NL 6703 HE, the Netherlands
| | - Ting Zhang
- Tea Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China.
| | - Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
9
|
Feng X, Qin Y, Ma S, Ming S, Weng Z, Xuan Y, Gong S, Fan F, Chen P, Chu Q, Li Z. Liubao tea extract restrains obesity-related hyperlipidemia via regulation of AMPK/p38/NF-κB pathway and intestinal microbiota. Food Chem 2025; 464:141910. [PMID: 39522375 DOI: 10.1016/j.foodchem.2024.141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Liubao tea, a traditional dark tea, has gained widespread recognition for various health benefits. In this study, the effects of Liubao tea extract (LTE) on obesity-related hyperlipidemia and the potential mechanism involved were explored. Anti-obesity compounds such as tricetin, isovitexin, tiliroside, etc. in LTE were identified. In high-fat diet mouse models, LTE effectively reduced tissues, organs, and body weight growth, and restored abnormal serum lipid levels. LTE could reverse adipocyte enlargement, lipid accumulation, and hepatic microstructure abnormalities. Notably, LTE reshaped gut microbiota by boosting beneficial bacteria (e.g., Bacteroides, Akkermansia, Psychrobacter) and suppressing harmful bacteria (e.g., Dubosiella, Faecalibaculum). Spearman correlation analysis unveiled significant associations between serum lipid levels, weight gain, LTE dosage, and gut microbiota, underlining the modulatory effects of LTE on metabolic disorders via the regulation of intestinal microbiota. Collectively, LTE could serve as a potential therapy for obesity-related hyperlipidemia prevention.
Collapse
Affiliation(s)
- Xinyu Feng
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China; Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuechao Qin
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | - Shengjin Ming
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Zhihang Weng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuqi Xuan
- Cangwu County Liuwang Forestry Industry Development Co., Ltd, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China.
| | - Zhongxia Li
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| |
Collapse
|
10
|
Wu Z, Liao W, Zhao H, Qiu Z, Zheng P, Liu Y, Lin X, Yao J, Li A, Tan X, Sun B, Meng H, Liu S. Differences in the Quality Components of Wuyi Rock Tea and Huizhou Rock Tea. Foods 2024; 14:4. [PMID: 39796294 PMCID: PMC11720515 DOI: 10.3390/foods14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Different origins and qualities can lead to differences in the taste and aroma of tea; however, the impacts of origin and quality on the taste and aroma characteristics of Wuyi rock tea and Huizhou rock tea have rarely been studied. In this study, high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluation methods were used to compare the quality components of Wuyi rock tea and Huizhou rock tea. The sensory evaluation showed that they each have their own characteristics, but the overall acceptability of Wuyi rock tea is ahead of Huizhou rock tea (p < 0.01). Biochemical experiments showed that HT was the highest in water leachables, about 43.12%; WT was the highest in tea polyphenols, about 14.91%; WR was the highest in free amino acids, about 3.38%; and the six rock teas had different health benefits. High-performance liquid chromatography showed that the theanine contents of WS and WR were 0.183% and 0.103%, respectively, which were much higher than those of other varieties. The OPLS-DA model predicted the factors that caused their different tastes, in order of contribution: CG > ECG > caffeine > EGCG > theanine. Ten volatile substances with OAV ≥ 1 and VIP > 1 were also found, indicating that they contributed greatly to the aroma characteristics, especially hexanoic acid, hexyl ester, and benzyl nitrile. The results of the correlation analysis showed that theanine was significantly correlated with taste (p < 0.05), and hexanoic acid, hexyl ester, and benzyl nitrile were significantly correlated with smell (p < 0.05). Substances such as theanine, hexanoic acid, hexyl ester, and benzyl nitrile give them their unique characteristics. Analysis of the differences in the quality components of the six rock teas can provide reference value for the cultivation and processing of rock teas.
Collapse
Affiliation(s)
- Zhaobao Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwen Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuxuan Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiyuan Yao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hui Meng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Wen S, Bai S, An R, Peng Z, Chen H, Jiang R, Ouyang J, Liu C, Wang Z, Ou X, Zeng H, Sun S, Pu S, Cao J, Huang J, Liu Z. Key Metabolites Influencing Astringency and Bitterness in Yinghong 9 Large-Leaf Dark Tea Before and After Pile-Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27378-27388. [PMID: 39604007 DOI: 10.1021/acs.jafc.4c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the impacts of pile-fermentation on the taste quality of dark tea (DT) is crucial. Although the large-leaf DT, Yinghong 9 DT, was successfully developed, its taste quality was not systematically studied. This research aims to analyze how pile-fermentation affects taste. Our taste evaluations indicated that pile-fermentation reduces astringency while slightly increasing bitterness. Through untargeted metabolomic analysis, we identified 16 key metabolites associated with these taste changes. The analysis of the dose-overthreshold values affirmed that rutin, isoquercetin, myricetin 3-galactoside, EGCG, DL-C, and ECG were found to lower astringency, while caffeine contributed to the slight increase in bitterness. Additionally, the changes in these metabolites are closely linked to the catalytic effects of microbial extracellular enzymes. These findings provide a theoretical foundation for a deeper understanding of how pile fermentation influences the taste quality of large-leaf DT.
Collapse
Affiliation(s)
- Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Silei Bai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Ran An
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhong Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Hongyu Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Ronggang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xingchang Ou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Songtao Pu
- Yunnan Xiaguantuo Tea (Group) Co.,Ltd, Dali 671000, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
12
|
Chen C, Huang L, Xia N, Teng J, Zhang Q, Zhu P, Wang H, Deng H. Combining non-targeted and targeted metabolomics to study key bitter and astringent substances of Liupao tea. Food Chem 2024; 467:142289. [PMID: 39637669 DOI: 10.1016/j.foodchem.2024.142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Liupao tea is a post-fermented dark tea with bitterness and astringency as key sensory traits, though its chemical composition is not fully understood. Six Liupao tea samples with significant differences in bitterness and astringency were analyzed using non-targeted metabolomics and sensory evaluation. Thirty finished and five semi-finished Liupao tea samples were analyzed using UHPLC-MS-PRM for targeted quantification of bitter and astringent compounds. The results show that 477 non-volatile compounds were detected, including 18 potential bitter compounds and 22 potential astringent compounds. Six key bitter compounds (epigallocatechin gallate, catechin gallate, caffeine, quinic acid, neochlorogenic acid, and caffeic acid) and 11 key astringent compounds (e.g., epigallocatechin gallate, gallic acid, chlorogenic acid, ellagic acid) were identified. After fermentation, flavonoid glycosides and flavanols were reduced by 62.41 % to 97.46 %, while phenolic acids showed varied trends. Different rates of change in key compounds during fermentation resulted in variations in bitterness and astringency. This study offers insights for improving Liupao tea quality.
Collapse
Affiliation(s)
- Can Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qisong Zhang
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Huifang Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Haichao Deng
- Baihui Pharmaceutical Group co, LTD, Nanning, Guangxi 530003, China.
| |
Collapse
|
13
|
Lin K, Xiong L, Zhang W, Chen X, Zhu J, Li X, Zhang J. Exploring the pharmacological mechanism of fermented Eucommia ulmoides leaf extract in the treatment of cisplatin-induced kidney injury in mice: Integrated traditional pharmacology, metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124358. [PMID: 39527890 DOI: 10.1016/j.jchromb.2024.124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin (CP) is a widely utilized anticancer drug, which also produces significant side effects, notably acute kidney injury (AKI). Fermented Eucommia ulmoides leaf (FEUL), a medicinal and edible Chinese herbal remedy, is known for its renoprotective properties. However, the effect and underlying mechanism of FEUL extract in AKI therapy have remained largely unexplored. This research aimed to elucidate the protective roles of FEUL extract in an AKI mouse model through biochemical assays, histopathological examinations, and investigating the underlying mechanisms based on metabolomics and network pharmacology. The findings demonstrated that pretreatment with orally administered FEUL extract significantly reduced blood urea nitrogen (BUN), and serum creatinine (SCr) levels, and ameliorated CP-induced kidney histopathological injuries. Moreover, FEUL extract attenuated CP-induced endoplasmic reticulum (ER) stress by reducing the protein expressions of PERK, IRE 1α, GRP78, ATF6, ATF4, and CHOP. The metabolomics results indicated that a total of 31 metabolites, involved in taurine and hypotaurine metabolism, lysine degradation, and steroid hormone biosynthesis, were altered after FEUL extract administration. Furthermore, metabolomics integrated with network pharmacology revealed that 8 targets, 4 metabolites, and 3 key pathways including steroid hormone biosynthesis, purine metabolism, and tryptophan metabolism were the main mechanisms of FEUL extract in treating CP-induced AKI. These findings suggested that FEUL extract could offer valuable insights for potential CP-induced AKI treatment strategies.
Collapse
Affiliation(s)
- Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xuan Chen
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jieqi Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
14
|
Cheng L, Peng L, Li X, Xu L, Chen J, Zhu Y, Wei Y, Wei X. Co-occurrence network and functional profiling of the bacterial community in the industrial pile fermentation of Qingzhuan tea: Understanding core functional bacteria. Food Chem 2024; 454:139658. [PMID: 38810451 DOI: 10.1016/j.foodchem.2024.139658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
The distinct quality of Qingzhuan tea is greatly influenced by the bacterial community but was poorly characterized. Therefore, this study investigated the Co-occurrence network and functional profiling of the bacterial community, with special attention paid to core functional bacteria in the industrial pile fermentation. Microbiomics analysis indicated that Klebsiella and Pantoea dominated raw tea leaves, and were rapidly replaced by Pseudomonas in pile fermentation, but substituted mainly by Burkholderia and Saccharopolyspora in final fermented tea. Bacterial taxa were grouped into 7 modules with the dominant in module I, III, and IV, which were involved in flavor formation and biocontrol production. Functional profiling revealed that "penicillin and cephalosporin biosynthesis" increased in pile fermentation. Twelve bacterial genera were identified as core functional bacteria, in which Klebsiella, Pantoea, and Pseudomonas also dominated the pile fermentation. This work would provide theoretical basis for its chemical biofortification and quality improvement by controlling bacterial communities.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junhai Chen
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Xianning 437318, PR China
| | - Yuzhi Zhu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Yanxiang Wei
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Xianning 437318, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Feng L, Liu P, Wang S, Teng J, Wang X, Zheng L, Ye F, Gui A, Xue J, Gao S, Zheng P. Effects of Microbial Proteins on Qingzhuan Tea Sensory Quality during Pile Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21089-21101. [PMID: 39267592 DOI: 10.1021/acs.jafc.4c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
To determine the effects of microbial proteins on Qingzhuan tea sensory quality during tea pile fermentation, tea leaf metabolomic and microorganism proteomic analyses were performed. In total, 1835 differential metabolites and 443 differentially expressed proteins of the microorganisms were identified. Correlation analysis between metabolomics and proteomics data revealed that the levels of microbial proteins EG II and CBH I cellulase may play important roles in cell wall construction and permeability, which were crucial for the interaction between tea leaves and microorganisms. Microbial proteins heat shock proteins (HSP), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and CuAO related to detoxification and stress responses showed a positive correlation with tea theanine, glutamine, γ-aminobutyric acid, glutamic acid, catechin, (-)-gallocatechin gallate, and (-)-catechin gallate, suggesting their effects on tea characteristic compound accumulation, thus affecting Qingzhuan tea sensory quality.
Collapse
Affiliation(s)
- Lin Feng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Panpan Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shengpeng Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jing Teng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Xueping Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Lin Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Fei Ye
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Anhui Gui
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jinjin Xue
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shiwei Gao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Pengcheng Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| |
Collapse
|
16
|
He Q, Lu S, Wang J, Xu C, Qu W, Nawaz S, Ataya FS, Wu Y, Li K. Lactobacillus salivarius and Berberine Alleviated Yak Calves' Diarrhea via Accommodating Oxidation Resistance, Inflammatory Factors, and Intestinal Microbiota. Animals (Basel) 2024; 14:2419. [PMID: 39199953 PMCID: PMC11350718 DOI: 10.3390/ani14162419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Yaks are important food animals in China; however, bacterial diarrheal diseases frequently occur on the plateau, with limited effective therapies. The objective of this research was to evaluate the effectiveness of Lactobacillus salivarius (LS) and berberine in alleviating diarrhea in yak calves. For this purpose, eighteen healthy yak calves were divided into control (JC), infected (JM), and treatment (JT) groups. Yaks in the JT group were treated with 2 × 1010 CFU/calf L. salivarius and 20 mg/kg berberine, and yaks in the JM and JT groups were induced with multi-drug-resistant Escherichia coli. The results showed that the weight growth rate in the JM group was significantly lower than that in the JC and JT groups. The diarrhea score in the JM group was significantly higher than that in both the JC and JT groups. Additionally, the contents of T-AOC, SOD, GSH-Px, and IL-10 were significantly lower in the JM group than those in the JC and JT groups, while MDA, TNF-α, IL-1β, and IL-6 were significantly higher in the JM group. Microbiota sequencing identified two phyla and twenty-seven genera as significant among the yak groups. Notably, probiotic genera such as Faecalibaculum and Parvibacter were observed, alongside harmful genera, including Marvinbryantia and Lachnospiraceae UCG-001. Our findings indicate that treatment with L. salivarius and berberine significantly reduced diarrhea incidence, improved growth performance, and positively modulated intestinal microbiota, which could provide novel insights for developing new therapies for ruminant diarrhea.
Collapse
Affiliation(s)
- Qing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yi Wu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Li ZQ, Yin XL, Gu HW, Peng ZX, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Discrimination and prediction of Qingzhuan tea storage year using quantitative chemical profile combined with multivariate analysis: Advantages of MRM HR based targeted quantification metabolomics. Food Chem 2024; 448:139088. [PMID: 38547707 DOI: 10.1016/j.foodchem.2024.139088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024]
Abstract
The duration of storage significantly influences the quality and market value of Qingzhuan tea (QZT). Herein, a high-resolution multiple reaction monitoring (MRMHR) quantitative method for markers of QZT storage year was developed. Quantitative data alongside multivariate analysis were employed to discriminate and predict the storage year of QZT. Furthermore, the content of the main biochemical ingredients, catechins and alkaloids, and free amino acids (FAA) were assessed for this purpose. The results show that targeted marker-based models exhibited superior discrimination and prediction performance among four datasets. The R2Xcum, R2Ycum and Q2cum of orthogonal projection to latent structure-discriminant analysis discrimination model were close to 1. The correlation coefficient (R2) and the root mean square error of prediction of the QZT storage year prediction model were 0.9906 and 0.63, respectively. This study provides valuable insights into tea storage quality and highlights the potential application of targeted markers in food quality evaluation.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhi-Xin Peng
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Chen X, Wang Y, Chen Y, Dai J, Cheng S, Chen X. Formation, physicochemical properties, and biological activities of theabrownins. Food Chem 2024; 448:139140. [PMID: 38574720 DOI: 10.1016/j.foodchem.2024.139140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Theabrownins (TBs) are heterogeneous mixtures of water-soluble brown tea pigments, and important constituents to evaluate the quality of dark tea. TBs have numerous hydroxyl and carboxyl groups and are formed by the oxidative polymerization of tea polyphenols. Many biological activities attributed to TBs, including antioxidant, anti-obesity, and lipid-regulating, have been demonstrated. This review summarizes the research progress made on the formation mechanism and physicochemical properties of TBs. It also discusses their protective effects against various diseases and associated potential molecular mechanisms. Additionally, it examines the signaling pathways mediating the bioactivities of TBs and highlights the difficulties and challenges of TBs research as well as their research prospects and applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongyong Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Shuiyuan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
19
|
Liu H, Huang Y, Liu Z, Pang Y, Yang C, Li M, Wu Q, Nie J. Determination of the variations in the metabolic profiles and bacterial communities during traditional craftsmanship Liupao tea processing. Food Chem X 2024; 22:101516. [PMID: 38911914 PMCID: PMC11190490 DOI: 10.1016/j.fochx.2024.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
In this study, the metabolic profiles of traditional craftsmanship (TC) Liupao tea presented great changes at different processing stages. The contents of flavonoids and their glycosides generally exhibited a continuing downward trend, resulting in the sensory quality of TC-Liupao tea gradually improved. However, the taste of TC-Liupao tea faded when piling exceeded 12 h, as a result of the excessive degradation of some key flavor substances. Therefore, it could be deduced that piling for 10 h might be optimum for the quality formation of TC-Liupao tea. Sphingomonas, Acrobacter, Microbacterium, and Methylobacterium were the dominant bacteria during piling. The correlation analysis between differential metabolites and bacteria showed that only Sphingomonas and Massilia were significantly correlated to metabolites, demonstrating that the bacteria had less effect on the transformation of metabolites. Thus, the metabolic structure change during the process of TC-Liupao tea might be mainly attributed to the high temperature and humidity environment.
Collapse
Affiliation(s)
- Huahong Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yingyi Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Chun Yang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Min Li
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Qianhua Wu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| |
Collapse
|
20
|
Li R, Wang T, Bo N, Wang Q, Chen Q, Liang Z, Guan Y, Jiang B, Ma Y, Zhao M. The carbohydrate metabolism and expression of carbohydrate-active enzyme genes in Aspergillus luchuensis fermentation of tea leaves. Front Microbiol 2024; 15:1408645. [PMID: 38894966 PMCID: PMC11183108 DOI: 10.3389/fmicb.2024.1408645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Carbohydrates, which make up 20 to 25% of tea beverages, are responsible for their flavor and bioactivity. Carbohydrates of pu-erh tea change during microbial fermentation and require further research. In this study, we examined the carbohydrate metabolism and expression of carbohydrate-active enzyme genes during the fermentation of tea leaves with Aspergillus luchuensis. Methods Widely targeted metabolomics analysis, high-performance anion-exchange chromatography measurements, and transcriptomics were used in this study. Results After fermentation, the levels of soluble sugar, hemicellulose, lignin, eight monosaccharides, and seven sugar alcohols increased. Meanwhile, the relative contents of polysaccharides, D-sorbitol, D-glucose, and cellulose decreased. High expression of 40 genes encoding 16 carbohydrate enzymes was observed during fermentation (FPKM>10). These genes encode L-iditol 2-dehydrogenase, pectinesterase, polygalacturonase, α-amylase, glucoamylase, endoglucanase, β-glucosidase, β-galactosidase, α-galactosidase, α-glucosidase, and glucose-6-phosphate isomerase, among others. Discussion These enzymes are known to break down polysaccharides and cell wall cellulose, increasing the content of monosaccharides and soluble sugars.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nianguo Bo
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuyue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengwei Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanhui Guan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
- National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Duan Y, Guo F, Li C, Xiang D, Gong M, Yi H, Chen L, Yan L, Zhang D, Dai L, Liu X, Wang Z. Aqueous extract of fermented Eucommia ulmoides leaves alleviates hyperlipidemia by maintaining gut homeostasis and modulating metabolism in high-fat diet fed rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155291. [PMID: 38518640 DOI: 10.1016/j.phymed.2023.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND As a traditional Chinese medicinal herb, the lipid-lowing biological potential of Eucommia ulmoides leaves (EL) has been demonstrated. After fermentation, the EL have been made into various products with lipid-lowering effects and antioxidant activity. However, the anti-hyperlipidemic mechanism of fermented Eucommia ulmoides leaves (FEL) is unclear now. PURPOSE To evaluate the effects of FEL on hyperlipidemia and investigate the mechanism based on regulating gut homeostasis and host metabolism. METHODS Hyperlipidemia animal model in Wistar rats was established after 8 weeks high-fat diet (HFD) fed. The administered doses of aqueous extract of FEL (FELE) were 128, 256 and 512 mg/kg/d, respectively. Serum biochemical parameters detection, histopathological sections analysis, 16S rDNA sequencing of gut microbiota and untargeted fecal metabolomics analysis, were performed to determine the therapeutic effects and predict related pathways of FELE on hyperlipidemia. The changes of proteins and genes elated to lipid were detected by Immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS 56 Components in FELE were identified by UPLC-MS, with organic acids, flavonoids and phenolic acids accounting for the majority. The intervention of FELE significantly reduced the body weight, lipid accumulation and the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein-cholesterol (LDL-C) in hyperlipidemia rats, while increased the level of High-density lipoprotein-cholesterol (HDL-C). Meanwhile, FELE improved the inflammatory makers and oxidative stress factors, which is tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT). These results demonstrated that FETE can effectively reduce blood lipids and alleviate inflammation and oxidative damage caused by hyperlipidemia. Mechanistically, FELE restore the homeostasis of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of probiotics, especially Lactobacillus, Rombousia, Bacteroides, Roseburia, Clostridia_UCG-014_Unclassified, while modulated metabolism through amino acid, bile acid and lipid-related metabolism pathways. In addition, the Pearson correlation analysis found that the upregulated bilirubin, threonine, dopamine and downregulated lipocholic acid, d-sphingosine were key metabolites after FELE intervention. IF and qRT-PCR analysis showed that FELE upregulated the expression of fatty acid oxidation proteins and genes (PPARα, CPT1A), bile acid synthesis and excretion proteins and genes (LXRα, CYP7A1, FXR), and downregulated the expression of adipogenic gene (SREBP-1c) by regulating gut microbiota to improve metabolism and exert a lipid-lowering effect. CONCLUSION This work filled the lipid-lowering mechanism gap of FEL. FELE can improve HFD-induced hyperlipidemia by regulating the gut microbiota homeostasis and metabolism. Thus, FEL has the potential to develop into the novel raw material of lipid-lowering drugs.
Collapse
Affiliation(s)
- Yu Duan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dinghua Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Man Gong
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangmian Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lihua Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Dai
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
22
|
Liu M, Shi L, Guo J, Gu Y, Li S, Yi L, Ren D, Li B. Determination of organic acids for predicting sourness intensity of tea beverage by liquid chromatography-tandem mass spectrometry and chemometrics methods. J Sep Sci 2024; 47:e2300628. [PMID: 38801755 DOI: 10.1002/jssc.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
The contents of organic acids (OAs) in tea beverage and their relationship with taste intensity have not been fully understood. In this work, a rapid (10 min for a single run) and sensitive (limits of quantification: 0.0044-0.4486 µg/mL) method was developed and validated for the simultaneous determination of 17 OAs in four types of tea, based on liquid chromatography-tandem mass spectrometry with multiple reaction monitoring mode. The contents of 17 OAs in 96 tea samples were measured at levels between 0.01 and 11.80 g/kg (dried weight). Quinic acid, citric acid, and malic acid were determined as the major OAs in green, black, and raw pu-erh teas, while oxalic acid and tartaric acid exhibited the highest contents in ripe pu-erh tea. Taking the OAs composition as input features, a partial least squares regression model was proposed to predict the sourness intensity of tea beverages. The model achieved a root-mean-square error of 0.58 and a coefficient of determination of 0.84 for the testing set. The proposed model provides a theoretical way to evaluate the sensory quality of tea infusion based on its chemical composition.
Collapse
Affiliation(s)
- Meiyan Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lijuan Shi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jie Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Boyan Li
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
23
|
Cheng L, Yang Q, Peng L, Xu L, Chen J, Zhu Y, Wei X. Exploring core functional fungi driving the metabolic conversion in the industrial pile fermentation of Qingzhuan tea. Food Res Int 2024; 178:113979. [PMID: 38309920 DOI: 10.1016/j.foodres.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
The distinct sensory quality of Qingzhuan tea is mainly formed in pile fermentation by a group of functional microorganisms but the core functional ones was poorly characterized. Therefore, this study investigated the dynamic changes in the fungal community and metabolic profile by integrating microbiomics and metabolomics, and explored the core functional fungi driving the metabolic conversion in the industrial pile fermentation of Qingzhuan tea. Indicated by microbiomics analysis, Aspergillus dominated the entire pile-fermentation process, while Thermoascus, Rasamsonia, and Cylindrium successively abounded in the different stages of the pile fermentation. A total of 50 differentially changed metabolites were identified, with the hydrolysis of galloyl/polymeric catechins, biosynthesis of theabrownins, oxidation of catechins, N-ethyl-2-pyrrolidinone substitution of catechins, and deglycosylation of flavonoid glucosides. Nine fungal genera were identified as core functional fungi, in which Aspergillus linked to the hydrolysis of polymeric catechins and insoluble polysaccharides as well as biosynthesis of theabrownins, while Thermoascus participated in the biosynthesis of theabrownins, deglycosylation of flavonoid glucosides, and N-ethyl-2-pyrrolidinone substitution of catechins. These findings would advance our understanding of the quality formation of Qingzhuan tea and provide a benchmark for precise inoculation for its quality improvement.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qiongqiong Yang
- Department of Biology, College of Science, Shantou University, Guangdong, Shantou 515063, China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junhai Chen
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Xianning 437318, PR China
| | - Yuzhi Zhu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
24
|
Wang Z, Li H, Huang W, Duan S, Yan Y, Zeng Z, Fang Z, Li C, Hu B, Wu W, Lan X, Liu Y. Landscapes of the main components, metabolic and microbial signatures, and their correlations during pile-fermentation of Tibetan tea. Food Chem 2024; 430:136932. [PMID: 37572385 DOI: 10.1016/j.foodchem.2023.136932] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Microbial fermentation, a key step in Tibetan tea production, plays a pivotal role in forming the tea's unique quality. In our study, we mapped out the landscapes of major components, metabolomic signatures, and microbial features of Tibetan tea using component content determination, untargeted metabolomic analysis, and ITS and 16S rRNA sequencing. The results reveal that theabrownin content demonstrated a consistent growth trend post-fermentation, increasing from 41.96 ± 1.64 mg/g to 68.75 ± 2.58 mg/g. However, the content of epigallocatechin gallate (EGCG) significantly dwindled from 80.02 ± 0.51 mg/g to 8.12 ± 0.07 mg/g. Additionally, 518 metabolites were pinpointed as pivotal to the metabolic variation induced by microbial fermentation. The microbiome analysis exhibited a considerable shift in the microbiota signature, with Aspergillus emerging as the dominant microorganism. To conclude, these findings offer novel perspectives for enhancing the quality of Tibetan tea and abbreviating fermentation time through the regulation of microbiota structure.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Weimin Huang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yue Yan
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xiguo Lan
- Sichuan Yingtai Tea Industry Co., Ltd, Yaan 625200, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
25
|
Wang T, Li RY, Liu KY, Chen QY, Bo NG, Wang Q, Xiao YQ, Sha G, Chen SQ, Lei X, Lu Y, Ma Y, Zhao M. Changes in sensory characteristics, chemical composition and microbial succession during fermentation of ancient plants Pu-erh tea. Food Chem X 2023; 20:101003. [PMID: 38144832 PMCID: PMC10739768 DOI: 10.1016/j.fochx.2023.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
"Ancient tea plants" are defined as tea trees > 100 years old, or with a trunk diameter > 25 cm; their leaves are manufactured to high - quality, valuable ancient plants pu-erh tea (APPT). In this study, a fermentation of APPT were developed, and outstanding sweetness of APPT infusion was observed. During fermentation, the content of soluble sugars, theabrownins (p < 0.05), as well as 41 metabolites were increased [Variable importance in projection (VIP) > 1.0; p < 0.05 and Fold-change (FC) FC > 2]; While relative levels of 72 metabolites were decreased (VIP > 1.0, p < 0.05 and FC < 0.5. Staphylococcus, Achromobacter, Sphingomonas, Thermomyces, Rasamsonia, Blastobotrys, Aspergillus and Cladosporium were identified as dominant genera, and their relative levels were correlated with contents of characteristic components (p < 0.05). Together, changes in sensory characteristics, chemical composition and microbial succession during APPT fermentation were investigated, and advanced the formation mechanism of its unique quality.
Collapse
Affiliation(s)
- Teng Wang
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ruo-yu Li
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Kun-yi Liu
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Qiu-yue Chen
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Nian-guo Bo
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan-qin Xiao
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Gen Sha
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Si-qin Chen
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xin Lei
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yi Lu
- Menghai Dazhuo Tea Co., Ltd., Xishuangbanna, Yunnan 666100, China
| | - Yan Ma
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- College of Tea Science & College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
26
|
Vinicius da Silva Ferreira M, Barbosa JL, Kamruzzaman M, Barbin DF. Low-cost electronic-nose (LC-e-nose) systems for the evaluation of plantation and fruit crops: recent advances and future trends. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6120-6138. [PMID: 37937362 DOI: 10.1039/d3ay01192e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
An electronic nose (e-nose) is a device designed to recognize and classify odors. The equipment is built around a series of sensors that detect the presence of odors, especially volatile organic compounds (VOCs), and generate an electric signal (voltage), known as e-nose data, which contains chemical information. In the food business, the use of e-noses for analyses and quality control of fruits and plantation crops has increased in recent years. Their use is particularly relevant due to the lack of non-invasive and inexpensive methods to detect VOCs in crops. However, the majority of reports in the literature involve commercial e-noses, with only a few studies addressing low-cost e-nose (LC-e-nose) devices or providing a data-oriented description to assist researchers in choosing their setup and appropriate statistical methods to analyze crop data. Therefore, the objective of this study is to discuss the hardware of the two most common e-nose sensors: electrochemical (EC) sensors and metal oxide sensors (MOSs), as well as a critical review of the literature reporting MOS-based low-cost e-nose devices used for investigating plantations and fruit crops, including the main features of such devices. Miniaturization of equipment from lab-scale to portable and convenient gear, allowing producers to take it into the field, as shown in many appraised systems, is one of the future advancements in this area. By utilizing the low-cost designs provided in this review, researchers can develop their own devices based on practical demands such as quality control and compare results with those reported in the literature. Overall, this review thoroughly discusses the applications of low-cost e-noses based on MOSs for fruits, tea, and coffee, as well as the key features of their equipment (i.e., advantages and disadvantages) based on their technical parameters (i.e., electronic and physical parts). As a final remark, LC-e-nose technology deserves significant attention as it has the potential to be a valuable quality control tool for emerging countries.
Collapse
Affiliation(s)
- Marcus Vinicius da Silva Ferreira
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), Departamento de Tecnologia de Alimentos, Seropédica 23890-000, Rio de Janeiro, Brazil.
- Department of Agriculture and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jose Lucena Barbosa
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), Departamento de Tecnologia de Alimentos, Seropédica 23890-000, Rio de Janeiro, Brazil.
| | - Mohammed Kamruzzaman
- Department of Agriculture and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Douglas Fernandes Barbin
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
27
|
Feng X, Chen M, Song H, Ma S, Ou C, Li Z, Hu H, Yang Y, Zhou S, Pan Y, Fan F, Gong S, Chen P, Chu Q. A systemic review on Liubao tea: A time-honored dark tea with distinctive raw materials, process techniques, chemical profiles, and biological activities. Compr Rev Food Sci Food Saf 2023; 22:5063-5085. [PMID: 37850384 DOI: 10.1111/1541-4337.13254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Ming Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Zeqing Li
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, P. R. China
| | - Hao Hu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Yunyun Yang
- College of standardization, China Jiliang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
28
|
Li ZQ, Yin XL, Gu HW, Zou D, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Revealing the chemical differences and their application in the storage year prediction of Qingzhuan tea by SWATH-MS based metabolomics analysis. Food Res Int 2023; 173:113238. [PMID: 37803551 DOI: 10.1016/j.foodres.2023.113238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
It's generally believed that the longer the storage, the better the quality of dark tea, but the chemical differences of Qingzhuan tea (QZT) with different storage years is still unclear. Herein, in this work, an untargeted metabolomic approach based on SWATH-MS was established to investigate the differential compounds of QZT with 0-9 years' storage time. These QZT samples were roughly divided into two categories by principal component analysis (PCA). After orthogonal projections to latent structures discriminant analysis (OPLS-DA), 18 differential compounds were putatively identified as chemical markers for the storage year variation of QZT. Heatmap visualization showed that the contents of catechins, fatty acids, and some phenolic acids significantly reduced, flavonoid glycosides, triterpenoids, and 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased with the increase of storage time. Furthermore, these chemical markers were verified by the peak areas corresponding to MS2 ions from SWATH-MS. Based on the extraction chromatographic peak areas of MS and MS2 ions, a duration time prediction model was built for QZT with correlation coefficient R2 of 0.9080 and 0.9701, and RMSEP value of 0.85 and 1.24, respectively. This study reveals the chemical differences of QZT with different storage years and provides a theoretical basis for the quality evaluation of stored dark tea.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
29
|
Sun Y, Yuan X, Luo Z, Cao Y, Liu S, Liu Y. Metabolomic and transcriptomic analyses reveal comparisons against liquid-state fermentation of primary dark tea, green tea and white tea by Aspergillus cristatus. Food Res Int 2023; 172:113115. [PMID: 37689883 DOI: 10.1016/j.foodres.2023.113115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Liquid-state fermentation (LSF) of tea leaves is a promising way to obtain tea-based nutraceutical products rich in various bioactive compounds. In the study, the changes of bioactive compounds, tea pigments and complex metabolites from LSF of primary dark tea, green tea and white tea infusions with Aspergillus cristatus were determined. Chemical analyses revealed that soluble sugars, monosaccharide composition, total polyphenols, total flavonoids, free amino acids, soluble proteins and tea pigments were changed in different ways. An untargeted metabolomic analysis and ribonucleic acid sequencing (RNA-seq) based transcriptomic analysis were performed to investigate the metabolic differentiation and clarify the key differentially expressed genes (DEGs, fold change >2 and p < 0.05), showing that amino acid metabolism, carbohydrate metabolism and lipid metabolism were the most enriched pathways during A. cristatus fermentation of primary dark tea, green tea and white tea infusions. In addition, glycerophospholipid metabolism, linoleic acid metabolism and phenylalanine metabolism were greatly accumulated in the fermentation of primary dark tea and white tea infusions; Pyruvate metabolism, glycolysis/gluconeogenesis, fatty acid degradation, tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and valine and leucine, isoleucine degradation were greatly accumulated in the fermentation of primary dark tea and green tea infusions; Starch and sucrose metabolism was greatly accumulated in the fermentation of green tea and white tea infusions; Galactose metabolism was significantly enhanced in the fermentation of primary dark tea infusion; Amino sugar and nucleotide sugar metabolism, sphingolipid metabolism and alanine, aspartate and glutamate metabolism were significantly enhanced in the fermentation of green tea infusion. Besides, some other pathways involving aminobenzoate degradation, biosynthesis of cofactors, pyrimidine metabolism, benzoxazinoid biosynthesis and phenazine biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis and flavone and flavonol biosynthesis also differed from each other. These findings support that A. cristatus plays a vital role in the biochemical and genetic regulation of metabolite profile, and could be considered a potential prospect for better use of A. cristatus on different kinds of tea materials.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, PR China.
| | - Xushuang Yuan
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhaojun Luo
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, PR China.
| |
Collapse
|
30
|
Feng L, Gao S, Liu P, Wang S, Zheng L, Wang X, Teng J, Ye F, Gui A, Xue J, Zheng P. Microbial Diversity and Characteristic Quality Formation of Qingzhuan Tea as Revealed by Metagenomic and Metabolomic Analysis during Pile Fermentation. Foods 2023; 12:3537. [PMID: 37835190 PMCID: PMC10572444 DOI: 10.3390/foods12193537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
In order to analyze the changes in the microbial community structure during the pile fermentation of Qingzhuan tea and their correlation with the formation of quality compounds in Qingzhuan tea, this study carried out metagenomic and metabolomic analyses of tea samples during the fermentation process of Qingzhuan tea. The changes in the expression and abundance of microorganisms during the pile fermentation were investigated through metagenomic assays. During the processing of Qingzhuan tea, there is a transition from a bacterial dominated ecosystem to an ecosystem enriched with fungi. The correlation analyses of metagenomics and metabolomics showed that amino acids and polyphenol metabolites with relatively simple structures exhibited a significant negative correlation with target microorganisms, while the structurally complicated B-ring dihydroxy puerin, B-ring trihydroxy galloyl puerlin, and other compounds showed a significant positive correlation with target microorganisms. Aspergillus niger, Aspergillus glaucus, Penicillium in the Aspergillaceae family, and Talaromyces and Rasamsonia emersonii in Trichocomaceae were the key microorganisms involved in the formation of the characteristic qualities of Qingzhuan tea.
Collapse
Affiliation(s)
- Lin Feng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shiwei Gao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Panpan Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Shengpeng Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Lin Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Xueping Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jing Teng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Fei Ye
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Anhui Gui
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Jinjin Xue
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| | - Pengcheng Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (L.F.); (S.G.); (P.L.); (S.W.); (L.Z.); (X.W.); (J.T.); (F.Y.); (A.G.); (J.X.)
- Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Hubei Tea Engineering and Technology Research Centre, Wuhan 430064, China
| |
Collapse
|
31
|
Wen L, Sun L, Chen R, Li Q, Lai X, Cao J, Lai Z, Zhang Z, Li Q, Song G, Sun S, Cao F. Metabolome and Microbiome Analysis to Study the Flavor of Summer Black Tea Improved by Stuck Fermentation. Foods 2023; 12:3414. [PMID: 37761123 PMCID: PMC10527649 DOI: 10.3390/foods12183414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.
Collapse
Affiliation(s)
- Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Guang Song
- Guangzhou Yitang Biotechnology Co., Ltd., Guangzhou 510277, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| |
Collapse
|
32
|
Li Y, Yu S, Yang S, Ni D, Jiang X, Zhang D, Zhou J, Li C, Yu Z. Study on taste quality formation and leaf conducting tissue changes in six types of tea during their manufacturing processes. Food Chem X 2023; 18:100731. [PMID: 37397192 PMCID: PMC10314197 DOI: 10.1016/j.fochx.2023.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
This study fristly investigated the taste quality formation and leaf conducting tissue changes in six types of Chinese tea (green, black, oolong, yellow, white, and dark) made from Mingke No.1 variety. Non-targeted metabolomics showed the vital manufacturing processes (green tea-de-enzyming, black tea-fermenting, oolong tea-turning-over, yellow tea-yellowing, white tea-withering, and dark tea-pile-fermenting) were highly related to their unique taste formation, due to different fermentation degree in these processes. After drying, the retained phenolics, theanine, caffeine, and other substances significantly impacted each tea taste quality formation. Meanwhile, the tea leaf conducting tissue structure was significantly influenced by high processing temperature, and the change of its inner diameter was related to moisture loss during tea processing, as indicated by its significant different Raman characteristic peaks (mainly cellulose and lignin) in each key process. This study provides a reference for process optimization to improve tea quality.
Collapse
Affiliation(s)
- Yuchuan Li
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Songhui Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shuya Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Dejiang Ni
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Xinfeng Jiang
- Jiangxi Institute of Cash Crops /The Key Laboratory of Tea Quality and Safety Control in Jiangxi Province, Nanchang 330203, People's Republic of China
| | - De Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Jirong Zhou
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| | - Chunlei Li
- Agricultural College, Weifang University of Science & Technology, Weifang, Shandong 262700, People's Republic of China
| | - Zhi Yu
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
33
|
Qin Y, Xu H, Chen Y, Lei J, Sun J, Zhao Y, Lian W, Zhang M. Metabolomics-Based Analyses of Dynamic Changes in Flavonoid Profiles in the Black Mulberry Winemaking Process. Foods 2023; 12:foods12112221. [PMID: 37297465 DOI: 10.3390/foods12112221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
To overcome the fruit's perishability, mulberry wine has been developed as a method of preservation. However, dynamic changes in metabolites during mulberry wine fermentation have not been reported yet. In the present investigation, UHPLC-QE-MS/MS coupled with multivariate statistical analyses was employed to scrutinize the metabolic profiles, particularly the flavonoid profiles, throughout the process of vinification. In general, the major differential metabolites encompassed organic heterocyclic compounds, amino acids, phenylpropanoids, aromatic compounds, and carbohydrates. The contents of total sugar and alcohol play a primary role that drove the composition of amino acids, polyphenol, aromatic compound, and organic acid metabolites based on the Mantel test. Importantly, among the flavonoids, abundant in mulberry fruit, luteolin, luteolin-7-O-glucoside, (-)-epiafzelechin, eriodictyol, kaempferol, and quercetin were identified as the differential metabolic markers during blackberry wine fermentation and ripening. Flavonoid, flavone and flavonol biosynthesis were also identified to be the major metabolic pathways of flavonoids in 96 metabolic pathways. These results will provide new information on the dynamic changes in flavonoid profiles during black mulberry winemaking.
Collapse
Affiliation(s)
- Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Haotian Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ya Chen
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Jing Lei
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Jingshuai Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yan Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Weijia Lian
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
34
|
Ma C, Zhou B, Wang J, Ma B, Lv X, Chen X, Li X. Investigation and dynamic changes of phenolic compounds during a new-type fermentation for ripened Pu-erh tea processing. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Zheng Y, Zhang C, Ren D, Bai R, Li W, Wang J, Shan Z, Dong W, Yi L. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) to reveal the flavor characteristics of ripened Pu-erh tea by co-fermentation. Front Nutr 2023; 10:1138783. [PMID: 37051132 PMCID: PMC10083425 DOI: 10.3389/fnut.2023.1138783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionPu-erh tea is a geographical indication product of China. The characteristic flavor compounds produced during the fermentation of ripened Pu-erh tea have an important impact on its quality.MethodsHeadspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) is used for flavor analysis.ResultsA total of 135 volatile compounds were annotated, of which the highest content was alcohols (54.26%), followed by esters (16.73%), and methoxybenzenes (12.69%). Alcohols in ripened Pu-erh tea mainly contribute flower and fruit sweet flavors, while methoxybenzenes mainly contribute musty and stale flavors. The ripened Pu-erh tea fermented by Saccharomyces: Rhizopus: Aspergillus niger mixed in the ratio of 1:1:1 presented the remarkable flavor characteristics of flower and fruit sweet flavor, and having better coordination with musty and stale flavor.DiscussionThis study demonstrated the content changes of ripened Pu-erh tea’s flavor compounds in the fermentation process, and revealed the optimal fermentation time. This will be helpful to further understand the formation mechanism of the characteristic flavor of ripened Pu-erh tea and guide the optimization of the fermentation process of ripened Pu-erh tea.
Collapse
Affiliation(s)
- Yaru Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chunhua Zhang
- College of Agriculture and Forestry, Pu’er University, Pu’er, Yunnan, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruoxue Bai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenting Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jintao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu’er University, Pu’er, Yunnan, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Wenjiang Dong,
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
- *Correspondence: Lunzhao Yi,
| |
Collapse
|
36
|
Hou Y, Mao H, Lu F, Ma C, Zhu S, Li G, Huang S, Zhang Y, Lv C, Xiao R. Widely targeted metabolomics and HPLC analysis elaborated the quality formation of Yunnan pickled tea during the whole process at an industrial scale. Food Chem 2023; 422:135716. [PMID: 37156017 DOI: 10.1016/j.foodchem.2023.135716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Yunnan pickled tea is produced from fresh tea-leaves through fixation, rolling, anaerobic fermentation and sun-drying. In this study, widely targeted metabolomics using UHPLC-QQQ-MS/MS and HPLC analysis were carried out to elaborate its quality formation during the whole process. Results confirmed the contribution of preliminary treatments and anaerobic fermentation to the quality formation. A total of 568 differential metabolites (VIP > 1.0, P < 0.05, FC > 1.50 or < 0.67) were screened through OPLS-DA. (-)-Epigallocatechin and (-)-epicatechin significantly (P < 0.05) increased from the hydrolyzation of ester catechins, such as (-)-epigallocatechin gallate and (-)-epicatechin gallate in anaerobic fermentation. Additionally, the anaerobic fermentation promoted vast accumulations of seven essential amino acids, four phenolic acids, three flavones and flavone glycosides, pelargonidin and pelargonidin glycosides, flavonoids and flavonoid glycosides (i.e. kaempferol, quercetin, taxifolin, apigenin, myricetin, luteolin and their glycosides) through relevant N-methylation, O-methylation, hydrolyzation, glycosylation and oxidation.
Collapse
Affiliation(s)
- Yan Hou
- College of Tea, Yunnan Agriculture University, Kunming 650201, Yunnan, China; College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| | - Honglin Mao
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Fengmei Lu
- Yunnan Defeng Tea Co., Ltd, Mangshi 678400, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaoxian Zhu
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Guoyou Li
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Siqi Huang
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Yi Zhang
- Yunnan Defeng Tea Co., Ltd, Mangshi 678400, Yunnan, China
| | - Caiyou Lv
- College of Tea, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| | - Rong Xiao
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| |
Collapse
|
37
|
Shi H, An F, Lin H, Li M, Wu J, Wu R. Advances in fermented foods revealed by multi-omics: A new direction toward precisely clarifying the roles of microorganisms. Front Microbiol 2022; 13:1044820. [PMID: 36590428 PMCID: PMC9794733 DOI: 10.3389/fmicb.2022.1044820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Fermented foods generally comprise a complex micro-ecosystem with beneficial microbiota, functional products, and special flavors and qualities that are welcomed globally. Single-omics analysis allows for a comprehensive characterization of the main microbial factors influencing the function, flavor, and quality of fermented foods. However, the species, relative abundance, viability, growth patterns, and metabolic processes of microorganisms vary with changes in processing and environmental conditions during fermentation. Furthermore, the mechanisms underlying the complex interaction among microorganisms are still difficult to completely understand and analyze. Recently, multi-omics analysis and the integration of multiple types of omics data allowed researchers to more comprehensively explore microbial communities and understand the precise relationship between fermented foods and their functions, flavors, and qualities. Multi-omics approaches might help clarify the mechanisms underpinning the fermentation processes, metabolites, and functional components of these communities. This review clarified the recent advances in the roles of microorganisms in fermented foods based on multi-omics data. Current research achievements may allow for the precise control of the whole industrial processing technology of fermented foods, meeting consumers' expectations of healthy products.
Collapse
Affiliation(s)
- Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hao Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China,Junrui Wu,
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China,*Correspondence: Rina Wu,
| |
Collapse
|
38
|
Wang Y, Li T, Liu Y, Yang C, Liu L, Zhang X, Yang X. Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food Funct 2022; 13:13014-13027. [PMID: 36449351 DOI: 10.1039/d2fo02415b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heimao tea (HMT) is a kind of fermented dark tea that has various health benefits. However, the available information regarding the anti-obesity effect of HMT and its active ingredients is still limited. Herein, we extracted the polysaccharides from Heimao tea (HMTP) and evaluated the anti-obesity effect and the underlying mechanism of HMTP. 12-Week administration of HMTP ameliorated lipid accumulation in the adipose tissue and improved glucolipid metabolism in high-fat diet (HFD)-fed mice. HMTP also induced browning of inguinal white adipose tissue (iWAT) and enhanced the thermogenic activity of interscapular brown adipose tissue (iBAT) by upregulating the expression of a series of thermogenic genes, such as Ucp1, Prdm16, and Pgc1α. Interestingly, the anti-obesity effect of HMTP was closely associated with altered relative abundance of the gut microbes, especially Dubosiella and Romboutsia, with significant increases, in which the abundance of Dubosiella and Romboutsia was negatively correlated with the body weight (r = -0.567, p < 0.05; r = -0.407, p < 0.05) and positively correlated with the iBAT index (r = 0.520, p < 0.05; r = 0.315, p < 0.05). Our data suggest that the alteration of the gut microbiota may play a critical role in HMTP-induced iWAT browning and iBAT activation, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
39
|
Fermentation Characteristics, Microbial Compositions, and Predicted Functional Profiles of Forage Oat Ensiled with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. FERMENTATION 2022. [DOI: 10.3390/fermentation8120707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of lactic acid bacteria (LAB) inoculants on the fermentation quality, microbial compositions, and predicted functional profiles of forage oat. The forage oat was inoculated with distilled water, Lentilactobacillus buchneri (LB), and Lactiplantibacillus plantarum (LP) as the control (CON), LB and LP treatments, respectively, and the addition of Lentilactobacillus buchneri (LB) or Lactiplantibacillus plantarum (LP) resulted in 1 × 106 colony-forming units/g of fresh weight. After 30 days of fermentation, the lowest pH (4.23) and the lowest content of ammoniacal nitrogen (NH3-N) in dry matter (DM, 4.39%) were observed in the LP treatment. Interestingly, there was a significant (p < 0.05) difference in lactic acid (LA) concentration among the three treatments. The LP treatment had the highest lactate concentration (7.49% DM). At the same time, a markedly (p < 0.05) elevated acetic acid (AA) concentration (2.48% DM) was detected in the LB treatment. The Shannon and Chao1 indexes of bacterial and fungal communities in all the silage samples decreased compared to those in the fresh materials (FM). Proteobacteria was the dominant phylum in the FM group and shifted from Proteobacteria to Firmicutes after ensiling. Lactobacillus (64.87%) and Weissella (18.93%) were the predominant genera in the CON, whereas Lactobacillus dominated the fermentation process in the LB (94.65%) and LP (99.60%) treatments. For the fungal community structure, the major genus was Apiotrichum (21.65% and 60.66%) in the FM and CON groups after 30 days of fermentation. Apiotrichum was the most predominant in the LB and LP treatments, accounting for 52.54% and 34.47%, respectively. The genera Lactococcus, Pediococcus, and Weissella were negatively associated with the LA content. The genus Ustilago and Bulleromyces were positively associated with the LA content. These results suggest that the addition of LAB regulated the microbial community in oat silage, which influenced the ensiling products, and LP was more beneficial for decreasing the pH and NH3-N and increasing the LA concentration than LB in forage oat silage.
Collapse
|
40
|
Microbial community succession in the fermentation of Qingzhuan tea at various temperatures and their correlations with the quality formation. Int J Food Microbiol 2022; 382:109937. [PMID: 36155261 DOI: 10.1016/j.ijfoodmicro.2022.109937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
With the aim to reveal the microbial community succession at various temperatures in the fermentation of Qingzhuan tea (QZT), the Illumina NovaSeq sequencing was carried out to analyze bacterial and fungal community structure in tea samples collected from the fermentation set at various temperatures, i.e., 25 °C, 30 °C, 37 °C, 45 °C, 55 °C, and room temperature. The results showed that fermentation temperature profoundly affected the microbial community succession in the QZT fermentation. Microbial richness and community diversity decreased along with the increase of fermentation temperature. Despite the differences between microorganisms and their metabolic types among various temperatures, most bacteria and fungi showed positive correlations at the genera level. Klebsiella, Paenibacillus, Cohnella, and Pantoea were confirmed as the main bacterial genera, and Aspergillus and Cyberlindnera were the main fungal genera in QZT fermentation. The microbial genera (i.e. Aspergillus, Rhizomucor, Thermomyces, Ralstonia, Castellaniella, and Vibrio) were positively correlated with fermentation temperature (P < 0.05), while Klebsiella, Paenibacillus, and Aspergillus had good adaptability at different temperatures. Conversely, Pantoea and Cyberlindnera were only suitable for low temperature (≤37 °C) growth, and Thermomyces was only suitable for high temperature (>37 °C) growth. Aspergillus had a significant positive correlation with tea aroma quality (r = 0.64, p < 0.05). This study would help to understand the formation mechanism of QZT from microflora perspective.
Collapse
|
41
|
Quantitative microbiome analysis reveals the microbial community assembly along with its correlation with the flavor substances during the manufacturing process of Qingzhuan brick tea at an industrial scale. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Huang S, Chen H, Teng J, Wu Z, Huang L, Wei B, Xia N. Antihyperlipidemic effect and increased antioxidant enzyme levels of aqueous extracts from Liupao tea and green tea in vivo. J Food Sci 2022; 87:4203-4220. [PMID: 35982642 DOI: 10.1111/1750-3841.16274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
Liupao tea (fermented dark tea) may improve the active function of hyperlipidemia. Utilizing a hyperlipidemia Sprague-Dawley model and UPLC-MS/MS metabolomics, we examined how the effect of Liupao and green tea extracts on hyperlipidemia and antoxidant enzyme levels and compared their constituents. The results showed that the two types of tea could reduce the levels of total cholesterol (TC), total triglyceride, and low-density lipoprotein cholesterol (LDL-C); increase the contents of bile acids and cholesterol in feces; and improve catalase and glutathione peroxidase (GSH-Px) activities. Compared with the model control group, Liupao tea effectively reduced TC and LDL-C levels by 39.53% and 58.55% and increased GSH-Px activity in the liver by 67.07%, which was better than the effect of green tea. A total of 93 compounds were identified from two samples; the amounts of alkaloids and fatty acids increased compared with green tea, and ellagic acid, hypoxanthine, and theophylline with relatively high contents in Liupao tea had a significantly positive correlation with antihyperlipidemic and antioxidant effects. Therefore, Liupao tea had better antihyperlipidemic and antioxidant activities in vivo than green tea, which might be related to the relatively high content of some active substances.
Collapse
Affiliation(s)
- Shuoyuan Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Huan Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhengmei Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
43
|
Liu L, Shi J, Yuan Y, Yue T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res Int 2022; 158:111428. [DOI: 10.1016/j.foodres.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
44
|
Pile-fermentation of dark tea: Conditions optimization and quality formation mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Zou Y, Zhang Y, Tian Y, Liu M, Yuan Y, Lai Y, Liu X, Xu W, Tan L, Tang Q, Li P, Xu J. Microbial Community Analysis in Sichuan South-road Dark Tea Piled Center at Pile-Fermentation Metaphase and Insight Into Organoleptic Quality Development Mediated by Aspergillus niger M10. Front Microbiol 2022; 13:930477. [PMID: 35832806 PMCID: PMC9272892 DOI: 10.3389/fmicb.2022.930477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
Microbes are critical in the Sichuan South-road Dark Tea (SSDT) organoleptic quality development during pile-fermentation. Piled tea center at fermenting metaphase is crucial for the conversion of its quality components. In this study, we investigated the microbial community of piled SSDT center below the stacked tea surface of 15 cm (SSDTB), 50 cm (SSDTX), and 85 cm (SSDTH) on the second turning time of pile-fermentation, respectively. Results showed that SSDTH and SSDTB had a higher similarity in the microbial community. Pantoea (36.8%), Klebsiella (67.7%), and Aspergillus (35.3%) were the most abundant in SSDTH, SSDTB, and SSDTX, respectively. We found 895 species were common among all samples, but 86, 293, and 36 species were unique to SSDTB, SSDTX, and SSDTH, respectively. Aspergillus niger showed high co-occurrence and was positively correlated with numerous microbes in SSDT samples, and Aspergillus niger M10 isolated from SSDTX was excellent at enhancing soluble sugar (SS), amino acids (AAs), theaflavin (TF), and thearubigins (TR) contents, while decreasing catechin (Cat), tea polyphenols (TPs)/AA, Caf/SS, Cat/SS, TPs/SS, and (TPs + Caf)/SS levels in AM10 post-fermentation, as compared with the control. Moreover, it also produced a noticeable difference in the CIELab parameters in dried, liquor, and infused tea colors between AM10 and control during fermentation. When it was further inoculated on differential mediums, we detected glycoside hydrolases, namely, β-glucosidase, mannosidase, pectinase, cellulase, amylase, and α-galactosidase being secreted by Aspergillus niger M10. Taken together, SSDXT presented a more unique microbial community. Aspergillus niger M10 probably improved the sweet and mellow taste, and the yellow brightness and red color of SSDT during fermentation. It also provided new insights into the microbial profile and organoleptic quality development mechanism of SSDT during pile-fermentation.
Collapse
Affiliation(s)
- Yao Zou
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Ying Zhang
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yun Tian
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Minqiang Liu
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Yue Yuan
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuqing Lai
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Xuyi Liu
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Wei Xu
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Liqiang Tan
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Qian Tang
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Pinwu Li
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Jingyi Xu
- Department of Tea Science, College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
46
|
Li Y, Ran W, He C, Zhou J, Chen Y, Yu Z, Ni D. Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea. Food Chem X 2022; 14:100289. [PMID: 35356696 PMCID: PMC8958318 DOI: 10.1016/j.fochx.2022.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Chinese Enshi green tea quality varies with tea tree varieties. Chlorophyll and chlorophyllide determine the green tea color. Echa 10 endows Enshi green tea with fresh and mellow taste. Echa 10 endows Enshi green tea with clear flavor and honeysuckle fragrance. Phenethyl alcohol, jasmine, dodecane and octadecane contribute to honeysuckle scent.
Green tea processed by Echa 10 was shown to have a fresh and mellow taste as well as clean aroma with a clear honeysuckle fragrance. The colors of different Enshi green teas are closely related with the content of chlorophyll and chlorophyllide. The five green teas also vary in their aroma style. Echa 10 imparts a special honeysuckle fragrance, which was further analyzed by molecular sensory analysis and the formation of this honeysuckle fragrance was attributed to the key components of dodecane, octadecane, phenethyl alcohol, and jasmonone. In aroma evaluation, Echa 10 green tea showed the best performance, which is mainly related with the content of geraniol, linalool, phenethyl alcohol, and benzyl alcohol. Additionally, Echa 10 scored the highest in taste evaluation, which is mainly determined by the contents and ratios of tea polyphenols, amino acids, caffeine, and soluble sugars.
Collapse
|
47
|
Influence of thermophilic microorganism on non-volatile metabolites during high-temperature pile-fermentation of Chinese dark tea based on metabolomic analysis. Food Sci Biotechnol 2022; 31:827-841. [DOI: 10.1007/s10068-022-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
|
48
|
Gharibzahedi SMT, Barba FJ, Zhou J, Wang M, Altintas Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. BIOSENSORS 2022; 12:bios12050356. [PMID: 35624658 PMCID: PMC9138728 DOI: 10.3390/bios12050356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Tea, after water, is the most frequently consumed beverage in the world. The fermentation of tea leaves has a pivotal role in its quality and is usually monitored using the laboratory analytical instruments and olfactory perception of tea tasters. Developing electronic sensing platforms (ESPs), in terms of an electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye) equipped with progressive data processing algorithms, not only can accurately accelerate the consumer-based sensory quality assessment of tea, but also can define new standards for this bioactive product, to meet worldwide market demand. Using the complex data sets from electronic signals integrated with multivariate statistics can, thus, contribute to quality prediction and discrimination. The latest achievements and available solutions, to solve future problems and for easy and accurate real-time analysis of the sensory-chemical properties of tea and its products, are reviewed using bio-mimicking ESPs. These advanced sensing technologies, which measure the aroma, taste, and color profiles and input the data into mathematical classification algorithms, can discriminate different teas based on their price, geographical origins, harvest, fermentation, storage times, quality grades, and adulteration ratio. Although voltammetric and fluorescent sensor arrays are emerging for designing e-tongue systems, potentiometric electrodes are more often employed to monitor the taste profiles of tea. The use of a feature-level fusion strategy can significantly improve the efficiency and accuracy of prediction models, accompanied by the pattern recognition associations between the sensory properties and biochemical profiles of tea.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
49
|
Directed Accumulation of Nitrogen Metabolites through Processing Endows Wuyi Rock Tea with Singular Qualities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103264. [PMID: 35630739 PMCID: PMC9147623 DOI: 10.3390/molecules27103264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
The execution of specific processing protocols endows Wuyi rock tea with distinctive qualities produced through signature metabolic processes. In this work, tea leaves were collected before and after each of three processing stages for both targeted and untargeted metabolomic analysis. Metabolic profiles of processing stages through each processing stage of rotation, pan-firing and roasting were studied. Overall, 614 metabolites were significantly altered, predominantly through nitrogen- enriching (N) pathways. Roasting led to the enrichment of 342 N metabolites, including 34 lipids, 17 organic acids, 32 alkaloids and 25 amino acids, as well as secondary derivatives beneficial for tea quality. This distinctive shift towards enrichment of N metabolites strongly supports concluding that this directed accumulation of N metabolites is how each of the three processing stages endows Wuyi rock tea with singular quality.
Collapse
|
50
|
Chen Y, Chen J, Chen R, Xiao L, Wu X, Hu L, Li Z, Wang Y, Zhu M, Liu Z, Xiao Y. Comparison of the Fungal Community, Chemical Composition, Antioxidant Activity, and Taste Characteristics of Fu Brick Tea in Different Regions of China. Front Nutr 2022; 9:900138. [PMID: 35656159 PMCID: PMC9152283 DOI: 10.3389/fnut.2022.900138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, the fungal community structure, metabolites, antioxidant ability, and taste characteristics of five Fu brick tea (FBT) from different regions of China were determined and compared. A total of 69 operational taxonomic units (OTUs) were identified and assigned into 5 phyla and 27 genera, with Eurotium as the predominant genus in all samples. Hunan (HN) sample had the strongest fungal diversity and richness, followed by Guangxi (GX) sample, and Zhejiang (ZJ) sample had the lowest. GX sample had higher amounts of gallic acid (GA), total catechins, gallocatechin (GC), and epicatechin gallate (ECG) as well as antioxidant activity than the other samples. The levels of total phenolics, total flavonoids, epigallocatechin (EGC), catechin, epicatechin (EC), thearubigins (TRs), and theaflavins (TFs) were the highest in the ZJ sample. Guizhou (GZ) and Shaanxi (SX) samples contained the highest contents of epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG), respectively. Total phenolics, GA, EC, CG, and TFs were positively associated with most of fungal genera. Total phenolic content (TPC), total flavonoid content (TFC), and most of catechins contributed to the antioxidant activities of FBT. HN sample had the strongest sourness and sweetness, ZJ sample had the strongest saltiness, SX sample had the strongest umami, and GZ sample had the strongest astringency, which was ascribed to the varied metabolites. This work reveals that FBT in different regions vary greatly in fungal community, metabolites, antioxidant activity, and taste characteristics, and provides new insight into the quality characteristics formation of FBT in different regions.
Collapse
Affiliation(s)
- Yulian Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiaxu Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Longping Branch Graduate School, Hunan University, Changsha, China
| | - Ruyang Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xing Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lin Hu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|