1
|
He Z, Xiong H, Cai Y, Chen W, Shi M, Liu L, Wu K, Deng X, Deng X, Chen T. Clostridium butyricum ameliorates post-gastrectomy insulin resistance by regulating the mTORC1 signaling pathway through the gut-liver axis. Microbiol Res 2025; 297:128154. [DOI: 10.1016/j.micres.2025.128154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
2
|
Wan J, Zhu J, Zeng J, Zhou H, He Y. Effect of Galactooligosaccharide on PPARs/PI3K/Akt Pathway and Gut Microbiota in High-Fat and High-Sugar Diet Combined with STZ-Induced GDM Rat Model. Probiotics Antimicrob Proteins 2025; 17:888-902. [PMID: 37953344 DOI: 10.1007/s12602-023-10186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, characterized by underlying glucose intolerance, diabetes onset or first diagnosis during pregnancy. Galactooligosaccharide (GOS) is essential for consumer protection as food supplementation. However, there is limited understanding of the effects of GOS on GDM. We successfully established a GDM rat model to explore GOS whether participated in PPARs/PI3K/Akt pathway and gut microbiota metabolites to treat for GDM. In this study, compared with the GDM group, GOS administration lowered the levels of TG, LDL-C, and HDL-C in rat serum, as well as improved the pathological changes pancreatic, liver, and kidney tissues. Compared with the GDM group, the protein expressions of PPARα, PPARγ, and PPARβ/δ markedly enhanced in GOS-treated groups (P < 0.01). Moreover, GOS administration upregulated the protein expressions of PPARα, PPARβ, PPARγ, PI3K, Akt, GLUT4, Bax, and Bcl2. GOS administration altered gut microbiota metabolites, including both SCFAs and BAs. Correlation analysis revealed close relationships between gut microbiota and experimental indicators. This study indicated that GOS effectively improved GDM in rats through the modulation of PPARs/PI3K/Akt pathway and gut microbiota. Thus, the GOS could be recommended as a candidate for novel therapy of GDM.
Collapse
Affiliation(s)
- Jiayang Wan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Zhu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieqiong Zeng
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Das Gupta B, Kar A, Singha S, Gayen S, Jana S, Sharma N, Haldar PK, Mukherjee PK. Metabolite Profiling and Integrated Network Pharmacology Based Mechanism of Benincasa hispida (Thunb.) Cogn. Fruit Against Non-insulin-Dependent Diabetes Mellitus. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:884-895. [PMID: 39508508 DOI: 10.1002/pca.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an essential food plant in India possessing antihyperglycemic and antihyperlipidemic activities. OBJECTIVE The objective included comparative estimation of α-glucosidase and α-amylase enzyme inhibition potential of B. hispida fractions prepared by microwave-assisted extraction and prediction of metabolite interaction against non-insulin-dependent diabetes mellitus by metabolite profiling based network pharmacology analysis. METHODS A validated microwave-assisted extraction method was employed to obtain different fractions of B. hispida fruits. The in vitro enzyme assay was done with p-nitrophenyl-α-D-glucopyranoside and acarbose as standard to evaluate antidiabetic potential. The phytomolecules present in the active fraction were identified by UHPLC-QToF-MS/MS analysis. Network pharmacology analysis gave possible gene and disease association, combination synergy network, and predicted probable mechanism of action. RESULTS The highest enzyme inhibition potential (IC50) was shown by the ethyl acetate fraction (0.546 ± 0.17 mg/mL and 1.134 ± 0.42 mg/mL) compared to acarbose (0.298 ± 0.08 mg/mL and 0.532 ± 0.38 mg/mL), respectively, for α-glucosidase and α-amylase addressing the potential role in ameliorating non-insulin-dependent diabetes mellitus. Metabolite profiling resulted in the identification of 17 metabolites, and a synergy between the identified molecules suggested multimolecule action in the amelioration of non-insulin-dependent diabetes mellitus through insulin resistance pathway, AMPK signaling pathway, PPAR signaling pathway, and PI3K-Akt signaling pathway. Combination synergy of identified molecules was observed through a multitarget approach to manage non-insulin-dependent diabetes mellitus. CONCLUSION Polyphenol-enriched fraction of B. hispida fruits and identified phytocompounds ameliorate non-insulin-dependent diabetes mellitus. Thus, enriched extract of B. hispida can be further investigated in order to develop high-quality, safe, and effective products for the management of non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Barun Das Gupta
- School of Natural Product Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Biotechnology Research and Innovation Council, Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Seha Singha
- School of Natural Product Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Srijon Gayen
- School of Natural Product Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Sandipan Jana
- School of Natural Product Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Biotechnology Research and Innovation Council, Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Biotechnology Research and Innovation Council, Department of Biotechnology, Government of India, Imphal, Manipur, India
| |
Collapse
|
4
|
Ma C, Yang X, Zhang L, Zhang J, Zhang Y, Hu X. BRCA1 regulates glucose and lipid metabolism in diabetes mellitus with metabolic dysfunction-associated steatotic liver disease via the PI3K/Akt signaling pathway. PLoS One 2025; 20:e0318696. [PMID: 40138287 PMCID: PMC11940781 DOI: 10.1371/journal.pone.0318696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/20/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE This study mimics the metabolic environment of metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetic mellitus (DM) to investigate the function of BRCA1 in regulating glucose and lipid metabolism in hepatocytes under high glucose (HG) settings. METHODS MASLD and DM-related datasets (GSE89632, GSE95849) were screened for overlapping genes, Protein-Protein Interaction (PPI) network and enrichment analyses were performed. Then, quantitative real-time polymerase chain reaction (qRT-PCR), Western Blotting (WB), and enzymatic colorimetric assays to examine the expression changes of BRCA1 in mouse primary hepatocytes under HG conditions and the impact of the combined PI3K/Akt signaling pathway on key metabolic markers of gluconeogenesis and lipid metabolism. RESULTS Our study identified seven key overlapping genes (AURKA, BRCA1, ISG15, NUSAP1, OAS1, RSAD2, TLR7) between MASLD and DM. Experiments found that when BRCA1 was overexpressed in mouse primary hepatocytes, intracellular triglyceride content and lipid metabolism-related biomarkers (such as PEPCK, SREBP-1c, G6Pase, and FAS) were significantly increased in HG circumstances. However, the knockdown of BRCA1 reduced the expression of these indicators. Besides, we also observed that under HG conditions, the expression of proteins linked to the PI3K/Akt signaling pathway was negatively regulated by BRCA1 expression. Moreover, TG content and expression of lipid metabolism markers are also regulated by BRCA1 and PI3K/Akt pathway inhibitor Ly294002. CONCLUSION As a key regulator of hepatocyte metabolism under HG conditions, BRCA1 can participate in regulating glucose and lipid metabolism in mouse primary hepatocytes through the PI3K/AKT signaling pathway, which be able to become a possible remedy strategy for DM with MASLD.
Collapse
Affiliation(s)
- Cui Ma
- Department of Endocrinology, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Xiaodi Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University Shanghai, China, Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Liyin Zhang
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Zhang
- Department of pharmacy, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Youyou Zhang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University Shanghai, China, Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Xiaofeng Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Chi EZ, Wang L, Pan JJ, Zhang Q, Zhu J, Zhao XH. Comparison of polysaccharides isolated from Ganpu tea of different storage ages: Chemical, structural, and hypoglycemic properties. J Food Sci 2025; 90:e70046. [PMID: 39921296 DOI: 10.1111/1750-3841.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
This study investigated the structural characteristics and hypoglycemic activity of polysaccharides isolated from Ganpu tea (GPT) in different storage periods. Three polysaccharide fractions (GPTPS1-E2, GPTPS3-E2, and GPTPS5-E2, representing 1, 3, and 5 years of storage, respectively, where GPTPS is Ganpu tea polysaccharides) were extracted and purified from GPT. Chemical composition analysis revealed that all fractions were predominantly acidic polysaccharides with total sugar content exceeding 90%. Monosaccharide composition analysis showed galacturonic acid as the primary component, along with significant amounts of galactose and arabinose. Molecular weight distribution showed that different fractions had distinct distributions, with GPTPS1-E2 and GPTPS3-E2 showing the highest and lowest molecular weights, respectively. Fourier-transform infrared and nuclear magnetic resonance spectroscopy provided insights into the structural characteristics of the polysaccharides. Scanning electron microscopy and X-ray diffraction analyses revealed distinct surface morphologies and crystalline structures. The hypoglycemic activity was evaluated using a Caco-2 cell model, demonstrating potential antidiabetic properties via the IRS1-GLUT2-SGLT1 axis. Comparative analysis revealed that storage time could influence the structural characteristics and hypoglycemic activity of GPTPSs, with a certain storage time generally associated with the transformation of structural characteristics related to hypoglycemic activity and the enhanced hypoglycemic effect. This research contributes to the understanding of GPTPS and their potential applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- En-Zhong Chi
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Li Wang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, Maoming, China
| | - Jia-Jian Pan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, Maoming, China
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, Maoming, China
| |
Collapse
|
6
|
Luo J, Fang Y, Qi Z, Cui F, Hu H, Li S, Chen T, Zhang H. Administration of a Next-Generation Probiotic Escherichia coli Nissle 1917-GLP-1 Alleviates Diabetes in Mice With Type 1 and Type 2 Diabetes. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2025; 2025:6675676. [PMID: 39949529 PMCID: PMC11824388 DOI: 10.1155/cjid/6675676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025]
Abstract
Diabetes mellitus (DM) is a persistent and steadily progressing metabolic condition distinguished by unregulated high levels of blood glucose. GLP1 receptor agonists have recently gained recognition as first-line therapies in selected instances, as per the updated ADA guidelines, highlighting their efficacy not only in glycemic control but also in their broader health benefits. Nonetheless, the efficacy of GLP-1 is limited by its brief duration of action, rapid clearance from the body, and challenges associated with subcutaneous administration. In this study, we examined the potential diabetes-mitigating effects of a genetically engineered strain of Escherichia coli Nissle 1917 (EcN)-GLP-1, previously developed by our group. We utilized mouse models for both Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM) to assess its efficacy. In the case of T1DM mice, the results revealed that EcN-GLP-1 resulted in a notable decrease in blood glucose levels. Furthermore, it exhibited a protective influence on the structural integrity of islet β-cells; downregulated the expressions of key inflammatory markers such as TLR-4, p-NF-κB/NF-κB, and Bax/Bcl-2; promoted the insulin secretion; and reinstated the perturbed diversity of microbial species to a normal state. Similarly, EcN-GLP-1 had a pronounced impact on T2DM mice, manifesting increased presence of islet β-cells, decreased inflammatory response and apoptosis, and regulation of lipid metabolism in the liver. In summary, the genetically modified EcN-GLP-1 strain demonstrates the ability to alleviate diabetes by enhancing the islet β-cell population, mitigating inflammatory reactions and apoptosis, optimizing liver lipid metabolism, and reinstating a balanced microbial diversity. These findings hold promise as a potential avenue for treating DM.
Collapse
Affiliation(s)
- Jie Luo
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yilin Fang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhanghua Qi
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fengyang Cui
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hong Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shengjie Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Wang X, She Z, Zhou H, An T, Teng J, Xia N, Zhu P, Liu W, Dong H, Tang L, You S, Wei L, Li K, Wang L, Huang L, Zhang Q. Characterisation of the phytochemical and bioactivity profiles of raw tea, stale-aroma, and betelnut-aroma type of Liupao tea through GC/LC-MS-based metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:562-575. [PMID: 39668786 DOI: 10.1039/d4ay01672f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Liupao tea (LPT) is a Chinese dark tea known to possess a unique flavour. Microbial fermentation plays a crucial role in flavour development and enrichment. Currently, the phytochemical profiles and bioactivities of LPT with and without fermentation are not fully known. In this study, we compared the chemical composition of raw tea (SF), stale-aroma (SA), and betelnut-aroma (BA) type LPT through the application of GC/LC-MS-based metabolomics, and experimentally investigated their bioactivities via antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic assays in vitro. The results indicated that fermentation enhanced the flavour of LPT as evidenced by the sweetness-producing substances, decreased bitterness and astringency-related compounds and enriched abundance of aroma-generating compounds. Two and four volatiles were detected to be major contributors to the aroma in SA and BA, respectively. Fatty acids and phosphatidylcholines were the primary lipids, among which the lysing diacylglycerol trimethyl homoserines were found to be a new class of lipids in LPT. Notably, the fermentation resulted in the degradation of compounds, particularly glycerophospholipids and saccharolipids. SF had the highest level of bioactivity, followed by BA and SA. These findings expand the present understanding regarding the development of flavour, nutrition, and medicinal value of LPT. Moreover, they provide a theoretical basis for the identification of BA and SA and serve as a reference value for consumers in their selection of LPT products.
Collapse
Affiliation(s)
- Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Hailin Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingting An
- Urumqi Youai Hospital, Urumqi, Xinjiang 830000, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenhui Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Huanxiao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Limin Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Shulan You
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Kongying Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lingli Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
8
|
Huang Y, Liu W, Luo X, Zhao M, Wang J, Ullah S, Wei W, Feng F. Lauric-α-linolenic lipids modulate gut microbiota, preventing obesity, insulin resistance and inflammation in high-fat diet mice. NPJ Sci Food 2024; 8:115. [PMID: 39738097 DOI: 10.1038/s41538-024-00349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice. These effects may be associated with the regulation of gut microbiota. ALSL significantly upregulated the abundance of Dubosiella, Lactobacillus, and Bifidobacterium while reducing the abundance of Ileibacterium. Furthermore, ALSL therapy increased the levels of acetic acid, propionic acid, and total short-chain fatty acids. Correlation analysis found that the positive changes in these gut microbes correlated positively with the anti-inflammatory, insulin-sensitizing, and anti-obesity effects of ALSL.
Collapse
Affiliation(s)
- Ying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang, 843300, China
| | - Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, 512000, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Sami Ullah
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei
- Jiangsu Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- ZhongYuan Institute, Zhejiang University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Shan B, Zhao C, Peng C, Miao Y, Lei S, Zhao L, Jia M, Pan S, Gong J, Wang Q. Theabrownin from Pu-erh tea attenuated high-fat diet-induced metabolic syndrome in rat by regulating microRNA and affecting gut microbiota. Int J Biol Macromol 2024; 285:138368. [PMID: 39638201 DOI: 10.1016/j.ijbiomac.2024.138368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation. These improvements were linked to the normalization of specific miRNAs (miR-125b-5p, miR-223-3p_R + 2, miR-148b-3p, and miR-1247-5p), which activated the PI3K/AKT/FOXO signaling pathway, subsequently modulating key genes involved in glucolipid metabolism (SREBP-1C, PEPCK, PGC-1α, and G6pc). Additionally, WE and TB restored gut microbiota balance by decreasing the Firmicutes/Bacteroidetes ratio and increasing beneficial bacteria such as Bacteroides, Lactobacillus, and Bifidobacterium, while reducing harmful bacteria like Pseudomonas. These findings underscore the potential of theabrownin as a functional food component for MS prevention, offering new insights into its miRNA-mediated and microbiota-related mechanisms.
Collapse
Affiliation(s)
- Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Man Jia
- Fermentation Engineering Research Center for Yunnan Pu-erh Tea, Kunming 650217, China
| | - Shukang Pan
- Fermentation Engineering Research Center for Yunnan Pu-erh Tea, Kunming 650217, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China.
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
10
|
Wang L, Chi EZ, Zhao XH. Valorization of cell wall polysaccharides extracted from Liubao brick tea residues: chemical, structural, and hypoglycemic properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6933-6946. [PMID: 38597456 DOI: 10.1002/jsfa.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Tea dregs, typically generated during the production of instant tea or tea beverages, have conventionally been regarded as waste material and routinely discarded. Nevertheless, contemporary research endeavors are concentrating on discovering efficient methods for utilizing the potential of this discarded resource. RESULTS In this study, we employed a sequential extraction method using chemical chelating agents to extract and isolate four distinct cell wall polysaccharides, designated as CWTPS-1 through CWTPS-4, from the tea dregs of Liubao brick tea. A comprehensive investigation into their physicochemical, structural, and hypoglycemic properties was conducted. The analysis of chemical composition and physicochemical characteristics revealed that all four CWTPSs were characterized as acidic polysaccharides, albeit with varying chemical compositions and physicochemical attributes. Specifically, the xyloglucan fractions, CWTPS-3 and CWTPS-4, were found to be rich in glucose and xylose, displaying a more uniform molecular weight distribution, greater structural stability, and a more irregular surface compared to the others. Moreover, they exhibited a higher diversity of monosaccharide residues. Importantly, our research unveiled that all four CWTPSs exhibited the capacity to modulate key glucose-regulated and antioxidant enzyme activities within HepG2 cells via the IRS-1-PI3K/AKT signaling pathway, thereby ameliorating cellular insulin resistance. Furthermore, our correlation analysis highlighted significant associations between monosaccharide composition and neutral sugar content with the observed hypoglycemic activity of CWTPSs. CONCLUSION This study highlights the potential of utilizing tea dregs as a valuable resource, making a significant contribution to the advancement of the tea industry. Furthermore, CWTPS-4 exhibits promising prospects for further development as a functional food ingredient or additive. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - En-Zhong Chi
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
11
|
Yang S, Zhao M, Lu M, Feng Y, Zhang X, Wang D, Jiang W. Network Pharmacology Analysis, Molecular Docking Integrated Experimental Verification Reveal the Mechanism of Gynostemma pentaphyllum in the Treatment of Type II Diabetes by Regulating the IRS1/PI3K/Akt Signaling Pathway. Curr Issues Mol Biol 2024; 46:5561-5581. [PMID: 38921004 PMCID: PMC11202160 DOI: 10.3390/cimb46060333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (GP), a plant with homology of medicine and food, as a traditional Chinese medicine, possesses promising biological activities in the prevention and treatment of type 2 diabetes mellitus (T2DM). However, the material basis and the mechanism of action of GP in the treatment of T2DM have not been fully elucidated. This study aimed to clarify the active components, potential targets and signaling pathways of GP in treating T2DM. The chemical ingredients of GP were collected by combining UPLC-HRMS analysis and literature research. Network pharmacology revealed that GP had 32 components and 326 potential targets in treating T2DM. The results showed that GP affected T2DM by mediating the insulin resistance signaling pathway, PI3K/Akt signaling pathway and FoxO1 signaling pathway, which had a close relationship with T2DM. Molecular docking results showed that STAT3, PIK3CA, AKT1, EGFR, VEGFA and INSR had high affinity with the active compounds of GP. In vitro, GP extracts obviously increased the glucose uptake and glucose consumption in IR-HepG2 cells. GP extracts increased the levels of PI3K, p-AKT, p-GSK3β and p-FoxO1 and decreased the expression of p-IRS1, p-GS, PEPCK and G6Pase, which indicated that GP could promote glycogen synthesis and inhibit gluconeogenesis by regulating the IRS1/PI3K/Akt signaling pathway. The results demonstrated that GP could improve insulin resistance by promoting glucose uptake and glycogen synthesis and inhibiting gluconeogenesis through regulating the IRS1/PI3K/Akt signaling pathway, which might be a potential alternative therapy for T2DM.
Collapse
Affiliation(s)
- Songqin Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.Y.); (M.Z.); (M.L.); (Y.F.); (X.Z.)
| | - Mao Zhao
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.Y.); (M.Z.); (M.L.); (Y.F.); (X.Z.)
| | - Mingxing Lu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.Y.); (M.Z.); (M.L.); (Y.F.); (X.Z.)
| | - Yuhan Feng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.Y.); (M.Z.); (M.L.); (Y.F.); (X.Z.)
| | - Xia Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.Y.); (M.Z.); (M.L.); (Y.F.); (X.Z.)
| | - Daoping Wang
- Key Laboratory of Natural Products Chemistry, Guizhou Academy of Sciences, Guiyang 550014, China;
| | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China; (S.Y.); (M.Z.); (M.L.); (Y.F.); (X.Z.)
| |
Collapse
|
12
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
13
|
Xu Q, Cheng X, Wen C, Wu X, Ye M, Li M, Liu S, Wen L, Liu Z, Wang J. An Ilex latifolia‐containing compound tea regulates glucose–lipid metabolism and modulates gut microbiota in high‐fat diet‐fed mice. FOOD FRONTIERS 2024; 5:802-819. [DOI: 10.1002/fft2.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024] Open
Abstract
AbstractKuding Tea (Ilex latifolia) is a bitter‐tasting herbal tea that was used for the treatment of symptoms related with diabetes mellitus, hypertension, and hyperlipidemia. However, Kuding Tea is also difficultly accepted by people in daily life because of its poor palatability. In this study, Kuding Tea, green tea (GT) (Camellia sinensis L.), and Luohan (Siraitia grosvenorii) fruits were formulated into a compound Kuding Tea (CKT) to improve the taste and health benefits of this beverage. High‐fat diet‐fed male C57BL/6J mice were used as animal models to explore the effects of CKT (6 or 12 mg/mL, water ad libitum) on body weight, food intake, liver function, blood glucose and lipids, and gene expression. L02 and 3T3‐L1 cells were used to further demonstrate the effects of CKT on fat accumulation and hepatic lipid deposition. Our results suggest that CKT can regulate glucose and lipid metabolism by decreasing body weight, reducing white adipose deposition, improving glucose tolerance, increasing the expression of brown adipose genes, and reducing fat accumulation in the liver, and CKT inhibited fat accumulation better than GT. In addition, a low dose (6 mg/mL) of CKT reduced the abundance of Desulfovibrio bacteria, positively associated with obesity, and increased that of norank_f__Muribaculaceae, Lachnospiraceae_NK4A136_group, and Alloprevotella, which are beneficial to glucose and lipid metabolism. This study suggests that CKT not only has a better palatability but also has potential preventive effects on high‐fat diet‐induced glucose–lipid metabolic diseases.
Collapse
Affiliation(s)
- Qiurong Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
| | - Xianyu Cheng
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
| | - Chi Wen
- Hunan Chu Ming Tea Industry Co., Ltd. Changsha China
| | - Xiaoran Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
| | - Mengke Ye
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
| | - Sha Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture Hunan Agricultural University Changsha China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care Colleges of Veterinary Medicine, Hunan Agricultural University Changsha China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology Hunan Agricultural University Changsha China
- Changsha Lvye Biotechnology Co., Ltd. Changsha China
| |
Collapse
|
14
|
Li C, Shi S. Gut microbiota and metabolic profiles in chronic intermittent hypoxia-induced rats: disease-associated dysbiosis and metabolic disturbances. Front Endocrinol (Lausanne) 2024; 14:1224396. [PMID: 38283743 PMCID: PMC10811599 DOI: 10.3389/fendo.2023.1224396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Aim Chronic intermittent hypoxia (CIH) is a key characteristic of obstructive sleep apnea (OSA) syndrome, a chronic respiratory disorder. The mechanisms of CIH-induced metabolic disturbance and histopathological damage remain unclear. Methods CIH-induced rats underwent daily 8-h CIH, characterized by oxygen levels decreasing from 21% to 8.5% over 4 min, remaining for 2 min, and quickly returning to 21% for 1 min. The control rats received a continuous 21% oxygen supply. The levels of hypersensitive C reactive protein (h-CRP), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), and nuclear factor kappa-B (NF-κB) were measured by ELISA. Histological analysis of the soft palates was conducted using HE staining. The microbial profiling of fecal samples was carried out by Accu16STM assay. Untargeted metabolomics of serum and soft palate tissue samples were analyzed by UPLC-MS. The protein expression of cAMP-related pathways in the soft palate was determined by Western blot. Results After 28 h of CIH induction, a significant increase in pro-inflammatory cytokines was observed in the serum, along with mucosal layer thickening and soft palate tissue hypertrophy. CIH induction altered the diversity and composition of fecal microbiota, specifically reducing beneficial bacteria while increasing harmful bacteria/opportunistic pathogens. Notably, CIH induction led to a significant enrichment of genera such as Dorea, Oscillibacter, Enteractinococcus, Paenibacillus, Globicatella, and Flaviflexus genera. Meanwhile, Additionally, CIH induction had a notable impact on 108 serum marker metabolites. These marker metabolites, primarily involving amino acids, organic acids, and a limited number of flavonoids or sterols, were associated with protein transport, digestion and absorption, amino acid synthesis and metabolism, as well as cancer development. Furthermore, these differential serum metabolites significantly affected 175 differential metabolites in soft palate tissue, mainly related to cancer development, signaling pathways, amino acid metabolism, nucleotide precursor or intermediate metabolism, respiratory processes, and disease. Importantly, CIH induction could significantly affect the expression of the cAMP pathway in soft palate tissue. Conclusions Our findings suggest that targeting differential metabolites in serum and soft palate tissue may represent a new approach to clinical intervention and treatment of OSA simulated by the CIH.
Collapse
Affiliation(s)
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Wu D, Zhao H, Guo L, Liu X, Liang Y, Liu Q, Cao W, Chen X, Gao X. Fu Brick Tea as a Staple Food Supplement Attenuates High Fat Diet Induced Obesity in Mice. Foods 2023; 12:4488. [PMID: 38137292 PMCID: PMC10743230 DOI: 10.3390/foods12244488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Fu brick tea (FBT), a product of microbial fermentation from primary dark tea, also known as raw material tea (RMT), has been extensively studied for its functional properties. However, its potential as a staple food supplement for weight loss remains poorly understood. This study compared the weight loss effects of orlistat, traditional plain noodles (NN), and noodles supplemented with varying amounts of RMT (RMTN) and FBT (FBTN), with the aim to elucidate their lipid-reducing effects and underlying mechanisms. Experimental trials on high fat diet fed mice revealed significant weight loss, lipid-lowering, and hypoglycemic effects upon supplementation with orlistat, RMTN, and FBTN. Moreover, supplementation with orlistat, RMTN, and FBTN effectively restored serum and liver-related index levels, mitigating high-fat diet-induced dyslipidemia. Additionally, these supplements ameliorated liver and kidney damage by inhibiting oxidative stress and inflammatory responses. Furthermore, orlistat, RMTN, and FBTN exert their anti-obesity effects primarily by modulating genes associated with lipid metabolism and inflammatory responses and through regulation of the composition and structure of the gut microbiota. Importantly, FBTN demonstrated a significantly stronger lipid-lowering effect compared to RMTN, particularly at higher tea addition ratios. In contrast, NN supplementation exhibited minimal to no weight loss effects. Based on these findings, it could be inferred that FBT holds promise as a staple food supplement to ameliorate high-fat diet-induced obesity and its associated health conditions.
Collapse
Affiliation(s)
- Daying Wu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Lei Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| | - Xiukun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| | - Yan Liang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Xueyan Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| |
Collapse
|
16
|
Guo S, Shi Y, Xu A, Wang Y, Xu P. Liubao tea extract ameliorates ovalbumin-induced allergic asthma by regulating gut microbiota in mice. Food Funct 2023; 14:10605-10616. [PMID: 37961950 DOI: 10.1039/d3fo03470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Asthma, a chronic airway inflammatory disease, has a complicated pathogenesis and limited therapeutic treatment. Evidence shows that the intestinal microbiota exhibits crucial functional interaction with asthma syndrome. Liubao tea (LBT), a type of postfermented tea in China, positively modulates gut microbiota. However, the potential benefits of LBT extract (LBTE) for allergic asthma are still not understood. Herein, the anti-inflammatory effects of LBTE and its modulation of the gut microbiota of asthmatic mice induced by ovalbumin were explored. The results demonstrate that LBTE significantly inhibited airway hyper-responsiveness and restrained the proliferation of proinflammatory cytokines and inflammatory cells associated with allergic asthma. Additionally, LBTE suppressed inflammatory infiltration, mucus secretion, and excessive goblet cell production by downregulating the gene expression of inflammatory indicators. Interestingly, fecal microbiota transplantation results further implied that the modulation of LBTE on gut microbiota played an essential role in alleviating airway inflammatory symptoms of allergic asthma.
Collapse
Affiliation(s)
- Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Yuxuan Shi
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
17
|
Feng X, Chen M, Song H, Ma S, Ou C, Li Z, Hu H, Yang Y, Zhou S, Pan Y, Fan F, Gong S, Chen P, Chu Q. A systemic review on Liubao tea: A time-honored dark tea with distinctive raw materials, process techniques, chemical profiles, and biological activities. Compr Rev Food Sci Food Saf 2023; 22:5063-5085. [PMID: 37850384 DOI: 10.1111/1541-4337.13254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Ming Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Zeqing Li
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, P. R. China
| | - Hao Hu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Yunyun Yang
- College of standardization, China Jiliang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
18
|
Tung YT, Chen YL, Fan TY, Fong TH, Chiu WC. Effects of dietary adjustment of n-3: n-6 fatty-acid ratio to 1:2 on anti-inflammatory and insulin-signaling pathways in ovariectomized mice with high fat diet-induced obesity. Heliyon 2023; 9:e20451. [PMID: 37817999 PMCID: PMC10560786 DOI: 10.1016/j.heliyon.2023.e20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Estrogen deficiency increases the secretion of inflammatory mediators and can lead to obesity. Consequently, estrogen deficiency can cause metabolic syndrome, particularly insulin resistance during menopause. Both fish oil and perilla oil contain n-3 fatty acids, which may regulate several inflammatory cytokines. Additionally, adjusting the dietary n-3:n-6 fatty-acid ratio to 1:2 may help treat or prevent chronic diseases. Therefore, we investigated the effect of anti-inflammatory and insulin-signaling pathways, not solely in relation to the (n-3:n-6 fatty-acid ratio at 1:2), but also considering the origin of n-3 fatty acids found in fish oil and perilla oil, in a mouse model of estrogen deficiency induced by ovariectomy and obesity induced by a high-fat diet (HFD). Female C57BL/6J mice were divided into five groups: sham mice on a normal diet; ovariectomized (OVX) mice on a normal diet (OC); OVX mice on a HFD plus lard oil (OL), fish oil (OF), or perilla oil (OP). The dietary n-3:n-6 ratio in the OF and OP groups was adjusted to 1:2. The results showed OF group exhibited significantly lower abdominal adipose tissue weight, fewer liver lipid droplets, and smaller uterine adipocytes, compared with the OL group. Compared with the OL group, the OF and OP groups exhibited higher oral glucose tolerance and lower serum alanine aminotransferase activity, triacylglycerol levels, and total cholesterol levels. Hepatic JAK2, STAT3, and SOCS3 mRNA expression and p-NF-κB p65 and IL-6 levels were significantly lower in the OF and OP groups than in the OL group. Only the OF group exhibited an increase in PI3K and Akt mRNA expression, decrease in GLUT2 mRNA expression, and considerable elevation of p-Akt. Both fish and perilla oil reduced inflammatory signaling markers. However, only fish oil improved insulin signaling (PI3K, Akt, and GLUT2). Our data suggest that fish oil can alleviate insulin signaling through activating the PI3K-Akt-GLUT2 cascade signaling pathway.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Cell Therapy Center, Chang Gung Memorial Hospital, New Taipei City 333, Taiwan
| | - Tzu-Yu Fan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Cell Therapy Center, Chang Gung Memorial Hospital, New Taipei City 333, Taiwan
| | - Tsorng-Harn Fong
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
19
|
Liu X, Cai S, Yi J, Chu C. Chinese Sumac Fruits ( Rhus chinesis Mill.) Alleviate Type 2 Diabetes in C57BL/6 Mice through Repairing Islet Cell Functions, Regulating IRS-1/PI3K/AKT Pathways and Promoting the Entry of Nrf2 into the Nucleus. Nutrients 2023; 15:4080. [PMID: 37764863 PMCID: PMC10535436 DOI: 10.3390/nu15184080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
This research aimed to probe the potential alleviative effects of ethanol extracts of Chinese sumac (Rhus chinesis Mill.) fruits against type 2 diabetes mellitus (T2DM) in C57BL/6 mice induced by high-fat/high-fructose diet (HFFD) and streptozotocin. The results showed that the ethanol extracts could significantly regulate blood glucose levels, glycosylated hemoglobin, blood lipids, insulin, and insulin resistance, while also restoring endogenous oxidative stress. Pathological and immunohistochemical analyses revealed that the extracts partially restored the physiological function of islet cells. Furthermore, Western blotting results suggested that the extracts could regulate the protein expression in IRS-1/PI3K/AKT signaling pathway, and immunofluorescence findings demonstrated their potential to promote the translocation of Nrf2 into the nucleus. This study elucidated a novel finding that ethanol extracts derived from Chinese sumac fruits have the potential to alleviate symptoms of T2DM in mice. Moreover, these findings could offer valuable scientific insights into the potential utilization of R. chinensis fruits as nutritional supplement and/or functional food to prevent or ameliorate diabetes.
Collapse
Affiliation(s)
- Xiaojing Liu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Green Food Processing International Science and Technology R & D Center of Kunming City, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Green Food Processing International Science and Technology R & D Center of Kunming City, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Green Food Processing International Science and Technology R & D Center of Kunming City, Kunming 650500, China
| |
Collapse
|
20
|
Du M, Cheng X, Qian L, Huo A, Chen J, Sun Y. Extraction, Physicochemical Properties, Functional Activities and Applications of Inulin Polysaccharide: a Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:243-252. [PMID: 37097509 DOI: 10.1007/s11130-023-01066-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Inulin is a naturally soluble dietary fiber that is widely distributed and primarily derived from plants. As a reserve biopolysaccharide in plants, inulin is considered an indigestible carbohydrate of fructan because of its unique β-(2,1)-glycosidic bond structure. Numerous recent animal and human experimental studies have shown that functional inulin possesses multiple bioactivities, including immunomodulatory, antioxidant, antitumor, hepatoprotective, hypoglycemic, and gastrointestinal protective activities. Due to its increasing popularity, people tend to consume foods containing inulin. Moreover, inulin holds promise as a bioactive compound for use in the development of various food products. Therefore, this paper provides a detailed review of the extraction method, physicochemical properties, functional activity, and application development of inulin polysaccharides, to provide a theoretical foundation for further advancements in the fields of preparation and application of functional foods.
Collapse
Affiliation(s)
- Mengxiang Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Xueyan Cheng
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Lijuan Qian
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Ayue Huo
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Jia Chen
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
21
|
Zhou H, Li F, Wu M, Zhu J, Wang Y, Wei X. Regulation of glucolipid metabolism and gut microbiota by green and black teas in hyperglycemic mice. Food Funct 2023; 14:4327-4338. [PMID: 37083054 DOI: 10.1039/d3fo00355h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A high-sugar and -fat diet (HSFD) has become a primary risk factor for diabetes, and dietary intervention shows a substantial effect on the prevention and management of hyperglycemia. In this study, the chemical compositions of the aqueous extracts of stir-fried green tea (GT) and congou black tea (BT) were compared. Moreover, their potential mechanisms and regulatory effects on hepatic glycolipid metabolism and gut microbiota disorders in hyperglycemic mice were further explored. Our results show that GT or BT intervention had a prominent regulatory effect on glycolipid metabolism. Moreover, they could significantly regulate the levels of serum metabolic signatures, the activities of key enzymes in liver glucose metabolism, and the expression of genes or proteins related to glycolipid metabolism via activating the IRS-1-PI3K/AKT-GLUT2 signaling pathway. Significantly, GT or BT administration adjusted the composition and diversity of the gut microbiota, mainly reflecting a significant increase in the abundance of beneficial bacteria (including Allobaculum, Lactobacillus, and Turicibacter) and reducing the abundance of harmful or conditionally pathogenic bacteria (mainly including Clostridiales and Bacteroides). Our results suggest that dietary supplementation with GT or BT could exert a practical anti-diabetic effect. Meanwhile, BT intervention showed a better regulation effect on glycolipid metabolism. This study reveals that GT and BT have excellent potential for developing anti-diabetic food.
Collapse
Affiliation(s)
- Hui Zhou
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Fanglan Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Meirong Wu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
| | - Xinlin Wei
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
22
|
Aging-Accelerated Mouse Prone 8 (SAMP8) Mice Experiment and Network Pharmacological Analysis of Aged Liupao Tea Aqueous Extract in Delaying the Decline Changes of the Body. Antioxidants (Basel) 2023; 12:antiox12030685. [PMID: 36978933 PMCID: PMC10045736 DOI: 10.3390/antiox12030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Aging and metabolic disorders feedback and promote each other and are closely related to the occurrence and development of cardiovascular disease, type 2 diabetes, neurodegeneration and other degenerative diseases. Liupao tea is a geographical indication product of Chinese dark tea, with a “red, concentrated, aged and mellow” flavor quality. In this study, the aqueous extract of aged Liupao tea (ALPT) administered by continuous gavage significantly inhibited the increase of visceral fat and damage to the intestinal–liver–microbial axis in high-fat modeling of SAMP8 (P8+HFD) mice. Its potential mechanism is that ALPT significantly inhibited the inflammation and aggregation formation pathway caused by P8+HFD, increased the abundance of short-chain fatty acid producing bacteria Alistipes, Alloprevotella and Bacteroides, and had a calorie restriction effect. The results of the whole target metabolome network pharmacological analysis showed that there were 139 potential active components in the ALPT aqueous extract, and the core targets of their actions were SRC, TP53, AKT1, MAPK3, VEGFA, EP300, EGFR, HSP90AA1, CASP3, etc. These target genes were mainly enriched in cancer, neurodegenerative diseases, glucose and lipid metabolism and other pathways of degenerative changes. Molecular docking further verified the reliability of network pharmacology. The above results indicate that Liupao tea can effectively delay the body’s degenerative changes through various mechanisms and multi-target effects. This study revealed that dark tea such as Liupao tea has significant drinking value in a modern and aging society.
Collapse
|
23
|
Preparation, Identification and Preliminary Application of the Fenvalerate Monoclonal Antibody in Six Kinds of Dark Tea. Foods 2023; 12:foods12051091. [PMID: 36900607 PMCID: PMC10001202 DOI: 10.3390/foods12051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Fenvalerate has the advantages of a broad insecticidal spectrum, high efficiency, low toxicity and low cost, and it is widely used in agriculture, especially in tea, resulting in the accumulation of fenvalerate residues in tea and the environment, posing a serious threat to human health. Therefore, the timely monitoring of fenvalerate residue dynamics is vital for ensuring the health of humans and the ecological environment, and it is necessary for establishing a fast, reliable, accurate and on-site method for detecting fenvalerate residues. Based on the methods of immunology, biochemistry and molecular biology, mammalian spleen cells, myeloma cells and mice were used as experimental materials to establish a rapid detection method of an enzyme-linked immunosorbent assay to detect the residues of fenvalerate in dark tea. Three cell lines-1B6, 2A11 and 5G2-that can stably secrete fenvalerate antibodies were obtained by McAb technology, and their sensitivities (IC50) were 36.6 ng/mL, 24.3 ng/mL and 21.7 ng/mL, respectively. The cross-reaction rates of the pyrethroid structural analogs were all below 0.6%. Six dark teas were used to detect the practical application of fenvalerate monoclonal antibodies. The sensitivity IC50 of the anti-fenvalerate McAb in PBS with 30% methanol is 29.12 ng/mL. Furthermore, a latex microsphere immunochromatographic test strip with an LOD of 10.0 ng/mL and an LDR of 18.9-357 ng/mL was preliminarily developed. A specific and sensitive monoclonal antibody for fenvalerate was successfully prepared and applied to detect fenvalerate in dark teas (Pu'er tea, Liupao tea, Fu Brick tea, Qingzhuan tea, Enshi dark tea and selenium-enriched Enshi dark tea). A latex microsphere immunochromatographic test strip was developed for the preparation of rapid detection test strips of fenvalerate.
Collapse
|
24
|
Shang L, Li F, Zhu J, Sun C, Wang Y. Selenium-Enriched and Ordinary Black Teas Regulate the Metabolism of Glucose and Lipid and Intestinal Flora of Hyperglycemic Mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:61-67. [PMID: 36308615 DOI: 10.1007/s11130-022-01022-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Black tea is one of the six major tea categories and has a variety of bioactivities. However, little is known about its comprehensive evaluation of hypoglycemic effects and potential mechanisms. In this study, we investigated the in vivo hypoglycemic activity and potential mechanism for aqueous extracts of ordinary black tea (BT) and selenium-enriched black tea (Se-BT) by using an established high-fat diet together with streptozotocin (STZ)-induced hyperglycemic mouse model. Additionally, we also explored their α-glucosidase inhibition activity. The results show that both BT and Se-BT had a favorable glycosidase inhibitory activity. Moreover, the intervention of BT and Se-BT could regulate the mRNA expression and the level of serum parameters related to glucose and lipid metabolisms. Accordingly, they could activate the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling pathway and alleviate insulin resistance (IR) and hyperglycemia. Moreover, supplementation of BT and Se-BT increased the richness and diversity of intestinal flora and altered the abundance of beneficial and harmful bacteria. Both BT and Se-BT could regulate glucose metabolism, alleviate tissue damage, and restore intestinal flora dysbiosis, suggesting that they could be used as a natural functional food for preventing hyperglycemia.
Collapse
Affiliation(s)
- Lutong Shang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Fanglan Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Chuanwen Sun
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China.
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China.
| |
Collapse
|
25
|
Roy JR, Janaki CS, Jayaraman S, Veeraraghavan VP, Periyasamy V, Balaji T, Vijayamalathi M, Bhuvaneswari P, Swetha P. Hypoglycemic Potential of Carica papaya in Liver Is Mediated through IRS-2/PI3K/SREBP-1c/GLUT2 Signaling in High-Fat-Diet-Induced Type-2 Diabetic Male Rats. TOXICS 2023; 11:240. [PMID: 36977005 PMCID: PMC10054599 DOI: 10.3390/toxics11030240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Regardless of socioeconomic or demographic background, the prevalence of type 2 diabetes mellitus, which affects more than half a billion people worldwide, has been steadily increasing over time. The health, emotional, sociological, and economic well-being of people would suffer if this number is not successfully handled. The liver is one of the key organs accountable for sustaining metabolic balance. Elevated levels of reactive oxygen species inhibit the recruitment and activation of IRS-1, IRS-2, and PI3K-Akt downstream signaling cascade. These signaling mechanisms reduce hepatic glucose absorption and glycogenesis while increasing hepatic glucose output and glycogenolysis. In our work, an analysis of the molecular mechanism of Carica papaya in mitigating hepatic insulin resistance in vivo and in silico was carried out. The gluconeogenic enzymes, glycolytic enzymes, hepatic glycogen tissue concentration, oxidative stress markers, enzymatic antioxidants, protein expression of IRS-2, PI3K, SREBP-1C, and GLUT-2 were evaluated in the liver tissues of high-fat-diet streptozotocin-induced type 2 diabetic rats using q-RT-PCR as well as immunohistochemistry and histopathology. Upon treatment, C. papaya restored the protein and gene expression in the liver. In the docking analysis, quercetin, kaempferol, caffeic acid, and p-coumaric acid present in the extract were found to have high binding affinities against IRS-2, PI3K, SREBP-1c, and GLUT-2, which may have contributed much to the antidiabetic property of C. papaya. Thus, C. papaya was capable of restoring the altered levels in the hepatic tissues of T2DM rats, reversing hepatic insulin resistance.
Collapse
Affiliation(s)
- Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Coimbatore Sadagopan Janaki
- Department of Anatomy, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Vijayalakshmi Periyasamy
- Department of Biotechnology and Bioinformatics, Holy Cross College, Trichy 620 002, Tamil Nadu, India
| | - Thotakura Balaji
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai 603 103, Tamil Nadu, India
| | - Madhavan Vijayamalathi
- Department of Physiology, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai 600 073, Tamil Nadu, India
| | - Ponnusamy Bhuvaneswari
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Panneerselvam Swetha
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
26
|
Chen L, Jiang Q, Lu H, Jiang C, Hu W, Yu S, Xiang X, Tan CP, Feng Y, Zhang J, Li M, Shen G. Antidiabetic effect of sciadonic acid on type 2 diabetic mice through activating the PI3K-AKT signaling pathway and altering intestinal flora. Front Nutr 2022; 9:1053348. [PMID: 36618687 PMCID: PMC9816573 DOI: 10.3389/fnut.2022.1053348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia. The aim of this work was to investigate the effect of sciadonic acid (SA) on disorders of glucolipid metabolism and intestinal flora imbalance and to further investigate its potential molecular mechanism of anti-diabetes. The experimental data indicated that SA could alleviate hyperlipidemia, insulin resistance, oxidative stress, the inflammatory response, repair liver function damage, and promote glycogen synthesis caused by T2DM. SA could also activate the PI3K/AKT/GLUT-2 signaling pathway, promote glucose metabolism gene expression, and maintain glucose homeostasis. Furthermore, 16S rRNA analysis revealed that SA could reduce the Firmicutes/Bacteroidota (F/B) ratio; promote norank_f__Muribaculaceae, Allobaculum, Akkermansia, and Eubacterium_siraeum_group proliferation; increase the levels of major short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid; and maintain the homeostasis of the intestinal flora. In conclusion, these results suggested that SA could reshape the structural composition of intestinal microbes, activate the PI3K/AKT/GLUT2 pathway, improve insulin resistance, and decrease blood glucose levels.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shaofang Yu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia,Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Jianfang Zhang
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang, China
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China,*Correspondence: Mingqian Li,
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China,Guoxin Shen,
| |
Collapse
|
27
|
Wang Y, Li T, Liu Y, Yang C, Liu L, Zhang X, Yang X. Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food Funct 2022; 13:13014-13027. [PMID: 36449351 DOI: 10.1039/d2fo02415b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heimao tea (HMT) is a kind of fermented dark tea that has various health benefits. However, the available information regarding the anti-obesity effect of HMT and its active ingredients is still limited. Herein, we extracted the polysaccharides from Heimao tea (HMTP) and evaluated the anti-obesity effect and the underlying mechanism of HMTP. 12-Week administration of HMTP ameliorated lipid accumulation in the adipose tissue and improved glucolipid metabolism in high-fat diet (HFD)-fed mice. HMTP also induced browning of inguinal white adipose tissue (iWAT) and enhanced the thermogenic activity of interscapular brown adipose tissue (iBAT) by upregulating the expression of a series of thermogenic genes, such as Ucp1, Prdm16, and Pgc1α. Interestingly, the anti-obesity effect of HMTP was closely associated with altered relative abundance of the gut microbes, especially Dubosiella and Romboutsia, with significant increases, in which the abundance of Dubosiella and Romboutsia was negatively correlated with the body weight (r = -0.567, p < 0.05; r = -0.407, p < 0.05) and positively correlated with the iBAT index (r = 0.520, p < 0.05; r = 0.315, p < 0.05). Our data suggest that the alteration of the gut microbiota may play a critical role in HMTP-induced iWAT browning and iBAT activation, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
28
|
Zhang Y, Liu Y, Peng F, Wei X, Hao H, Li W, Zhao Y. Cedrol from ginger alleviates rheumatoid arthritis through dynamic regulation of intestinal microenvironment. Food Funct 2022; 13:11825-11839. [PMID: 36314362 DOI: 10.1039/d2fo01983c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The imbalance of intestinal flora would induce immune inflammation. Cedrol (CE), found from ginger by our group earlier, has been proven to play an excellent role in ameliorating rheumatoid arthritis (RA) via acting on JAK3, MAPK, and NF-κB. However, there have been no studies on CE ameliorating RA through the regulation of the micro-environment. In this study, the adjuvant arthritis model (AIA) is established to evaluate the weight, arthritis score, paw swelling, bone destruction, immune organ index, inflammatory cell infiltration, cartilage erosion, and metabolic enzymes of kidneys in AIA rats after CE intervention. The results indicated CE could alleviate paw swelling, reduce arthritis score, decrease the secretion of TNF-α, IL-6, and IL-1β in serum in a dose-dependent manner, and inhibit the immune organ index of the spleen while having no significant effect on metabolic enzymes of the kidney. In addition, pathological sections of ankle and knee joints suggested CE might significantly prevent inflammatory cell infiltration, synovial hyperplasia, and joint degeneration and protect articular cartilage. Then, for the first time, 16S rRNA gene was applied to analyze the regulatory effect of CE on intestinal flora. CE could effectively improve the uniformity, diversity, and richness of intestinal flora, reduce the number of pathogenic bacteria, and increase the proportion of beneficial bacteria, and it significantly inhibited the abundance of Prevotella in RA rats, which was 12.43 times smaller than that in methotrexate. The distribution and excretion of CE in vivo were detected by GC-MS. It was found that CE would massively accumulate in the gastrointestinal tract after oral administration, which is then mainly excreted through feces. Interestingly, the research suggested that CE, which plays a role in the dynamic regulation of the intestinal micro-environment, could be used as a potential component to prevent RA.
Collapse
Affiliation(s)
- Yumeng Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Yang Liu
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Fei Peng
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xinrui Wei
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
29
|
Sun Y, He H, Wang Q, Yang X, Jiang S, Wang D. A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities. Polymers (Basel) 2022; 14:polym14204454. [PMID: 36298031 PMCID: PMC9609814 DOI: 10.3390/polym14204454] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Because of their distinctive flavor and exceptional nutritional and medicinal value, they have been a frequent visitor to people’s dining tables and have become a hot star in the healthcare, pharmaceutical, and cosmetics industries. Edible fungal polysaccharides (EFPs) are an essential nutrient for edible fungi to exert bioactivity. They have attracted much attention because of their antioxidant, immunomodulatory, antitumor, hypoglycemic, and hypolipidemic bioactivities. As a result, EFPs have demonstrated outstanding potential over the past few decades in various disciplines, including molecular biology, immunology, biotechnology, and pharmaceutical chemistry. However, the complexity of EFPs and the significant impact of mushroom variety and extraction techniques on their bioactivities prevents a complete investigation of their biological features. Therefore, the authors of this paper thoroughly reviewed the comparison of different extraction methods of EFPs and their advantages and disadvantages. In addition, the molecular weight, monosaccharide composition, and glycosidic bond type and backbone structure of EFPs are described in detail. Moreover, the in vitro and in vivo bioactivities of EFPs extracted by different methods and their potential regulatory mechanisms are summarized. These provide a valuable reference for improving the extraction process of EFPs and their production and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
- Correspondence:
| | - Huaqi He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Qian Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Shengjuan Jiang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Daobing Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
30
|
Hao M, Ding C, Sun S, Peng X, Liu W. Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promotes Diabetic Wound Healing via Regulating Angiogenesis, Inflammatory Response and Skin Flora. J Inflamm Res 2022; 15:4921-4938. [PMID: 36051089 PMCID: PMC9427019 DOI: 10.2147/jir.s376692] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background Diabetic ulcer remains a clinical challenge due to impaired angiogenesis and persistent inflammation, requiring new alternative therapies to promote tissue regeneration. Purpose In this study, chitosan/sodium alginate/velvet antler blood peptides (CS/SA/VBPs) hydrogel (CAVBPH) was fabricated and used in the treatment of skin wounds in type 2 diabetes mellitus (T2D) for the first time. Methods VBPs were prepared by hydrolysis and ultrafiltration, and their sequences were identified using LC-MS/MS. The CAVBPH was further fabricated and characterized. A mouse model of T2D was induced by a high-sugar and high-fat diet (HSFD) and streptozotocin (STZ) injection. CAVBPH was applied topically to T2D wounds, and its effects on skin repair and potential biological mechanisms were analyzed by appearance observation, histopathological staining, bioinformatics analysis, Western blot, and 16S rRNA sequencing. Results VBPs had numerous short-chain active peptides, excellent antioxidant activity, and a low hemolysis rate. CAVBPH exhibited desirable biochemical properties and participated in the diabetic wound healing process by promoting cell proliferation (PCNA and α-SMA) and angiogenesis (capillaries and CD31) and alleviating inflammation (CD68). Mechanistically, the therapeutic effect of CAVBPH on chronic wounds might rely on activating the PI3K/AKT/mTOR/HIF-1α/VEGFA pathway and reversing the expression of inflammatory cytokines TNF-α and IL-1β. The results of 16S rRNA sequencing indicated that T2D significantly altered the diversity and structure of skin flora at the wound site. CAVBPH treatment elevated the relative abundance of beneficial microbes (e.g., Corynebacterium_1 and Lactobacillus) and reversed the structural imbalance of skin microbiota. Conclusion These results indicate that CAVBPH is a promising wound dressing, and its repair effect on diabetic wounds by regulating angiogenesis, inflammatory response, and skin flora may depend on the rich small peptides in VBPs.
Collapse
Affiliation(s)
- Mingqian Hao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, People's Republic of China.,School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People's Republic of China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, People's Republic of China
| | - Shuwen Sun
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People's Republic of China
| | - Xiaojuan Peng
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People's Republic of China
| | - Wencong Liu
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People's Republic of China
| |
Collapse
|
31
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
32
|
Qi B, Ren D, Li T, Niu P, Zhang X, Yang X, Xiao J. Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8274-8287. [PMID: 35767631 DOI: 10.1021/acs.jafc.2c02400] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
33
|
Advances in the Utilization of Tea Polysaccharides: Preparation, Physicochemical Properties, and Health Benefits. Polymers (Basel) 2022; 14:polym14142775. [PMID: 35890551 PMCID: PMC9320580 DOI: 10.3390/polym14142775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Tea polysaccharide (TPS) is the second most abundant ingredient in tea following tea polyphenols. As a complex polysaccharide, TPS has a complex chemical structure and a variety of bioactivities, such as anti-oxidation, hypoglycemia, hypolipidemic, immune regulation, and anti-tumor. Additionally, it shows excellent development and application prospects in food, cosmetics, and medical and health care products. However, numerous studies have shown that the bioactivity of TPS is closely related to its sources, processing methods, and extraction methods. Therefore, the authors of this paper reviewed the relevant recent research and conducted a comprehensive and systematic review of the extraction methods, physicochemical properties, and bioactivities of TPS to strengthen the understanding and exploration of the bioactivities of TPS. This review provides a reference for preparing and developing functional TPS products.
Collapse
|
34
|
Zhu J, Chen X, Li F, Wei K, Chen J, Wei X, Wang Y. Preparation, Physicochemical and Hypoglycemic Properties of Natural Selenium-Enriched Coarse Tea Glycoproteins. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:258-264. [PMID: 35612700 DOI: 10.1007/s11130-022-00975-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Various functional components in tea have been well developed, but less research has been explored on glycoproteins in tea. In this paper, three types of glycoprotein fractions, namely tea selenium-binding glycoprotein1-1 (TSBGP1-1), TSBGP2-1, and TSBGP3-1, respectively, were extracted and purified from selenium-enriched coarse green tea. Chemical analysis revealed that three fractions were glycoproteins, but their selenium content, molecular weight, and monosaccharide composition were significantly different. Fourier transforms infrared (FT-IR) analysis indicated that three fractions contained characteristic absorption peaks of glycoproteins but differed in secondary structural composition. Thermogravimetric (TG) analysis showed that the thermal stability of the three fractions was dramatically distinct. The in vitro hypoglycemic activity showed that TSBGPs significantly activated the insulin receptor substrate 2 (IRS2)/protein kinase B (Akt) pathway in LO2 cells, then enhanced glucose metabolism and inhibited gluconeogenesis, and finally ameliorated insulin resistance (IR) and glucose metabolism disorders. Furthermore, Pearson correlation analysis reveals that the hypoglycemic activity was significantly correlated with Se, protein, monosaccharide composition (especially glucose), molecular weight, and secondary structure. Our results show that Se-enriched tea glycoprotein is a desirable candidate for developing anti-diabetic food, and TSBGP-2 and TSBGP-3 had a better regulation effect. Our results can provide a research reference for the extraction, physicochemical property, and function of selenium-enriched plant glycoproteins.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Xueqing Chen
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Fanglan Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Kang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Xinlin Wei
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China.
| |
Collapse
|
35
|
Meng H, Song J, Li Y, Li X, Li X, Gou J, Nie Z, Wang J, Zheng Y, Wang M. Monascus vinegar protects against liver inflammation in high-fat-diet rat by alleviating intestinal microbiota dysbiosis and enteritis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Selenium-enriched and ordinary green tea extracts prevent high blood pressure and alter gut microbiota composition of hypertensive rats caused by high-salt diet. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Song R, Xu Y, Jia Z, Liu X, Zhang X. Integration of intestinal microbiota and metabonomics to elucidate different alleviation impacts of non-saponification and saponification astaxanthin pre-treatment on paracetamol-induced oxidative stress in rats. Food Funct 2022; 13:1860-1880. [PMID: 35084415 DOI: 10.1039/d1fo02972j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal microbiota and metabonomics were integrated to investigate the efficiency of non-saponification or saponification astaxanthin (N-Asta or S-Asta) derived from Penaeus sinensis by-products on alleviating paracetamol (PCM)-induced oxidative stress. Pre-treatment with N-Asta or S-Asta for 14 days restored the cellular morphology of the intestine and increased glutathione (GSH) levels under PCM overdose in rats. However, S-Asta displayed higher adsorption than that of N-Asta. PCM overdose reduced the richness and diversity of intestinal microbiota in the model group. Comparably, N-Asta or S-Asta pre-treatment increased the Actinobacteria abundance. Increased phyla Bacteroidetes and Verrucomicrobia were only found in the S-Asta-pre-treated group. At the genus level, N-Asta pre-treatment increased Lactobacillus and Parasutterella abundance, whereas S-Asta pre-treatment elevated Bacteroidales_S24-7_group_norank and Ruminococcaceae_uncultured. Compared to the control and model groups, remarkable increases of fecal short-chain fatty acids were detected in both N-Asta and S-Asta pre-treatment groups, suggesting the contribution of N-Asta and S-Asta adsorption to SCFA-producing bacteria enrichment. Furthermore, the genera of Ruminococcaceae_uncultured, Ruminiclostridium_9, Ruminococcaceae_unclassified and Ruminococcus_1 showed high correlations with propionic acid, isobutyric acid, butyric acid, isovaleric acid and valeric acid increases in the S-Asta pre-treated group. Seventeen plasma biomarker metabolites in more than 10 metabolic pathways were responsible for the difference between the N-Asta and S-Asta pre-treated groups. Metabolites GSH, retinol, all-trans-Retinoic acid and taurine related to antioxidant activities were significantly accumulated in the S-Asta pre-treated group, while increasing taurocholic acid levels associated with the anti-inflammatory activity was found in the N-Asta-pre-treated group. Therefore, N-Asta and S-Asta could have potential applications in counterbalancing intestinal flora and metabolite disturbances by overdose chemical induction.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|