1
|
Liang S, Zhang J, Huang S, Lan X, Wang W, Tang Y. Functionalized Gelatin Electrospun Nanofibrous Membranes in Food Packaging: Modification Strategies for Fulfilling Evolving Functional Requirements. Polymers (Basel) 2025; 17:1066. [PMID: 40284331 PMCID: PMC12030516 DOI: 10.3390/polym17081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Gelatin, known for its excellent biocompatibility, strong aggregative properties, and low cost, has been extensively investigated as a promising material for food packaging. Among various fabrication methods, electrospinning stands out due to its simplicity, cost-effectiveness, high process controllability, and ability to produce nanofiber membranes with enhanced properties. This review provides a comprehensive overview of the sources, properties, and applications of gelatin, along with the fundamental principles of electrospinning and its applications in food packaging. Additionally, the common types of electrospinning techniques used in food packaging are also covered. In recent years, increasing research efforts have focused on gelatin-based electrospun nanofiber membranes for food packaging applications. The functionalization of electrospinning gelatin-based nanofiber membrane was realized by incorporating various active substances or combining it with other techniques, fulfilling the new requirements of food packaging. In this review, gelatin-based electrospun nanofiber membranes for food packaging applications are overviewed, with a particular emphasis on various types of modifications for the membranes aimed at meeting diverse application demands. Finally, the future perspectives and challenges in the research of gelatin-based electrospun nanofiber membranes for food packaging are discussed.
Collapse
Affiliation(s)
- Shiyi Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Liu Y, Wang L, Wen D, Deng Z, Wu Z, Li S, Li Y. Preparation and characterization of nano-silver/graphene oxide antibacterial skin dressing. Sci Rep 2025; 15:12490. [PMID: 40216795 PMCID: PMC11992206 DOI: 10.1038/s41598-025-93310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 04/14/2025] Open
Abstract
This study aims to develop a composite hydrogel consisting of nano silver (Ag) and graphene oxide (GO) for use as a skin wound dressing. We prepared nanosilver/graphene oxide composite hydrogels by incorporating nanosilver and graphene oxide into kaolin-reinforced, gelatin-based hydrogels. Tests were conducted on the hydrogel's water vapor permeability, mechanical properties, infrared warming performance and bacteriostatic properties under infrared light. The results indicated that kaolin enhanced the water vapor permeability and mechanical properties of the gelatin-based hydrogels. Moreover, the maximum fracture stress and strain of the hydrogel were elevated to 51.16 kPa and 1152.78% by GO, respectively. Furthermore, the modified Ag/GO hydrogels exhibited superior photothermal conversion and infrared bacteriostatic properties. This research offers valuable insights for the clinical repair of wounds and the design of new skin wound dressings, making these materials promising for such applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Liu Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dawei Wen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhonghua Deng
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yongfeng Li
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
3
|
Ding M, Wu W, Liu R, Niu B, Chen H, Fang X, Chen H, Shen C, Gao H. Preparation and application of thyme essential oil@halloysite nanotubes-loaded multifunctional pullulan/gelatin/PVA aerogels. Int J Biol Macromol 2025; 309:142917. [PMID: 40203906 DOI: 10.1016/j.ijbiomac.2025.142917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Blueberries are susceptible to microbial contamination and mechanical damage after harvesting, thereby accelerating their quality deterioration. Therefore, in the present work, thyme essential oil@halloysite nanotubes (TEO@HNTs)-loaded pullulan/gelatin/PVA (PGP) aerogels with antimicrobial activities and cushioning properties were developed to address these issues. The results showed that TEO achieved a 91.1 % encapsulation efficiency in HNTs and hydrogen bonding interactions were formed between TEO and HNTs. TEO@HNTs improved the crystallinity, thermal stability, compression properties, and surface hydrophobicity of the PGP aerogels. The TEO@HNTs-loaded aerogels exhibited a sustained release of TEO and antimicrobial activity against E. coli (inhibition zone of 13.92 mm), S. aureus (inhibition zone of 16.55 mm), and B. cinerea. Moreover, the aerogels offered good cushioning for blueberries when subjected to mechanical impact, thus maintaining their quality during storage. In addition, cell cytotoxicity analysis showed that cell viability exceeded 94 %, indicating the excellent biocompatibility of the TEO@HNTs-loaded aerogels. The above results suggested promising prospects for the development of a multifunctional aerogel to maintain the quality of food products, such as blueberries, which are susceptible to microbial contamination and mechanical damage.
Collapse
Affiliation(s)
- Mingke Ding
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chaoyi Shen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Gubaidullin AT, Galeeva AI, Galyametdinov YG, Ageev GG, Piryazev AA, Ivanov DA, Ermakova EA, Nikiforova AA, Derkach SR, Zueva OS, Zuev YF. Modulation of Structural and Physical-Chemical Properties of Fish Gelatin Hydrogel by Natural Polysaccharides. Int J Mol Sci 2025; 26:2901. [PMID: 40243495 PMCID: PMC11988395 DOI: 10.3390/ijms26072901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Gelatin, a water-soluble protein, shows unique gellification properties, which determine the active commercial availability of gelatin hydrogels in modern alimentary, cosmetic, and pharmaceutical applications. The traditional sources of gelatin for industrial technologies are pork and bovine skin and bones, which sometimes produce religious and some other restrictions. In recent years, there has been a significant increase in the production of gelatin from alternative sources, such as raw fish materials. Unfortunately, fish gelatin is characterized by weak gelling ability and a decrease in gelation and melting temperature, which are a consequence of the amino acid composition and structural features of fish gelatin. One of the ways to strengthen the natural gelling properties of fish gelatin is the structural modification of gelatin hydrogels by the introduction of polysaccharides of various natural origins. We have studied the association of our laboratory-made fish gelatin with three polysaccharides, namely, κ-carrageenan, alginate, and chitosan, which have distinct chemical structures and gelling capabilities. Structural features of the studied systems were analyzed by small-angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). We applied computer modeling of molecular interactions between fish gelatin and polysaccharides by means of molecular docking and molecular dynamics approaches. The existence of a correlation between the structure of gelatin-polysaccharide systems and their physicochemical properties was demonstrated by wetting angles (flow angles) and dynamic light scattering (DLS) studies of hydrodynamic sizes and surface ζ-potential.
Collapse
Affiliation(s)
- Aidar T. Gubaidullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia (A.A.N.)
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia
| | - Aliya I. Galeeva
- Physical and Colloid Chemistry Department, Kazan National Research Technological University, 420015 Kazan, Russia; (A.I.G.); (Y.G.G.)
| | - Yuriy G. Galyametdinov
- Physical and Colloid Chemistry Department, Kazan National Research Technological University, 420015 Kazan, Russia; (A.I.G.); (Y.G.G.)
| | - Georgiy G. Ageev
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (G.G.A.); (A.A.P.); (D.A.I.)
| | - Alexey A. Piryazev
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (G.G.A.); (A.A.P.); (D.A.I.)
| | - Dimitri A. Ivanov
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (G.G.A.); (A.A.P.); (D.A.I.)
- Institut de Sciences des Matériaux de Mulhouse–IS2M, CNRS UMR 7361, F-68057 Mulhouse, France
| | - Elena A. Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia (A.A.N.)
| | - Alena A. Nikiforova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia (A.A.N.)
- A. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| | - Svetlana R. Derkach
- Institute of Natural Sciences and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia;
| | - Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, Krasnoselskaya St. 51, 420066 Kazan, Russia;
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia (A.A.N.)
| |
Collapse
|
5
|
Zhang S, Zhao D, Yin L, Wang R, Jin Z, Xu H, Xia G. Physicochemical and Functional Properties of Yanbian Cattle Bone Gelatin Extracted Using Acid, Alkaline, and Enzymatic Hydrolysis Methods. Gels 2025; 11:186. [PMID: 40136891 PMCID: PMC11942094 DOI: 10.3390/gels11030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Yanbian cattle, a high-quality indigenous breed in China, were selected due to their unique biological characteristics, underutilized bone byproducts, and potential as a halal-compliant gelatin source, addressing the growing demand for alternatives to conventional mammalian gelatin in Muslim-majority regions. This study investigates the physicochemical and functional properties of gelatin extracted from Yanbian cattle bones using three different methods: acid, alkaline, and papain enzymatic hydrolysis. The extraction yields and quality of gelatin were evaluated based on hydroxyproline content, gel strength, viscosity, amino acid composition, molecular weight distribution, and structural integrity. Specifically, A gelatin, prepared using 0.075 mol/L hydrochloric acid, achieved the highest yield (18.64%) among the acid-extraction methods. B gelatin, extracted with 0.1 mol/L sodium hydroxide, achieved the highest yield (21.06%) among the alkaline-extraction methods. E gelatin, obtained through papain hydrolysis, exhibited the highest yield (25.25%) among the enzymatic methods. Gelatin extracted via papain enzymatic hydrolysis not only retained better protein structure but also exhibited higher hydroxyproline content (19.13 g/100 g), gel strength (259 g), viscosity (521.67 cP), and superior thermal stability. Structural analyses conducted using SDS-PAGE, GPC, FTIR, XRD, and CD spectroscopy confirmed that papain extraction more effectively preserved the natural structure of collagen. Furthermore, amino acid composition analysis revealed that gelatin extracted via papain hydrolysis contained higher levels of essential residues, such as glycine, proline, and hydroxyproline, emphasizing the mild and efficient nature of enzymatic treatment. These findings suggest that, compared with acid and alkaline extraction methods, enzymatic hydrolysis has potential advantages in gelatin production. Yanbian cattle bone gelatin shows promise as an alternative source for halal gelatin production. This study also provides insights into optimizing gelatin production to enhance its functionality and sustainability.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133000, China; (S.Z.); (D.Z.); (L.Y.); (R.W.); (Z.J.)
| | - Duanduan Zhao
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133000, China; (S.Z.); (D.Z.); (L.Y.); (R.W.); (Z.J.)
| | - Lu Yin
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133000, China; (S.Z.); (D.Z.); (L.Y.); (R.W.); (Z.J.)
| | - Ruixuan Wang
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133000, China; (S.Z.); (D.Z.); (L.Y.); (R.W.); (Z.J.)
| | - Zhiyan Jin
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133000, China; (S.Z.); (D.Z.); (L.Y.); (R.W.); (Z.J.)
| | - Hongyan Xu
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133000, China; (S.Z.); (D.Z.); (L.Y.); (R.W.); (Z.J.)
| | - Guangjun Xia
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133000, China
| |
Collapse
|
6
|
Rather JA, Akhter N, Punoo HA, Haddad M, Ghnamat SA, Manzoor N, Goksen G, Dar BN. Sustainable algal proteins, novel extraction techniques and applications in the bakery, dairy and pharmaceutical industries: A comprehensive review. Food Chem 2025; 465:141828. [PMID: 39577256 DOI: 10.1016/j.foodchem.2024.141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
Microalgae have emerged as favorable substitutes for traditional animal-based proteins in the search for sustainable protein sources. Despite being underexplored, microalgae offer the possibility of large-scale protein production via novel extraction techniques. This review synthesizes current knowledge on microalgal proteins, shedding light on their novel extraction techniques and techno-functional properties, which are still in the early stages of exploration. Additionally, it explores the miscellaneous applications of algae proteins across various industrial sectors, including bakery, dairy, pharmaceuticals, and nutrition. By discussing the techno-functional properties of algae proteins and peptides, this review underscores their potential to revolutionize the industrial landscape while addressing sustainability challenges. As research in this field progresses, microalgae are poised to emerge as a viable and environmentally friendly protein source, offering a pathway toward a more sustainable future.
Collapse
Affiliation(s)
- Jahangir Ahmad Rather
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Najmeenah Akhter
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Hilal Ahmad Punoo
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Moawiya Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Sana'a Ali Ghnamat
- Department of Nutrition and Food Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Neelofar Manzoor
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Basharat Nabi Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India.
| |
Collapse
|
7
|
Mohite P, Puri A, Munde S, Dave R, Khan S, Patil R, Singh AK, Tipduangta P, Singh S, Chittasupho C. Potential of Chitosan/Gelatin-Based Nanofibers in Delivering Drugs for the Management of Varied Complications: A Review. Polymers (Basel) 2025; 17:435. [PMID: 40006097 PMCID: PMC11859051 DOI: 10.3390/polym17040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Drug delivery systems have revolutionized traditional drug administration methods by addressing various challenges, such as enhancing drug solubility, prolonging effectiveness, minimizing adverse effects, and preserving potency. Nanotechnology-based drug delivery systems, particularly nanoparticles (NPs) and nanofibers (NFs), have emerged as promising solutions for biomedicine delivery. NFs, with their ability to mimic the porous and fibrous structures of biological tissues, have garnered significant interest in drug-delivering applications. Biopolymers such as gelatin (Ge) and chitosan (CH) have gained much more attention due to their biocompatibility, biodegradability, and versatility in biomedical applications. CH exhibits exceptional biocompatibility, anti-bacterial activity, and wound healing capabilities, whereas Ge provides good biocompatibility and cell adhesion properties. Ge/CH-based NFs stimulate cellular connections and facilitate tissue regeneration owing to their structural resemblance to the extracellular matrix. This review explores the additive methods of preparation, including electrospinning, force pinning, and template synthesis, focusing on electrospinning and the factors influencing the fiber structure. The properties of Ge and CH, their role in drug release, formulation strategies, and characterization techniques for electrospun fibers are discussed. Furthermore, this review addresses applications in delivering active moieties in the management of orthopedics and wound healing with regulatory considerations, along with challenges related to them. Thus, the review aims to provide a comprehensive overview of the potential of Ge/CH-based NFs for drug delivery and biomedical applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Showkhiya Khan
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Riteshkumar Patil
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Anil Kumar Singh
- United Institute of Pharmacy, Prayagraj 211010, Uttar Pradesh, India;
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
8
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
9
|
Culqui-Arce C, Mori-Mestanza D, Fernández-Jeri AB, Cruzalegui RJ, Mori Zabarburú RC, Vergara AJ, Cayo-Colca IS, da Silva JG, Araujo NMP, Castro-Alayo EM, Balcázar-Zumaeta CR. Polymers Derived from Agro-Industrial Waste in the Development of Bioactive Films in Food. Polymers (Basel) 2025; 17:408. [PMID: 39940610 PMCID: PMC11819695 DOI: 10.3390/polym17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This review explores the potential of biopolymers as sustainable alternatives to conventional plastics in food packaging. Biopolymers derived from plant or animal sources are crucial in extending food shelf life, minimizing degradation, and protecting against oxidative and microbial agents. Their physical and chemical properties, influenced by the raw materials used, determine their suitability for specific applications. Biopolymers have been successfully used in fruits, vegetables, meats, and dairy products, offering antimicrobial and antioxidant benefits. Consequently, they represent a functional and eco-friendly solution for the packaging industry, contributing to sustainability while maintaining product quality.
Collapse
Affiliation(s)
- Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Armstrong B. Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Robert J. Cruzalegui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Roberto Carlos Mori Zabarburú
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Alex J. Vergara
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| |
Collapse
|
10
|
Su XN, Khan MF, Xin-Ai, Liu DL, Liu XF, Zhao QL, Cheong KL, Zhong SY, Li R. Fabrication, modification, interaction mechanisms, and applications of fish gelatin: A comprehensive review. Int J Biol Macromol 2025; 288:138723. [PMID: 39672411 DOI: 10.1016/j.ijbiomac.2024.138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Fish gelatin (FG) is an essential natural biopolymer isolated from aquatic sources and has been considered as a feasible substitute for mammalian gelatins. However, its inferior mechanical and gelling properties limit its applications. Consequently, FG has been modified using various methods. This review summarizes the extraction techniques (including traditional acid and alkaline methods, as well as newer technologies such as ultrasonic-assisted and microwave-assisted extraction), modification strategies (mechanical treatments, physical mixing with polysaccharides, utilization of the Hofmeister effect, chemical modifications, etc.), along with their mechanisms of action. Additionally, we discussed the applications of FG and its modified products. Furthermore, this review highlights the safety and prospects for FG and its derivatives. The mechanical properties and biological functions of FGs are enhanced after modification. Thus, modified FG composites exhibit diverse applications in areas such as foaming agents and emulsifiers, food packaging, three-dimensional printing, drug delivery systems and tissue engineering. This paper aims to provide comprehensive information for future research on FG with the intention of broadening its applicability within the industries of food, cosmetics, and pharmaceuticals. Nevertheless, the development of tough gels, aerogels, and stimuli-responsive hydrogels based on FG requires further investigation.
Collapse
Affiliation(s)
- Xian-Ni Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Muhammad Fahad Khan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xin-Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Dan-Lei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Qiao-Li Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|
11
|
Du J, Zhu Q, Guo J, Gu J, Guo J, Wu Y, Ren L, Yang S, Jiang J. Preparation and characterization of edible films from gelatin and hydroxypropyl methyl cellulose/sodium carboxymethyl cellulose. Heliyon 2025; 11:e41613. [PMID: 39850427 PMCID: PMC11754516 DOI: 10.1016/j.heliyon.2024.e41613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025] Open
Abstract
This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity. Notably, the composite modification with HPMC and CMC proves to be more effective than individual modifications. The optimal HPMC/CMC ratio of 3:7 resulted in blend films that exhibited the highest TS and lowest water vapor permeability (WVP). Fourier transform infrared (FTIR) analysis revealed enhanced hydrogen bonding between the polymers, while scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) confirmed a more uniform structure with improved thermal stability in the blend films. These results suggest that optimizing the HPMC/CMC ratio in gelatin-based films can significantly enhance their mechanical, barrier, and thermal properties, providing new possibilities for their application as food packaging materials.
Collapse
Affiliation(s)
- Jingjing Du
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Qian Zhu
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Jiagang Guo
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Jiayu Gu
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Jianlong Guo
- Food Engineering College, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yuhan Wu
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Ling Ren
- Huaibei Shunfa Food Co., Ltd, No.10 Qianlong Avenue, Huaibei, Anhui, 235100, China
| | - Song Yang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Jian Jiang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| |
Collapse
|
12
|
Vale AC, Leite L, Pais V, Bessa J, Cunha F, Fangueiro R. Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres. Polymers (Basel) 2024; 16:3602. [PMID: 39771455 PMCID: PMC11679467 DOI: 10.3390/polym16243602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile). For each source, typical applications and the biopolymers usually extracted will also be outlined. Furthermore, acknowledging the challenging lignocellulosic structure and composition of these sources, an overview of conventional and emerging pre-treatments and extraction methods, namely physical, chemical, physicochemical, and biological methodologies, will also be presented. Additionally, this review aims to explore the applications of the compounds obtained in the production of man-made organic fibres (MMOFs). A brief description of their evolution and their distinct properties will be described, as well as the most prominent commercial MMOFs currently available. Ultimately, this review concludes with future perspectives concerning the pursuit of greener and sustainable polymeric sources, as well as effective extraction processes. The potential and main challenges of implementing these sources in the production of alternative man-made organic fibres for diverse applications will also be highlighted.
Collapse
Affiliation(s)
- Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Liliana Leite
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
13
|
Pereira AR, Fernandes VC, Delerue-Matos C, de Freitas V, Mateus N, Oliveira J. Exploring acylated anthocyanin-based extracts as a natural alternative to synthetic food dyes: Stability and application insights. Food Chem 2024; 461:140945. [PMID: 39216453 DOI: 10.1016/j.foodchem.2024.140945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This work explores the potential of anthocyanin-based extracts (hibiscus calyxes - HC, red cabbage - RC, and butterfly pea flower - BPF) as natural alternatives to synthetic dyes in the food industry. Analyses in a pH range for food applications revealed higher color stability for the BPF extract, keeping vibrant colors over the 7 days at room temperature. At pH 3 and 100 °C, the BPF was more stable, losing half of its anthocyanin concentration after 14 h, while RC and HC lost half of their color after 7 and 2 h, respectively. The bisulfite bleaching followed a second-order reaction for HC and RC, and a first-order reaction for BPF, suggesting a minor effect of the bisulfite on this extract. Incorporating these extracts into porcine protein and agar-agar gelatin formulations produced consistent products with appealing hues, particularly the blue and purple colors for BPF and RC, dependent on the pH.
Collapse
Affiliation(s)
- Ana Rita Pereira
- Laboratório Associado para a Química Verde - REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Victor de Freitas
- Laboratório Associado para a Química Verde - REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Nuno Mateus
- Laboratório Associado para a Química Verde - REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Joana Oliveira
- Laboratório Associado para a Química Verde - REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| |
Collapse
|
14
|
de Almeida CC, Baião DDS, da Silva DVT, da Trindade LR, Pereira PR, Conte-Junior CA, Paschoalin VMF. Dairy and nondairy proteins as nano-architecture structures for delivering phenolic compounds: Unraveling their molecular interactions to maximize health benefits. Compr Rev Food Sci Food Saf 2024; 23:e70053. [PMID: 39530635 DOI: 10.1111/1541-4337.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Phenolic compounds are recognized for their benefits against degenerative diseases. Clinical and nutritional applications are limited by their low solubility, stability, and bioavailability, compromising their efficacy. Natural macromolecules, such as lipids, polysaccharides, and proteins, employed as delivery systems can efficiently overcome these limitations. In this sense, proteins are attractive due to their biocompatibility and dynamic structure properties, functional adaptability and self-assembly capabilities, offering stability, efficient encapsulation, and controlled release. This review explores the potential use of dairy proteins, caseins, and whey proteins, and, alternatively, nondairy proteins, gelatin, human serum albumin, maize zein, and soybean proteins, in building wall materials for the delivery of phenolic compounds. To optimize performance, aspects, such as protein-phenolic affinity and complex stability/activity, should be considered when designing particle nano-architecture. Molecular interactions between protein-phenolic compound complexes are, thus, further discussed, as well as the effects of temperature and pH and strategies to stabilize and preserve nano-architecture and retain phenolic compound activity. All proteins harbor one or more putative binding sites, shared or not, depending on the phenolic compound. Preservation techniques are still a case-to-case study, as no behavior patterns among different complexes are noted. Safety aspects necessary for the marketing of nanoproducts, such as characterization, toxicity assessments, and post-market monitoring as defined by the European Food Safety Authority and the Food and Drug Administration, are discussed, evidencing the need for a unified regulation. This review broadens our understanding and opens new opportunities for the development of novel protein-based nanocarriers to obtain more effective and stable products, enhancing phenolic compound delivery and health benefits.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Diego Dos Santos Baião
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucileno Rodrigues da Trindade
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
16
|
Xie Y, Liu Q, Ge Y, Liu Y, Yang R. Formation and Applications of Typical Basic Protein-Based Heteroprotein Complex Coacervations. Foods 2024; 13:3281. [PMID: 39456343 PMCID: PMC11508135 DOI: 10.3390/foods13203281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Lactoferrin, lysozyme, and gelatin are three common basic proteins known for their ability to interact with acidic proteins (lactoglobulin, ovalbumin, casein, etc.) and form various supramolecular structures. Their basic nature makes them highly promising for interaction with other acidic proteins to form heteroprotein complex coacervation (HPCC) with a wide range of applications. This review extensively examines the structure, properties, and preparation methods of these basic proteins and delves into the internal and external factors influencing the formation of HPCC, including pH, ionic strength, mixing ratio, total protein concentration, temperature, and inherent protein properties. The applications of different HPCCs based on these three basic proteins are discussed, including the encapsulation of bioactive molecules, emulsion stabilization, protein separation and extraction, nanogel formation, and the development of formulas for infants. Furthermore, the challenges and issues that are encountered in the formation of heteroprotein complexes are addressed and summarized, shedding light on the complexities and considerations involved in utilizing HPCC technology in practical applications. By harnessing the basic proteins to interact with other proteins and to form complex coacervates, new opportunities arise for the development of functional food products with enhanced nutritional profiles and functional attributes.
Collapse
Affiliation(s)
- Yufeng Xie
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingchen Liu
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yubo Ge
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yongqi Liu
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
17
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
18
|
Bastos Y, Rocha F, Estevinho BN. Microencapsulation of Extracts of Strawberry ( Fragaria vesca) By-Products by Spray-Drying Using Individual and Binary/Ternary Blends of Biopolymers. Molecules 2024; 29:4528. [PMID: 39407456 PMCID: PMC11477806 DOI: 10.3390/molecules29194528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Valorization of agricultural and food by-products (agri-food waste) and maximum utilization of this raw material constitute a highly relevant topic worldwide. Agri-food waste contains different types of phytochemical compounds such as polyphenols, that display a set of biological properties, including anti-inflammatory, chemo-preventive, and immune-stimulating effects. In this work, the microencapsulation of strawberry (Fragaria vesca) plant extract was made by spray-drying using individual biopolymers, as well as binary and ternary blends of pectin, alginate, and carrageenan. The microparticle morphologies depended on the formulation used, and they had an average size between 0.01 μm and 16.3 μm considering a volume size distribution. The encapsulation efficiency ranged between 81 and 100%. The kinetic models of Korsmeyer-Peppas (R2: 0.35-0.94) and Baker-Lonsdale (R2: 0.73-1.0) were fitted to the experimental release profiles. In general, the releases followed a "Fickian Diffusion" mechanism, with total release times varying between 100 and 350 (ternary blends) seconds. The microparticles containing only quercetin (one of the main polyphenols in the plant) showed higher antioxidant power compared to the extract and empty particles. Finally, the addition of the different types of microparticles to the gelatine (2.7 mPa.s) and to the aloe vera gel (640 mPa.s) provoked small changes in the viscosity of the final gelatine (2.3 and 3.3 mPa.s) and of the aloe vera gel (621-653 mPa.s). At a visual level, it is possible to conclude that in the gelatine matrix, there was a slight variation in color, while in the aloe vera gel, no changes were registered. In conclusion, these microparticles present promising characteristics for food, nutraceutical, and cosmetic applications.
Collapse
Affiliation(s)
- Yara Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineer, Faculty of Engineer, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineer, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineer, Faculty of Engineer, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineer, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta Nogueiro Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineer, Faculty of Engineer, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineer, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Cheng Y, Yang Y, Wang S, Zhou Z, Li J, Zhang Y, Chen S, Zeng Z, Xie S, Tang BZ. Fluorogenic in-situ Labelling of Gelatin Polymer in Aqueous Solution and Hydrogel. Chemistry 2024; 30:e202401561. [PMID: 38847762 DOI: 10.1002/chem.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 08/31/2024]
Abstract
Gelatin polymers made from partially degraded collagen are important biomaterials, but their in-situ analysis suffers from uncontrollable covalent labelling and poor spatial-temporal imaging resolution. Herein, three tetrazolate-tagged tetraphenylethylene fluorophores (TPE-TAs) are introduced for practical fluorogenic labelling of gelatin in aqueous phase and hydrogels. These probes with aggregation-induced emission characteristics offer negligible background and elicit turn-on fluorescence by simply mixing with the gelatin in aqueous phase, giving a detection limit of 0.15 mg/L over a linear dynamic range up to 100 mg/L. This method does not work for collagens and causes minimal interference with gelatin properties. Mechanistic studies reveal a key role for multivalent electrostatic interactions between the abundant basic residues in gelatin (e. g., lysine, hydroxylysine, arginine) and anionic tetrazolate moieties of the lipophilic fluorophore synergistically in spatially rigid macromolecular encapsulation to achieve fluorogenic labelling. The AIE strategy by forming non-covalent fluorophore-gelatin complexes was developed for novel hydrogels that exhibited reversible fluorescence in response to dynamic microstructural changes in the hydrogel scaffold upon salting-in/out treatments, and enabled high spatial-temporal imaging of the fiber network in lyophilized samples. This work may open up avenues for in-situ imaging analysis and evaluation of gelatin-based biomaterials during processes such as in vivo degradation and mineralization.
Collapse
Affiliation(s)
- Yao Cheng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yujiao Yang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuodong Wang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhibiao Zhou
- School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiangcan Li
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sijie Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
20
|
Boonprab K, Chirapart A, Effendy WNA. Edible-algae base composite film containing gelatin for food packaging from macroalgae, Gracilaroid (Gracilaria fisheri). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6987-7001. [PMID: 38619109 DOI: 10.1002/jsfa.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Conventional petroleum-based packaging films cause severe environmental problems. In the present study, bio-edible film was introduced as being safe to replace petroleum-based polymers. A food application for edible sachets and a composite edible film (EF) from marine algae, Gracilaria fisheri (GF) extract, were proposed. RESULTS Carbohydrates were the most prevalent component in fresh GF fronds. Under neutral conditions comprising 90 °C for 40 min, the structure of the extract was determined by Fourier transform infrared to be a carrageenan-like polysaccharide. Glycerol was the best plasticizer for EF formation because it had the highest tensile strength (TS). The integration of gelatin into the algal composite film with gelatin (CFG) was validated to be significant. The best casting temperatures for 2 h were 70 and 100 °C among the four tested temperatures (25, 60, 70 and 100 °C). Temperatures did not result in any significant (P ≤ 0.05) differences in any character (color values, TS, water vapor permeability, oxygen transmission, thickness and water activity), except elongation at break. Visually, the CFG had a slightly yellow appearance. The best-to-worst order of film stability in the three tested solvents was oil, distilled water (DW) and ethanol. Its stability in ethanol (0-100%), temperature of DW (30-100 °C) and pH (3-7 in DW) demonstrated inverse relationships with the concentration or different conditions, except for pH 8-10 in DW. All treatments were significantly (P ≤ 0.05) different. CONCLUSION The novel material made from polysaccharides from algae, G. fisheri, was used to improve EF. The edible sachet application is plausible from the EF. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangsadan Boonprab
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Anong Chirapart
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
21
|
Jabeen N, Muddasar M, Menéndez N, Nasiri MA, Gómez CM, Collins MN, Muñoz-Espí R, Cantarero A, Culebras M. Recent advances in ionic thermoelectric systems and theoretical modelling. Chem Sci 2024:d4sc04158e. [PMID: 39211742 PMCID: PMC11348834 DOI: 10.1039/d4sc04158e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Converting waste heat from solar radiation and industrial processes into useable electricity remains a challenge due to limitations of traditional thermoelectrics. Ionic thermoelectric (i-TE) materials offer a compelling alternative to traditional thermoelectrics due to their excellent ionic thermopower, low thermal conductivity, and abundant material options. This review categorizes i-TE materials into thermally diffusive and thermogalvanic types, with an emphasis on the former due to its superior thermopower. This review also highlights the i-TE materials for creating ionic thermoelectric supercapacitors (ITESCs) that can generate significantly higher voltages from low-grade heat sources compared to conventional technologies. Additionally, it explores thermogalvanic cells and combined devices, discussing key optimization parameters and theoretical modeling approaches for maximizing material and device performance. Future directions aim to enhance i-TE material performance and address low energy density challenges for flexible and wearable applications. Herein, the cutting-edge of i-TE materials are comprehensively outlined, empowering researchers to develop next-generation waste heat harvesting technologies for a more sustainable future.
Collapse
Affiliation(s)
- Nazish Jabeen
- Institute of Materials Science (ICMUV), Universitat de València PO Box 22085 E46071 Valencia Spain
| | - Muhammad Muddasar
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick Limerick Ireland
| | - Nicolás Menéndez
- Institute of Materials Science (ICMUV), Universitat de València PO Box 22085 E46071 Valencia Spain
| | - Mohammad Ali Nasiri
- Institute of Molecular Science (ICMol), Universitat de València PO Box 22085 E46071 Valencia Spain
| | - Clara M Gómez
- Institute of Materials Science (ICMUV), Universitat de València PO Box 22085 E46071 Valencia Spain
| | - Maurice N Collins
- Stokes Laboratories, School of Engineering, Bernal Institute, University of Limerick Limerick Ireland
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València PO Box 22085 E46071 Valencia Spain
| | - Andrés Cantarero
- Institute of Molecular Science (ICMol), Universitat de València PO Box 22085 E46071 Valencia Spain
| | - Mario Culebras
- Institute of Materials Science (ICMUV), Universitat de València PO Box 22085 E46071 Valencia Spain
| |
Collapse
|
22
|
Bunoiu OM, Bica I, Anitas EM, Chirigiu LME. Magnetodielectric and Rheological Effects in Magnetorheological Suspensions Based on Lard, Gelatin and Carbonyl Iron Microparticles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3941. [PMID: 39203117 PMCID: PMC11355965 DOI: 10.3390/ma17163941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
This study aims to develop low-cost, eco-friendly, and circular economy-compliant composite materials by creating three types of magnetorheological suspensions (MRSs) utilizing lard, carbonyl iron (CI) microparticles, and varying quantities of gelatin particles (GP). These MRSs serve as dielectric materials in cylindrical cells used to fabricate electric capacitors. The equivalent electrical capacitance (C) of these capacitors is measured under different magnetic flux densities (B≤160 mT) superimposed on a medium-frequency electric field (f = 1 kHz) over a period of 120 s. The results indicate that at high values of B, increasing the GP content to 20 vol.% decreases the capacitance C up to about one order of magnitude compared to MRS without GP. From the measured data, the average values of capacitance Cm are derived, enabling the calculation of relative dielectric permittivities (ϵr') and the dynamic viscosities (η) of the MRSs. It is demonstrated that ϵr' and η can be adjusted by modifying the MRS composition and fine-tuned through the magnetic flux density B. A theoretical model based on the theory of dipolar approximations is used to show that ϵr', η, and the magnetodielectric effect can be coarsely adjusted through the composition of MRSs and finely adjusted through the values B of the magnetic flux density. The ability to fine-tune these properties highlights the versatility of these materials, making them suitable for applications in various industries, including electronics, automotive, and aerospace.
Collapse
Affiliation(s)
- Octavian Madalin Bunoiu
- Department of Physics, West University of Timisoara, V. Parvan Avenue 4, 300223 Timisoara, Romania;
| | - Ioan Bica
- Department of Physics, West University of Timisoara, V. Parvan Avenue 4, 300223 Timisoara, Romania;
- Department of Physics, Craiova University, A. I. Cuza Street 13, 200585 Craiova, Romania
| | - Eugen Mircea Anitas
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia;
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania
| | | |
Collapse
|
23
|
Mozuraityte R, Rodríguez-Turienzo L, Requena R, Slizyte R. Valorisation of salmon backbones: Extraction of gelatine and its applicability in biodegradable films. Heliyon 2024; 10:e34373. [PMID: 39149006 PMCID: PMC11324808 DOI: 10.1016/j.heliyon.2024.e34373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Salmon backbones make up about 10 % of the total fish weight and contain valuable proteins, collagen and lipids that can be used for marine ingredients production. Gelatine is derived from the collagen fraction and this study evaluated how different fractionation and extraction procedures can affect the yield and composition of extracted gelatine. Fractionation by mild thermal treatment of backbones (10 min in 40-42 °C) leads to structural changes of muscle, which improves separation of meat from bones and gives better yield of de-muscled backbone fractionation compared to mechanical meat removal. The highest yield of the gelatine (9.3 ± 0.3g dry gelatine from 100g de-muscled backbone dry material) was obtained from mechanically de-muscled backbones. De-muscled backbones were pre-treated with alkaline (0.04 N NaOH) followed by EDTA and 10 % ethanol for de-calcification and lipid extraction, respectively. Gelatine from pretreated backbones was extracted with 60 °C water. The amount of gelatine amino acids (sum of hydroxyproline, proline and glycine) was 43.4 ± 0.2 % of all amino acids in the gelatine. Extracted backbone gelatines showed film-forming ability. Gelatine films were obtained by casting procedure. Resulted salmon backbone 6 % gelatine and 30 % sorbitol films showed properties (e.g. water vapour permeability, colour difference, transparency value) similar to films obtained with commercial gelatine, indicating the capability of the extracted gelatines for its valorisation as edible coatings or bio-based film layers in packaging.
Collapse
Affiliation(s)
| | | | - Raquel Requena
- IRIS Technology Solutions, Carretera d'Esplugues 39-41, 08940, Cornellá, Spain
| | - Rasa Slizyte
- SINTEF Ocean, Brattørkaia 17C, NO-7010, Trondheim, Norway
| |
Collapse
|
24
|
Derkach SR, Voron'ko NG, Kuchina YA, Kolotova DS, Grokhovsky VA, Nikiforova AA, Sedov IA, Faizullin DA, Zuev YF. Rheological Properties of Fish and Mammalian Gelatin Hydrogels as Bases for Potential Practical Formulations. Gels 2024; 10:486. [PMID: 39195015 DOI: 10.3390/gels10080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogels have the ability to retain large amounts of water within their three-dimensional polymer matrices. These attractive materials are used in medicine and the food industry; they can serve as the basis for structured food products, additives, and various ingredients. Gelatin is one of widely used biopolymers to create hydrogels that exhibit biocompatibility and tunable rheological properties. In this study, we offer a comparative analysis of rheological properties of gelatin-based hydrogels (C = 6.67%), including mammalian gelatins from bovine and porcine skins and fish gelatins from commercial samples and samples extracted from Atlantic cod skin. Mammalian gelatins provide high strength and elasticity to hydrogels. Their melting point lies in the range from 22 to 34 °C. Fish gelatin from cod skin also provides a high strength to hydrogels. Commercial fish gelatin forms weak gels exhibiting low viscoelastic properties and strength, as well as low thermal stability with a melting point of 7 °C. Gelatins were characterized basing on the analysis of amino acid composition, molecular weight distribution, and biopolymer secondary structure in gels. Our research provides a unique rheological comparison of mammalian and fish gelatin hydrogels as a tool for the re-evaluation of fish skin gelatin produced through circular processes.
Collapse
Affiliation(s)
- Svetlana R Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Nikolay G Voron'ko
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Yulia A Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Daria S Kolotova
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Vladimir A Grokhovsky
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk Arctic University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Alena A Nikiforova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
- Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Igor A Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
- Institute of Chemistry, Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Dzhigangir A Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russia
| |
Collapse
|
25
|
Herliana H, Yusuf HY, Laviana A, Wandawa G, Abbas B. In Vitro Hemostatic Activity of Novel Fish Gelatin-Alginate Sponge (FGAS) Prototype. Polymers (Basel) 2024; 16:2047. [PMID: 39065364 PMCID: PMC11280852 DOI: 10.3390/polym16142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
A hemostatic sponge prototype was successfully synthesized from fish gelatin as an alternative to mammalian gelatin; it was mixed with alginate in certain combinations, double cross-linked with calcium ions, and gamma irradiated at a dose of 20 kGy to improve the characteristics and effectiveness of its function as a local hemostatic agent. There were improvements in the physicochemical and mechanical properties, porosity index, absorption capacity, biodegradation properties, biocompatibility, and hemocompatibility of the fish gelatin-alginate sponge (FGAS) prototypes compared with the pure fish gelatin sponge. Hemostatic activity tests showed that the means for clotting time, prothrombin time, and activated partial thromboplastin time were shorter in the FGAS prototype than in the negative control, and there was no significant difference compared with the commercial gelatin sponge. The hemostatic mechanism of the FGAS prototype combined a passive mechanism as a concentrator factor and an active mechanism through the release of calcium ions as a coagulation factor in the coagulation cascade process.
Collapse
Affiliation(s)
- Heri Herliana
- Doctoral Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Harmas Yazid Yusuf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Avi Laviana
- Department of Orthodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung 45124, Indonesia
| | - Ganesha Wandawa
- The Indonesian Naval Dental Institute, Jakarta 10210, Indonesia
| | - Basril Abbas
- Research Center for Radiation Process Technology, National Research and Innovation Agency (NRIA), Jakarta 12440, Indonesia
| |
Collapse
|
26
|
Wang W, Zhao Y, He L, Song Z, Shi C, Jia P, Yu Q, Han L. Cowhide gelatin peptide as a source of antioxidants for inhibiting the deterioration of pudding quality during storage. Food Chem X 2024; 22:101327. [PMID: 38590633 PMCID: PMC10999810 DOI: 10.1016/j.fochx.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
To investigate the effect of gelatin peptide on the inhibition of quality deterioration in stored pudding, gelatin peptide with antioxidant properties was added to pudding products. For this purpose, a pudding recipe containing gelatin peptides was created. The gelatin peptides were characterized based on their antioxidant activity and protein structure. It was found that gelatin peptides had better antioxidant properties, lower thermal stability and crystallinity, higher hydrophobic amino acid content, and greater surface hydrogen bond exposure than commercially available peptides. Properties such as the pH, colony growth, and sensory characteristics of the pudding were characterized at 4 °C and 25 °C. The results showed that the addition of 0.5-1.0 % gelatin peptide to pudding was capable of significantly (P< 0.05) slowing down the decline in pH and sensory scores of the pudding and significantly inhibiting colony growth. It could prolong its storage life by five days at 4 °C and three days at 25 °C.
Collapse
Affiliation(s)
- Wanlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Chaoxue Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pei Jia
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
27
|
Râpă M, Gaidau C, Stefan LM, Lazea-Stoyanova A, Berechet MD, Iosageanu A, Matei E, Jankauskaitė V, Predescu C, Valeika V, Balčiūnaitienė A, Cupara S. Donkey Gelatin and Keratin Nanofibers Loaded with Antioxidant Agents for Wound Healing Dressings. Gels 2024; 10:391. [PMID: 38920937 PMCID: PMC11202978 DOI: 10.3390/gels10060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Carmen Gaidau
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 031251 Bucharest, Romania;
| | - Laura Mihaela Stefan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (L.M.S.); (A.I.)
| | - Andrada Lazea-Stoyanova
- Low Temperature Plasma Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Mariana Daniela Berechet
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 031251 Bucharest, Romania;
| | - Andreea Iosageanu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (L.M.S.); (A.I.)
| | - Ecaterina Matei
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Virginija Jankauskaitė
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 51424 Kaunas, Lithuania;
| | - Cristian Predescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Virgilijus Valeika
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania;
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Snezana Cupara
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
28
|
Ying Q, Zhan S, Yu H, Li J, Jia R, Wei H, Roura E, Tan X, Qiao Z, Huang T. Gelatin based preservation technologies on the quality of food: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38850027 DOI: 10.1080/10408398.2024.2361298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Gelatin has played a great potential in food preservation because of its low price and superior film forming characteristics. This review provides a comprehensive overview of the latest research progress and application of gelatin preservation technologies (film, coating, antifreeze peptide, etc.), discussing their preservation mechanisms and efficiency through the viewpoints of quality and shelf life of animal and aquatic products as well as fruits and vegetables. It showed that bioactive and intelligent gelatin-based films exhibit antibacterial, antioxidant, water resistance and pH responsive properties, making them excellent for food preservation. In addition, pH responsive properties of films also intuitively reflect the freshness of food by color. Similarly, gelatin and its hydrolysate can be widely used in antifreeze peptides to reduce the mass loss of food during freezing and extend the shelf life of frozen food. However, extensive works are still required to extend their commercial application values.
Collapse
Affiliation(s)
- Qingfang Ying
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Haixia Yu
- Ocean Research Centre of Zhoushan, Zhejiang University, Zhoushan, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Ru Jia
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Huamao Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Eugeni Roura
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Xinle Tan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
- Juxiangyuan Health Food (Zhongshan) Co., Ltd, Zhongshan, China
| | - Zhaohui Qiao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Tao Huang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
29
|
Fu X, Hu G, Abker AM, Oh DH, Ma M, Fu X. A Novel Food Bore Protein Hydrogel with Silver Ions for Promoting Burn Wound Healing. Macromol Biosci 2024; 24:e2300520. [PMID: 38412873 DOI: 10.1002/mabi.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Hydrogels have emerged as a promising option for treating local scald wounds due to their unique physical and chemical properties. This study aims to evaluate the efficacy of ovalbumin/gelatin composite hydrogels in repairing deep II-degree scald wounds using a mouse dorsal skin model. Trauma tissues collected at various time points are analyzed for total protein content, hydroxyproline content, histological features, and expression of relevant markers. The results reveal that the hydrogel accelerates the healing process of scalded wounds, which is 17.27% higher than the control group. The hydrogel treatment also effectively prevents wound enlargement and redness of the edges caused by infection during the initial stage of scalding. The total protein and hydroxyproline content of the treated wounds are significantly elevated. Additionally, the hydrogel up-regulates the expression of VEGF (a crucial angiogenic factor) and down-regulates CD68 (a macrophage marker). In summary, this study provides valuable insights into the potential of multifunctional protein-based hydrogels in wound healing.
Collapse
Affiliation(s)
- Xiaowen Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Gan Hu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Adil M Abker
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, 400076, Sudan
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, 200701, South Korea
| | - Meihu Ma
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
30
|
Rubini K, Menichetti A, Cassani MC, Montalti M, Bigi A, Boanini E. The Role of WO 3 Nanoparticles on the Properties of Gelatin Films. Gels 2024; 10:354. [PMID: 38920900 PMCID: PMC11203329 DOI: 10.3390/gels10060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 nanoparticles were loaded on gelatin films at two different pH values, namely, 4 and 7. The values of swelling and solubility of functionalized films displayed a reduction of around 50% in comparison to those of pristine, unloaded films. In agreement, WO3 nanoparticles provoked a significant decrease in water vapor permeability, whereas the decrease in the values of elastic modulus (from about 2.0 to 0.7 MPa) and stress at break (from about 2.5 to 1.4 MPa) can be ascribed to the discontinuity created by the nanoparticles inside the films. The results of differential scanning calorimetry and X-ray diffraction analysis suggest that interaction of PVP with gelatin reduce gelatin renaturation. No significant differences were found between the samples prepared at pH 4 and 7, whereas crosslinking with glutaraldehyde greatly influenced the properties of gelatin films. Moreover, the incorporation of WO3 nanoparticles in gelatin films, especially in the absence of glutaraldehyde, conferred excellent photochromic properties, inducing the appearance of an intense blue color after a few seconds of light irradiation and providing good resistance to several irradiation cycles.
Collapse
Affiliation(s)
- Katia Rubini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
31
|
Park CH, Kim MP. Advanced Triboelectric Applications of Biomass-Derived Materials: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1964. [PMID: 38730775 PMCID: PMC11084935 DOI: 10.3390/ma17091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
The utilization of triboelectric materials has gained considerable attention in recent years, offering a sustainable approach to energy harvesting and sensing technologies. Biomass-derived materials, owing to their abundance, renewability, and biocompatibility, offer promising avenues for enhancing the performance and versatility of triboelectric devices. This paper explores the synthesis and characterization of biomass-derived materials, their integration into triboelectric nanogenerators (TENGs), and their applications in energy harvesting, self-powered sensors, and environmental monitoring. This review presents an overview of the emerging field of advanced triboelectric applications that utilize the unique properties of biomass-derived materials. Additionally, it addresses the challenges and opportunities in employing biomass-derived materials for triboelectric applications, emphasizing the potential for sustainable and eco-friendly energy solutions.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Minsoo P. Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
32
|
Hassan M, Hussain D, Kanwal T, Xiao HM, Ghulam Musharraf S. Methods for detection and quantification of gelatin from different sources. Food Chem 2024; 438:137970. [PMID: 37988934 DOI: 10.1016/j.foodchem.2023.137970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Gelatin is a water-soluble protein obtained from the collagen of various animal origins (porcine, bovine, fish, donkey, horse, and deer hide) and has diverse applications in the food, pharmaceutical, and cosmetics industries. Porcine and bovine gelatins are extensively used in food and non-food products; however, their acceptance is limited due to religious prohibitions, whereas fish gelatin is accepted in all religions. In Southeast Asia, especially in China, gelatin obtained from donkey and deer skins is used in medicines. However, both sources suffer from adulteration (mixing different sources of gelatin) due to their limited availability and high cost. Unclear labeling and limited information about actual gelatin sources in gelatin-containing products cause serious concern among societies for halal and fraud authentication of gelatin sources. Therefore, authenticating gelatin sources in gelatin-based products is challenging due to close similarities between the composition differences and degradation of DNA and protein biomarkers in processed gelatin. Thus, different methods have been proposed to identify and quantify different gelatin sources in pharmaceutical and food products. To the best of our knowledge, this systematic and comprehensive review highlights different authentication techniques and their limitations in gelatin detection and quantification in various commercial products. This review also describes halal authentication and adulteration prevention strategies of various gelatin sources, mainly focussing on research gaps, challenges, and future directions in this research area.
Collapse
Affiliation(s)
- Mahjabeen Hassan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Dilshad Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Tehreem Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hua-Ming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
33
|
He L, Han L, Yu Q, Wang X, Li Y, Han G. High pressure-assisted enzymatic hydrolysis promotes the release of a bi-functional peptide from cowhide gelatin with dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant activities. Food Chem 2024; 435:137546. [PMID: 37748255 DOI: 10.1016/j.foodchem.2023.137546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The process of generating functional peptides from cowhide gelatin is challenged by inefficient enzymatic hydrolysis. In this study, the researchers attempted to enhance the hydrolysis and potential functional properties of the peptides by subjecting the cowhide gelatin to high-pressure treatment (200, 300, and 400 MPa) for 20 min, followed by enzymatic hydrolysis. The highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2' azinobis(3 ethylbenzothiazoline 6 sulfonic acid) (ABTS) radical scavenging activity, and DPP-IV inhibitory activity of the hydrolysate were obtained at 200 MPa, accompanied with an increase in the content of hydrophobic, acidic, and basic amino acids (P < 0.05). Correspondingly, the high-pressure pretreatment (200 MPa) reduced the thermal stability, particle size, and morphological integrity of cowhide gelatin, with a corresponding increase in the exposure of hydrophobic regions. Altogether, these results indicated that appropriate high-pressure-assisted enzymatic hydrolysis reinforced the release of bi-functional peptides by modifying the structure of cowhide gelatin.
Collapse
Affiliation(s)
- Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xinyue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | | |
Collapse
|
34
|
Singh AK. Recent advancements in polysaccharides, proteins and lipids based edible coatings to enhance guava fruit shelf-life: A review. Int J Biol Macromol 2024; 262:129826. [PMID: 38296124 DOI: 10.1016/j.ijbiomac.2024.129826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/13/2024]
Abstract
Fresh fruits are highly needed for the health benefits of human beings because of the presence of high content of natural nutrition in the form of vitamins, minerals, antioxidants, and other phenolic compounds. However, some nutritional fruits such as guava are climacteric in nature with very less post-harvest shelf-life because of the ripening in a very short period and possibility of microbial infections. Thus security of natural nutrients is a serious concern in order to properly utilize guava without generating a huge amount of waste. Among reported various methods for the enhancement of fruits shelf-life, the application of edible coatings with antimicrobial activities on the outer surface of fruits have attracted significant attention because of their eco-friendly nature, easy applicability, high efficacy, and good durability. In recent years, researchers are paying more and more attention in the development of antimicrobial edible coatings to enhance the post-harvest shelf-life of guava using polysaccharides, protein and lipids. In this review, basic approaches and recent advancements in development of antimicrobial and edible coatings on guava fruit by the application of polysaccharides and protein and lipids along with the combination of nanomaterials are summarized. In addition, improvements in basic properties of edible coatings to significantly control the permeation of gases (O2/CO2) by the optimization of coating components as well as delay in ripening process are reviewed and discussed.
Collapse
Affiliation(s)
- Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
35
|
Lv Y, Li P, Cen L, Wen F, Su R, Cai J, Chen J, Su W. Gelatin/carboxymethylcellulose composite film combined with photodynamic antibacterial: New prospect for fruit preservation. Int J Biol Macromol 2024; 257:128643. [PMID: 38061514 DOI: 10.1016/j.ijbiomac.2023.128643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Plastic packaging causes environmental pollution, and the development of simple and effective biodegradable active packaging remains a challenge. In this study, gelatin (G) and sodium carboxymethylcellulose (CMC) were used as film materials, with the addition of curcumin (Cur), a photosensitive substance, to investigate the changes in the physical and chemical properties of the film and its application in fruit preservation. The results demonstrated that Cur was compatible with the film. With the addition of Cur, the thickness of the film increased up to 1.3 times, while the moisture content was reduced to 12.10 %. The tensile strength (TS) and elongation at break (EAB) of the film can reach 8.84 MPa and 19.33 %, respectively. The photodynamic antibacterial experiment revealed that the film containing 0.5 % Cur exhibited the highest antibacterial rate, reaching 99.99 % against Staphylococcus aureus (S. aureus) and 95 % against Escherichia coli (E. coli). During storage, the grapes remained unspoiled for up to 9 days after being phototreated with the film and the microbial content of the skin was much lower than that of the control group. In addition, Cur provided antioxidant activity for the film, with a scavenging activity of 39.54 % against the 2,2-diphenyl-1-picrind radical (DPPH). Bananas exposed to the film-forming solution for a short period of time remained fresh for up to 6 days. During preservation, the weight of the treated bananas decreased more slowly than that of the control group. In addition, the activity of SOD on the 7th day was approximately 20 U/g higher than that of the control group, which helped to reduce oxidative stress during banana preservation. In summary, G-CMC/Cur film is an optional fruit-cling film that can be used in food packaging.
Collapse
Affiliation(s)
- Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
36
|
Asiamah E, Atter A, Ofori H, Akonor P, Nketia S, Koivula H, Lee Y, Agyakwah S. Effect of seasonal variation and farming systems on the properties of Nile tilapia gelatin extracted from scales. Heliyon 2024; 10:e24504. [PMID: 38298630 PMCID: PMC10828093 DOI: 10.1016/j.heliyon.2024.e24504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Although fish gelatin has become a research hotspot in recent years, researchers and manufacturers are still looking for high-quality sources of fish galatin to meet the commercial demand for safer gelatin.became This study aimed to evaluate the impact of seasonal variation and farming systems on the properties of gelatin extracted from Nile tilapia scales. Gelatin extracted from farmed tilapia had lowest impurities, higher clarity as well as desirable color characteristics (L* = 65.95 and a* = -0.33). The protein and fat composition of Wild (91.00 ± 0.00c) and 1.94 ± 0.05a respectively were higher than farmed gelatin of protein (91.00 ± 0.00c) and fat (0.84 ± 0.08b) but gelatin from the farmed type were clearer (98.30 ± 0.28a) than wild type (94.60 ± 0.28b). In addition, the XRD analysis confirmed its amorphous structure (2θ = 11°, 21°. 29°, and 31°). The gelatin extracted from wild tilapia showed an average yield of 1.98 % and good physicochemical and functional properties. Furthermore, FTIR indicated a strong bond positioned in the amide I region (1650.88 cm-1) of the wild tilapia gelatin. Partial Least Square (PLS) confirmed that viscosity is positively correlated with melting temperature upon a unit change in gelatin yield. This work highlights the significance of farming systems and seasonal variation in extraction conditions and great parameter to comprehensively navigate the functional, biochemical, and physical properties of Nile tilapia gelatin for broadening both food and non-food industrial appliactions.
Collapse
Affiliation(s)
| | - Amy Atter
- CSIR-Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Hayford Ofori
- CSIR-Food Research Institute, P. O. Box M20, Accra, Ghana
| | - P.T. Akonor
- CSIR-Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Stephen Nketia
- CSIR-Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Hanna Koivula
- University of Helsinki, Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin katu 2), FI-00014, Helsingin Yliopisto, Finland
| | - Youngsun Lee
- University of Helsinki, Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin katu 2), FI-00014, Helsingin Yliopisto, Finland
| | - Seth Agyakwah
- CSIR-Water Research Institute, P. O. Box AH 38, Achimota, Ghana
| |
Collapse
|
37
|
Prokopová A, Mokrejš P, Gál R, Pavlačková J, Hurajová A. Characterization of Poultry Gelatins Prepared by a Biotechnological Method for Targeted Changes at the Molecular Level. Int J Mol Sci 2024; 25:916. [PMID: 38255989 PMCID: PMC10815914 DOI: 10.3390/ijms25020916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to prepare gelatins with targeted properties for advanced cosmetic, pharmaceutical, medical, or food applications. The present research aims to investigate model samples of chicken gelatins, focusing on: (i) antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-etylbenzotiazolin-6-sulfonic acid (ABTS); (ii) the distribution of molecular weights via gel permeation chromatography with refractometric detection (GPC-RID); (iii) functional groups and the configuration of polypeptide chains related to molecular-level properties using Fourier transform infrared spectroscopy (FTIR); (iv) the microbiological populations on sabouraud dextrose agar (SDA), plate count agar (PCA), tryptic soy agar (TSA), and violet red bile lactose (VRBL) using the matrix-assisted laser desorption ionization (MALDI) method. Antioxidant activity towards ABTS radicals was more than 80%; activity towards DPPH radicals was more than 69%. The molecular weights of all gelatin samples showed typical α-, β-, and γ-chains. FTIR analysis confirmed that chicken gelatins all contain typical vibrational regions for collagen cleavage products, Amides A and B, and Amides I, II, and III, at characteristic wavenumbers. A microbiological analysis of the prepared samples showed no undesirable bacteria that would limit advanced applications of the prepared products. Chicken gelatins represent a promising alternative to products made from standard collagen tissues of terrestrial animals.
Collapse
Affiliation(s)
- Aneta Prokopová
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Anna Hurajová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| |
Collapse
|
38
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|
39
|
Zhang W, Hedayati S, Tarahi M, Can Karaca A, Hadidi M, Assadpour E, Jafari SM. Advances in transglutaminase cross-linked protein-based food packaging films; a review. Int J Biol Macromol 2023; 253:127399. [PMID: 37827415 DOI: 10.1016/j.ijbiomac.2023.127399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Pushed by the environmental pollution and health hazards of plastic packaging, the development of biodegradable food packaging films (FPFs) is a necessary and sustainable trend for social development. Most protein molecules have excellent film-forming properties as natural polymer matrices, and the assembled films have excellent barrier properties, but show defects such as low water resistance and poor mechanical properties. In order to improve the performance of protein-based films, transglutaminase (TG) is used as a safe and green cross-linking (CL) agent. This work covers recent developments on TG cross-linked protein-based FPFs, mainly comprising proteins of animal and plant origin, including gelatin, whey protein, zein, soy proteins, bitter vetch protein, etc. The chemical properties and reaction mechanism of TG are briefly introduced, focusing on the effects of TG CL on the physicochemical properties of different protein-based FPFs, including barrier properties, water resistance, mechanical properties and thermal stability. It is concluded that the addition of TG can significantly improve the physical and mechanical properties of protein-based films, mainly improving their water resistance, barrier, mechanical and thermal properties. It is worth noting that the effect of TG on the properties of protein-based films is not only related to the concentration of TG added, but also related to CL temperature and other factors. Moreover, TG can also be used in combination with other strategies to improve the properties of protein-based films.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
40
|
Zuev YF, Derkach SR, Bogdanova LR, Voron’ko NG, Kuchina YA, Gubaidullin AT, Lunev IV, Gnezdilov OI, Sedov IA, Larionov RA, Latypova L, Zueva OS. Underused Marine Resources: Sudden Properties of Cod Skin Gelatin Gel. Gels 2023; 9:990. [PMID: 38131976 PMCID: PMC10742947 DOI: 10.3390/gels9120990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The main object of this work was to characterize the structure and properties of laboratory-made fish gelatin from cod skin in comparison with known commercial gelatins of fish and mammalian origin. This is one way we can contribute to the World Food Program and characterize foodstuff resources from alternative natural sources. Our research was based on the combination of an expanded set of complementary physical-chemical methods to study the similarities and distinctions of hydrogels from traditional and novel gelatin sources from underused marine resources. In this work, we have compared the morphology, supramolecular structure and colloid properties of two commercial (mammalian and fish) gelatins with gelatin we extracted from cold-water cod skin in laboratory conditions. The obtained results are novel, showing that our laboratory-produced fish gelatin is much closer to the mammalian one in terms of such parameters as thermal stability and strength of structural network under temperature alterations. Especially interesting are our experimental observations comparing both fish gelatins: it was shown that the laboratory-extracted cod gelatin is essentially more thermally stable compared to its commercial analogue, being even closer in its rheological properties to the mammalian one.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Nikolai G. Voron’ko
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Yulia A. Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Aidar T. Gubaidullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ivan V. Lunev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Oleg I. Gnezdilov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Igor A. Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Radik A. Larionov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia;
| |
Collapse
|
41
|
Wang S, Rao W, Hou C, Suleman R, Zhang Z, Chai X, Tian H. Development of Plastic/Gelatin Bilayer Active Packaging Film with Antibacterial and Water-Absorbing Functions for Lamb Preservation. Food Sci Anim Resour 2023; 43:1128-1149. [PMID: 37969331 PMCID: PMC10636216 DOI: 10.5851/kosfa.2023.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 11/17/2023] Open
Abstract
In order to extend the shelf life of refrigerating raw lamb by inhibiting the growth of microorganisms, preventing the oxidation of fat and protein, and absorbing the juice outflow of lamb during storage, an active packaging system based on plastic/gelatin bilayer film with essential oil was developed in this study. Three kinds of petroleum-derived plastic films, oriented polypropylene (OPP), polyethylene terephthalate, and polyethylene, were coated with gelatin to make bilayer films for lamb preservation. The results showed significant improvement in the mechanical properties, oxygen, moisture, and light barriers of the bilayer films compared to the gelatin film. The OPP/gelatin bilayer film was selected for further experiments because of its highest acceptance by panelists. If the amount of juice outflow was less than 350% of the mass of the gelatin layer, it was difficult for the gelatin film to separate from lamb. With the increase in essential oil concentration, the water absorption capacity decreased. The OPP/gelatin bilayer films with 20% mustard or 10% oregano essential oils inhibited the growth of bacteria in lamb and displayed better mechanical properties. Essential oil decreased the brightness and light transmittance of the bilayer films and made the film yellow. In conclusion, our results suggested that the active packaging system based on OPP/gelatin bilayer film was more suitable for raw lamb preservation than single-layer gelatin film or petroleum-derived plastic film, but need further study, including minimizing the amount of essential oil, enhancing the mechanical strength of the gelatin film after water absorption.
Collapse
Affiliation(s)
- Shijing Wang
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Weili Rao
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Chengli Hou
- Institute of Food Science and Technology,
Chinese Academy of Agricultural Sciences, National Risk Assessment
Laboratory of Agro-Products Processing Quality and Safety, Ministry of
Agriculture and Rural Affairs, Beijing 100193, China
| | - Raheel Suleman
- Department of Food Science and Technology,
Faculty of Food Science and Nutrition, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | - Zhisheng Zhang
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Xiaoyu Chai
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| | - Hanxue Tian
- College of Food Science and Technology,
Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
42
|
Grasso F, Méndez-Paz D, Vázquez Sobrado R, Orlandi V, Turrini F, De Negri Atanasio G, Grasselli E, Tiso M, Boggia R. Feasibility of Enzymatic Protein Extraction from a Dehydrated Fish Biomass Obtained from Unsorted Canned Yellowfin Tuna Side Streams: Part I. Gels 2023; 9:760. [PMID: 37754441 PMCID: PMC10531079 DOI: 10.3390/gels9090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This study presents for the first time a scalable process for the extraction of valuable proteins starting from samples of unsorted mixed tuna scraps which were previously dehydrated by an industrial patented process. The aims of this work were both to avoid the onerous sorting step of tuna leftovers, which generally consists of isolating skin and bones for collagen/gelatin extraction, and to improve the logistic of managing highly perishable biomass thanks to the reduction in its volume and to its microbiological stabilization. In view of a zero-waste economy, all the protein fractions (namely, non-collagenous proteins NCs and ALKs, gelatin, and hydrolyzed gelatin peptides, HGPs) isolated in the proposed single cascade flowchart were stabilized and preliminarily characterized. The extraction flowchart proposed allows one to obtain the following most promising compounds: 1.7 g of gelatin, 3.2 g of HGPs, and 14.6 g of NCs per 100 g of dehydrated starting material. A focus on oven-dried gelatin was reported in terms of proximate analysis, amino acid composition, color parameters, FT-IR spectrum, pH, and viscoelastic properties (5 mPa·s of viscosity and 14.3 °C of gelling temperature). All the obtained extracts are intended to be exploited in food supplements, feed, fertilizers/plant bio-stimulants, packaging, and the cosmetic industry.
Collapse
Affiliation(s)
- Federica Grasso
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Diego Méndez-Paz
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (D.M.-P.); (R.V.S.)
| | - Rebeca Vázquez Sobrado
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (D.M.-P.); (R.V.S.)
| | - Valentina Orlandi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Federica Turrini
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy;
| | - Giulia De Negri Atanasio
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Elena Grasselli
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy;
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Micaela Tiso
- MICAMO LAB, Via XX Settembre 33/10, 16121 Genova, Italy;
| | - Raffaella Boggia
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
43
|
Wang M, Li YC, Meng FB, Wang Q, Wang ZW, Liu DY. Effect of honeysuckle leaf extract on the physicochemical properties of carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film. Food Chem X 2023; 18:100675. [PMID: 37122553 PMCID: PMC10130771 DOI: 10.1016/j.fochx.2023.100675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Honeysuckle leaves are rich in bioactive ingredients, but often considered as agro-wastes. In this study, honeysuckle leaf extract (HLE) was added to the carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film (CMKH). Compared to films without HLE addition (CMK), the water vapor barrier properties of CMKH slightly decreased, but the transmittance of the CMKH films in UV region (200-400 nm) as low as zero. The elongation at break of CMKH film was 1.39 ∼ 1.5 fold higher than those of CMK films. The DPPH and ABTS scavenging activity of CMKH-Ⅱ was 85.75% and 90.93%, respectively, which is similar to the equivalent content of Vc. The inhibition rate of CMKH-Ⅰ and CMKH-Ⅱ against Escherichia coli and Listeria monocytogenes were close to 90%, and the inhibition rate against Staphylococcus aureus were up to 96%. The results emphasized that the composite film containing 25% (v/v) HLE has potential application value in food preservation.
Collapse
Affiliation(s)
- Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
- Corresponding author at: College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Road, Chengdu, China.
| | - Qiao Wang
- Sichuan Institute of Food Inspection, Chengdu 610097, PR China
| | - Zheng-Wu Wang
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
44
|
Kolotova DS, Borovinskaya EV, Bordiyan VV, Zuev YF, Salnikov VV, Zueva OS, Derkach SR. Phase Behavior of Aqueous Mixtures of Sodium Alginate with Fish Gelatin: Effects of pH and Ionic Strength. Polymers (Basel) 2023; 15:polym15102253. [PMID: 37242828 DOI: 10.3390/polym15102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The phase behavior of aqueous mixtures of fish gelatin (FG) and sodium alginate (SA) and complex coacervation phenomena depending on pH, ionic strength, and cation type (Na+, Ca2+) were studied by turbidimetric acid titration, UV spectrophotometry, dynamic light scattering, transmission electron microscopy and scanning electron microscopy for different mass ratios of sodium alginate and gelatin (Z = 0.01-1.00). The boundary pH values determining the formation and dissociation of SA-FG complexes were measured, and we found that the formation of soluble SA-FG complexes occurs in the transition from neutral (pHc) to acidic (pHφ1) conditions. Insoluble complexes formed below pHφ1 separate into distinct phases, and the phenomenon of complex coacervation is thus observed. Formation of the highest number of insoluble SA-FG complexes, based on the value of the absorption maximum, is observed at рHopt and results from strong electrostatic interactions. Then, visible aggregation occurs, and dissociation of the complexes is observed when the next boundary, pHφ2, is reached. As Z increases in the range of SA-FG mass ratios from 0.01 to 1.00, the boundary values of рНc, рHφ1, рHopt, and рHφ2 become more acidic, shifting from 7.0 to 4.6, from 6.8 to 4.3, from 6.6 to 2.8, and from 6.0 to 2.7, respectively. An increase in ionic strength leads to suppression of the electrostatic interaction between the FG and SA molecules, and no complex coacervation is observed at NaCl and CaCl2 concentrations of 50 to 200 mM.
Collapse
Affiliation(s)
- Daria S Kolotova
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Ekaterina V Borovinskaya
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Vlada V Bordiyan
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
- A. Butlerov Chemical Institute, Kazan Federal University, Kazan 420008, Russia
| | - Vadim V Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
| | - Olga S Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, Kazan 420066, Russia
| | - Svetlana R Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| |
Collapse
|
45
|
Perța-Crișan S, Ursachi CȘ, Chereji BD, Tolan I, Munteanu FD. Food-Grade Oleogels: Trends in Analysis, Characterization, and Applicability. Gels 2023; 9:gels9050386. [PMID: 37232978 DOI: 10.3390/gels9050386] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Currently, a large number of scientific articles can be found in the research literature in the field focusing on the use of oleogels for food formulation to improve their nutritional properties. The present review focuses on the most representative food-grade oleogels, highlighting current trends in terms of the most suitable methods of analysis and characterization, as well as trends in their application as substitutes for saturated and trans fats in foods. For this purpose, the physicochemical properties, structure, and composition of some oleogelators are primarily discussed, along with the adequacy of oleogel incorporation for use in edible products. Analysis and characterization of oleogels by different methods are important in the formulation of innovative foods, and therefore, this review discusses the most recent published results regarding their microstructure, rheological and textural properties, and oxidative stability. Last but not least, issues related to the sensory properties of oleogel-based foods are discussed, highlighting also the consumer acceptability of some of them.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Claudiu-Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Bianca-Denisa Chereji
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Iolanda Tolan
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania
| |
Collapse
|
46
|
Yang Z, Li C, Wang T, Li Z, Zou X, Huang X, Zhai X, Shi J, Shen T, Gong Y, Holmes M, Povey M. Novel gellan gum-based probiotic film with enhanced biological activity and probiotic viability: Application for fresh-cut apples and potatoes. Int J Biol Macromol 2023; 239:124128. [PMID: 36963535 DOI: 10.1016/j.ijbiomac.2023.124128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
A novel probiotic film based on gellan gum (GN), cranberry extract (CE), and Lactococcus lactis (LA) was developed in the present study. The fluorescence and SEM image results showed that GN/CE film containing LA was successfully fabricated. The incorporation of LA significantly enhanced the antibacterial activity of the film. The presence of CE strengthened the antioxidant activity and LA survivability in the film. The combination of LA (0-1.0 %) and CE (0.5-1.0 %) improved the mechanical property of the film through the formation of density structure. The best comprehensive properties were obtained with the film containing 2.0 %LA and 0.5 %CE. The GN/2.0 %LA/0.5 %CE film also showed the optimal preservation effect on fresh-cut potatoes and apples. Hence, GN/2.0 %LA/0.5 %CE probiotic film has proved to be suitable for fruit and vegetable preservation.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chuang Li
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Wang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
47
|
Zhu J, Liu X, Xu J, Deng Y, Wang P, Liu Z, Yang Q, Li D, Yu T, Zhu D. A versatile vessel casting method for fine mapping of vascular networks using a hydrogel-based lipophilic dye solution. CELL REPORTS METHODS 2023; 3:100407. [PMID: 36936073 PMCID: PMC10014313 DOI: 10.1016/j.crmeth.2023.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/11/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Efficient labeling of the vasculature is important for understanding the organization of vascular networks. Here, we propose VALID, a vessel-labeling method that enables visualization of vascular networks with tissue clearing and light-sheet microscopy. VALID transforms traditional lipophilic dye solution into hydrogel by introducing gelatin and restrains the dye aggregation, resulting in complete and uniform vessel-labeling patterns with high signal-to-background ratios. VALID also enhances the compatibility of lipophilic dyes with solvent-based tissue-clearing protocols, which was hard to achieve previously. Using VALID, we combined lipophilic dyes with solvent-based tissue-clearing techniques to perform 3D reconstructions of vasculature within mouse brain and spinal cord. We also employed VALID for 3D visualization and quantification of microvascular damage in a middle cerebral artery occlusion mouse model. VALID should provide a simple, cost-effective vessel-labeling protocol that would significantly widen the applications of lipophilic dyes in research on cerebrovascular complications.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Pingfu Wang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
48
|
Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023; 12:foods12030456. [PMID: 36765983 PMCID: PMC9914485 DOI: 10.3390/foods12030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Research on the utilization of food waste and by-products, such as peels, pomace, and seeds has increased in recent years. The high number of valuable compounds, such as starch, protein, and bioactive materials in waste and by-products from food manufacturing industries creates opportunities for the food packaging industry. These opportunities include the development of biodegradable plastics, functional compounds, active and intelligent packaging materials. However, the practicality, adaptability and relevance of up-scaling this lab-based research into an industrial scale are yet to be thoroughly examined. Therefore, in this review, recent research on the development of active and intelligent packaging materials, their applications on seafood and meat products, consumer acceptance, and recommendations to improve commercialization of these products were critically overviewed. This work addresses the challenges and potential in commercializing food waste and by-products for the food packaging industry. This information could be used as a guide for research on reducing food loss and waste while satisfying industrial demands.
Collapse
|
49
|
Rather JA, Yousuf S, Ashraf QS, Mir SA, Makroo HA, Majid D, Barba FJ, Dar B. Nutritional and bioactive composition, nutraceutical potential, food and packaging applications of Cydonia oblonga and its byproducts: A review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|