1
|
Jiang Z, Liu D, Li T, Gai C, Xin D, Zhao Y, Song Y, Cheng Y, Li T, Wang Z. Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2. Neural Regen Res 2025; 20:1776-1788. [PMID: 39104115 PMCID: PMC11688542 DOI: 10.4103/nrr.nrr-d-23-01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00028/figure1/v/2024-08-05T133530Z/r/image-tiff The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS (a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2 inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2, suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
Collapse
Affiliation(s)
- Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tong Li
- Department of Neurosurgery Surgery, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Orozco-Hernández JM, Horteales-Velázquez J, Gómez-Oliván LM, SanJuan-Reyes N, Rosales-Pérez KE, SanJuan-Reyes S, Sánchez Aceves LM, Onofre-Camarena DB, Diaz MH, Hernández-Varela JD, Chanona-Pérez JJ, Quiroz-Fabela EJ. Behavioral alterations in adult zebrafish induced by venlafaxine: correlation with oxidative stress, gene expression, and brain histopathological damage. ENVIRONMENTAL RESEARCH 2025; 276:121550. [PMID: 40189008 DOI: 10.1016/j.envres.2025.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Venlafaxine (VEN), a selective serotonin and norepinephrine reuptake inhibitor (SNRI), is clinically used to treat affective disorders, including depression, generalized anxiety disorder, panic disorder, and social phobia. Environmental contamination by this pharmaceutical compound is attributed to its discharge via direct and indirect routes. Its persistence and potential toxicological effects are a rare case of study when VEN is analyzed in aquatic organisms. This study presents the potential adverse effects that environmental concentrations of VEN (500, 1000, and 1500 ng/L) have on adult specimens of Danio rerio following short-term exposure (96 h). VEN toxicity was assessed through two behavioral tests (the Novel Tank and Dark and Light test) and the acetylcholinesterase biochemical marker. Also, oxidative stress, gene expression, and histopathological damage were analyzed. Clearly, VEN induced significant alterations in the behavioral profile, manifesting in notable changes in the time spent in the upper and lower zones, freezing episodes, total distance traveled, frequency of transitions, preference for the dark zone (1500 ng/L), light zone (500, 1000 ng/L) in the dark-light test. After the histopathological analysis, it was found that the brain exhibited greater vulnerability to the effects of VEN concerning the eyes and gills. Thus, gene expression analysis revealed the upregulation of key antioxidant-related genes, including bax, bcl2, p53, nrf1a, nfe2l2a, and casp-3. These findings provide robust evidence for the induction of oxidative stress and its associated molecular pathways in different organs of zebrafish following acute VEN exposure. Finally, these findings demonstrate that VEN significantly compromised brain function. This cerebral damage was characterized by behavioral alterations, inhibition of acetylcholinesterase activity, induction of oxidative stress, dysregulation of antioxidant and apoptotic gene expression, and histopathological lesions that represent a clear example of neurotoxicity effects induced by antidepressants in aquatic systems.
Collapse
Affiliation(s)
- José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Jonathan Horteales-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico.
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Sindy SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Livier M Sánchez Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Diana Belén Onofre-Camarena
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Misael Hernández Diaz
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Eduardo Javier Quiroz-Fabela
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
3
|
Deng Q, Parker E, Duan R, Yang L. Preconditioning and Posttreatment Strategies in Neonatal Hypoxic-Ischemic Encephalopathy: Recent Advances and Clinical Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04896-4. [PMID: 40178781 DOI: 10.1007/s12035-025-04896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by impaired cerebral blood flow and brain hypoxia, resulting in high morbidity and mortality rates. While therapeutic hypothermia remains the standard treatment and has been shown to reduce mortality to some extent, its therapeutic efficacy is limited, and it applies only to a select group of neonates who meet stringent inclusion criteria. Advances in our understanding of the pathophysiology of HIE have led to the identification of several promising neuroprotective strategies designed to mitigate or prevent the neurological damage induced by hypoxia-ischemia. Among these, preconditioning has emerged as a potent neuroprotective approach, enhancing cellular resilience to subsequent injury and potentially reducing treatment complexity and healthcare costs. Preconditioning/pretreatment and posttreatment offer significant promise in attenuating the neurological damage associated with HIE. Thus, exploring early intervention strategies for neonatal HIE, focusing on the comparative mechanisms and therapeutic targets of preconditioning and postconditioning, is critical to developing more effective treatment modalities. This review summarizes the current understanding of the pathophysiological mechanisms underlying neonatal HIE and its prevention and treatment strategies, providing new perspectives and a theoretical foundation for future neuroprotective interventions.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, GD, China
| | - Emily Parker
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, GD, China.
| |
Collapse
|
4
|
More J, Finkelstein JP, Valdés JL, Hidalgo C, Bull R. Aging Favors Calcium Activation of Ryanodine Receptor Channels from Brain Cortices and Hippocampi and Hinders Learning and Memory in Male Rats. Int J Mol Sci 2025; 26:2101. [PMID: 40076722 PMCID: PMC11900941 DOI: 10.3390/ijms26052101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The response of ryanodine receptor (RyR) channels to increases in free cytoplasmic calcium concentration ([Ca2+]) is tuned by several mechanisms, including redox signaling. Three different responses to [Ca2+] have been described in RyR channels, low, moderate and high activity responses, which depend on the RyR channel protein oxidation state. Thus, reduced RyR channels display the low activity response, whereas partially oxidized channels display the moderate response and more oxidized channels, the high activity response. As described here, RyR channels from rat brain cortices or hippocampi displayed aged-related marked changes in the distribution of these channel responses; RyR channels from aged rats displayed reduced fraction of low activity channels and increased fraction of high activity channels, which would favor Ca2+-induced Ca2+ release. In addition, compared with young rats, aged rats displayed learning and memory defects, with lower hit rates when tested in the Oasis maze, a dry version of the Morris water maze. Previous oral administration of N-acetylcysteine for 3 weeks prevented both the age-dependent effects on RyR channel activation by [Ca2+], and the learning and memory defects. Based on these results, it is proposed that redox-sensitive neuronal RyR channels partake in the mechanism underlying the learning and memory disruptions displayed by aged rats.
Collapse
Affiliation(s)
- Jamileth More
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile;
| | - José Pablo Finkelstein
- Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8380453, Chile;
| | - José Luis Valdés
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago 8380453, Chile;
| | - Cecilia Hidalgo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Ricardo Bull
- Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8380453, Chile;
| |
Collapse
|
5
|
Pu X, Lu C, Yang X, He H, Chen X, Wang R, Li B, Chen S, Zhang Y, Wang W, Li Y. Unveiling the hepatoprotective mechanisms of Desmodium heterocarpon (L.) DC: Novel flavonoid identification and Keap1/Nrf2 pathway activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156323. [PMID: 39706064 DOI: 10.1016/j.phymed.2024.156323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The pathophysiology of liver diseases is significantly influenced by oxidative stress, making its alleviation a key strategy for treatment. The Keap1/Nrf2 signaling pathway is the body's most crucial antioxidant defense mechanism. Traditional Chinese medicine, Desmodium heterocarpon (L.) DC, has shown promising hepatoprotective effects, however, the specific active components and underlying mechanisms of its liver-protective properties remain inadequately understood. Further investigation into the bioactive constituents and mechanisms of its hepatoprotective action is therefore essential. OBJECTIVE This study aims to identify the active ingredients in D. heterocarpon and to explore its hepatoprotective properties and underlying mechanisms. METHODS The hepatoprotective activity of the ethyl acetate fraction (JEAE) from D. heterocarpon was first evaluated utilizing a mouse model of acute liver damage (ALI) caused by CCl4. Molecular and histological analyses, including H&E staining, ELISA, and Western blot, were used to assess liver protection. The chemical constituents of JEAE were further identified using UPLC-MS/MS, and the molecular network of the JEAE fraction was analyzed. Compounds were isolated through column chromatography, and their antioxidant and hepatoprotective effects were assessed in an H₂O₂-induced HepG2 cell model using molecular assays. Additionally, binding interactions between active compounds and Keap1 were evaluated using molecular docking, molecular dynamics simulations, and surface plasmon resonance. RESULTS The ethyl acetate fraction of Desmodium heterocarpon (JEAE) showed remarkable antioxidant activity, with the highest flavonoid contents among extract fractions. In CCl₄-induced liver injury models, JEAE improved liver function, reduced ALT and AST levels, and enhanced antioxidant enzyme activities, suggesting hepatoprotective effects via the Keap1/Nrf2 pathway. 47 compounds were identified in JEAE, and fourteen flavonoids, including two novel compounds (1 and 2), were isolated from the JEAE fraction. Compounds 1, 3, 5, 8, and 14 notably protected HepG2 cells from oxidative damage, reduced ROS levels, and maintained mitochondrial function. These compounds also showed strong binding affinities to Keap1 and other antioxidant receptors, with molecular dynamics simulations confirming their stability and binding potential as effective hepatoprotective agents. CONCLUSION This study demonstrates that the ethyl acetate fraction of Desmodium heterocarpon (JEAE) exhibits significant hepatoprotective effects, largely attributed to its flavonoid-rich composition. The protective effects are mediated through antioxidant pathways, particularly the Keap1/Nrf2 signaling pathway. Newly identified isoflavanes and other flavonoids in JEAE show strong potential as bioactive compounds, with stability and binding affinities supporting their role in reducing oxidative stress. These findings suggest D. heterocarpon as a promising source of hepatoprotective agents and provide a foundation for further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- XingNa Pu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Cheng Lu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xing Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HongPing He
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingLong Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - RuiRui Wang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - BaoJing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shuai Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - WeiGuang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - YanPing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
6
|
Lear CA, Dhillon SK, Nakao M, Lear BA, Georgieva A, Ugwumadu A, Stone PR, Bennet L, Gunn AJ. The peripheral chemoreflex and fetal defenses against intrapartum hypoxic-ischemic brain injury at term gestation. Semin Fetal Neonatal Med 2024; 29:101543. [PMID: 39455374 DOI: 10.1016/j.siny.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Fetal hypoxemia is ubiquitous during labor and, when severe, is associated with perinatal death and long-term neurodevelopmental disability. Adverse outcomes are highly associated with barriers to care, such that developing countries have a disproportionate burden of perinatal injury. The prevalence of hypoxemia and its link to injury can be obscure, simply because the healthy fetus has robust coordinated defense mechanisms, spearheaded by the peripheral chemoreflex, such that hypoxemia only becomes apparent in the minority of cases associated with stillbirth, severe metabolic acidemia or adverse neurodevelopmental outcomes. This represents only the extreme end of the spectrum, when defense mechanisms have failed due to severe/prolonged hypoxemia, or the fetal defenses are compromised by additional risk factors. Understanding the fetal defenses to hypoxemia and when the fetus begins to decompensate is crucial to understanding perinatal health and disease, by linking antenatal health, intrapartum events, the neonatal trajectory and ultimately life-long neurodevelopmental health.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand.
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Masahiro Nakao
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
7
|
Kletkiewicz H, Wojciechowski MS, Rogalska J. Cannabidiol effectively prevents oxidative stress and stabilizes hypoxia-inducible factor-1 alpha (HIF-1α) in an animal model of global hypoxia. Sci Rep 2024; 14:15952. [PMID: 38987284 PMCID: PMC11237132 DOI: 10.1038/s41598-024-66599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant. As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses. We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland.
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
8
|
Morris RH, Counsell SJ, McGonnell IM, Thornton C. Exposure to urban particulate matter (UPM) impairs mitochondrial dynamics in BV2 cells, triggering a mitochondrial biogenesis response. J Physiol 2024; 602:2737-2750. [PMID: 38795332 DOI: 10.1113/jp285978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/06/2024] [Indexed: 05/27/2024] Open
Abstract
World Health Organisation data suggest that up to 99% of the global population are exposed to air pollutants above recommended levels. Impacts to health range from increased risk of stroke and cardiovascular disease to chronic respiratory conditions, and air pollution may contribute to over 7 million premature deaths a year. Additionally, mounting evidence suggests that in utero or early life exposure to particulate matter (PM) in ambient air pollution increases the risk of neurodevelopmental impairment with obvious lifelong consequences. Identifying brain-specific cellular targets of PM is vital for determining its long-term consequences. We previously established that microglial-like BV2 cells were particularly sensitive to urban (U)PM-induced damage including reactive oxygen species production, which was abrogated by a mitochondrially targeted antioxidant. Here we extend those studies to find that UPM treatment causes a rapid impairment of mitochondrial function and increased mitochondrial fragmentation. However, there is a subsequent restoration of mitochondrial and therefore cell health occurring concomitantly with upregulated measures of mitochondrial biogenesis and mitochondrial load. Our data highlight that protecting mitochondrial function may represent a valuable mechanism to offset the effects of UPM exposure in the neonatal brain. KEY POINTS: Air pollution represents a growing risk to long-term health especially in early life, and the CNS is emerging a target for airborne particulate matter (PM). We previously showed that microglial-like BV2 cells were vulnerable to urban (U)PM exposure, which impaired cell survival and promoted reactive oxygen species production. Here we find that, following UPM exposure, BV2 mitochondrial membrane potential is rapidly reduced, concomitant with decreased cellular bioenergetics and increased mitochondrial fission. However, markers of mitochondrial biogenesis and mitochondrial mass are subsequently induced, which may represent a cellular mitigation strategy. As mitochondria are more vulnerable in the developing brain, exposure to air pollution may represent a greater risk to lifelong health in this cohort; conversely, promoting mitochondrial integrity may offset these risks.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Curel CJM, Nobeli I, Thornton C. Leflunomide Treatment Does Not Protect Neural Cells following Oxygen-Glucose Deprivation (OGD) In Vitro. Cells 2024; 13:631. [PMID: 38607070 PMCID: PMC11011260 DOI: 10.3390/cells13070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Neonatal hypoxia-ischemia (HI) affects 2-3 per 1000 live births in developed countries and up to 26 per 1000 live births in developing countries. It is estimated that of the 750,000 infants experiencing a hypoxic-ischemic event during birth per year, more than 400,000 will be severely affected. As treatment options are limited, rapidly identifying new therapeutic avenues is critical, and repurposing drugs already in clinical use offers a fast-track route to clinic. One emerging avenue for therapeutic intervention in neonatal HI is to target mitochondrial dysfunction, which occurs early in the development of brain injury. Mitochondrial dynamics are particularly affected, with mitochondrial fragmentation occurring at the expense of the pro-fusion protein Optic Atrophy (OPA)1. OPA1, together with mitofusins (MFN)1/2, are required for membrane fusion, and therefore, protecting their function may also safeguard mitochondrial dynamics. Leflunomide, an FDA-approved immunosuppressant, was recently identified as an activator of MFN2 with partial effects on OPA1 expression. We, therefore, treated C17.2 cells with Leflunomide before or after oxygen-glucose deprivation, an in vitro mimic of HI, to determine its efficacy as a neuroprotection and inhibitor of mitochondrial dysfunction. Leflunomide increased baseline OPA1 but not MFN2 expression in C17.2 cells. However, Leflunomide was unable to promote cell survival following OGD. Equally, there was no obvious effect on mitochondrial morphology or bioenergetics. These data align with studies suggesting that the tissue and mitochondrial protein profile of the target cell/tissue are critical for taking advantage of the therapeutic actions of Leflunomide.
Collapse
Affiliation(s)
- Claire J. M. Curel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Irene Nobeli
- School of Natural Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London WC1E 7HX, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
10
|
Jiang Z, Wang W, Zhao Y, Li T, Xin D, Gai C, Liu D, Wang Z. Mitochondria-targeted cerium vanadate nanozyme suppressed hypoxia-ischemia injury in neonatal mice via intranasal administration. J Control Release 2024; 365:1074-1088. [PMID: 38101752 DOI: 10.1016/j.jconrel.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Oxidative stress is a major obstacle for neurological functional recovery after hypoxia-ischemia (HI) brain damage. Nanozymes with robust anti-oxidative stress properties offer a therapeutic option for HI injury. However, insufficiency of nanozyme accumulation in the HI brain by noninvasive administration hinders their application. Herein, we reported a cerium vanadate (CeVO4) nanozyme to realize a noninvasive therapy for HI brain in neonatal mice by targeting brain neuron mitochondria. CeVO4 nanozyme with superoxide dismutase activity mainly co-located with neuronal mitochondria 1 h after administration. Pre- and post-HI administrations of CeVO4 nanozyme were able to attenuate acute brain injury, by inhibiting caspase-3 activation, microglia activation, and proinflammation cytokine production in the lesioned cortex 2 d after HI injury. Moreover, CeVO4 nanozyme administration led to short- and long-term functional recovery following HI insult without any potential toxicities in peripheral organs of mice even after prolonged delivery for 4 weeks. These beneficial effects of CeVO4 nanozyme were associated with suppressed oxidative stress and up-regulated nuclear factor erythroid-2-related factor 2 (Nrf2) expression. Finally, we found that Nrf2 inhibition with ML385 abolished the protective effects of CeVO4 nanozyme on HI injury. Collectively, this strategy may provide an applicative perspective for CeVO4 nanozyme therapy in HI brain damage via noninvasive delivery.
Collapse
Affiliation(s)
- Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, PR China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
11
|
Singla M, Verma S, Thakur K, Goyal A, Sharma V, Sharma D, Porwal O, Subramaniyan V, Behl T, Singh SK, Dua K, Gupta G, Gupta S. From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions. Curr Med Chem 2024; 31:6855-6870. [PMID: 37921179 DOI: 10.2174/0109298673250784231011094322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Smriti Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ahsas Goyal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, U.P., India
| | - Vishal Sharma
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diksha Sharma
- Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Tapan Behl
- Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies, Dehradun, Uttarakhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, the University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
12
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
13
|
Wang Y, Zhu J, Zou N, Zhang L, Wang Y, Zhang M, Wang C, Yang L. Pathogenesis from the microbial-gut-brain axis in white matter injury in preterm infants: A review. Front Integr Neurosci 2023; 17:1051689. [PMID: 37006416 PMCID: PMC10060642 DOI: 10.3389/fnint.2023.1051689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
White matter injury (WMI) in premature infants is a unique form of brain injury and a common cause of chronic nervous system conditions such as cerebral palsy and neurobehavioral disorders. Very preterm infants who survive are at high risk of WMI. With developing research regarding the pathogenesis of premature WMI, the role of gut microbiota has attracted increasing attention in this field. As premature infants are a special group, early microbial colonization of the microbiome can affect brain development, and microbiome optimization can improve outcomes regarding nervous system development. As an important communication medium between the gut and the nervous system, intestinal microbes form a microbial-gut-brain axis. This axis affects the occurrence of WMI in premature infants via the metabolites produced by intestinal microorganisms, while also regulating cytokines and mediating oxidative stress. At the same time, deficiencies in the microbiota and their metabolites may exacerbate WMI in premature infants. This confers promise for probiotics and prebiotics as treatments for improving neurodevelopmental outcomes. Therefore, this review attempted to elucidate the potential mechanisms behind the communication of gut bacteria and the immature brain through the gut-brain axis, so as to provide a reference for further prevention and treatment of premature WMI.
Collapse
|
14
|
Chen T, Hu Y, Lu L, Zhao Q, Tao X, Ding B, Chen S, Zhu J, Guo X, Lin Z. Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats via NRF2 signaling pathway. Front Pharmacol 2023; 14:1134464. [PMID: 36969871 PMCID: PMC10031108 DOI: 10.3389/fphar.2023.1134464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Hypoxic-ischemic encephalopathy (HIE) is a crucial cause of neonatal death and neurological sequelae, but currently there is no effective therapy drug for HIE. Both oxidative stress and apoptosis play critical roles in the pathological development of HIE. Myricetin, a naturally extracted flavonol compound, exerts remarkable effects against oxidative stress, apoptosis, and inflammation. However, the role and underlying molecular mechanism of myricetin on HIE remain unclear. Methods: In this study, we established the neonatal rats hypoxic-ischemic (HI) brain damage model in vivo and CoCl2 induced PC12 cell model in vitro to explore the neuroprotective effects of myricetin on HI injury, and illuminate the potential mechanism. Results: Our results showed that myricetin intervention could significantly reduce brain infarction volume, glia activation, apoptosis, and oxidative stress marker levels through activating NRF2 (Nuclear factor-E2-related factor 2) and increase the expressions of NRF2 downstream proteins NQO-1 and HO-1. In addition, the NRF2 inhibitor ML385 could significantly reverse the effects of myricetin. Conclusion: This study found that myricetin might alleviate oxidative stress and apoptosis through NRF2 signaling pathway to exert the protective role for HI injury, which suggested that myricetin might be a promising therapeutic agent for HIE.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Xiaoling Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| |
Collapse
|
15
|
Kawabata T. Iron-Induced Oxidative Stress in Human Diseases. Cells 2022; 11:cells11142152. [PMID: 35883594 PMCID: PMC9324531 DOI: 10.3390/cells11142152] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is responsible for the regulation of several cell functions. However, iron ions are catalytic and dangerous for cells, so the cells sequester such redox-active irons in the transport and storage proteins. In systemic iron overload and local pathological conditions, redox-active iron increases in the human body and induces oxidative stress through the formation of reactive oxygen species. Non-transferrin bound iron is a candidate for the redox-active iron in extracellular space. Cells take iron by the uptake machinery such as transferrin receptor and divalent metal transporter 1. These irons are delivered to places where they are needed by poly(rC)-binding proteins 1/2 and excess irons are stored in ferritin or released out of the cell by ferroportin 1. We can imagine transit iron pool in the cell from iron import to the export. Since the iron in the transit pool is another candidate for the redox-active iron, the size of the pool may be kept minimally. When a large amount of iron enters cells and overflows the capacity of iron binding proteins, the iron behaves as a redox-active iron in the cell. This review focuses on redox-active iron in extracellular and intracellular spaces through a biophysical and chemical point of view.
Collapse
Affiliation(s)
- Teruyuki Kawabata
- Department of Applied Physics, Postgraduate School of Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
16
|
Tissue-Specific and Differential Cold Responses in the Domesticated Cold Tolerant Fugu. FISHES 2022. [DOI: 10.3390/fishes7040159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Domestication can be defined as the artificial selection in animals to achieve morphological, physiological, and developmental conformity to human needs, with the aim of improving various limitations in species under a human feeding environment. The future sustainability of aquaculture may rely partly on the availability of numerous domesticated fish species. However, the underlying adaptive mechanisms that result in the domestication of fish are still unclear. Because they are poikilothermic, temperature is a key environmental element that affects the entire life of fish, so studying the association between physiological and behavioral changes in low-temperature domesticated fish can provide a model for understanding the response mechanisms of fish under cold stress. Through 5 generations and 10 years of artificial selection at low temperatures, we used cold-tolerant fugu as a biological model to compare transcriptome changes in brain and liver tissues to study the effects of cold stress on fish. It was found that the expression of genes such as apoptosis, p53, oxidative phosphorylation, and mitochondrial β-oxidation in the brain of cold-tolerant fugu was significantly lower than the wild type due to cold stress, while excessive energy metabolism would lead to the production of reactive oxygen species (ROS) and exacerbate the brain damage, thus causing rollover and coma. Meanwhile, under cold stress, the signaling pathways involved in glycogenolysis and lipid metabolism, such as insulin signaling, adipocytokines, and mTOR signaling pathways, were significantly up-regulated in the liver of cold-tolerant fugu. Although the mitochondrial β-oxidation pathway was increased in cold-tolerant fugu liver tissues, the transcriptome was not enriched in apoptotic. These phenomena predict that in response to low-temperature conditions, cold-tolerant fugu employs a dynamic inter-organ metabolic regulation strategy to cope with cold stress and reduce damage to brain tissues.
Collapse
|
17
|
Morris RH, Chabrier G, Counsell SJ, McGonnell IM, Thornton C. Differential effects of Urban Particulate Matter on BV2 microglial-like and C17.2 neural stem/precursor cells. Dev Neurosci 2022; 44:309-319. [PMID: 35500557 DOI: 10.1159/000524829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Air pollution affects the majority of the world's population and has been linked to over 7 million premature deaths per year. Exposure to particulate matter (PM) contained within air pollution is associated with cardiovascular, respiratory and neurological ill health. There is increasing evidence that exposure to air pollution in utero and in early childhood is associated with altered brain development. However, the underlying mechanisms for impaired brain development are not clear. While oxidative stress and neuroinflammation are documented consequences of PM exposure, cell-specific mechanisms that may be triggered in response to air pollution exposure are less well defined. Here we assess the effect of urban (U)PM exposure on two different cell types, microglial-like BV2 cells and neural stem / precursor-like C17.2 cells. We found that, contrary to expectations, immature C17.2 cells were more resistant to PM-mediated oxidative stress and cell death than BV2 cells. PM exposure resulted in decreased mitochondrial health and increased mitochondrial ROS in BV2 cells which could be prevented by mitoTEMPO antioxidant treatment. Our data suggest that not only is mitochondrial dysfunction a key trigger in PM-mediated cytotoxicity, but that such deleterious effects may also depend on cell type and maturity.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Gyllenhammer LE, Rasmussen JM, Bertele N, Halbing A, Entringer S, Wadhwa PD, Buss C. Maternal Inflammation During Pregnancy and Offspring Brain Development: The Role of Mitochondria. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:498-509. [PMID: 34800727 PMCID: PMC9086015 DOI: 10.1016/j.bpsc.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
Abstract
The association between maternal immune activation (MIA) during pregnancy and risk for offspring neuropsychiatric disorders has been increasingly recognized over the past several years. Among the mechanistic pathways that have been described through which maternal inflammation during pregnancy may affect fetal brain development, the role of mitochondria has received little attention. In this review, the role of mitochondria as a potential mediator of the association between MIA during pregnancy and offspring brain development and risk for psychiatric disorders will be proposed. As a basis for this postulation, convergent evidence is presented supporting the obligatory role of mitochondria in brain development, the role of mitochondria as mediators and initiators of inflammatory processes, and evidence of mitochondrial dysfunction in preclinical MIA exposure models and human neurodevelopmental disorders. Elucidating the role of mitochondria as a potential mediator of MIA-induced alterations in brain development and neurodevelopmental disease risk may not only provide new insight into the pathophysiology of mental health disorders that have their origins in exposure to infection/immune activation during pregnancy but also offer new therapeutic targets.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California
| | - Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California
| | - Nina Bertele
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amy Halbing
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California; Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California; Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, Irvine, California; Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, Irvine, California; Department of Epidemiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, California; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California; Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Xiong Q, Li X, Xia L, Yao Z, Shi X, Dong Z. Dihydroartemisinin attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting oxidative stress. Mol Brain 2022; 15:36. [PMID: 35484595 PMCID: PMC9052669 DOI: 10.1186/s13041-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia is a major cause of neurological disability among infants. Dihydroartemisinin (DHA), derived from artemisinin, well known as an anti-malarial medicine, was proved to be able to inhibit oxidative stress and inflammation. However, whether those functions of DHA play roles in hypoxic-ischemic brain damage (HIBD), an animal model of HIE in patient which also been observed to have oxidative stress and inflammation, is unknown. In this study, we demonstrated that the DHA treatment on newborn rats significantly relieved the neuron loss and motor and cognitive impairment caused by HIBD. One of the underlying mechanisms is that DHA enhanced the anti-oxidant capacity of HIBD rats by up-regulating the total antioxidant capacity (T-AOC), gluathione reductase (GR) and catalase (CAT) while down regulating the pro-oxidative substances including hydrogen peroxide (H2O2), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Thus, our study illustrated that DHA could alleviate the damage of brains and improve the cognitive and motor function of HIBD rats by inhibiting oxidative stress, provided an opportunity to interrogate potential therapeutics for affected HIE patients.
Collapse
Affiliation(s)
- Qian Xiong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhengyu Yao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
20
|
Song D, Zhang J, Li J, Kong X, Jiang Y, Xu J, Zhang X, Zhao Q. Effective Parts of Gentiana straminea Maxim Attenuates Hypoxia-Induced Oxidative Stress and Apoptosis. Dose Response 2022; 20:15593258221100986. [PMID: 35602583 PMCID: PMC9121479 DOI: 10.1177/15593258221100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia occurs in physiological situations and several pathological situations, inducing oxidative stress. G straminea Maxim (G.s Maxim) is a traditional Tibetan medicine that exerts several biological effects. This study focused on the protective effects of G.s Maxim in hypoxia-induced oxidative stress and apoptosis. We found that G.s Maxim significantly increased survival and reduced oxidative stress in hypoxic mice. Various extraction parts of G.s Maxim showed antioxidant activity and significantly improved survival in hypoxia-injured PC12 cells. G.s Maxim reduced hypoxia-induced cell apoptosis and leakage of lactate dehydrogenase. Hypoxic cells had increased malondialdehyde levels but reduced superoxide dismutase activity and G.s Maxim reversed these effects. Moreover, G.s Maxim suppressed hypoxia-induced apoptosis by inducing protein expression of B cell leukemia/lymphoma-2 and reducing the expression of hypoxia-inducible factor-1α, Bcl-2-associated X, and nuclear factor-k-gene binding. These findings suggest that G.s Maxim attenuates hypoxia-induced injury associated with oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Dan Song
- Joint Laboratory for Research on Active
Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical
Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jingyu Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, China
| | - Jie Li
- Joint Laboratory for Research on Active
Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical
Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Xiumei Kong
- Joint Laboratory for Research on Active
Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical
Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yi Jiang
- Joint Laboratory for Research on Active
Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical
Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jiaojiao Xu
- Joint Laboratory for Research on Active
Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical
Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Xiaoying Zhang
- Joint Laboratory for Research on Active
Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical
Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Qin Zhao
- Joint Laboratory for Research on Active
Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical
Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, China
| |
Collapse
|
21
|
Nair S, Leverin AL, Rocha-Ferreira E, Sobotka KS, Thornton C, Mallard C, Hagberg H. Induction of Mitochondrial Fragmentation and Mitophagy after Neonatal Hypoxia-Ischemia. Cells 2022; 11:cells11071193. [PMID: 35406757 PMCID: PMC8997592 DOI: 10.3390/cells11071193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia-ischemia (HI) leads to immature brain injury mediated by mitochondrial stress. If damaged mitochondria cannot be repaired, mitochondrial permeabilization ensues, leading to cell death. Non-optimal turnover of mitochondria is critical as it affects short and long term structural and functional recovery and brain development. Therefore, disposal of deficient mitochondria via mitophagy and their replacement through biogenesis is needed. We utilized mt-Keima reporter mice to quantify mitochondrial morphology (fission, fusion) and mitophagy and their mechanisms in primary neurons after Oxygen Glucose Deprivation (OGD) and in brain sections after neonatal HI. Molecular mechanisms of PARK2-dependent and -independent pathways of mitophagy were investigated in vivo by PCR and Western blotting. Mitochondrial morphology and mitophagy were investigated using live cell microscopy. In primary neurons, we found a primary fission wave immediately after OGD with a significant increase in mitophagy followed by a secondary phase of fission at 24 h following recovery. Following HI, mitophagy was upregulated immediately after HI followed by a second wave at 7 days. Western blotting suggests that both PINK1/Parkin-dependent and -independent mechanisms, including NIX and FUNDC1, were upregulated immediately after HI, whereas a PINK1/Parkin mechanism predominated 7 days after HI. We hypothesize that excessive mitophagy in the early phase is a pathologic response which may contribute to secondary energy depletion, whereas secondary mitophagy may be involved in post-HI regeneration and repair.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden
- Correspondence:
| | - Anna-Lena Leverin
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden
| | - Kristina S. Sobotka
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK;
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden; (A.-L.L.); (E.R.-F.); (K.S.S.); (C.M.); (H.H.)
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, 41685 Gothenburg, Sweden
| |
Collapse
|
22
|
The Effects of In Utero Fetal Hypoxia and Creatine Treatment on Mitochondrial Function in the Late Gestation Fetal Sheep Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3255296. [PMID: 35132347 PMCID: PMC8817846 DOI: 10.1155/2022/3255296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
Near-term acute hypoxia in utero can result in significant fetal brain injury, with some brain regions more vulnerable than others. As mitochondrial dysfunction is an underlying feature of the injury cascade following hypoxia, this study is aimed at characterizing mitochondrial function at a region-specific level in the near-term fetal brain after a period of acute hypoxia. We hypothesized that regional differences in mitochondrial function would be evident, and that prophylactic creatine treatment would mitigate mitochondrial dysfunction following hypoxia; thereby reducing fetal brain injury. Pregnant Border-Leicester/Merino ewes with singleton fetuses were surgically instrumented at 118 days of gestation (dGa; term is ~145 dGA). A continuous infusion of either creatine (n = 15; 6 mg/kg/h) or isovolumetric saline (n = 16; 1.5 ml/kg/h) was administered to the fetuses from 121 dGa. After 10 days of infusion, a subset of fetuses (8 saline-, 7 creatine-treated) were subjected to 10 minutes of umbilical cord occlusion (UCO) to induce a mild global fetal hypoxia. At 72 hours after UCO, the fetal brain was collected for high-resolution mitochondrial respirometry and molecular and histological analyses. The results show that the transient UCO-induced acute hypoxia impaired mitochondrial function in the hippocampus and the periventricular white matter and increased the incidence of cell death in the hippocampus. Creatine treatment did not rectify the changes in mitochondrial respiration associated with hypoxia, but there was a negative relationship between cell death and creatine content following treatment. Irrespective of UCO, creatine increased the proportion of cytochrome c bound to the inner mitochondrial membrane, upregulated the mRNA expression of the antiapoptotic gene Bcl2, and of PCG1-α, a driver of mitogenesis, in the hippocampus. We conclude that creatine treatment prior to brief, acute hypoxia does not fundamentally modify mitochondrial respiratory function, but may improve mitochondrial structural integrity and potentially increase mitogenesis and activity of antiapoptotic pathways.
Collapse
|
23
|
Fan X, Wang X, Liu XR, Li KX, Liu Y. Effects of ferulic acid on regulating the neurovascular unit: Implications for ischemic stroke treatment. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_76_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Eliseeva D, Zakharova M. Mechanisms of Neurodegeneration in Multiple Sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:5-13. [DOI: 10.17116/jnevro20221220725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Kobayashi K, Liu C, Jonas RA, Ishibashi N. The Current Status of Neuroprotection in Congenital Heart Disease. CHILDREN 2021; 8:children8121116. [PMID: 34943311 PMCID: PMC8700367 DOI: 10.3390/children8121116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Neurological deficits are a serious and common sequelae of congenital heart disease (CHD). While their underlying mechanisms have not been fully characterized, their manifestations are well-known and understood to persist through adulthood. Development of therapies to address or prevent these deficits are critical to attenuate future morbidity and improve quality of life. In this review, we aim to summarize the current status of neuroprotective therapy in CHD. Through an exploration of present research in the pre-operative, intra-operative, and post-operative phases of patient management, we will describe existing clinical and bench efforts as well as current endeavors underway within this research area.
Collapse
Affiliation(s)
- Kei Kobayashi
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Christopher Liu
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Richard A. Jonas
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
26
|
Lyu H, Sun DM, Ng CP, Chen JF, He YZ, Lam SY, Zheng ZY, Askarifirouzjaei H, Wang CC, Young W, Poon WS. A new Hypoxic Ischemic Encephalopathy model in neonatal rats. Heliyon 2021; 7:e08646. [PMID: 35024484 PMCID: PMC8723992 DOI: 10.1016/j.heliyon.2021.e08646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/29/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hypoxic-Ischemic Encephalopathy (HIE) occurs when an infant's brain does not receive adequate blood and oxygen supply, resulting in ischemic and hypoxic brain damage during delivery. Currently, supportive care and hypothermia have been the standard treatment for HIE. However, there are still a 20% mortality and most of the survivors are associated with significant neurodevelopmental disability. HIE animal model was first established by Vannucci et al., in 1981, and has been used extensively to explore the mechanisms of brain damage and its potential treatment. The Vannucci model involves the unilateral common carotid artery occlusion followed by 90 min hypoxia (8% oxygen). The purpose of this study is to define and validate a modified HIE model which mimics closely that of the human neonatal HIE. METHOD The classic Vannucci HIE model occludes one common carotid artery followed by 90 min hypoxia. In the new model, common carotid arteries were occluded bilaterally followed by breathing 8% oxygen in a hypoxic chamber for 90, 60 and 30 min, followed by the release of the common carotid artery ligatures, mimicking a reperfusion. RESULT We studied 110 neonatal rats in detail, following the modified in comparison with the classical Vannucci models. The classical Vannucci model has a consistent surgical mortality of 18% and the new modified models have a 20%-46%. While mortality depended on the duration of hypoxia, fifty-two animals survived for behavioral assessments and standard histology. The modified HIE model with 60 min of transient carotid occlusion is associated with a moderate brain damage, and has a 30% surgical mortality. This modified experimental model is regarded closer to the human situation than the classical Vannucci model.
Collapse
Affiliation(s)
- Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Dong Ming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Chi Ping Ng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Fan Chen
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhong He
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hadi Askarifirouzjaei
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Hashem M, Wu Y, Dunn JF. Quantification of cytochrome c oxidase and tissue oxygenation using CW-NIRS in a mouse cerebral cortex. BIOMEDICAL OPTICS EXPRESS 2021; 12:7632-7656. [PMID: 35003857 PMCID: PMC8713667 DOI: 10.1364/boe.435532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 05/05/2023]
Abstract
We provide a protocol for measuring the absolute concentration of the oxidized and reduced state of cytochrome c oxidase (CCO) in the cerebral cortex of mice, using broadband continuous-wave NIRS. The algorithm (NIR-AQUA) allows for absolute quantification of CCO and deoxyhemoglobin. Combined with an anoxia pulse, this also allows for quantification of total hemoglobin, and tissue oxygen saturation. CCO in the cortex was 4.9 ± 0.1 μM (mean ± SD, n=6). In normoxia, 84% of CCO was oxidized. We include hypoxia and cyanide validation studies to show CCO can be quantified independently to hemoglobin. This can be applied to study oxidative metabolism in the many rodent models of neurological disease.
Collapse
Affiliation(s)
- Mada Hashem
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Ying Wu
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Jeff F. Dunn
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| |
Collapse
|
28
|
Effects of Hypothermia and Allopurinol on Oxidative Status in a Rat Model of Hypoxic Ischemic Encephalopathy. Antioxidants (Basel) 2021; 10:antiox10101523. [PMID: 34679658 PMCID: PMC8533154 DOI: 10.3390/antiox10101523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is one of the main causes of morbidity and mortality during the neonatal period, despite treatment with hypothermia. There is evidence that oxidative damage plays an important role in the pathophysiology of hypoxic-ischemic (HI) brain injury. Our aim was to investigate whether postnatal allopurinol administration in combination with hypothermia would reduce oxidative stress (OS) biomarkers in an animal model of HIE. Postnatal 10-day rat pups underwent unilateral HI of moderate severity. Pups were randomized into: Sham operated, hypoxic-ischemic (HI), HI + allopurinol (HIA), HI + hypothermia (HIH), and HI + hypothermia + allopurinol (HIHA). Biomarkers of OS and antioxidants were evaluated: GSH/GSSG ratio and carbonyl groups were tested in plasma. Total antioxidant capacity (TAC) was analyzed in plasma and cerebrospinal fluid, and 8-iso-prostaglandin F2α was measured in brain tissue. Plasma 2,2′–azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) levels were preserved in those groups that received allopurinol and dual therapy. In cerebrospinal fluid, only the HIA group presented normal ferric reducing ability of plasma (FRAP) levels. Protein oxidation and lipid peroxidation were significantly reduced in all groups treated with hypothermia and allopurinol, thus enhancing neuroprotection in HIE.
Collapse
|
29
|
Al Rahim M, Thatipamula S, Pasinetti GM, Hossain MA. Neuronal Pentraxin 1 Promotes Hypoxic-Ischemic Neuronal Injury by Impairing Mitochondrial Biogenesis via Interactions With Active Bax[6A7] and Mitochondrial Hexokinase II. ASN Neuro 2021; 13:17590914211012888. [PMID: 34098747 PMCID: PMC8191073 DOI: 10.1177/17590914211012888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction is a key mechanism of cell death in hypoxic-ischemic brain injury. Neuronal pentraxin 1 (NP1) has been shown to play crucial roles in mitochondria-mediated neuronal death. However, the underlying mechanism(s) of NP1-induced mitochondrial dysfunction in hypoxia-ischemia (HI) remains obscure. Here, we report that NP1 induction following HI and its subsequent localization to mitochondria, leads to disruption of key regulatory proteins for mitochondrial biogenesis. Brain mitochondrial DNA (mtDNA) content and mtDNA-encoded subunit I of complex IV (mtCOX-1) expression was increased post-HI, but not the nuclear DNA-encoded subunit of complex II (nSDH-A). Up-regulation of mitochondrial proteins COXIV and HSP60 further supported enhanced mtDNA function. NP1 interaction with active Bax (Bax6A7) was increased in the brain after HI and in oxygen-glucose deprivation (OGD)-induced neuronal cultures. Importantly, NP1 colocalized with mitochondrial hexokinase II (mtHKII) following OGD leading to HKII dissociation from mitochondria. Knockdown of NP1 or SB216763, a GSK-3 inhibitor, prevented OGD-induced mtHKII dissociation and cellular ATP decrease. NP1 also modulated the expression of mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), regulators of mitochondrial biogenesis, following HI. Together, we reveal crucial roles of NP1 in mitochondrial biogenesis involving interactions with Bax[6A7] and mtHKII in HI brain injury.
Collapse
Affiliation(s)
- Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Shabarish Thatipamula
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States.,James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
30
|
August PM, Klein CP, Grings M, Sagini JP, Rodrigues PIDL, Stocher DP, Stone V, Silva YD, Couto PRG, Salomon TB, Benfato MDS, Leipnitz G, Matté C. Maternal polyphenol intake impairs cerebellar redox homeostasis in newborn rats. Nutr Neurosci 2021; 25:2066-2076. [PMID: 34076555 DOI: 10.1080/1028415x.2021.1933330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Polyphenols are compounds found in plants that have been extensively studied due to the health benefits of its consumption in adulthood. Meanwhile, recent evidence suggests that polyphenol consumption during pregnancy may not be safe for the fetus. OBJECTIVE The goal of this study was to evaluate the effect of naringenin supplementation during pregnancy on brain redox homeostasis and mitochondrial activity of the newborn rat. METHODS Adult female Wistar rats were divided into two groups: (1) vehicle (1 mL/Kg p.o.) or (2) naringenin (50 mg/Kg p.o.). Naringenin was administered once a day during pregnancy. The offspring were euthanized on postnatal day 7, as well the dams, and brain regions were dissected. RESULTS The offspring cerebellum was the most affected region, presenting increased activity of the mitochondrial electron transport system, allied to increased reactive species levels, lipid peroxidation, and glutathione concentration. The nitric oxide levels suffered structure-dependent alteration, with decreased levels in the pups' cerebellum and increased in the hippocampus. The offspring parietal cortex was not affected, as well as the parameters evaluated in the dams' brains. CONCLUSION Maternal consumption of naringenin alters offspring cerebellar redox homeostasis, which could be related to adverse effects on the motor and cognitive development in the descendants.
Collapse
Affiliation(s)
- Pauline Maciel August
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline Peres Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - João Pedro Sagini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Daniela Pereira Stocher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinicius Stone
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yasmini Dandara Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Ribeiro Gonçalves Couto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Boeira Salomon
- Programa de Pós-graduação em Biologia Molecular e Celular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara da Silveira Benfato
- Programa de Pós-graduação em Biologia Molecular e Celular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Matté
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências Biológicas: Fisiologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Impact of intrauterine fetal resuscitation with oxygen on oxidative stress in the developing rat brain. Sci Rep 2021; 11:9798. [PMID: 33963277 PMCID: PMC8105387 DOI: 10.1038/s41598-021-89299-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Use of maternal oxygen for intrauterine resuscitation is contentious because of the lack of evidence for its efficacy and the possibility of fetal harm through oxidative stress. Because the developing brain is rich in lipids and low in antioxidants, it remains vulnerable to oxidative stress. Here, we tested this hypothesis in a term pregnant rat model with oxytocin-induced fetal distress followed by treatment with either room air or 100% oxygen for 6 h. Fetal brains from both sexes were subjected to assays for biomarkers of oxidative stress (4-hydroxynonenal, protein carbonyl, or 8-hydroxy-2'-deoxyguanosine), expression of genes mediating oxidative stress, and mitochondrial oxidative phosphorylation. Contrary to our hypothesis, maternal hyperoxia was not associated with increased biomarkers of oxidative stress in the fetal brain. However, there was significant upregulation of the expression of select genes mediating oxidative stress, of which some were male-specific. These observations, however, were not accompanied by changes in the expression of proteins from the mitochondrial electron transport chain. In summary, maternal hyperoxia in the setting of acute uteroplacental ischemia-hypoxia does not appear to cause oxidative damage to the developing brain.
Collapse
|
32
|
Tapia-Bustos A, Lespay-Rebolledo C, Vío V, Pérez-Lobos R, Casanova-Ortiz E, Ezquer F, Herrera-Marschitz M, Morales P. Neonatal Mesenchymal Stem Cell Treatment Improves Myelination Impaired by Global Perinatal Asphyxia in Rats. Int J Mol Sci 2021; 22:ijms22063275. [PMID: 33806988 PMCID: PMC8004671 DOI: 10.3390/ijms22063275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
The effect of perinatal asphyxia (PA) on oligodendrocyte (OL), neuroinflammation, and cell viability was evaluated in telencephalon of rats at postnatal day (P)1, 7, and 14, a period characterized by a spur of neuronal networking, evaluating the effect of mesenchymal stem cell (MSCs)-treatment. The issue was investigated with a rat model of global PA, mimicking a clinical risk occurring under labor. PA was induced by immersing fetus-containing uterine horns into a water bath for 21 min (AS), using sibling-caesarean-delivered fetuses (CS) as controls. Two hours after delivery, AS and CS neonates were injected with either 5 μL of vehicle (10% plasma) or 5 × 104 MSCs into the lateral ventricle. Samples were assayed for myelin-basic protein (MBP) levels; Olig-1/Olig-2 transcriptional factors; Gglial phenotype; neuroinflammation, and delayed cell death. The main effects were observed at P7, including: (i) A decrease of MBP-immunoreactivity in external capsule, corpus callosum, cingulum, but not in fimbriae of hippocampus; (ii) an increase of Olig-1-mRNA levels; (iii) an increase of IL-6-mRNA, but not in protein levels; (iv) an increase in cell death, including OLs; and (v) MSCs treatment prevented the effect of PA on myelination, OLs number, and cell death. The present findings show that PA induces regional- and developmental-dependent changes on myelination and OLs maturation. Neonatal MSCs treatment improves survival of mature OLs and myelination in telencephalic white matter.
Collapse
Affiliation(s)
- Andrea Tapia-Bustos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Faculty of Medicine, School of Pharmacy, Universidad Andres Bello, Santiago 8370149, Chile
| | - Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Valentina Vío
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Ronald Pérez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago 7710162, Chile;
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Correspondence: (M.H.-M.); (P.M.); Tel.: +56-229786788 (M.H.-M. & P.M.)
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.H.-M.); (P.M.); Tel.: +56-229786788 (M.H.-M. & P.M.)
| |
Collapse
|
33
|
Morris RH, Counsell SJ, McGonnell IM, Thornton C. Early life exposure to air pollution impacts neuronal and glial cell function leading to impaired neurodevelopment. Bioessays 2021; 43:e2000288. [PMID: 33751627 DOI: 10.1002/bies.202000288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/06/2022]
Abstract
The World Health Organisation recently listed air pollution as the most significant threat to human health. Air pollution comprises particulate matter (PM), metals, black carbon and gases such as ozone (O3 ), nitrogen dioxide (NO2 ) and carbon monoxide (CO). In addition to respiratory and cardiovascular disease, PM exposure is linked with increased risk of neurodegeneration as well as neurodevelopmental impairments. Critically, studies suggest that PM crosses the placenta, making direct in utero exposure a reality. Rodent models reveal that neuroinflammation, neurotransmitter imbalance and oxidative stress are triggered following gestational/early life exposure to PM, and may be exacerbated by concomitant mitochondrial dysfunction. Gestational PM exposure (potentiated by mitochondrial impairment in the metabolically active neonatal brain) not only impacts neurodevelopment but may sensitise the brain to subsequent cognitive impairment. Having reviewed this field, we conclude that strategies are urgently required to reduce exposure to PM during this sensitive developmental period.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
34
|
Jing L, Gao R, Zhang J, Zhang D, Shao J, Jia Z, Ma H. Norwogonin attenuates hypoxia-induced oxidative stress and apoptosis in PC12 cells. BMC Complement Med Ther 2021; 21:18. [PMID: 33413359 PMCID: PMC7791982 DOI: 10.1186/s12906-020-03189-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
Background Norwogonin is a natural flavone with three phenolic hydroxyl groups in skeletal structure and has excellent antioxidant activity. However, the neuroprotective effect of norwogonin remains unclear. Here, we investigated the protective capacity of norwogonin against oxidative damage elicited by hypoxia in PC12 cells. Methods The cell viability and apoptosis were examined by MTT assay and Annexin V-FITC/PI staining, respectively. Reactive oxygen species (ROS) content was measured using DCFH-DA assay. Lactate dehydrogenase (LDH), malondialdehyde (MDA) and antioxidant enzyme levels were determined using commercial kits. The expression of related genes and proteins was measured by real-time quantitative PCR and Western blotting, respectively. Results We found that norwogonin alleviated hypoxia-induced injury in PC12 cells by increasing the cell viability, reducing LDH release, and ameliorating the changes of cell morphology. Norwogonin also acted as an antioxidant by scavenging ROS, reducing MDA production, maintaining the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and decreasing the expression levels of HIF-1α and VEGF. In addition, norwogonin prevented cell apoptosis via inhibiting the expression levels of caspase-3, cytochrome c and Bax, while increasing the expression levels of Bcl-2 and the ratio of Bcl-2/Bax. Conclusions Norwogonin attenuates hypoxia-induced injury in PC12 cells by quenching ROS, maintaining the activities of antioxidant enzymes, and inhibiting mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Linlin Jing
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Rongmin Gao
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Jie Zhang
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Dongmei Zhang
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Jin Shao
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Zhengping Jia
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
35
|
Shi J, Wang W, Sang G, Xi H, Sun Y, Lu C, Ye H, Huang L. Short Term Usage of Omega-3 Polyunsaturated Fatty Acids Ameliorate Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress in the Neonatal Rat Hippocampal Tissue. Front Nutr 2020; 7:572363. [PMID: 33282898 PMCID: PMC7705230 DOI: 10.3389/fnut.2020.572363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: To investigate the effect of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in neonatal rat brain. Methods: Ninety-six 3-day-old Sprague Dawley rats were divided into four groups: control (saline/saline), LPS/ω-3, LPS/ω-6, and LPS/saline (n = 24/group). All rats, except those in the control group, were intraperitoneally challenged once with LPS (0.6 mg/kg) and were treated with ω-3 PUFAs, ω-6 PUFAs, or saline at 15 mL/kg for 1 or 5 consecutive days beginning on the day of LPS-challenge. Rats in the control group underwent the same procedures and received saline (vehicle). After 1 or 5 days of treatment, 12 rats from each group were sacrificed and their hippocampuses were collected. The expression of inflammation-related genes as well as the levels of oxidative stress markers in hippocampal tissues were determined. Results: After 1 or 5 days of treatment, the expression of toll-like receptor 4 and multiple proinflammatory cytokines were significantly decreased in the LPS/ω-3 group compared with those in the LPS/saline group. The activities of superoxide dismutase and glutathione (GSH) were significantly elevated, whereas amounts of malondialdehyde and oxidized glutathione (GSSG) and the ratio of GSSG/GSH were remarkably lowered in the LPS/ω-3 group compared with those in the LPS/saline group after 1 day of treatment. Opposite effects were observed in the LPS/ω-6 group. Conclusion: ω-3 PUFAs may protect rat brain tissue against LPS-induced inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Jipeng Shi
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Weiwei Wang
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Guimei Sang
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Huifang Xi
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yazhou Sun
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chaosheng Lu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Hezhen Ye
- The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Limi Huang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| |
Collapse
|
36
|
Decoding Aging: Understanding the Complex Relationship among Aging, Free Radicals, and GSH. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3970860. [PMID: 33110472 PMCID: PMC7578726 DOI: 10.1155/2020/3970860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022]
Abstract
N-aryl maleimides can undergo a 1,4-Michael-type addition reaction with reduced glutathione (GSH), leading to a decreased concentration of GSH and an increased concentration of free radicals (FRs) in cells. GSH is a critical scavenging molecule responsible for protecting cells from oxidation and for maintaining redox homeostasis. N-aryl maleimides disturb redox homeostasis in cells because they scavenge thiol-containing molecules, especially GSH. This study aimed at measuring the concentrations of GSH and FRs by electronic paramagnetic resonance (EPR), in the brain and liver tissue of male Wistar rats (ex vivo) at different ages and after treatment with 3,5-dimaleimylbenzoic acid (3,5-DMB). Our results showed a relationship between age and the concentrations of GSH and FRs in cells. In young rats, the concentration of GSH was higher than in old rats, while the concentration of FRs was higher in adult rats than in young rats, suggesting an inverse relationship between GSH and FRs. On the other hand, the reaction of 3,5-DMB (an electrophilic maleimide) with cellular GSH increased the FR content. The results of this study contribute to the awareness that the process of aging implies not only a loss of tissue function but also essential changes in the molecular contents of cells, especially the concentrations of FRs and GSH.
Collapse
|
37
|
Zhang G, Lu Y, Yang L, Dong Y, Wen J, Xu J, Zhang Q. Methylene blue post-treatment improves hypoxia-ischemic recovery in a neonatal rat model. Neurochem Int 2020; 139:104782. [PMID: 32628986 DOI: 10.1016/j.neuint.2020.104782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023]
Abstract
Recent work suggested that methylene blue (MB) has beneficial effects in a variety of neurological disorders, while its role in neonatal hypoxic-ischemic (HI) encephalopathy is still unclear. The current study was designed to investigate the effects of MB on HI-induced brain damage and its underlying mechanisms. The results showed that MB treatment can strongly attenuate HI-induced brain loss and neuronal damage in the cortex and hippocampus of neonatal rats. Further mechanistic analysis suggested that MB treatment was able to significantly reduce blood-brain barrier disruption after HI insult. In addition, MB profoundly inhibited microglia and astrocyte activation and the pro-inflammatory cytokines production in neonatal cortex and hippocampus after HI. Further, MB treatment resulted in dramatic suppression of oxidative damage, as evidenced by robustly decreased DHE and protein carbonyls levels in HI brain. Moreover, MB strongly preserved mitochondrial function by repressing HI-induced mitochondrial fragmentation, and the following neuronal death in cortex and hippocampus. Finally, behavioral tests revealed that MB significantly improved the spatial reference memory and motor coordination of neonatal HI rats. Taken together, these findings demonstrate that the mechanisms behind neuroprotective actions of methylene blue are multifactorial, including suppression of oxidative stress and neuroinflammation, restoration of mitochondrial function, as well as attenuation of blood-brain barrier disruption. Our study might provide further directions for MB as a promising option in neonatal HI encephalopathy therapy.
Collapse
Affiliation(s)
- Guangwei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China; Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, No.439 Xuanhua Rd., Yongchuan, Chongqing, 646000, PR China; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jin Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China; Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, No.439 Xuanhua Rd., Yongchuan, Chongqing, 646000, PR China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu, Sichuan, 610041, PR China.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
38
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
39
|
Fischer I, Barak B. Molecular and Therapeutic Aspects of Hyperbaric Oxygen Therapy in Neurological Conditions. Biomolecules 2020; 10:E1247. [PMID: 32867291 PMCID: PMC7564723 DOI: 10.3390/biom10091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
In hyperbaric oxygen therapy (HBOT), the subject is placed in a chamber containing 100% oxygen gas at a pressure of more than one atmosphere absolute. This treatment is used to hasten tissue recovery and improve its physiological aspects, by providing an increased supply of oxygen to the damaged tissue. In this review, we discuss the consequences of hypoxia, as well as the molecular and physiological processes that occur in subjects exposed to HBOT. We discuss the efficacy of HBOT in treating neurological conditions and neurodevelopmental disorders in both humans and animal models. We summarize by discussing the challenges in this field, and explore future directions that will allow the scientific community to better understand the molecular aspects and applications of HBOT for a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
40
|
Kumar AJ, Martins DO, Arruda BP, Lee VY, Chacur M, Nogueira MI. Impairment of nociceptive responses after neonatal anoxia correlates with somatosensory thalamic damage: A study in rats. Behav Brain Res 2020; 390:112690. [DOI: 10.1016/j.bbr.2020.112690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
|
41
|
Mikrogeorgiou A, Chen Y, Lee BS, Bok R, Sheldon RA, Barkovich AJ, Xu D, Ferriero DM. A Metabolomics Study of Hypoxia Ischemia during Mouse Brain Development Using Hyperpolarized 13C. Dev Neurosci 2020; 42:49-58. [PMID: 32570236 DOI: 10.1159/000506982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hyperpolarized 13C spectroscopic magnetic resonance spectroscopy (MRS) is an advanced imaging tool that may provide important real-time information about brain metabolism. METHODS Mice underwent unilateral hypoxia-ischemia (HI) on postnatal day (P)10. Injured and sham mice were scanned at P10, P17, and P31. We used hyperpolarized 13C MRS to investigate the metabolic exchange of pyruvate to lactate in real time during brain development following HI. 13C-1-labeled pyruvate was hyperpolarized and injected into the tail vein through a tail-vein catheter. Chemical-shift imaging was performed to acquire spectral-spatial information of the metabolites in the brain. A voxel placed on each of the injured and contralateral hemispheres was chosen for comparison. The difference in pyruvate delivery and lactate to pyruvate ratio was calculated for each of the voxels at each time point. The normalized lactate level of the injured hemisphere was also calculated for each mouse at each of the scanning time points. RESULTS There was a significant reduction in pyruvate delivery and a higher lactate to pyruvate ratio in the ipsilateral (HI) hemisphere at P10. The differences decreased at P17 and disappeared at P31. The normalized lactate level in the injured hemisphere increased from P10 to P31 in both sham and HI mice without brain injury. CONCLUSION We describe a method for detecting and monitoring the evolution of HI injury during brain maturation which could prove to be an excellent biomarker of injury.
Collapse
Affiliation(s)
| | - Yiran Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,Joint UCSF/UC Berkeley Graduate Group in Bioengineering, San Francisco, California, USA
| | - Byong Sop Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - R Ann Sheldon
- Department of Neurology, University of California, San Francisco, California, USA
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,Department of Pediatrics, University of California, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA, .,Joint UCSF/UC Berkeley Graduate Group in Bioengineering, San Francisco, California, USA,
| | - Donna M Ferriero
- Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
42
|
Zhang J, Ding C, Zhang S, Xu Y. Neuroprotective effects of astaxanthin against oxygen and glucose deprivation damage via the PI3K/Akt/GSK3β/Nrf2 signalling pathway in vitro. J Cell Mol Med 2020; 24:8977-8985. [PMID: 32567157 PMCID: PMC7417723 DOI: 10.1111/jcmm.15531] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia-induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway in SH-SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre-treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)-induced viability loss, reduced the proportion of apoptosis and regulated OGD-mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD-caused mitochondrial membrane potential and decomposition of caspase-3 to cleaved caspase-3, and heightened the B-cell lymphoma 2 (Bcl-2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH-SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p-Akt, p-GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO-1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD-induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Changling Ding
- Department of pharmacy, Binzhou Medical University Hospital, Binzhou, China
| | - Shuping Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Yangyang Xu
- Department of pharmacy, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
43
|
Zhou Y, Wang S, Zhao J, Fang P. Asiaticoside attenuates neonatal hypoxic-ischemic brain damage through inhibiting TLR4/NF-κB/STAT3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:641. [PMID: 32566578 PMCID: PMC7290617 DOI: 10.21037/atm-20-3323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Neonatal hypoxic ischemic encephalopathy (HIE) is currently a leading cause of neonatal death. Asiaticoside (AT), a bioactive constituent isolated from Centella asiatica, possesses numerous biological properties. For instance, previous studies showed that AT could protect ischemia hypoxia neurons by mediating BCL-2 protein. However, the roles and underlying mechanisms of AT in neonatal HIE have not been clarified. Methods Rice-Vannucci was applied to construct a hypoxic-ischemic brain damage (HIBD) model. Pathological damage of brain neuron tissue was determined by hematoxylin-eosin (HE) staining, while apoptosis was evaluated by terminal-deoxynucleoitidyl transferase nick end labeling (TUNEL) staining. Western blot and immunohistochemistry were applied to monitor related proteins levels. Enzyme-linked immunosorbent assay (ELISA) was conducted to measure the expression levels of inflammatory cytokines. Results The present study indicated that AT dose-dependently ameliorated histologic damage and inhibited apoptosis induced by hypoxic ischemia (HI) (P<0.01). AT also dose-dependently alleviated oxidative damage and reduced the levels of proinflammatory cytokines (ICAM-1, IL-18, and IL-1β) and TLR4 level. In terms of mechanism, decrease of TLR and IL-18 suppressed NF-κB phosphorylation and reduced the levels of TNFα, IL-6, and p-STAT3, leading to the inactivation of NF-κB/STAT3 pathway. Interestingly, with the addition of lipopolysaccharide (LPS), the increase of TLR4 activated NF-κB/STAT3 pathway again. Conclusions Collectively, the data provide insight into a novel mechanism by which AT may be an effective agent for HIE via the TLR4/NF-κB/STAT3 pathway.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Si Wang
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Jing Zhao
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ping Fang
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
44
|
Emam B, Shahsavani A, Khodagholi F, Zarandi SM, Hopke PK, Hadei M, Behbahani H, Yarahmadi M. Effects of PM 2.5 and gases exposure during prenatal and early-life on autism-like phenotypes in male rat offspring. Part Fibre Toxicol 2020; 17:8. [PMID: 31996222 PMCID: PMC6990481 DOI: 10.1186/s12989-020-0336-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological studies have reported associations between elevated air pollution and autism spectrum disorders (ASD). However, we hypothesized that exposure to air pollution that mimics real world scenarios, is a potential contributor to ASD. The exact etiology and molecular mechanisms underlying ASD are not well understood. Thus, we assessed whether changes in OXTR levels may be part of the mechanism linking PM2.5/gaseous pollutant exposure and ASD. The current in-vivo study investigated the effect of exposure to fine particulate matter (PM2.5) and gaseous pollutants on ASD using behavioral and molecular experiments. Four exposure groups of Wistar rats were included in this study: 1) particulate matter and gaseous pollutants exposed (PGE), 2) gaseous pollutants only exposed (GE), 3) autism-like model (ALM) with VPA induction, and 4) clean air exposed (CAE) as the control. Pregnant dams and male pups were exposed to air pollutants from embryonic day (E0) to postnatal day (PND21). RESULTS The average ± SD concentrations of air pollutants were: PM2.5: 43.8 ± 21.1 μg/m3, CO: 13.5 ± 2.5 ppm, NO2: 0.341 ± 0.100 ppm, SO2: 0.275 ± 0.07 ppm, and O3: 0.135 ± 0.01 ppm. The OXTR protein level, catalase activity (CAT), and GSH concentrations in the ALM, PGE, and GE rats were lower than those in control group (CAE). However, the decrements in the GE rats were smaller than other groups. Also in behavioral assessments, the ALM, PGE, and GE rats demonstrated a repetitive /restricted behavior and poor social interaction, but the GE rats had weaker responses compared to other groups of rats. The PGE and GE rats showed similar trends in these tests compared to the VPA rats. CONCLUSIONS This study suggested that exposure to ambient air pollution contributed to ASD and that OXTR protein may serve as part of the mechanism linking them.
Collapse
Affiliation(s)
- Baharan Emam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motesaddi Zarandi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Behbahani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Yarahmadi
- Center of Environmental and Occupational health, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
45
|
Anuriev AM, Gorbachev VI. [Hypoxic-ischemic brain damage in premature newborns]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:63-69. [PMID: 31825364 DOI: 10.17116/jnevro201911908263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the main causes of cerebral dysfunction in premature newborns is hypoxia. High mortality and lifelong morbidity in these children is a frequent result of neonatal hypoxic brain damage. The article presents some data on the prevalence of neurological diseases that have arisen in the perinatal period, and highlights the key etiological factors leading to hypoxia in both the intranatal and early postnatal periods. The pathogenesis of hypoxic-ischemic brain lesions in premature infants is described in detail. At the same time, more careful consideration is given to the glutathione system, which protects against lipid peroxidation, the glutamate-calcium cascade, and the excitotoxicity mediated by it, as well as the processes of necrosis and apoptosis of nerve cells. The advantages and disadvantages of modern methods for diagnosing cerebral lesions are noted, and the principles of treatment of these disorders are analyzed.
Collapse
Affiliation(s)
- A M Anuriev
- Irkutsk State Medical Academy of Postgraduate Education - Branch Campus of the Russian Medical Academy of Continuing Professional Education, Irkutsk, Russia
| | - V I Gorbachev
- Irkutsk State Medical Academy of Postgraduate Education - Branch Campus of the Russian Medical Academy of Continuing Professional Education, Irkutsk, Russia
| |
Collapse
|
46
|
Anastacio JBR, Sanches EF, Nicola F, Odorcyk F, Fabres RB, Netto CA. Phytoestrogen coumestrol attenuates brain mitochondrial dysfunction and long-term cognitive deficits following neonatal hypoxia-ischemia. Int J Dev Neurosci 2019; 79:86-95. [PMID: 31693927 DOI: 10.1016/j.ijdevneu.2019.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Neonatal Hypoxia-Ischemia (HI) is a major cause of morbidity and mortality, and is frequently associated with short and long-term neurologic and cognitive impairments. The HI injury causes mitochondrial damage leading to increased production of reactive oxygen species (ROS). Phytoestrogens are non-steroidal plant substances structurally and functionally similar to estrogen. Coumestrol is a potent isoflavonoid with a protective effect against ischemic brain damage in adult rats. Our aim was to determine if coumestrol treatment following neonatal HI attenuates the long-term cognitive deficits induced by neonatal HI, as well as to investigate one possible mechanism underlying its potential effect. METHODS On the 7th postnatal day, male Wistar rats were submitted to the Levine-Rice HI model. Intraperitoneal injections of 20 mg/kg of coumestrol, or vehicle, were administered immediately pre-hypoxia or 3 h post-hypoxia. At 12 h after HI the mitochondrial status and ROS levels were determined. At 60th postnatal day the cognitive deficits were revealed in the Morris water maze reference and working spatial memories. Following behavioral analysis, histological assessment was performed and reactive astrogliosis was measured by GFAP expression. RESULTS Results demonstrate that both pre- and post-HI administration of coumestrol were able to counteract the long-term cognitive and morphological impairments caused by HI, as well as to block the late reactive astrogliosis. The pre-HI administration of coumestrol was able to prevent the early mitochondrial dysfunction in the hippocampus of injured rat pups. CONCLUSION Present data suggest that coumestrol exerts protection against experimental neonatal brain hypoxia-ischemia through, at least in part, early modulation of mitochondrial function.
Collapse
Affiliation(s)
| | - Eduardo Farias Sanches
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabrício Nicola
- Post-graduation Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Odorcyk
- Post-graduation Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Post-graduation Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Post-graduation Program in Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Post-graduation Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Post-graduation Program in Phisiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Romanowicz J, Leonetti C, Dhari Z, Korotcova L, Ramachandra SD, Saric N, Morton PD, Bansal S, Cheema A, Gallo V, Jonas RA, Ishibashi N. Treatment With Tetrahydrobiopterin Improves White Matter Maturation in a Mouse Model for Prenatal Hypoxia in Congenital Heart Disease. J Am Heart Assoc 2019; 8:e012711. [PMID: 31331224 PMCID: PMC6761654 DOI: 10.1161/jaha.119.012711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023]
Abstract
Background Reduced oxygen delivery in congenital heart disease causes delayed brain maturation and white matter abnormalities in utero. No treatment currently exists. Tetrahydrobiopterin (BH4) is a cofactor for neuronal nitric oxide synthase. BH4 availability is reduced upon NOS activation, such as during hypoxic conditions, and leads to toxin production. We hypothesize that BH4 levels are depleted in the hypoxic brain and that BH4 replacement therapy mitigates the toxic effects of hypoxia on white matter. Methods and Results Transgenic mice were used to visualize oligodendrocytes. Hypoxia was introduced during a period of white matter development equivalent to the human third trimester. BH4 was administered during hypoxia. BH4 levels were depleted in the hypoxic brain by direct quantification (n=7-12). The proliferation (n=3-6), apoptosis (n=3-6), and developmental stage (n=5-8) of oligodendrocytes were determined immunohistologically. Total oligodendrocytes increased after hypoxia, consistent with hypoxia-induced proliferation seen previously; however, mature oligodendrocytes were less prevalent in hypoxia, and there was accumulation of immature oligodendrocytes. BH4 treatment improved the mature oligodendrocyte number such that it did not differ from normoxia, and accumulation of immature oligodendrocytes was not observed. These results persisted beyond the initial period of hypoxia (n=3-4). Apoptosis increased with hypoxia but decreased with BH4 treatment to normoxic levels. White matter myelin levels decreased following hypoxia by western blot. BH4 treatment normalized myelination (n=6-10). Hypoxia worsened sensory-motor coordination on balance beam tasks, and BH4 therapy normalized performance (n=5-9). Conclusions Suboptimal BH4 levels influence hypoxic white matter abnormalities. Repurposing BH4 for use during fetal brain development may limit white matter dysmaturation in congenital heart disease.
Collapse
Affiliation(s)
- Jennifer Romanowicz
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
| | - Camille Leonetti
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Zaenab Dhari
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Ludmila Korotcova
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Shruti D. Ramachandra
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Nemanja Saric
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Paul D. Morton
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Shivani Bansal
- Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Amrita Cheema
- Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Vittorio Gallo
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Richard A. Jonas
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| | - Nobuyuki Ishibashi
- Children's National Heart InstituteChildren's National Health SystemWashingtonDC
- Center for Neuroscience ResearchChildren's National Health SystemWashingtonDC
| |
Collapse
|
49
|
Li K, Li T, Wang Y, Xu Y, Zhang S, Culmsee C, Wang X, Zhu C. Sex differences in neonatal mouse brain injury after hypoxia-ischemia and adaptaquin treatment. J Neurochem 2019; 150:759-775. [PMID: 31188470 DOI: 10.1111/jnc.14790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-PHDs) are important targets against oxidative stress. We hypothesized that inhibition HIF-PHD by adaptaquin reduces hypoxic-ischemic brain injury in a neonatal mouse model. The pups were treated intraperitoneally immediately with adaptaquin after hypoxia-ischemia (HI) and then every 24 h for 3 days. Adaptaquin treatment reduced infarction volume by an average of 26.3% at 72 h after HI compared to vehicle alone, and this reduction was more pronounced in males (34.8%) than in females (11.7%). The protection was also more pronounced in the cortex. The subcortical white matter injury as measured by tissue loss volume was reduced by 24.4% in the adaptaquin treatment group, and this reduction was also more pronounced in males (28.4%) than in females (18.9%). Cell death was decreased in the cortex as indicated by Fluoro-Jade labeling, but not in other brain regions with adaptaquin treatment. Furthermore, in the brain injury area, adaptaquin did not alter the number of cells positive for caspase-3 activation or translocation of apoptosis-inducing factor to the nuclei. Adaptaquin treatment increased glutathione peroxidase 4 mRNA expression in the cortex but had no impact on 3-nitrotyrosine, 8-hydroxy-2 deoxyguanosine, or malondialdehyde production. Hif1α mRNA expression increased after HI, and adaptaquin treatment also stimulated Hif1α mRNA expression, which was also more pronounced in males than in females. However, nuclear translocation of HIF1α protein was decreased after HI, and adaptaquin treatment had no influence on HIF1α expression in the nucleus. These findings demonstrate that adaptaquin treatment is neuroprotective, but the potential mechanisms need further investigation. Read the Editorial Highlight for this article on page 645.
Collapse
Affiliation(s)
- Kenan Li
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tao Li
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carsten Culmsee
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Institute of Pharmacology and Clinical Pharmacy, Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Yang L, Dong Y, Wu C, Li Y, Guo Y, Yang B, Zong X, Hamblin MR, Cheng-Yi Liu T, Zhang Q. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. JOURNAL OF BIOPHOTONICS 2019; 12:e201800359. [PMID: 30652418 PMCID: PMC6546525 DOI: 10.1002/jbio.201800359] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/02/2018] [Accepted: 01/12/2019] [Indexed: 05/13/2023]
Abstract
Neonatal hypoxia-ischemia (HI) injury caused by oxygen deprivation is the most common cause of mortality and severe neurologic deficits in neonates. The present work evaluated the preventative effect of photobiomodulation (PBM) preconditioning, and its underlying mechanism of action on brain damage in an HI model in neonatal rats. According to the optimal time response of ATP levels in brain samples removed from normal rats, a PBM preconditioning (PBM-P) regimen (808 nm CW laser, 1 cm2 spot, 100 mW/cm2 , 12 J/cm2 ) was delivered to the scalp 6 hours before HI. PBM-P significantly attenuated cognitive impairment, volume shrinkage in the brain, neuron loss, dendritic and synaptic injury after HI. Further mechanistic investigation found that PBM-P could restore HI-induced mitochondrial dynamics and inhibit mitochondrial fragmentation, followed by a robust suppression of cytochrome c release, and prevention of neuronal apoptosis by inhibition of caspase activation. Our work suggests that PBM-P can attenuate HI-induced brain injury by maintaining mitochondrial dynamics and inhibiting the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Luodan Yang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yan Dong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Chongyun Wu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Yong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Yichen Guo
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Baocheng Yang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Xuemei Zong
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| | - Quanguang Zhang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, GD 510006, China
| |
Collapse
|