1
|
Martin DS, Grocott MPW. Heterogeneity of treatment effect: the case for individualising oxygen therapy in critically ill patients. Crit Care 2025; 29:50. [PMID: 39875948 PMCID: PMC11776231 DOI: 10.1186/s13054-025-05254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Oxygen therapy is ubiquitous in critical illness but oxygenation targets to guide therapy remain controversial despite several large randomised controlled trials (RCTs). Findings from RCTs evaluating different approaches to oxygen therapy in critical illness present a confused picture for several reasons. Differences in both oxygen target measures (e.g. oxygen saturation or partial pressure) and the numerical thresholds used to define lower and higher targets complicate comparisons between trials. The duration of and adherence to oxygenation targets is also variable with consequent substantial variation in both the dose and the dose separation. Finally, heterogeneity of treatment effects (HTE) may also be a significant factor. HTE is defined as non-random variation in the benefit or harm of a treatment, in which the variation is associated with or attributable to patient characteristics. This narrative review aims to make the case that such heterogeneity is likely in relation to oxygen therapy for critically ill patients and that this has significant implications for the design and interpretation of trials of oxygen therapy in this context. HTE for oxygen therapy amongst critically ill patients may explain the contrasting results from different clinical trials of oxygen therapy. Individualised oxygen therapy may overcome this challenge, and future studies should incorporate ways to evaluate this approach.
Collapse
Affiliation(s)
- Daniel S Martin
- Peninsula Medical School, University of Plymouth, John Bull Building, Plymouth, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Cuartero-Corbalán N, Martínez-Lozano Aranaga F, Gómez-Ramos MJ, Gómez-Sánchez MB, Avilés-Plaza FV, Núñez-Sánchez MA, Morillas-Ruiz JM. Comparison of n-3 PUFA-Enriched vs. Olive-Oil-Based Lipid Emulsion on Oxidative Stress and Inflammatory Response in Critically Ill Post-Surgery Adults: Secondary Analysis of a Randomized Controlled Trial. Int J Mol Sci 2024; 25:11739. [PMID: 39519287 PMCID: PMC11546187 DOI: 10.3390/ijms252111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Malnutrition in critically ill patients represents a major concern as it can lead to adverse outcomes including increased morbidity and mortality. These patients exhibit an impaired immune response accompanied by increased oxidative stress. Nutritional support, including parenteral nutrition (PN), is critical in these patients. Intravenous lipid emulsions (ILEs), a key component of PN, provide energy and intervene in the modulation of inflammation. This was a secondary study of a randomized clinical trial at the Reina Sofia University Hospital (Murcia, Spain) for critically ill patients following major abdominal surgery that were administered PN supplemented with olive-oil-based ILE (OO-ILE, n = 29) or a mixed-lipid ILE (soybean oil, medium chain triglycerides, OO and fish oil, SMOF-ILE, n = 25). The effects on clinical outcomes, metabolic markers, oxidative stress, and inflammation were evaluated. No significant differences were observed between groups in the clinical parameters and outcomes, oxidative stress, or inflammatory markers. The within-group evaluation demonstrated an increase in total antioxidant capacity in both groups, while OO-ILE increased the levels of 15-F2t-isoprostane. In addition, the results showed that both mixtures reduced the release of IL-1β and IL-6. These findings suggest that both treatments had similar effects on oxidative stress and inflammatory response in this type of patient.
Collapse
Affiliation(s)
- Nerea Cuartero-Corbalán
- Faculty of Pharmacy and Nutrition, Campus de Los Jerónimos, Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain; (N.C.-C.); (J.M.M.-R.)
| | | | - Maria Jesús Gómez-Ramos
- Intensive Care Unit, Hospital General Universitario Reina Sofía, Avda Intendente Jorge Palacios 1, 30003 Murcia, Spain
| | - María B. Gómez-Sánchez
- Nutrition Unit, Hospital General Universitario Reina Sofía, Avda Intendente Jorge Palacios 1, 30003 Murcia, Spain;
| | - Francisco V. Avilés-Plaza
- Department of Clinical Analysis, Hospital General Universitario Virgen de la Arrixaca, 30120 Murcia, Spain;
| | - María A. Núñez-Sánchez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB-PP), Crt. Buenavista s/n, 30120 Murcia, Spain
| | - Juana M. Morillas-Ruiz
- Faculty of Pharmacy and Nutrition, Campus de Los Jerónimos, Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain; (N.C.-C.); (J.M.M.-R.)
| |
Collapse
|
3
|
Fan YY, Luo RY, Wang MT, Yuan CY, Sun YY, Jing JY. Mechanisms underlying delirium in patients with critical illness. Front Aging Neurosci 2024; 16:1446523. [PMID: 39391586 PMCID: PMC11464339 DOI: 10.3389/fnagi.2024.1446523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Delirium is an acute, global cognitive disorder syndrome, also known as acute brain syndrome, characterized by disturbance of attention and awareness and fluctuation of symptoms. Its incidence is high among critically ill patients. Once patients develop delirium, it increases the risk of unplanned extubation, prolongs hospital stay, increases the risk of nosocomial infection, post-intensive care syndrome-cognitive impairment, and even death. Therefore, it is of great importance to understand how delirium occurs and to reduce the incidence of delirium in critically ill patients. This paper reviews the potential pathophysiological mechanisms of delirium in critically ill patients, with the aim of better understanding its pathophysiological processes, guiding the formulation of effective prevention and treatment strategies, providing a basis for clinical medication.
Collapse
Affiliation(s)
- Ying-Ying Fan
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruo-Yu Luo
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meng-Tian Wang
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao-Yun Yuan
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan-Yuan Sun
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ji-Yong Jing
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Zhu W, Ou Y, Wang C, An R, Lai J, Shen Y, Ye X, Wang H. A neutrophil elastase inhibitor, sivelestat, attenuates sepsis-induced acute kidney injury by inhibiting oxidative stress. Heliyon 2024; 10:e29366. [PMID: 38638960 PMCID: PMC11024609 DOI: 10.1016/j.heliyon.2024.e29366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
Background Sivelestat, a selective inhibitor of neutrophil elastase (NE), can mitigate sepsis-related acute lung injury. However, the role of sivelestat in inhibiting oxidative stress and attenuating sepsis-related acute kidney injury (AKI) remains unclear. Here, we reported the effects of sivelestat against oxidative stress-induced AKI by suppressing the production of oxidative stress indicators. Materials and methods A male Sprague-Dawley rat model of sepsis was established by cecal ligation and puncture (CLP). Sivelestat or normal saline was administered into jugular vein with a sustained-release drug delivery system. Indicators of inflammation and AKI, including white blood cells (WBC), neutrophils, lymphocytes, C-reactive proteins (CRP), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine (Cr) and uric acid (UA), were assessed at 24 h post-sivelestat treatment. Indicators of liver injury, including direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were also assessed at 24 h post-sivelestat treatment. Indicators of oxidative stress, including superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), were assessed at 12 h and 24 h post-sivelestat treatment. At 24 h post-sivelestat treatment, H&E staining of kidney and liver tissue was performed to observe pathological alterations. Results At 24 h post normal saline or sivelestat (0.2 g/kg body weight) treatment, WBC, neutrophil, CRP, PCT, MDA, BUN, Cr, UA, AST, ALT, DBIL and IBIL were increased, while SOD and GSH-Px were decreased, in septic rats treated with normal saline compared with that in non-septic rats treated with normal saline (all p < 0.05). The changes of these indicators were reversed in septic rats treated with sivelestat compared with that in septic rats treated with normal saline (all p < 0.05). Similar results were found regarding the levels of oxidative stress indicators at 12 h post-sivelestat treatment. The degenerative histopathological changes in both kidney and liver tissues were ameliorated upon sivelestat treatment. Conclusions Sivelestat plays a protective role in sepsis-related AKI by inhibiting oxidative stress. Our study reveals a possible therapeutic potential of sivelestat for oxidative stress-induced AKI.
Collapse
Affiliation(s)
- Wei Zhu
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yingwei Ou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chunnian Wang
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, Zhejiang, China
| | - Rongcheng An
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Junmei Lai
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ye Shen
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xiangming Ye
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haochu Wang
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
5
|
Pérez-Torres I, Aisa-Álvarez A, Casarez-Alvarado S, Borrayo G, Márquez-Velasco R, Guarner-Lans V, Manzano-Pech L, Cruz-Soto R, Gonzalez-Marcos O, Fuentevilla-Álvarez G, Gamboa R, Saucedo-Orozco H, Franco-Granillo J, Soto ME. Impact of Treatment with Antioxidants as an Adjuvant to Standard Therapy in Patients with Septic Shock: Analysis of the Correlation between Cytokine Storm and Oxidative Stress and Therapeutic Effects. Int J Mol Sci 2023; 24:16610. [PMID: 38068931 PMCID: PMC10706209 DOI: 10.3390/ijms242316610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cellular homeostasis is lost or becomes dysfunctional during septic shock due to the activation of the inflammatory response and the deregulation of oxidative stress. Antioxidant therapy administered alongside standard treatment could restore this lost homeostasis. We included 131 patients with septic shock who were treated with standard treatment and vitamin C (Vit C), vitamin E (Vit E), N-acetylcysteine (NAC), or melatonin (MT), in a randomized trial. Organ damage quantified by Sequential Organ Failure Assessment (SOFA) score, and we determined levels of Interleukins (IL) IL1β, Tumor necrosis factor alpha (TNFα), IL-6, monocyte chemoattractant protein-1 (MCP-1), Transforming growth factor B (TGFβ), IL-4, IL-10, IL-12, and Interferon-γ (IFNγ). The SOFA score decreased in patients treated with Vit C, NAC, and MT. Patients treated with MT had statistically significantly reduced of IL-6, IL-8, MCP-1, and IL-10 levels. Lipid peroxidation, Nitrates and nitrites (NO3- and NO2-), glutathione reductase, and superoxide dismutase decreased after treatment with Vit C, Vit E, NAC, and MT. The levels of thiols recovered with the use of Vit E, and all patients treated with antioxidants maintained their selenium levels, in contrast with controls (p = 0.04). The findings regarding oxidative stress markers and cytokines after treatment with antioxidants allow us to consider to future the combined use of antioxidants in a randomized clinical trial with a larger sample to demonstrate the reproducibility of these beneficial effects.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Alfredo Aisa-Álvarez
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Sergio Casarez-Alvarado
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Gabriela Borrayo
- Instituto Mexicano del Seguro Social, Dirección de Prestaciones Médicas Coordinación de Innovación en Salud, Ciudad de México 06700, Mexico;
| | - Ricardo Márquez-Velasco
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Linaloe Manzano-Pech
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Randall Cruz-Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Omar Gonzalez-Marcos
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Giovanny Fuentevilla-Álvarez
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Ricardo Gamboa
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | | | - Juvenal Franco-Granillo
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
- Research Direction Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. Las Américas, Mexico City 01120, Mexico
| |
Collapse
|
6
|
Manring N, Strini M, Smeltz JL, Pathirathna P. Simultaneous detection of neurotransmitters and Cu 2+ using double-bore carbon fiber microelectrodes via fast-scan cyclic voltammetry. RSC Adv 2023; 13:33844-33851. [PMID: 38020012 PMCID: PMC10658548 DOI: 10.1039/d3ra06218j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
There is a great demand to broaden our understanding of the multifactorial complex etiology of neurodegenerative diseases to aid the development of more efficient therapeutics and slow down the progression of neuronal cell death. The role of co-transmission and the effect of environmental factors on such diseases have yet to be explored adequately, mainly due to the lack of a proper analytical tool that can perform simultaneous multi-analyte detection in real time with excellent analytical parameters. In this study, we report a simple fabrication protocol of a double-bore carbon-fiber microelectrode (CFM) capable of performing rapid simultaneous detection of neurotransmitters and Cu2+via fast-scan cyclic voltammetry (FSCV) in Tris buffer. After imaging our CFMs via optical microscopy and scanning electron microscopy to ensure the intact nature of the two electrodes in our electrode composite, we performed a detailed analysis of the performance characteristics of our double-bore CFM in five different analyte mixtures, Cu2+-5HT, Cu2+-DA, Cu2+-AA, 5-HT-DA, and 5-HT-AA in Tris buffer, by applying different analyte-specific FSCV waveforms simultaneously. Calibration curves for each analyte in each mixture were plotted while extracting the analytical parameters such as the limit of detection (LOD), linear range, and sensitivity. We also carried out a control experiment series for the same mixtures with single-bore CFMs by applying one waveform at a time to compare the capabilities of our double-bore CFMs. Interestingly, except for the Cu2+-DA solution, all other combinations showed improved LOD, linear ranges, and sensitivity when detecting simultaneously with double-bore CFMs compared to single-bore CFMs, an excellent finding for developing this sensor for future in vivo applications.
Collapse
Affiliation(s)
- Noel Manring
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Miriam Strini
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Jessica L Smeltz
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| | - Pavithra Pathirathna
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL USA
| |
Collapse
|
7
|
Dorresteijn MJ, Dekker D, Zwaag J, Heemskerk S, Roelofs HM, Smits P, van der Hoeven JG, Wagener FA, Pickkers P. Atazanavir-induced unconjugated hyperbilirubinemia prevents vascular hyporeactivity during experimental human endotoxemia. Front Immunol 2023; 14:1176775. [PMID: 37261364 PMCID: PMC10228648 DOI: 10.3389/fimmu.2023.1176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Inflammation-induced free radical release is important in the pathogenesis of several diseases, including atherosclerosis and sepsis. Heme oxygenase (HO) breaks down heme into carbon monoxide, iron, and biliverdin. Biliverdin IXα is directly converted to bilirubin by biliverdin reductase. Unconjugated bilirubin is a powerful antioxidant, and elevated levels have beneficial effects in preclinical models and human cardiovascular disease. However, its impact during acute inflammation in humans is unknown. In the present study, we investigated the impact of atazanavir-induced (unconjugated) hyperbilirubinemia on antioxidant capacity, inflammation, and vascular dysfunction in human experimental endotoxemia. Approach and results Following double-blinded four-day treatment with atazanavir 2dd300 mg (or placebo), twenty healthy male volunteers received 2 ng/kg Escherichia coli lipopolysaccharide intravenously. Blood was drawn to determine the bilirubin levels, antioxidant capacity, and cytokine response. It was demonstrated that following atazanavir treatment, total bilirubin concentrations increased to maximum values of 4.67 (95%CI 3.91-5.59) compared to 0.82 (95%CI 0.64-1.07) mg/dL in the control group (p<0.01). Furthermore, the anti-oxidant capacity, as measured by the ferric-reducing ability of plasma (FRAP), was significantly increased with 36% in hyperbilirubinemia subjects (p<0.0001), and FRAP concentrations correlated strongly to bilirubin concentrations (R2 = 0.77, p<0.001). Hyperbilirubinemia attenuated the release of interleukin-10 from 377 (95%CI 233-609) to 219 (95%CI 152-318) pg/mL (p=0.01), whereas the release of pro-inflammatory cytokines remained unaltered. In vitro, in the absence of hyperbilirubinemia, atazanavir did not influence lipopolysaccharide-induced cytokine release in a whole blood assay. Vascular function was assessed using forearm venous occlusion plethysmography after intra-arterial infusion of acetylcholine and nitroglycerin. Hyperbilirubinemia completely prevented the LPS-associated blunted vascular response to acetylcholine and nitroglycerin. Conclusions Atazanavir-induced hyperbilirubinemia increases antioxidant capacity, attenuates interleukin-10 release, and prevents vascular hyporesponsiveness during human systemic inflammation elicited by experimental endotoxemia. Clinical trial registration http://clinicaltrials.gov, identifier NCT00916448.
Collapse
Affiliation(s)
- Mirrin J. Dorresteijn
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Douwe Dekker
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jelle Zwaag
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Suzanne Heemskerk
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hennie M.J. Roelofs
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul Smits
- Department of Pharmacology and Toxicology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes G. van der Hoeven
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A.D.T.G. Wagener
- Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Izumino H, Tajima G, Tasaki O, Inokuma T, Hatachi G, Takagi K, Miyazaki T, Matsumoto K, Tsuchiya T, Sato S, Nagayasu T. Balance of the prooxidant and antioxidant system is associated with mortality in critically ill patients. J Clin Biochem Nutr 2023; 72:157-164. [PMID: 36936878 PMCID: PMC10017322 DOI: 10.3164/jcbn.22-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/06/2022] [Indexed: 01/28/2023] Open
Abstract
It is well known that oxidative stress causes certain diseases and organ damage. However, roles of oxidative stress in the acute phase of critical patients remain to be elucidated. This study aimed to investigate the balance of oxidative and antioxidative system and to clarify the association between oxidative stress and mortality in critically ill patients. This cohort study enrolled 247 patients transported to our emergency department by ambulance. Blood was drawn on hospital arrival, and serum derivatives of reactive oxidant metabolites (dROMs, oxidative index) and biological antioxidant potential (BAP, antioxidative index) were measured. Modified ratio (MR) is also calculated as BAP/dROMs/7.51. There were 197 survivors and 50 non-survivors. In the non-survivors, dROMs were significantly lower (274 vs 311, p<0.01), BAP was significantly higher (2,853 vs 2,138, p<0.01), and MR was significantly higher (1.51 vs 0.92, p<0.01) compared to those in the survivors. The AUC of MR was similar to that for the APACHE II score. Contrary to our expectations, higher BAP and lower dROMs were observed on admission in non-survivors. This may suggest that the antioxidative system is more dominant in the acute phase of severe insults and that the balance toward a higher antioxidative system is associated with mortality.
Collapse
Affiliation(s)
- Hiroo Izumino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Goro Tajima
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Emergency Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- To whom correspondence should be addressed. E-mail:
| | - Osamu Tasaki
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Emergency Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takamitsu Inokuma
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsunori Takagi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
9
|
Manring N, Ahmed MMN, Smeltz JL, Pathirathna P. Electrodeposition of dopamine onto carbon fiber microelectrodes to enhance the detection of Cu 2+ via fast-scan cyclic voltammetry. Anal Bioanal Chem 2023:10.1007/s00216-022-04488-4. [PMID: 36595035 DOI: 10.1007/s00216-022-04488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023]
Abstract
The etiology of neurodegenerative diseases is poorly understood; however, studies have shown that heavy metals, such as copper, play a critical role in neurotoxicity, thus, adversely affecting the development of these diseases. Because of the limitations associated with classical metal detection tools to obtain accurate speciation information of ultra-low concentrations of heavy metals in the brain, analysis is primarily performed in blood, urine, or postmortem tissues, limiting the translatability of acquired knowledge to living systems. Inadequate and less accurate data obtained with such techniques provide little or no information for developing efficient therapeutics that aid in slowing down the deterioration of brain cells. In this study, we developed a biocompatible, ultra-fast, low-cost, and robust surface-modified electrode with carbon fibers by electrodepositing dopamine via fast-scan cyclic voltammetry (FSCV) to detect Cu2+ in modified tris buffer. We studied the surface morphology of our newly introduced sensors using high-resolution images by atomic force microscopy under different deposition conditions. The limit of detection (LOD) of our surface-modified sensor was 0.01 µM (0.64 ppb), and the sensitivity was 11.28 nA/µM. The LOD and sensitivity are fifty and two times greater, respectively, compared to those of a bare electrode. The sensor's response is not affected by the presence of dopamine in the matrix. It also exhibited excellent stability to multiple subsequent injections and repeated measurements of Cu2+ over a month, thus showing its strength to be developed into an accurate, fast, robust electrochemical tool to monitor ultra-low concentrations of heavy metals in the brain in real time.
Collapse
Affiliation(s)
- Noel Manring
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Muzammil M N Ahmed
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Jessica L Smeltz
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA
| | - Pavithra Pathirathna
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA.
| |
Collapse
|
10
|
Owen A, Patel JM, Parekh D, Bangash MN. Mechanisms of Post-critical Illness Cardiovascular Disease. Front Cardiovasc Med 2022; 9:854421. [PMID: 35911546 PMCID: PMC9334745 DOI: 10.3389/fcvm.2022.854421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jaimin M. Patel
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mansoor N. Bangash
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Mansoor N. Bangash
| |
Collapse
|
11
|
Liu R, Peng L, Zhou L, Huang Z, Zhou C, Huang C. Oxidative Stress in Cancer Immunotherapy: Molecular Mechanisms and Potential Applications. Antioxidants (Basel) 2022; 11:antiox11050853. [PMID: 35624717 PMCID: PMC9137834 DOI: 10.3390/antiox11050853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is an effective treatment option that revolutionizes the management of various cancers. Nevertheless, only a subset of patients receiving immunotherapy exhibit durable responses. Recently, numerous studies have shown that oxidative stress induced by reactive oxygen species (ROS) plays essential regulatory roles in the tumor immune response, thus regulating immunotherapeutic effects. Specifically, studies have revealed key roles of ROS in promoting the release of tumor-associated antigens, manipulating antigen presentation and recognition, regulating immune cell phenotypic differentiation, increasing immune cell tumor infiltration, preventing immune escape and diminishing immune suppression. In the present study, we briefly summarize the main classes of cancer immunotherapeutic strategies and discuss the interplay between oxidative stress and anticancer immunity, with an emphasis on the molecular mechanisms underlying the oxidative stress-regulated treatment response to cancer immunotherapy. Moreover, we highlight the therapeutic opportunities of manipulating oxidative stress to improve the antitumor immune response, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
- Correspondence: (C.Z.); (C.H.)
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
- Correspondence: (C.Z.); (C.H.)
| |
Collapse
|
12
|
Ou Y, An R, Wang H, Chen L, Shen Y, Cai W, Zhu W. Oxidative stress-related circulating miRNA-27a is a potential biomarker for diagnosis and prognosis in patients with sepsis. BMC Immunol 2022; 23:14. [PMID: 35337261 PMCID: PMC8957193 DOI: 10.1186/s12865-022-00489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Oxidative stress plays a critical role on the processes of sepsis, and several microRNAs have been identified that may regulate the occurrence of oxidative stress. However, the relation between oxidative stress-related microRNA 27a (miR-27a) and sepsis is unknown. The present study aimed to determine the value of circulating miR-27a for the diagnosis and prognosis of sepsis. Methods This retrospective study included 23 patients with sepsis and 25 without sepsis treated at the emergency intensive care unit (EICU) or our institution between January 2019 and January 2020. Levels of circulating miR-27a and levels of oxidative stress-related indicators were measured and compared between sepsis and non-sepsis patients. Receiver operating characteristic (ROC) curve analysis was used to determine diagnostic efficiency of miR-27a. Results Circulating miR-27a levels in sepsis patients were higher than those in non-sepsis patients (p < 0.05), and levels were significantly higher in patients that died than those that lived (p < 0.05). In patients with sepsis, circulating miR-27a level was positively correlated with serum malondialdehyde (MDA) level (rs = 0.529, p = 0.007), and negatively correlated with serum glutathione peroxidase (GSH-Px) level (rs = − 0.477, p = 0.016). No significant correlation was observed between circulating miR-27a and serum superoxide dismutase (SOD) in sepsis patients (rs = − 0.340, p = 0.096). The area under the ROC curve (AUC) of miR-27a level for prediction of sepsis was 0.717 (p = 0.009) and for 28-day mortality was 0.739 (p = 0.003). Conclusions This study showed that circulating miR-27a level is correlated with oxidative stress and mortality in patients with sepsis, and may serve as a potential non-invasive molecular biomarker.
Collapse
Affiliation(s)
- Yingwei Ou
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Rongcheng An
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Haochu Wang
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Lue Chen
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yong Shen
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Wenwei Cai
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Wei Zhu
- Department of Emergency, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Antimicrobial and Antioxidant Secondary Metabolites from Trifolium baccarinii Chiov. (Fabaceae) and Their Mechanisms of Antibacterial Action. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3099428. [PMID: 34722760 PMCID: PMC8556085 DOI: 10.1155/2021/3099428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
The treatment of infectious diseases with antimicrobial agents continues to present problems in modern-day medicine with many studies showing significant increase in the incidence of bacterial resistance to several antibiotics. The screening of antimicrobial activity of plant extracts and natural products has shown that medicinal plants are made up of a potential source of new anti-infective agents. The aim of this study was to evaluate the antimicrobial and antioxidant activities of extracts and compounds from the whole plant Trifolium baccarinii Chiov. and to determine their modes of antibacterial action. The plant extracts were prepared by maceration in organic solvents. The antimicrobial activities were evaluated using the broth microdilution method. The antioxidant activity was evaluated using the 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assays. The mechanisms of antibacterial action were determined by lysis, salt tolerance assays, and antioxidant enzyme activities. The cytotoxic effect on the erythrocytes was determined by a spectrophotometric method. Biochanin A, formononetin, luteolin, luteolin-4'-O-β-D-glucopyranoside, 4,7,2'-trihydroxy-4'-methoxyisoflavanol, sissotrin, 1-methyl-β-D-glucopyranoside, ononin, D-mannitol, and 3-O-β-D-glucuronopyranosylsoyasapogenol B were isolated from Trifolium baccarinii. The MeOH, EtOAc, and n-BuOH extracts as well as biochanin A, formononetin, luteolin, luteolin-4'-O-β-D-glucopyranoside, 4,7,2'-trihydroxy-4'-methoxyisoflavanol, and sissotrin from Trifolium baccarinii displayed the highest antimicrobial and antioxidant activities. The MeOH extract and 4,7,2'-trihydroxy-4'-methoxyisoflavanol exhibited antibacterial activity through the bacteriolytic effect and reduction of the antioxidant defenses in the bacterial cells. The present study portrays Trifolium baccarinii as a potential natural source of antibacterial, antifungal, and antioxidant agents.
Collapse
|
14
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
15
|
Jiang J, Peng L, Wang K, Huang C. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxid Redox Signal 2021; 34:979-1003. [PMID: 32631077 DOI: 10.1089/ars.2020.8123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Metabolic reprogramming is considered to be a critical adaptive biological event that fulfills the energy and biomass demands for cancer cells. One hallmark of metabolic reprogramming is reduced oxidative phosphorylation and enhanced aerobic glycolysis. Such metabolic abnormalities contribute to the accumulation of reactive oxygen species (ROS), the by-products of metabolic pathways. Emerging evidence suggests that ROS can in turn directly or indirectly affect the expression, activity, or subcellular localization of metabolic enzymes, contributing to the moonlighting functions outside of their primary roles. This review summarizes the multifunctions of metabolic enzymes and the involved redox modification patterns, which further reveal the inherent connection between metabolism and cellular redox state. Recent Advances: These noncanonical functions of metabolic enzymes involve the regulation of epigenetic modifications, gene transcription, post-translational modification, cellular antioxidant capacity, and many other fundamental cellular events. The multifunctional properties of metabolic enzymes further expand the metabolic dependencies of cancer cells, and confer cancer cells with a means of adapting to diverse environmental stimuli. Critical Issues: Deciphering the redox-manipulated mechanisms with specific emphasis on the moonlighting function of metabolic enzymes is important for clarifying the pertinence between metabolism and redox processes. Future Directions: Investigation of the redox-regulated moonlighting functions of metabolic enzymes will shed new lights into the mechanism by which metabolic enzymes gain noncanonical functions, and yield new insights into the development of novel therapeutic strategies for cancer treatment by targeting metabolic-redox abnormalities. Antioxid. Redox Signal. 34, 979-1003.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Crimi E, Cirri S, Benincasa G, Napoli C. Epigenetics Mechanisms in Multiorgan Dysfunction Syndrome. Anesth Analg 2020; 129:1422-1432. [PMID: 31397699 DOI: 10.1213/ane.0000000000004331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms including deoxyribonucleic acid (DNA) methylation, histone modifications (eg, histone acetylation), and microribonucleic acids (miRNAs) have gained much scientific interest in the last decade as regulators of genes expression and cellular function. Epigenetic control is involved in the modulation of inflammation and immunity, and its dysregulation can contribute to cell damage and organ dysfunction. There is growing evidence that epigenetic changes can contribute to the development of multiorgan dysfunction syndrome (MODS), a leading cause of mortality in the intensive care unit (ICU). DNA hypermethylation, histone deacetylation, and miRNA dysregulation can influence cytokine and immune cell expression and promote endothelial dysfunction, apoptosis, and end-organ injury, contributing to the development of MODS after a critical injury. Epigenetics processes, particularly miRNAs, are emerging as potential biomarkers of severity of disease, organ damage, and prognostic factors in critical illness. Targeting epigenetics modifications can represent a novel therapeutic approach in critical care. Inhibitors of histone deacetylases (HDCAIs) with anti-inflammatory and antiapoptotic activities represent the first class of drugs that reverse epigenetics modifications with human application. Further studies are required to acquire a complete knowledge of epigenetics processes, full understanding of their individual variability, to expand their use as accurate and reliable biomarkers and as safe target to prevent or attenuate MODS in critical disease.
Collapse
Affiliation(s)
- Ettore Crimi
- From the University of Central Florida, College of Medicine, Orlando, Florida.,Department of Anesthesiology and Critical Care Medicine, Ocala Health, Ocala, Florida
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato, Milan, Italy
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation SDN, Naples, Italy
| |
Collapse
|
17
|
Yen CC, Chang WH, Tung MC, Chen HL, Liu HC, Liao CH, Lan YW, Chong KY, Yang SH, Chen CM. Lactoferrin Protects Hyperoxia-Induced Lung and Kidney Systemic Inflammation in an In Vivo Imaging Model of NF-κB/Luciferase Transgenic Mice. Mol Imaging Biol 2019; 22:526-538. [DOI: 10.1007/s11307-019-01390-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Irisin Protects Heart Against Ischemia-Reperfusion Injury Through a SOD2-Dependent Mitochondria Mechanism. J Cardiovasc Pharmacol 2019; 72:259-269. [PMID: 29979350 DOI: 10.1097/fjc.0000000000000608] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Irisin, a muscle-origin protein derived from the extracellular domain of the fibronectin domain-containing 5 protein (FNDC5), has been shown to modulate mitochondria welfare through paracrine action. Here, we test the hypothesis that irisin contributes to cardioprotection after myocardial infarction by preserving mitochondrial function in cardiomyocytes. Animal model studies show that intravenous administration of exogenous irisin produces dose-dependent protection against ischemia/reperfusion (I/R)-induced injury to the heart as reflected by the improvement of left ventricular ejection fraction and the reduction in serum level of cTnI (n = 15, P < 0.05). I/R-induced apoptosis of cardiomyocytes is reduced after irisin treatment. The irisin-mediated protection has, at least in part, an effect on mitochondrial function because administration of irisin increases irisin staining in the mitochondria of the infarct area. Irisin also reduces I/R-induced oxidative stress as determined by mitochondrial membrane potential evaluation and superoxide FLASH event recording (n = 4, P < 0.05). The interaction between irisin and superoxide dismutase2 (SOD2) plays a key role in the protective process because irisin treatment increases SOD activity (n = 10, P < 0.05) and restores the mitochondria localization of SOD2 in cardiomyocytes (n = 5, P < 0.05). These results demonstrate that irisin plays a protective role against I/R injury to the heart. Targeting the action of irisin in mitochondria presents a novel therapeutic intervention for myocardial infarction.
Collapse
|
19
|
The clinical and histopathological features of idiopathic inflammatory myopathies with asymmetric muscle involvement. J Clin Neurosci 2019; 65:46-53. [PMID: 31060889 DOI: 10.1016/j.jocn.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 02/01/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
The objective is to determine the frequency of idiopathic inflammatory myopathies (IIMs) with asymmetric muscle involvement (IIMs-A) as initial manifestations in total IIMs and to compare the demographic, clinical, histopathological and radiological characteristics of IIMs-A with classical IIMs (IIMs-C). We retrospectively reviewed the clinical, laboratory, muscle images, histopathological features and treatment response of patients at the Qilu hospital who were diagnosed as IIMs from April 2005 to August 2017. We found among 134 IIMs patients, 13(9.2%) patients with IIMs-A were identified, of which 7 patients were diagnosed as dermatomyositis (DM), 2 as polymyositis (PM), 4 as immune-mediated necrotizing myopathy (IMNM) using the European Neuromuscular Centre (ENMC) criteria. The mean age of our group was 59.1 years old. The duration from the initial symptoms to the first examination was less than 12 months in 12 patients (92.3%). 46.2% patients accompanied with weakness of distal limbs and bulbar symptoms. Finger flexion involvement was found in 5 patients (38.5%). There was no patient that finger flexion was weaker than shoulder abduction. The creatine kinase (CK) level in the serum ranged from 41 IU/L to 9125 IU/L (average: 3192.7 ± 2769.9 IU/L). Serum positive anti-mitochondrial antibodies (AMAs) were found in four patients (30.8%). Endomysial fibrosis and inflammatory cell infiltration were detected in 92.3%, 84.6% patients respectively. Mitochondrial abnormalities in histopathological finding of muscle biopsy were seen in 100% cases. The major histocompatibility complex class I (MHC-I) (84.6%) and class II (MHC-II) (92.3%) expressed on muscle biopsies from almost all cases of our patients. MAC antibody, however, was detected in only 20-40% patients. Eight patients (61.5%) had favorable outcomes. The conclusion was that IIMs-A presented mainly in DM, generally with mitochondrial abnormality and highly positive AMAs. The relationship between the presence of AMAs and the asymmetric muscle involvement in DM needs to be further clarified. We should also consider the diagnosis of IIMs when the patient has features of positive AMAs and asymmetric muscle involvement.
Collapse
|
20
|
Margaritelis NV, Paschalis V, Theodorou AA, Vassiliou V, Kyparos A, Nikolaidis MG. Rapid decreases of key antioxidant molecules in critically ill patients: A personalized approach. Clin Nutr 2019; 39:1146-1154. [PMID: 31080038 DOI: 10.1016/j.clnu.2019.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Oxidative stress is regarded a key component of critical illness and has been associated with poor prognosis in Intensive Care Unit (ICU) patients. Diverse antioxidant treatments have been applied to combat oxidative stress in ICU, yet the results were typically disappointing. An explanation for this failure is that all studies utilized antioxidants indiscriminately and did not take into account the antioxidant profile of the patients. The aim of the present study was to investigate whether critically ill patients experience different insufficiencies in three major antioxidants with a "recycling" redox relationship (vitamin C, vitamin E and glutathione) and in the central reductant molecule of many enzymatic antioxidants (NADPH). METHODS Sixty mechanically-ventilated adult medical critically ill patients (age: 63.5 ± 17.1; APACHE II score: 21.2 ± 7.4; Glasgow Coma Scale: 6.2 ± 1.9) were enrolled in the study, while 20 healthy age-matched volunteers served as control group. The antioxidant profile and the level of systemic oxidative stress (F2-isoprostanes) were measured at ICU admission and at days 1 and 7. RESULTS The majority of the ICU patients developed rapid and severe antioxidant insufficiencies (by exhibiting less than 50% of the control values) in one (22/60), two (7/60) or three (2/60) of the antioxidants measured, despite the almost similar levels of oxidative stress. CONCLUSIONS The wide heterogeneity in antioxidant decreases in response to ICU stay highlights the importance of patient stratification when planning to apply antioxidant treatments and indicates that the successful delivery of personalized clinical nutrition may depend on our ability to identify "responsive" phenotypes.
Collapse
Affiliation(s)
- N V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - V Vassiliou
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
21
|
Supraphysiologic parenteral ascorbic acid blunts the inflammatory mediator response to pathogen associated molecular patterns in dogs ex vivo. Res Vet Sci 2019; 124:228-232. [PMID: 30928655 DOI: 10.1016/j.rvsc.2019.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022]
|
22
|
Kuchařová M, Hronek M, Rybáková K, Zadák Z, Štětina R, Josková V, Patková A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol Res 2019; 68:1-15. [DOI: 10.33549/physiolres.933901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The comet assay, or single-cell gel electrophoresis (SCGE), is a sensitive, rapid, relatively simple and inexpensive method for detecting DNA strand breaks in individual cells. It is used in a broad variety of applications and as a tool to investigate DNA damage and repair. The sensitivity and specificity of the assay are greatly enhanced if the DNA incubated with an enzyme, whichrecognizes a specific kind of DNA damage. This damage induced by oxidative stress plays a pivotal role in many diseases and in aging. This article is a critical review of the possible application of the comet assay in some pathological states in clinical practice. Most of the studies relate to evaluating the response of an organism to chemotherapy or radiotherapy with statistically significant evidence of DNA damage in patients. Other useful applications have been demonstrated for patients with heart or neurodegenerative diseases. Only a few studies have been published on the use of this method in critically ill patients, although its use would be appropriate. There are also other scenarios where the comet assay could prove to be very useful in the future, such as in predicting the likelihood of certain pathological conditions.
Collapse
Affiliation(s)
- M. Kuchařová
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - M. Hronek
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - K. Rybáková
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Z. Zadák
- Department of Research and Development, University Hospital Hradec Králové, Czech Republic
| | - R. Štětina
- Department of Research and Development, University Hospital Hradec Králové, Czech Republic
| | - V. Josková
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - A. Patková
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| |
Collapse
|
23
|
Arabi Y, Jawdat D, Bouchama A, Tamim H, Tamimi W, Al-Balwi M, Al-Dorzi HM, Sadat M, Afesh L, Lehe C, Almashaqbeh W, Sakhija M, Al-Dawood A. Oxidative stress, caloric intake and outcomes of critically ill patients. Clin Nutr ESPEN 2018; 29:103-111. [PMID: 30661672 DOI: 10.1016/j.clnesp.2018.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of this study was to investigate the patterns of oxidative stress in critically ill patients and the association with caloric intake and outcomes. METHODS In this pre-planned sub-study of the PermiT (Permissive Underfeeding versus Target Enteral Feeding in Adult Critically Ill Patients Trial- ISRCTN68144998), we included patients expected to stay in the ICU for ≥14 days. Serum samples were collected on days 1, 3, 5, 7 and 14 of enrollment. We measured total anti-oxidant capacity (TAC), protein carbonyl concentration (a measure of protein oxidation) and 8-hydroxy-7,8-dihydro-2'-deoxyguanosine (8-OHdG) (a measure of DNA oxidation). We used principal component analysis (PCA) and hierarchical cluster analysis (HCA) to group patients according to oxidative stress. RESULTS Principal component analysis identified 2 components that were responsible for 79% of the total variance, and cluster analysis grouped patients in three statistically distinct clusters. Majority of patients 78.6% (44/55) were included in cluster 1 with lowest TAC, protein carbonyl and 8-OHdG levels and cluster 2 which accounted for 16.1% (9/55) of patients had the highest levels of TAC and intermediate levels of protein carbonyl levels. Cluster 3 patients 5.4% (3/56) had the highest protein carbonyl levels. Incident renal replacement therapy was highest in cluster 2 (4/8, 50.0%), compared to cluster 1 (4/42, 9.5%) and cluster 3 (1/3, 33.3%, p 0.01). When adjusted to oxidative stress cluster membership, permissive underfeeding was not associated with 90-day mortality (adjusted odds ratio, aOR 1.37, 95% CI 0.36, 5.25, p 0.64) but was associated significantly with lower incident renal replacement therapy (aOR 0.02, 95% CI < 0.001, 0.57, p 0.02). CONCLUSIONS There are different distinct patterns of oxidative stress in critically ill patients. Incident renal replacement therapy was different among the three clusters. Our data suggest a protective effect of permissive underfeeding on incident renal replacement therapy that may differ by clusters of oxidative stress.
Collapse
Affiliation(s)
- Yaseen Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Dunia Jawdat
- Cord Blood Bank, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Abderrezak Bouchama
- Department of Experimental Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Hani Tamim
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Internal Medicine, American University of Beirut- Medical Center, Beirut, Lebanon.
| | - Waleed Tamimi
- Department of Clinical Laboratory, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Mohammed Al-Balwi
- Molecular Pathology and Genetics, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Hasan M Al-Dorzi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Musharaf Sadat
- Intensive Care Department, King Abdulaziz Medical City, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Lara Afesh
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Cynthia Lehe
- Department of Experimental Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Walid Almashaqbeh
- Cord Blood Bank, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| | - Maram Sakhija
- Intensive Care Department, King Abdulaziz Medical City, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Abdulaziz Al-Dawood
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Intensive Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
24
|
Raffaeli G, Ghirardello S, Passera S, Mosca F, Cavallaro G. Oxidative Stress and Neonatal Respiratory Extracorporeal Membrane Oxygenation. Front Physiol 2018; 9:1739. [PMID: 30564143 PMCID: PMC6288438 DOI: 10.3389/fphys.2018.01739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a frequent condition in critically ill patients, especially if exposed to extracorporeal circulation, and it is associated with worse outcomes and increased mortality. The inflammation triggered by the contact of blood with a non-endogenous surface, the use of high volumes of packed red blood cells and platelets transfusion, the risk of hyperoxia and the impairment of antioxidation systems contribute to the increase of reactive oxygen species and the imbalance of the redox system. This is responsible for the increased production of superoxide anion, hydrogen peroxide, hydroxyl radicals, and peroxynitrite resulting in increased lipid peroxidation, protein oxidation, and DNA damage. The understanding of the pathophysiologic mechanisms leading to redox imbalance would pave the way for the future development of preventive approaches. This review provides an overview of the clinical impact of the oxidative stress during neonatal extracorporeal support and concludes with a brief perspective on the current antioxidant strategies, with the aim to focus on the potential oxidative stress-mediated cell damage that has been implicated in both short and long-term outcomes.
Collapse
Affiliation(s)
- Genny Raffaeli
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Ghirardello
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sofia Passera
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Fabio Mosca
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
25
|
Servia L, Serrano JCE, Pamplona R, Badia M, Montserrat N, Portero-Otin M, Trujillano J. Location-dependent effects of trauma on oxidative stress in humans. PLoS One 2018; 13:e0205519. [PMID: 30308018 PMCID: PMC6181391 DOI: 10.1371/journal.pone.0205519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
Though circulating antioxidant capacity in plasma is homeostatically regulated, it is not known whether acute stressors (i.e. trauma) affecting different anatomical locations could have quantitatively different impacts. For this reason, we evaluated the relationship between the anatomical location of trauma and plasma total antioxidant capacity (TAC) in a prospective study, where the anatomical locations of trauma in polytraumatic patients (n = 66) were categorized as primary affecting the brain -traumatic brain injury (TBI)-, thorax, abdomen and pelvis or extremities. We measured the following: plasma TAC by 2 independent methods, the contribution of selected antioxidant molecules (uric acid, bilirubin and albumin) to these values and changes after 1 week of progression. Surprisingly, TBI lowered TAC (919 ± 335 μM Trolox equivalents (TE)) in comparison with other groups (thoracic trauma 1187 ± 270 μM TE; extremities 1025 ± 276 μM TE; p = 0.004). The latter 2 presented higher hypoxia (PaO2/FiO2 272 ± 87 mmHg) and hemodynamic instability (inotrope use required in 54.5%) as well. Temporal changes in TAC are also dependent on anatomical location, as thoracic and extremity trauma patients’ TAC values decreased (1187 ± 270 to 1045 ± 263 μM TE; 1025 ± 276 to 918 ± 331 μM TE) after 1 week (p < 0.01), while in TBI these values increased (919 ± 335 to 961 ± 465 μM TE). Our results show that the response of plasma antioxidant capacity in trauma patients is strongly dependent on time after trauma and location, with TBI failing to induce such a response.
Collapse
Affiliation(s)
- Luis Servia
- Department of Critical Care Unit, University Hospital Arnau de Vilanova, University of Lleida-IRBLleida, Lleida, Spain
| | - José C. E. Serrano
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Mariona Badia
- Department of Critical Care Unit, University Hospital Arnau de Vilanova, University of Lleida-IRBLleida, Lleida, Spain
| | - Neus Montserrat
- Department of Critical Care Unit, University Hospital Arnau de Vilanova, University of Lleida-IRBLleida, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain
- * E-mail: (JT); (MPO)
| | - Javier Trujillano
- Department of Critical Care Unit, University Hospital Arnau de Vilanova, University of Lleida-IRBLleida, Lleida, Spain
- * E-mail: (JT); (MPO)
| |
Collapse
|
26
|
Gajardo AI, von Dessauer B, Molina V, Vera S, Libuy M, Rodrigo R. Plasma Antioxidant Potential at Admission is Associated with Length of ICU Stay in Child with Sepsis: A Pilot Study. Fetal Pediatr Pathol 2018; 37:348-358. [PMID: 30339057 DOI: 10.1080/15513815.2018.1517845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To assess the relationship between biomarkers of oxidative stress (OS) and the length of stay in intensive care units (LSICU) in septic children. METHODS Clinical parameters and biomarkers of OS were measured in 16 children admitted for sepsis in an intensive care unit. The associations between biomarkers of OS and the LSICU were assessed by linear correlation. Multiple linear regression models were constructed to adjust other variables. RESULTS The mean of LSICU was 7.13 ± 4.17 days. LSICU was associated with the catalase activity (rho =0.56, p-value =0.024) and the ferric reducing ability of plasma (FRAP, r = 0.73, p-value =0.001). However, only FRAP at ICU admission was independently associated with LSICU, which rose 0.21 days for each 10 µmol/l of increase in the FRAP level. CONCLUSION We conclude for first time that FRAP level at ICU admission is independently associated with LSICU in pediatric patients.
Collapse
Affiliation(s)
- Abraham Ij Gajardo
- a Program of Molecular and Clinical Pharmacology , Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Bettina von Dessauer
- b Pediatric Intensive Care Unit , Dr. Roberto del Río Children's Hospital , Santiago , Chile
| | - Víctor Molina
- b Pediatric Intensive Care Unit , Dr. Roberto del Río Children's Hospital , Santiago , Chile
| | - Sergio Vera
- a Program of Molecular and Clinical Pharmacology , Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matías Libuy
- a Program of Molecular and Clinical Pharmacology , Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| | - Ramón Rodrigo
- a Program of Molecular and Clinical Pharmacology , Institute of Biomedical Sciences, Faculty of Medicine, University of Chile , Santiago , Chile
| |
Collapse
|
27
|
Hill A, Wendt S, Benstoem C, Neubauer C, Meybohm P, Langlois P, Adhikari NK, Heyland DK, Stoppe C. Vitamin C to Improve Organ Dysfunction in Cardiac Surgery Patients-Review and Pragmatic Approach. Nutrients 2018; 10:nu10080974. [PMID: 30060468 PMCID: PMC6115862 DOI: 10.3390/nu10080974] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic biochemical and antioxidant functions of vitamin C have sparked recent interest in its application in intensive care. Vitamin C protects important organ systems (cardiovascular, neurologic and renal systems) during inflammation and oxidative stress. It also influences coagulation and inflammation; its application might prevent organ damage. The current evidence of vitamin C's effect on pathophysiological reactions during various acute stress events (such as sepsis, shock, trauma, burn and ischemia-reperfusion injury) questions whether the application of vitamin C might be especially beneficial for cardiac surgery patients who are routinely exposed to ischemia/reperfusion and subsequent inflammation, systematically affecting different organ systems. This review covers current knowledge about the role of vitamin C in cardiac surgery patients with focus on its influence on organ dysfunctions. The relationships between vitamin C and clinical health outcomes are reviewed with special emphasis on its application in cardiac surgery. Additionally, this review pragmatically discusses evidence on the administration of vitamin C in every day clinical practice, tackling the issues of safety, monitoring, dosage, and appropriate application strategy.
Collapse
Affiliation(s)
- Aileen Hill
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- Department of Anesthesiology, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| | - Sebastian Wendt
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital RWTH, D-52074 Aachen, Germany.
| | - Carina Benstoem
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| | - Christina Neubauer
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| | - Patrick Meybohm
- Department of Anesthesiology and Intensive Care, University Hospital Frankfurt, D-60590 Frankfurt, Germany.
| | - Pascal Langlois
- Department of Anesthesiology and Reanimation, Faculty of Médecine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, QC J1H 5N4, Canada.
| | - Neill Kj Adhikari
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Interdepartmental Division of Critical Care Medicine, University of Toronto; Toronto, ON M4N 3M5, Canada.
| | - Daren K Heyland
- Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| |
Collapse
|
28
|
Chen K, Xu Z, Liu Y, Wang Z, Li Y, Xu X, Chen C, Xia T, Liao Q, Yao Y, Zeng C, He D, Yang Y, Tan T, Yi J, Zhou J, Zhu H, Ma J, Zeng C. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl Med 2018; 9:9/418/eaao6298. [PMID: 29187642 DOI: 10.1126/scitranslmed.aao6298] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/10/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Limb remote ischemic preconditioning (RIPC) is an effective means of protection against ischemia/reperfusion (IR)-induced injury to multiple organs. Many studies are focused on identifying endocrine mechanisms that underlie the cross-talk between muscle and RIPC-mediated organ protection. We report that RIPC releases irisin, a myokine derived from the extracellular portion of fibronectin domain-containing 5 protein (FNDC5) in skeletal muscle, to protect against injury to the lung. Human patients with neonatal respiratory distress syndrome show reduced concentrations of irisin in the serum and increased irisin concentrations in the bronchoalveolar lavage fluid, suggesting transfer of irisin from circulation to the lung under physiologic stress. In mice, application of brief periods of ischemia preconditioning stimulates release of irisin into circulation and transfer of irisin to the lung subjected to IR injury. Irisin, via lipid raft-mediated endocytosis, enters alveolar cells and targets mitochondria. Interaction between irisin and mitochondrial uncoupling protein 2 (UCP2) allows for prevention of IR-induced oxidative stress and preservation of mitochondrial function. Animal model studies show that intravenous administration of exogenous irisin protects against IR-induced injury to the lung via improvement of mitochondrial function, whereas in UCP2-deficient mice or in the presence of a UCP2 inhibitor, the protective effect of irisin is compromised. These results demonstrate that irisin is a myokine that facilitates RIPC-mediated lung protection. Targeting the action of irisin in mitochondria presents a potential therapeutic intervention for pulmonary IR injury.
Collapse
Affiliation(s)
- Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China.,Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yukai Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yu Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Xuefei Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yonggang Yao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Cindy Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianxun Yi
- Department of Physiology, Kansas City University, Kansas City, MO 64106, USA
| | - Jingsong Zhou
- Department of Physiology, Kansas City University, Kansas City, MO 64106, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China. .,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| |
Collapse
|
29
|
Oliveira Filho RS, Garla PC, Torrinhas RS, Garib RA, Tesser A, Aprobato FGG, Tamanaha EM, Antunes MDS, Waitzberg DL. Comment on: “Influence of an ω3-fatty acid-enriched enteral diet with and without added glutamine on the metabolic response to injury in a rat model of prolonged acute catabolism”. Nutrition 2018; 50:107-108. [DOI: 10.1016/j.nut.2017.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/26/2017] [Indexed: 11/30/2022]
|
30
|
Reduction of non-enzymatic antioxidants in plasma during ECMO-treatment in ARDS by influence A H1N1. J Crit Care 2018; 43:220-224. [DOI: 10.1016/j.jcrc.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022]
|
31
|
Alvarez JA, Grunwell JR, Gillespie SE, Tangpricha V, Hebbar KB. Vitamin D deficiency is associated with an oxidized plasma cysteine redox potential in critically Ill children. J Steroid Biochem Mol Biol 2018; 175:164-169. [PMID: 27641738 PMCID: PMC5352547 DOI: 10.1016/j.jsbmb.2016.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
Critically ill populations incur high levels of oxidative stress and commonly present with vitamin D deficiency. This study aimed to investigate the relationship between vitamin D status and plasma markers of glutathione (GSH) and cysteine (Cys) redox and immunity in critically ill children. This was a cross-sectional study of n=50 PICU patients. Subjects were categorized according to their plasma 25-hydroxyvitamin D [25(OH)D] concentrations: (<20, 20-30, and ≥30ng/dL). Plasma GSH, glutathione disulfide (GSSG), Cys, and cystine (CySS) were measured with high-performance liquid chromatography, and their associated redox potentials determined (EhGSSG and EhCySS, respectively). Plasma LL-37, an indicator of innate immune function, was assayed with ELISA. Data were analyzed using general linear regression before and after adjustment for age, sex, and race. Results showed that EhCySS was more reduced in subjects with plasma 25(OH)D concentrations ≥30ng/mL compared to those with 25(OH)D concentrations <20ng/mL (P=0.009). Plasma GSH, GSSG, and total GSH decreased with increasing 25(OH)D category (P=0.06, 0.03, and 0.01, respectively), and plasma glutamine levels were lowest in subjects with plasma 25(OH)D concentrations ≥30ng/mL (P=0.004). Plasma LL-37 concentrations did not significantly differ by vitamin D status (P=0.08). In conclusion, vitamin D sufficiency was associated with more reduced plasma EhCySS, indicative of lower oxidative stress in critically ill children. Plasma GSH, GSSG, and glutamine, however, were lower in the vitamin D sufficient group. The role of vitamin D in maintaining redox status during pediatric critical illness requires further study.
Collapse
Affiliation(s)
- Jessica A Alvarez
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism & Lipids, Atlanta, GA, United States; Emory + Children's Pediatric Research Center, Atlanta, GA, United States.
| | - Jocelyn R Grunwell
- Emory University School of Medicine, Department of Pediatrics, Division of Pediatric Critical Care Medicine, Atlanta, GA, United States; Children's Healthcare of Atlanta at Egleston, Atlanta, GA, United States
| | - Scott E Gillespie
- Emory + Children's Pediatric Research Center, Atlanta, GA, United States; Emory University School of Medicine, Department of Pediatrics, Division of Infectious Disease; Emory + Children's Pediatric Research Center, Atlanta, GA, United States, United States
| | - Vin Tangpricha
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism & Lipids, Atlanta, GA, United States; Emory + Children's Pediatric Research Center, Atlanta, GA, United States; Atlanta Veterans Affairs Medical Center, Section of Endocrinology, Atlanta, GA, United States
| | - Kiran B Hebbar
- Emory + Children's Pediatric Research Center, Atlanta, GA, United States; Emory University School of Medicine, Department of Pediatrics, Division of Pediatric Critical Care Medicine, Atlanta, GA, United States; Children's Healthcare of Atlanta at Egleston, Atlanta, GA, United States
| |
Collapse
|
32
|
Protective potency of Meristotropis xanthioides against nephrotoxicity in a rat model along with its antioxidant and antibacterial activities. ASIAN PAC J TROP MED 2017; 10:960-966. [PMID: 29111191 DOI: 10.1016/j.apjtm.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/02/2017] [Accepted: 09/05/2017] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate nephroprotective potential of Meristotropis xanthioides (M. xanthioides) extract against ethanol-induced nephrotoxicity in Wistar rats, and also its total phenolics content, antioxidant and antibacterial activities. METHODS Total phenol and flavonoid amounts of the leaf and stem extracts were determined by Folin-Ciocalteu and aluminum chloride reagents, respectively. Antioxidant and antibacterial activities of the extracts were investigated by 2,2-diphenyl-1-picrylhydrazyl radical scavenging and disc diffusion methods, respectively. In addition, protective potential of the leaf extract against ethanol-induced nephrotoxicity was studied by histological and biochemical analyses. RESULTS Obtained results indicated high total phenol [(10.26 ± 0.46) mg GAE/g of dry extract] and flavonoid [(3.63 ± 0.62) mg QE/g of dry extract] amounts in the leaf extract. The leaf and stem extracts possessed stronger antioxidant activity [IC50: (0.119 ± 0.006) mg/mL and IC50: (0.133 ± 0.009 mg/mL)] than that of ascorbic acid [IC50: (0.142 ± 0.002) mg/mL]. Also, the extracts showed good antibacterial activity against the most of bacteria taken in this research, especially Gram-positive ones. Histological examinations revealed tissue injury in the kidney of rats treated with ethanol. Results from biochemical assays showed reduction in total protein content and also in superoxide dismutase activity. In addition, remarkable increased levels (P < 0.05) of H2O2 and malondialdehyde were found in ethanol-treated rats in comparison to control group. However, these injuries were significantly improved in rats treated by M. xanthioides leaf extract. CONCLUSIONS Results from present study demonstrates strong pharmaceutical potential of M. xanthioides extract to apply as a new drug supplement.
Collapse
|
33
|
Abstract
BACKGROUND Adipose tissue is an endocrine organ that plays a critical role in immunity and metabolism by virtue of a large number of hormones and cytokines, collectively termed adipokines. Dysregulation of adipokines has been linked to the pathogenesis of multiple diseases, but some questions have arisen concerning the value of adipokines in critical illness setting. The objective of this review was to evaluate the associations between blood adipokines and critical illness outcomes. METHODS PubMed, CINAHL, Scopus, and the Cochrane Library databases were searched from inception through July 2016 without language restriction. Studies reporting the associations of adipokines, leptin, adiponectin, resistin, and/or visfatin with critical illness outcomes mortality, organ dysfunction, and/or inflammation were included. RESULTS A total of 38 articles were selected according to the inclusion/exclusion criteria of the study. Significant alterations of circulating adipokines have been reported in critically ill patients, some of which were indicative of patient outcomes. The associations of leptin and adiponectin with critical illness outcomes were not conclusive in that blood levels of both adipokines did not always correlate with the illness severity scores or risks of organ failure and mortality. By contrast, studies consistently reported striking increase of blood resistin and visfatin, independently of the critical illness etiology. More interestingly, increased levels of these adipokines were systematically associated with severe inflammation, and high incidence of organ failure and mortality. CONCLUSIONS There is strong evidence to indicate that increased levels of blood resistin and visfatin are associated with poor outcomes of critically ill patients, including higher inflammation, and greater risk of organ dysfunction and mortality. LEVEL OF EVIDENCE Systematic review, level III.
Collapse
|
34
|
Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—a Critical Review. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1942-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Broman M, Bryland A, Carlsson O. Trace elements in patients on continuous renal replacement therapy. Acta Anaesthesiol Scand 2017; 61:650-659. [PMID: 28573653 DOI: 10.1111/aas.12909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Intensive care patients with acute kidney injury (AKI), treated with continuous renal replacement therapy (CRRT) are at great risk for disturbances in plasma levels of trace elements due to the underlying illness, AKI, and dialysis. This study was performed to increase our knowledge regarding eight different trace elements during CRRT. METHODS Thirty one stable patients with AKI, treated with CRRT, were included in the study. Blood, plasma and effluent samples were taken at the start of the study and 36 ± 12 h later. A group of 48 healthy volunteers were included as controls and exposed to one fasting blood sample. Samples were analysed for trace elements (Cr, Cu, Mn, Co, Zn, Rb, Mo, Se) and standard blood chemistry. RESULTS Blood and plasma levels of selenium and rubidium were significantly reduced while the levels of chromium, cobalt, and molybdenum were significantly increased in the study group vs. healthy volunteers. There was an uptake of chromium, manganese, and zinc. Molybdenum mass balance was around zero. For selenium, copper, and rubidium there were a marked loss. CONCLUSIONS The low levels of selenium and rubidium in blood and plasma from CRRT patients, together with the loss via CRRT effluent, raises the possibility of the need for selenium supplementation in this group of patients, despite the unchanged levels during the short study period. Further investigations on the effect of additional administration of trace elements to CRRT patients would be of interest.
Collapse
Affiliation(s)
- M. Broman
- Department of Perioperative and Intensive Care; Skåne University Hospital; Lund Sweden
| | | | - O. Carlsson
- Gambro Lundia AB; Lund Sweden
- Department of Nephrology; Lund University; Lund Sweden
| | | |
Collapse
|
36
|
Chertoff J. N-Acetylcysteine's Role in Sepsis and Potential Benefit in Patients With Microcirculatory Derangements. J Intensive Care Med 2017; 33:87-96. [PMID: 28299952 DOI: 10.1177/0885066617696850] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To review the data surrounding the utility of N-acetylcysteine (NAC) in sepsis and identify areas needed for additional research. DATA SOURCES A review of articles describing the mechanisms of action and clinical use of NAC in sepsis. SUMMARY OF REVIEW Despite many advances in critical care medicine, still as many as 50% of patients with septic shock die. Treatments thus far have focused on resuscitation and restoration of macrocirculatory targets in the early phases of sepsis, with less focus on microcirculatory dysfunction. N-acetylcysteine, due to its anti-inflammatory and antioxidative properties, has been readily investigated in sepsis and has yielded largely incongruous and disappointing results. In addition to its known anti-inflammatory and antioxidative roles, one underappreciated property of NAC is its ability to vasodilate the microcirculation and improve locoregional blood flow. Some investigators have sought to capitalize on this mechanism with promising results, as evidenced by microcirculatory vasodilation, improvements in regional blood flow and oxygen delivery, and reductions in lactic acidosis, organ failure, and mortality. CONCLUSION In addition to its antioxidant and anti-inflammatory properties, N-acetylcysteine possesses vasodilatory properties that could benefit the microcirculation in sepsis. It is imperative that we investigate these properties to uncover NAC's full potential for benefit in sepsis.
Collapse
Affiliation(s)
- Jason Chertoff
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
37
|
Ulker P. The effect of acute and short term normobaric hyperoxia on hemorheologic parameters. Biorheology 2016; 53:171-177. [PMID: 27567747 DOI: 10.3233/bir-16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Backround:Possible toxic effects of hyperoxia have been reported previously. However, the number of studies investigating the influence of hyperoxia on blood cells is limited and there are no data regarding its hemorheological effects. OBJECTIVE The aim of this study was to investigate the effects of acute hyperoxia, performed in human subjects at normal atmospheric pressure, on the rheological properties of blood. METHOD The study was conducted with 12 brain death patients mechanically ventilated in the intensive care unit. The patients were ventilated with 21%, 40%, and 100% oxygen before induction of apnea testing performed for diagnosis of brain death. Blood samples were obtained at each oxygen concentration value for all patients. RESULT The results of the study indicated no significant change of red blood cell aggregation, deformability and plasma or whole blood viscosity associated with acute hyperoxia at normobaric conditions. CONCLUSION The results of the study suggest that application of normobaric hyperoxia does not have detrimental effects on hemorheological parameters in brain death patients, and that organs considered for donation from such subjects are not adversely affected by abnormalities of blood flow and tissue perfusion.
Collapse
Affiliation(s)
- Pinar Ulker
- Department of Physiology, Medical Faculty, Akdeniz University, Kampus, 07070, Antalya, Turkey. Tel.: +90 242 2496960; Fax: +90 242 2274483; E-mail:
| |
Collapse
|
38
|
Fraga CM, Tomasi CD, Damasio DDC, Vuolo F, Ritter C, Dal-Pizzol F. N-acetylcysteine plus deferoxamine for patients with prolonged hypotension does not decrease acute kidney injury incidence: a double blind, randomized, placebo-controlled trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:331. [PMID: 27745551 PMCID: PMC5066295 DOI: 10.1186/s13054-016-1504-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022]
Abstract
Background The aim was to test the primary hypothesis that in patients suffering from shock, treatment with N-acetylcysteine (NAC) plus deferoxamine (DFX) decreases the incidence of acute kidney injury (AKI). Methods A double-blind, randomized, placebo-controlled trial was conducted in a general intensive care unit in an academic hospital. Patients were included if they had new-onset hypotension, defined as mean arterial blood pressure <60 mmHg or requirement for vasopressor medication. A loading dose of NAC or placebo of 50 mg/kg in 4 h was administered intravenously. After the loading dose, patients received 100 mg/kg/day for the next 48 h. DFX or placebo was administered once at 1000 mg at a rate of 15/mg/kg/h. The primary outcome was the incidence of AKI. Results A total of 80 patients were enrolled in the study. The incidence of AKI was 67 % in the placebo arm and 65 % in the treatment group (relative risk (RR) 0.89 (0.35–2.2)). Furthermore, NAC plus DFX was effective in decreasing the severity and duration of AKI, and patients in the treatment group had lower serum creatinine levels at discharge. No severe adverse event associated with treatment was reported. The effects of NAC plus DFX could be secondary to the attenuation of early inflammatory response and oxidative damage. Conclusion The administration of NAC plus DFX to critically ill patients who had a new episode of hypotension did not decrease the incidence of AKI. Trial registration Clinicaltrials.gov NCT00870883 (Registered 25 March 2009.)
Collapse
Affiliation(s)
- Cassiana Mazon Fraga
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil
| | | | - Danusa de Castro Damasio
- Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil.,São José Hospital Research Centre, Criciúma, SC, Brazil
| | - Francieli Vuolo
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Cristiane Ritter
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.,Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Pathophysiology Laboratory, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil. .,Intensive Care Unit, São José Hospital, Criciúma, SC, Brazil. .,Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, 88006-000, Criciúma, SC, Brazil.
| |
Collapse
|
39
|
Koekkoek WAC(K, van Zanten ARH. Antioxidant Vitamins and Trace Elements in Critical Illness. Nutr Clin Pract 2016; 31:457-74. [DOI: 10.1177/0884533616653832] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
40
|
Wang G, Song Y, Feng W, Liu L, Zhu Y, Xie X, Pan Y, Ke R, Li S, Li F, Yang L, Li M. Activation of AMPK attenuates LPS-induced acute lung injury by upregulation of PGC1α and SOD1. Exp Ther Med 2016; 12:1551-1555. [PMID: 27602077 DOI: 10.3892/etm.2016.3465] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/19/2016] [Indexed: 12/11/2022] Open
Abstract
Evidence suggests that an imbalance between oxidation and antioxidation is involved in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Activation of AMP-activated protein kinase (AMPK) has been shown to inhibit the occurrence of ALI/ARDS. However, it is unknown whether activation of AMPK benefits ALI/ARDS by restoration of the oxidant and antioxidant balance, and which mechanisms are responsible for this process. The present study aimed to address these issues. Lipopolysaccharide (LPS) induced pronounced pathological changes of ALI in mice; these were accompanied by elevated production of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) compared with control mice. Prior treatment of mice with the AMPK agonist metformin significantly suppressed the LPS-induced development of ALI, reduced the elevation of MDA and increased the activity of SOD. Further analysis indicated that activation of AMPK also stimulated the protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and superoxide dismutase 1 (SOD1). This study suggests that activation of AMPK by metformin inhibits oxidative stress by upregulation of PGC1α and SOD1, thereby suppressing the development of ALI/ARDS, and has potential value in the clinical treatment of such conditions.
Collapse
Affiliation(s)
- Guizuo Wang
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Yang Song
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Wei Feng
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Lu Liu
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Yanting Zhu
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Xinming Xie
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Yilin Pan
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Rui Ke
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Shaojun Li
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Fangwei Li
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Lan Yang
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| | - Manxiang Li
- Department of Respiratory Internal Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China
| |
Collapse
|
41
|
Galvão AM, Galvão JS, Pereira MA, Cadena PG, Magalhães NSS, Fink JB, de Andrade AD, Castro CMMBD, de Sousa Maia MB. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: Liposomes antioxidants reduces pulmonary damage. Respir Physiol Neurobiol 2016; 231:55-62. [PMID: 27267466 DOI: 10.1016/j.resp.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 01/04/2023]
Abstract
The intracellular redox state of alveolar cells is a determining factor for tolerance to oxidative and pro-inflammatory stresses. This study investigated the effects of intratracheal co-administration of antioxidants encapsulated in liposomes on the lungs of rats subjected to sepsis. For this, male rats subjected to sepsis induced by lipopolysaccharide from Escherichia coli or placebo operation were treated (intratracheally) with antibiotic, 0.9% saline and antioxidants encapsulated or non-encapsulated in liposomes. Experimental model of sepsis by cecal ligation and puncture (CLP) was performed in order to expose the cecum. The cecum was then gently squeezed to extrude a small amount of feces from the perforation site. As an index of oxidative damage, superoxide anions, lipid peroxidation, protein carbonyls, catalase activity, nitrates/nitrites, cell viability and mortality rate were measured. Infected animals treated with antibiotic plus antioxidants encapsulated in liposomes showed reduced levels of superoxide anion (54% or 7.650±1.263 nmol/min/mg protein), lipid peroxidation (33% or 0.117±0.041 nmol/mg protein), protein carbonyl (57% or 0.039 ± 0.022 nmol/mg protein) and mortality rate (3.3%), p value <0.001. This treatment also reduced the level of nitrite/nitrate and increased cell viability (90.7%) of alveolar macrophages. Taken togheter, theses results support that cationic liposomes containing antioxidants should be explored as coadjuvants in the treatment of pulmonary oxidative damage.
Collapse
Affiliation(s)
- Andre Martins Galvão
- Department of Microbiology and Cell Culture, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil.
| | - Júlia Siqueira Galvão
- Department of Microbiology and Cell Culture, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Marcela Araújo Pereira
- Graduate Program in Biology Apllied to Health Sciences, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Pabyton Gonçalves Cadena
- Department of Morphology and Physiology, Federal Rural University of Pernambuco - UFRPE, Av. Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900, Recife, Pernambuco, Brazil
| | - Nereide Stella Santos Magalhães
- Department of Nanobiotechnology, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - James B Fink
- Division of Respiratory Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - Armele Dornelas de Andrade
- Department of Physiotherapy, Federal University of Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Celia Maria Machado Barbosa de Castro
- Department of Microbiology and Cell Culture, Laboratory of Immunopathology Keizo Asami - LIKA, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| | - Maria Bernadete de Sousa Maia
- Department of Pharmacology and Physiology, Federal University of Pernambuco - UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP: 50780-901, Recife, Pernambuco, Brazil
| |
Collapse
|
42
|
Margaritelis NV. Antioxidants as therapeutics in the intensive care unit: Have we ticked the redox boxes? Pharmacol Res 2016; 111:126-132. [PMID: 27270047 DOI: 10.1016/j.phrs.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 05/29/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
Abstract
Critically ill patients are under oxidative stress and antioxidant administration reasonably emerged as a promising approach to combat the aberrant redox homeostasis in this patient cohort. However, the results of the antioxidant treatments in the intensive care unit are conflicting and inconclusive. The main objective of the present review is to highlight some inherent, yet widely overlooked redox-related issues about the equivocal effectiveness of antioxidants in the intensive care unit, beyond methodological considerations. In particular, the discrepancy in the literature partially stems from: (1) the largely unspecified role of reactive species in disease onset and progression, (2) our fragmentary understanding on the interplay between inflammation and oxidative stress, (3) the complex spatiotemporal specificity of in vivo redox biology, (4) the pleiotropic effects of antioxidants and (5) the divergent effects of antioxidants according to the temporal administration pattern. In addition, two novel and sophisticated practices with promising pre-clinical results are presented: (1) the selective neutralization of reactive species in key organelles after they are formed (i.e., in mitochondria) and (2) the targeted complete inhibition of dominant reactive species sources (i.e., NADPH oxidases). Finally, the reductive potential of NADPH as a key pharmacological target for redox therapies is rationalized. In light of the above, the recontextualization of knowledge from basic redox biology to translational medicine seems imperative to perform more realistic in vivo studies in the fast-growing field of critical care pharmacology.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
43
|
Thiol/disulphide homeostasis as a novel indicator of oxidative stress in sudden sensorineural hearing loss. The Journal of Laryngology & Otology 2016; 130:447-52. [PMID: 27048937 DOI: 10.1017/s002221511600092x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To investigate a novel oxidative stress marker, thiol/disulphide literature homeostasis, in patients with idiopathic sudden sensorineural hearing loss, and to compare the results with healthy controls for the first time. METHODS Thirty-two patients with idiopathic sudden sensorineural hearing loss and 30 healthy individuals were included in the study. Serum native thiol, total thiol and disulphide levels were measured, and disulphide/native thiol and disulphide/total thiol ratios were determined in all subjects. RESULTS Serum native thiol and total thiol levels were significantly lower in patients with sudden sensorineural hearing loss compared with controls (p < 0.05). Of the 32 patients, 25 had lower native thiol levels than controls (333.2 ± 73.9 vs 381.8 ± 35.6 μmol/l, p = 0.002) and 24 had lower total thiol levels (375.1 ± 74.3 vs 426.1 ± 39.3 μmol/l, p = 0.002). CONCLUSION The changes in oxidative markers evident in a significant number of patients may be associated with oxidative stress, which may, in turn, have caused sudden sensorineural hearing loss in those patients.
Collapse
|
44
|
Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care 2015; 5:42. [PMID: 26585328 PMCID: PMC4653126 DOI: 10.1186/s13613-015-0084-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the (patho)-physiological effects of ventilation with high FiO2 (0.8–1.0), with a special focus on the most recent clinical evidence on its use for the management of circulatory shock and during medical emergencies. Hyperoxia is a cornerstone of the acute management of circulatory shock, a concept which is based on compelling experimental evidence that compensating the imbalance between O2 supply and requirements (i.e., the oxygen dept) is crucial for survival, at least after trauma. On the other hand, “oxygen toxicity” due to the increased formation of reactive oxygen species limits its use, because it may cause serious deleterious side effects, especially in conditions of ischemia/reperfusion. While these effects are particularly pronounced during long-term administration, i.e., beyond 12–24 h, several retrospective studies suggest that even hyperoxemia of shorter duration is also associated with increased mortality and morbidity. In fact, albeit the clinical evidence from prospective studies is surprisingly scarce, a recent meta-analysis suggests that hyperoxia is associated with increased mortality at least in patients after cardiac arrest, stroke, and traumatic brain injury. Most of these data, however, originate from heterogenous, observational studies with inconsistent results, and therefore, there is a need for the results from the large scale, randomized, controlled clinical trials on the use of hyperoxia, which can be anticipated within the next 2–3 years. Consequently, until then, “conservative” O2 therapy, i.e., targeting an arterial hemoglobin O2 saturation of 88–95 % as suggested by the guidelines of the ARDS Network and the Surviving Sepsis Campaign, represents the treatment of choice to avoid exposure to both hypoxemia and excess hyperoxemia.
Collapse
Affiliation(s)
- Sebastian Hafner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany. .,Klinik für Anästhesiologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - François Beloncle
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, 4 rue Larrey, Cedex 9, 49933, Angers, France. .,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214-INSERM U1083, Université Angers, PRES L'UNAM, Nantes, France.
| | - Andreas Koch
- Sektion Maritime Medizin, Institut für Experimentelle Medizin, Christian-Albrechts-Universität, 24118, Kiel, Germany. .,Schifffahrtmedizinisches Institut der Marine, 24119, Kronshagen, Germany.
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Pierre Asfar
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, 4 rue Larrey, Cedex 9, 49933, Angers, France. .,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214-INSERM U1083, Université Angers, PRES L'UNAM, Nantes, France.
| |
Collapse
|
45
|
Vavrova L, Rychlikova J, Mrackova M, Novakova O, Zak A, Novak F. Increased inflammatory markers with altered antioxidant status persist after clinical recovery from severe sepsis: a correlation with low HDL cholesterol and albumin. Clin Exp Med 2015; 16:557-569. [DOI: 10.1007/s10238-015-0390-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/09/2015] [Indexed: 12/31/2022]
|
46
|
Sodium selenite supplementation does not fully restore oxidative stress-induced deiodinase dysfunction: Implications for the nonthyroidal illness syndrome. Redox Biol 2015; 6:436-445. [PMID: 26402162 PMCID: PMC4588414 DOI: 10.1016/j.redox.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022] Open
Abstract
Nonthyroidal illness syndrome (NTIS) is marked by low T3 and high reverse T3 levels. The physiopathology is poorly understood but involves oxidative stress-induced disruption of the iodothyronine deiodinases, which activate or inactivate thyroid hormones. Selenium, an essential trace element, exerts antioxidant function mainly through the thioredoxin reductase (TRx) and glutathione peroxidase (GPx) redox-regulating systems. We evaluated the effect of sodium selenite on IL6-induced disruption on deiodinase function. Cell lines expressing endogenous deiodinases type 1(D1), 2(D2) or 3(D3) (HepG2, MSTO, and MCF-7 cells, respectively) were used in an intact cell model that mimics the deiodination process under physiological conditions of substrate and cofactor, in the presence or not of IL6, with or without selenite. Deiodinase activity was quantified by the amount of iodine-125 in the medium (D1 and D2) or by ion-exchange chromatography (D3). Oxidative stress was evaluated by measuring reactive species (RS), carbonyl content as well as enzymatic and non-enzymatic antioxidant defenses. Results: IL6 induced ROS and carbonyl content in all 3 cell lines (all P<0.001). Increased ROS was paralleled by D1 and D2-decreased T3-production (P<0.01) and increased D3-catalyzed T3-inactivation (P<0.001). Selenite decreases the IL6-induced ROS and carbonyl content, while enhances Gpx and Trx activities. Nevertheless, it failed on restoring D1 or D2 function and only attenuates D3 activation (P<0.05). In conclusion, although sodium selenite reduces IL6-induced redox imbalance it does not fully repair deiodinase function. These results shed light on NTIS physiopathology and might explain why low T3 levels are unaffected by selenium supplementation in sick patients. IL6 induced oxidative stress impairs deiodinase function in critically ill patients. Selenite induces the antioxidant defense through the enzymatic TRx and GPx pathways. Selenite attenuates redox imbalance but it does not restore deiodinase activities. Intracellular cysteine levels are critical to proper deiodinases function.
Collapse
|
47
|
Boshuizen M, Leopold JH, Zakharkina T, Knobel HH, Weda H, Nijsen TME, Vink TJ, Sterk PJ, Schultz MJ, Bos LDJ. Levels of cytokines in broncho-alveolar lavage fluid, but not in plasma, are associated with levels of markers of lipid peroxidation in breath of ventilated ICU patients. J Breath Res 2015; 9:036010. [DOI: 10.1088/1752-7155/9/3/036010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Repessé X, Moldes M, Muscat A, Vatier C, Chetrite G, Gille T, Planes C, Filip A, Mercier N, Duranteau J, Fève B. Hypoxia inhibits semicarbazide-sensitive amine oxidase activity in adipocytes. Mol Cell Endocrinol 2015; 411:58-66. [PMID: 25907140 DOI: 10.1016/j.mce.2015.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed on adipocyte plasma membranes, converts primary amines into aldehydes, ammonium and hydrogen peroxide, and is likely involved in endothelial damage during the course of diabetes and obesity. We investigated whether in vitro, adipocyte SSAO was modulated under hypoxic conditions that is present in adipose tissue from obese or intensive care unit. Physical or pharmacological hypoxia decreased SSAO activity in murine adipocytes and human adipose tissue explants, while enzyme expression was preserved. This effect was time-, dose-dependent and reversible. This down-regulation was confirmed in vivo in subcutaneous adipose tissue from a rat model of hypoxia. Hypoxia-induced suppression in SSAO activity was independent of the HIF-1-α pathway or of oxidative stress, but was partially antagonized by medium acidification. Hypoxia-induced down-regulation of SSAO activity could represent an adaptive mechanism to lower toxic molecules production, and may thus protect from tissue injury during these harmful conditions.
Collapse
Affiliation(s)
- Xavier Repessé
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Service de Réanimation Médico-Chirurgicale, pôle Thorax-Vaisseaux-Abdomen-Métabolisme, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt, France.
| | - Marthe Moldes
- Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Adeline Muscat
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Camille Vatier
- Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France; Service d'Endocrinologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gérard Chetrite
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France; Service d'Endocrinologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, EA2363 Bobigny, France; Service d'Explorations Fonctionnelles, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Carole Planes
- Université Paris 13, Sorbonne Paris Cité, EA2363 Bobigny, France; Service d'Explorations Fonctionnelles, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Anna Filip
- INSERM U1116, Faculté de Médecine, Vandoeuvre-les-Nancy, France
| | - Nathalie Mercier
- INSERM U1116, Faculté de Médecine, Vandoeuvre-les-Nancy, France; Université de Lorraine, Nancy, France
| | - Jacques Duranteau
- Service d'Anesthésie-Réanimation, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Microcirculation, Bioénergétique, Inflammation et Insuffisance Circulatoire Aigue, Equipe Universitaire 3509, Paris VII-Paris XI-Paris XIII, Paris, France
| | - Bruno Fève
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France; Service d'Endocrinologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
49
|
Effect of ascorbic acid concentrations on hemodynamics and inflammation following lyophilized plasma transfusion. J Trauma Acute Care Surg 2015; 79:30-8; discussion 38. [DOI: 10.1097/ta.0000000000000684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Dumache R, Rogobete AF, Bedreag OH, Sarandan M, Cradigati AC, Papurica M, Dumbuleu CM, Nartita R, Sandesc D. Use of miRNAs as biomarkers in sepsis. Anal Cell Pathol (Amst) 2015; 2015:186716. [PMID: 26221578 PMCID: PMC4499375 DOI: 10.1155/2015/186716] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 12/19/2022] Open
Abstract
Sepsis is one of the most common causes of death in critical patients. Severe generalized inflammation, infections, and severe physiological imbalances significantly decrease the survival rate with more than 50%. Moreover, monitoring, evaluation, and therapy management often become extremely difficult for the clinician in this type of patients. Current methods of diagnosing sepsis vary based especially on the determination of biochemical-humoral markers, such as cytokines, components of the complement, and proinflammatory and anti-inflammatory compounds. Recent studies highlight the use of new biomarkers for sepsis, namely, miRNAs. miRNAs belong to a class of small, noncoding RNAs with an approximate content of 19-23 nucleotides. Following biochemical and physiological imbalances, the expression of miRNAs in blood or other body fluids changes significantly. Moreover, its stability, specificity, and selectivity make miRNAs ideal candidates for sepsis biomarkers. In conclusion, we can affirm that stable species of circulating miRNAs represent potential biomarkers for monitoring the evolution of sepsis.
Collapse
Affiliation(s)
- Raluca Dumache
- Department of Forensic Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alexandru Florin Rogobete
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, 300115 Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela Sarandan
- Clinic of Anaesthesia and Intensive Care “Casa Austria”, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Alina Carmen Cradigati
- Clinic of Anaesthesia and Intensive Care “Casa Austria”, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Marius Papurica
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Corina Maria Dumbuleu
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
| | - Radu Nartita
- Faculty of Chemistry, Biology, and Geography, West University of Timisoara, 300115 Timisoara, Romania
| | - Dorel Sandesc
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|