1
|
Ibrahim N, Hefnawy MA, Fadlallah SA, Medany SS. Recent advances in electrochemical approaches for detection of nitrite in food samples. Food Chem 2025; 462:140962. [PMID: 39241683 DOI: 10.1016/j.foodchem.2024.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Nitrite is a common ingredient in the industry and agriculture; it is everywhere, like water, food, and surroundings. Recently, several approaches have been developed to measure the nitrite levels. So, this review was presented as a summary of many approaches utilized to detect the nitrite. Furthermore, the types of information that may be acquired using these methodologies, including optic and electrical signals, were discussed. In electrical signal methods, electrochemical sensors are usually developed using different materials, including carbon, polymers, oxides, and hydroxides. At the same time, optic signals receiving techniques involve utilizing fluorescence chromatography, absorption, and spectrometry instruments. Furthermore, these methodologies' benefits, drawbacks, and restrictions are examined. Lastly, due to the efficiency and fast means of electrochemical detectors, it was suggested that they can be used for detecting nitrite in food safety. Futuristic advancements in the techniques used for nitrite determination are subsequently outlined.
Collapse
Affiliation(s)
- Nora Ibrahim
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sahar A Fadlallah
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Smith JA, Ramirez-Perez FI, Burr K, Gonzalez-Vallejo JD, Morales-Quinones M, McMillan NJ, Ferreira-Santos L, Sharma N, Foote CA, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. Impact of dietary supplementation of glycocalyx precursors on vascular function in type 2 diabetes. J Appl Physiol (1985) 2024; 137:1592-1603. [PMID: 39480270 PMCID: PMC11687847 DOI: 10.1152/japplphysiol.00651.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 12/10/2024] Open
Abstract
Degradation of the endothelial glycocalyx in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to endothelial dysfunction and the development of cardiovascular disease. Herein, we tested the hypothesis that restoration of the endothelial glycocalyx with dietary supplementation of glycocalyx precursors (DSGPs, containing glucosamine sulfate, fucoidan, superoxide dismutase, and high-molecular weight hyaluronan) improves endothelial function and other indices of vascular function in T2D. First, in db/db mice, we showed that treatment with DSGP (100 mg/kg/day) for 4 wk restored endothelial glycocalyx length, as assessed via atomic force microscopy in aortic explants. Restoration of the glycocalyx with DSGP was accompanied by improved flow-mediated dilation (FMD) and reduced arterial stiffness in isolated mesenteric arteries. Further corroborating these findings, the treatment of cultured endothelial cells with that same mixture of glycocalyx precursors promoted glycocalyx growth. Next, as an initial step to investigate the translatability of these findings, we conducted a pilot (n = 22) double-blinded randomized placebo-controlled clinical trial to assess the effects of DSGP (3,712.5 mg/day) for 8 wk on endothelial glycocalyx integrity and indices of vascular function, including FMD, in Veterans with T2D. Contrary to the hypothesis, DSGP neither enhanced endothelial glycocalyx integrity nor improved vascular function indices relative to placebo. Together, these findings conceptually support the notion that restoration of the endothelial glycocalyx can lead to improvements in vascular function in a mouse model of T2D; however, DSGP as a therapeutic strategy to enhance vascular function in individuals with T2D does not appear to be efficacious.NEW & NOTEWORTHY Endothelial glycocalyx degradation in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to vascular dysfunction. The findings of this study support the notion that restoration of the endothelial glycocalyx using a dietary supplementation of glycocalyx precursors can lead to improvements in vascular function in diabetic mice. However, the utilized dietary supplement as a therapeutic strategy to enhance vascular function in individuals with T2D is not efficacious.
Collapse
Affiliation(s)
- James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | | | - Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neekun Sharma
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
3
|
Delgado Spicuzza JM, Gosalia J, Zhong L, Bondonno C, Petersen KS, De Souza MJ, Alipour E, Kim-Shapiro DB, Somani YB, Proctor DN. Seven-day dietary nitrate supplementation clinically significantly improves basal macrovascular function in postmenopausal women: a randomized, placebo-controlled, double-blind, crossover clinical trial. Front Nutr 2024; 11:1359671. [PMID: 38915856 PMCID: PMC11194363 DOI: 10.3389/fnut.2024.1359671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is the leading cause of death in women, with increased risk following menopause. Dietary intake of beetroot juice and other plant-based nitrate-rich foods is a promising non-pharmacological strategy for increasing systemic nitric oxide and improving endothelial function in elderly populations. The purpose of this randomized, placebo-controlled, double-blind, crossover clinical trial was to determine the effects of short-term dietary nitrate (NO3 -) supplementation, in the form of beetroot juice, on resting macrovascular endothelial function and endothelial resistance to whole-arm ischemia-reperfusion (IR) injury in postmenopausal women at two distinct stages of menopause. Methods Early-postmenopausal [1-6 years following their final menstrual period (FMP), n = 12] and late-postmenopausal (6+ years FMP, n = 12) women consumed nitrate-rich (400 mg NO3 -/70 mL) and nitrate-depleted beetroot juice (approximately 40 mg NO3 -/70 mL, placebo) daily for 7 days. Brachial artery flow-mediated dilation (FMD) was measured pre-supplementation (Day 0), and approximately 24 h after the last beetroot juice (BR) dose (Day 8, post-7-day BR). Consequently, FMD was measured immediately post-IR injury and 15 min later (recovery). Results Results of the linear mixed-effects model revealed a significantly greater increase in resting FMD with 7 days of BRnitrate compared to BRplacebo (mean difference of 2.21, 95% CI [0.082, 4.34], p = 0.042); however, neither treatment blunted the decline in post-IR injury FMD in either postmenopausal group. Our results suggest that 7-day BRnitrate-mediated endothelial protection is lost within the 24-h period following the final dose of BRnitrate. Conclusion Our findings demonstrate that nitrate-mediated postmenopausal endothelial protection is dependent on the timing of supplementation in relation to IR injury and chronobiological variations in dietary nitrate metabolism. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/NCT03644472.
Collapse
Affiliation(s)
- Jocelyn M. Delgado Spicuzza
- Integrative Vascular Physiology Lab, Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jigar Gosalia
- Integrative Vascular Physiology Lab, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Liezhou Zhong
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Catherine Bondonno
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Kristina S. Petersen
- Cardiometabolic Nutrition Research Lab, Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Mary Jane De Souza
- Integrative Vascular Physiology Lab, Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Women’s Health and Exercise Lab, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | | | - Yasina B. Somani
- Faculty of Biological Sciences, Department of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David N. Proctor
- Integrative Vascular Physiology Lab, Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Integrative Vascular Physiology Lab, Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Esen O, Fox J, Karayigit R, Walshe I. Acute Beetroot Juice Supplementation Has No Effect on Upper- and Lower-Body Maximal Isokinetic Strength and Muscular Endurance in International-Level Male Gymnasts. Int J Sport Nutr Exerc Metab 2024; 34:164-171. [PMID: 38237581 DOI: 10.1123/ijsnem.2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 04/14/2024]
Abstract
Nitrate (NO3-) has properties that can improve muscle function, leading to improvements in metabolic cost of exercise as well as enhance force production. Gymnastics is a whole-body sport, involving events that demand a high level of strength and fatigue resistance. However, the effect of NO3- supplementation on both upper- and lower-body function in gymnasts is unknown. This study examined the effect of acute beetroot juice (BRJ) supplementation on isokinetic strength and endurance of the upper- and lower-body in highly trained international-level male gymnasts. In a double-blind, randomized crossover design, 10 international-level male gymnasts completed two acute supplementation periods, consuming either 2 × 70 ml NO3--rich (∼12.8 mmol/L of NO3-) or NO3--depleted (PLA) BRJ. Maximal strength of the upper-leg and upper-arm at 60°/s, 120°/s, 180°/s, and 300°/s, and muscular endurance (50 repeated isokinetic contractions at 180°/s) were assessed. Plasma NO3- (BRJ: 663 ± 164 μM, PLA: 89 ± 48 μM) and nitrite (NO2-) concentrations (BRJ: 410 ± 137 nmol/L, PLA: 125 ± 36 nmol/L) were elevated following BRJ compared to PLA (both p < .001). Maximal strength of knee and elbow extensors and flexors did not differ between supplements (p > .05 for all velocities). Similarly, fatigue index of knee and elbow extension and flexion was not different between supplements (all p > .05). Acute BRJ supplementation, containing ∼12.8 mmol/L of NO3-, increased plasma NO3- and NO2- concentrations, but did not enhance isokinetic strength or fatigue resistance of either upper or lower extremities in international-level male gymnasts.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Joseph Fox
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Turkey
| | - Ian Walshe
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
5
|
Ageing modifies acute resting blood pressure responses to incremental consumption of dietary nitrate: a randomised, cross-over clinical trial. Br J Nutr 2023; 129:442-453. [PMID: 35508923 DOI: 10.1017/s0007114522001337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Beetroot (BR) is a rich source of nitrate (NO3-) that has been shown to reduce blood pressure (BP). Yet, no studies have examined the vascular benefits of BR in whole-food form and whether the effects are modified by age. This study was a four-arm, randomised, open-label, cross-over design in twenty-four healthy adults (young n 12, age 27 ± 4 years, old n 12, age 64 ± 5 years). Participants consumed whole-cooked BR at portions of (NO3- content in brackets) 100 g (272 mg), 200 g (544 mg) and 300 g (816 mg) and a 200-ml solution containing 1000 mg of potassium nitrate (KNO3) on four separate occasions over a 4-week period (≥7-d washout period). BP, plasma NO3- and nitrite (NO2-) concentrations, and post-occlusion reactive hyperaemia via laser Doppler, were measured pre- and up to 5-h post-intervention. Data were analysed by repeated-measures ANOVA. Plasma NO2- concentrations were higher in the young v. old at baseline and post-intervention (P < 0·05). All NO3- interventions decreased systolic and diastolic BP in young participants (P < 0·05), whereas only KNO3 (at 240-300 min post-intake) significantly decreased systolic (-4·8 mmHg, -3·5 %, P = 0·024) and diastolic (-5·4 mmHg, -6·5 %, P = 0·007) BP in older participants. In conclusion, incremental doses of dietary NO3- reduced systolic and diastolic BP in healthy young adults whereas in the older group a significant decrease was only observed with the highest dose. The lower plasma NO2- concentrations in older participants suggest that there may be mechanistic differences in the production of NO from dietary NO3- in young and older populations.
Collapse
|
6
|
Singh L, Ranjan N. Highly Selective and Sensitive Detection of Nitrite Ion by an Unusual Nitration of a Fluorescent Benzimidazole. J Am Chem Soc 2023; 145:2745-2749. [PMID: 36716209 DOI: 10.1021/jacs.2c10850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrite (NO2-) is a physiologically significant anion having implications for cellular signaling. Here we report our serendipitous discovery of highly selective fluorescence-based nitrite sensing using a benzimidazole which stems from hitherto-unknown direct nitration of a benzimidazole using sodium nitrite. Using one- and two-dimensional NMR techniques, we elucidate the chemical structures of the new nitrated benzimidazoles and show differences in the nitration products using conventional nitration with nitric acid. We also show its utility in robust sensing of nitrite-containing samples.
Collapse
Affiliation(s)
- Lachhman Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
7
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
8
|
Lucas SB, Duarte LM, Rezende KCA, Coltro WKT. Nitrite Determination in Environmental Water Samples Using Microchip Electrophoresis Coupled with Amperometric Detection. MICROMACHINES 2022; 13:1736. [PMID: 36296090 PMCID: PMC9610075 DOI: 10.3390/mi13101736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Nitrite is considered an important target analyte for environmental monitoring. In water resources, nitrite is the result of the nitrogen cycle and the leaching processes of pesticides based on nitrogenous compounds. A high concentration of nitrite can be associated with intoxication processes and metabolic disorders in humans. The present study describes the development of a portable analytical methodology based on microchip electrophoresis coupled with amperometric detection for the determination of nitrite in environmental water samples. Electrophoretic and detection conditions were optimized, and the best separations were achieved within 60 s by employing a mixture of 30 mmol L-1 lactic acid and 15 mmol L-1 histidine (pH = 3.8) as a running buffer applying 0.7 V to the working electrode (versus Pt) for amperometric measurements. The developed methodology revealed a satisfactory linear behavior in the concentration range between 20 and 80 μmolL-1 (R2 = 0.999) with a limit of detection of 1.3 μmolL-1. The nitrite concentration was determined in five water samples and the achieved values ranged from (28.7 ± 1.6) to (67.1 ± 0.5) µmol L-1. The data showed that using the proposed methodology revealed satisfactory recovery values (83.5-103.8%) and is in good agreement with the reference technique. Due to its low sample consumption, portability potential, high analytical frequency, and instrumental simplicity, the developed methodology may be considered a promising strategy to monitor and quantitatively determine nitrite in environmental samples.
Collapse
Affiliation(s)
| | - Lucas Mattos Duarte
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto de Química, Departamento de Química Analítica, Universidade Federal Fluminense, Niterói 24020-141, RJ, Brazil
| | | | - Wendell Karlos Tomazelli Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Campinas 13083-861, SP, Brazil
| |
Collapse
|
9
|
Hayter EA, Azibere S, Skrajewski LA, Soule LD, Spence DM, Martin RS. A 3D-printed, multi-modal microfluidic device for measuring nitric oxide and ATP release from flowing red blood cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3171-3179. [PMID: 35959771 PMCID: PMC10227723 DOI: 10.1039/d2ay00931e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, a 3D-printed multi-modal device was designed and fabricated to simultaneously detect nitric oxide (NO) and adenosine triphosphate (ATP) in red blood cell suspensions prepared from whole blood. Once a sample was injected into the device, NO was first detected (via amperometry) using a three-electrode, dual-opposed, electrode configuration with a platinum-black/Nafion coated gold working electrode. After in-line amperometric detection of NO, ATP was detected via a chemiluminescence reaction, with a luciferin/luciferase solution continuously pumped into an integrated mixing T and the resulting light being measured with a PMT underneath the channel. The device was optimized for mixing/reaction conditions, limits of detection (40 nM for NO and 30 nM for ATP), and sensitivity. This device was used to determine the basal (normoxic) levels of NO and ATP in red blood cells, as well as an increase in concentration of both analytes under hypoxic conditions. Finally, the effect of storing red blood cells in a commonly used storage solution was also investigated by monitoring the production of NO and ATP over a three-week storage time.
Collapse
Affiliation(s)
- Elizabeth A Hayter
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Samuel Azibere
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Lauren A Skrajewski
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Logan D Soule
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
10
|
Geiger M, Hayter E, Martin R, Spence D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J Transl Autoimmun 2022; 5:100161. [PMID: 36039310 PMCID: PMC9418496 DOI: 10.1016/j.jtauto.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
Autoimmune diseases affect over 40 million people in the United States. The cause of most autoimmune diseases is unknown; therefore, most therapies focus on treating the symptoms. This review will focus on the autoimmune diseases type 1 diabetes (T1D) and multiple sclerosis (MS) and the emerging roles of red blood cells (RBCs) in the mechanisms and treatment of T1D and MS. An understanding of the role of the RBC in human health is increasing, especially with respect to its role in the regulation of vascular caliber and vessel dilation. The RBC is known to participate in the regulation of blood flow through the release of key signaling molecules, such as adenosine triphosphate (ATP) and the potent vasodilator nitric oxide (NO). However, while these RBC-derived molecules are known to be determinants of blood flow in vivo, disruptions in their concentrations in the circulation are often measured in common autoimmune diseases. Chemical and physical properties of the RBC may play a role in autoimmune disease onset, especially T1D and MS, and complications associated with downstream extracellular levels of ATP and NO. Finally, both ATP and NO are highly reactive molecules in the circulation. Coupled with the challenging matrix posed by the bloodstream, the measurement of these two species is difficult, thus prompting an appraisal of recent and novel methods to quantitatively determining these potential early indicators of immune response.
Collapse
Affiliation(s)
- M. Geiger
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E. Hayter
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - R.S. Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - D. Spence
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Effects of Blueberry Consumption on Cardiovascular Health in Healthy Adults: A Cross-Over Randomised Controlled Trial. Nutrients 2022; 14:nu14132562. [PMID: 35807742 PMCID: PMC9268639 DOI: 10.3390/nu14132562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
Blueberries are rich in polyphenols, and their effect on cardiovascular health, including risk factors for endothelial dysfunction and hypertension, has been investigated in interventional studies. However, the difference between blueberry treatments in varied forms for their cardiovascular-protective effect remains poorly understood. The current study assessed the effects of whole blueberry and freeze-dried blueberry powder compared to a control on cardiovascular health in young adults. A cross-over randomised controlled trial (RCT) was implemented with 1 week of treatment for three treatment groups, each followed by 1 week of wash out period. Systolic (SBP) and diastolic blood pressure (DBP), pulse wave velocity (PWV), plasma cholesterol (low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total cholesterol) and triglyceride levels (TAG), and glucose and nitrite (NO2-) concentrations were compared following fresh blueberry, freeze-dried blueberry powder, and control treatments. Thirty-seven participants with a mean age of 25.86 ± 6.81 completed the study. No significant difference was observed among fresh blueberry, blueberry powder, and the control arm. Plasma NO2- levels were improved by 68.66% and 4.34% separately following whole blueberry and blueberry powder supplementations compared to the baseline, whereas the control supplementation reported a decrease (−9.10%), although it was not statistically significant. There were no other effects shown for SBP, DBP, total cholesterol, HDL-C, LDL-C, TAG, or glucose. No difference was shown between whole blueberry and freeze-dried blueberry powder consumption for improving cardiovascular health.
Collapse
|
12
|
Basu S, Ricart K, Gladwin MT, Patel RP, Kim-Shapiro DB. Tri-iodide and vanadium chloride based chemiluminescent methods for quantification of nitrogen oxides. Nitric Oxide 2022; 121:11-19. [PMID: 35124204 PMCID: PMC8860884 DOI: 10.1016/j.niox.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
Nitric Oxide (NO) is an important signaling molecule that plays roles in controlling vascular tone, hemostasis, host defense, and many other physiological functions. Low NO bioavailability contributes to pathology and NO administration has therapeutic potential in a variety of diseases. Thus, accurate measurements of NO bioavailability and reactivity are critical. Due to its short lifetime in vivo and many in vitro conditions, NO bioavailability and reactivity are often best determined by measuring NO congeners and metabolites that are more stable. Chemiluminescence-based detection of NO following chemical reduction of these compounds using the tri-iodide and vanadium chloride methods have been widely used in a variety of clinical and laboratory studies. In this review, we describe these methods used to detect nitrite, nitrate, nitrosothiols and other species and discuss limitations and proper controls.
Collapse
Affiliation(s)
- Swati Basu
- Translational Science Center and Department of Physics, Wake Forest University, USA
| | - Karina Ricart
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, USA
| | - Mark T Gladwin
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, USA.
| | - Daniel B Kim-Shapiro
- Translational Science Center and Department of Physics, Wake Forest University, USA.
| |
Collapse
|
13
|
Gaikwad R, Thangaraj PR, Sen AK. Microfluidics-based rapid measurement of nitrite in human blood plasma. Analyst 2022; 147:3370-3382. [DOI: 10.1039/d2an00020b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report direct and rapid measurement of nitrite in human blood plasma using a fluorescence-based microfluidic method.
Collapse
Affiliation(s)
- R. Gaikwad
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - P. R. Thangaraj
- Department of Cardiothoracic Surgery, Apollo Hospital, Chennai, 600006, India
| | - A. K. Sen
- Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
14
|
Capper TE, Siervo M, Clifford T, Taylor G, Iqbal W, West D, Stevenson EJ. Pharmacokinetic Profile of Incremental Oral Doses of Dietary Nitrate in Young and Older Adults: A Crossover Randomized Clinical Trial. J Nutr 2021; 152:130-139. [PMID: 34718635 PMCID: PMC8754575 DOI: 10.1093/jn/nxab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dietary nitrate consumption can increase concentrations of nitrate and nitrite in blood, saliva, and urine. Whether the change in concentrations is influenced by age is currently unknown. OBJECTIVES We aimed to measure changes in nitrate and nitrite concentrations in plasma, urine, and saliva and exhaled NO concentrations after single incremental doses of dietary nitrate in young and older healthy adults. METHODS Twelve young (18-35 y old) and 12 older (60-75 y old) healthy, nonsmoking participants consumed single doses of 100 g, 200 g, 300 g whole beetroot (BR) and 1000 mg potassium nitrate (positive control) ≥7 d apart in a crossover, randomized clinical trial. Plasma nitrate and nitrite concentrations and exhaled NO concentrations were measured over a 5-h period. Salivary nitrate and nitrite concentrations were measured over a 12-h period and urinary nitrate over a 24-h period. Time, intervention, age, and interaction effects were measured with repeated-measures ANOVAs. RESULTS Dose-dependent increases were seen in plasma, salivary, and urinary nitrate after BR ingestion (all P ≤ 0.002) but there were no differences between age groups at baseline (all P ≥ 0.56) or postintervention (all P ≥ 0.12). Plasma nitrite concentrations were higher in young than older participants at baseline (P = 0.04) and after consumption of 200 g (P = 0.04; +25.7 nmol/L; 95% CI: 0.97, 50.3 nmol/L) and 300 g BR (P = 0.02; +50.3 nmol/L; 95% CI: 8.57, 92.1 nmol/L). Baseline fractional exhaled NO (FeNO) concentrations were higher in the younger group [P = 0.03; +8.60 parts per billion (ppb); 95% CI: 0.80, 16.3 ppb], and rose significantly over the 5-h period, peaking 5 h after KNO3 consumption (39.4 ± 4.5 ppb; P < 0.001); however, changes in FeNO were not influenced by age (P = 0.276). CONCLUSIONS BR is a source of bioavailable dietary nitrate in both young and older adults and can effectively raise nitrite and nitrate concentrations. Lower plasma nitrite and FeNO concentrations were found in older subjects, confirming the impact of ageing on NO bioavailability across different systems.This trial was registered at www.isrctn.com as ISRCTN86706442.
Collapse
Affiliation(s)
| | | | - Tom Clifford
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Guy Taylor
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wasim Iqbal
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel West
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
15
|
Beet on Alps: Time-course changes of plasma nitrate and nitrite concentrations during acclimatization to high-altitude. Nitric Oxide 2020; 107:66-72. [PMID: 33346127 DOI: 10.1016/j.niox.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
Nitric oxide seems to be involved in the altitude acclimatization process due to its ability to regulate pulmonary, cardiovascular and muscular responses to hypoxia. In this study, we investigated the plasma nitrate (NO3-) and nitrite (NO2-) response to hypobaric hypoxia in two groups of lowlanders exposed at different altitudes. For seven days, fourteen subjects were evaluated at Casati Hut (3269 m a.s.l. M.CEVEDALE) and eleven individuals were studied at Capanna Regina Margherita (4554 m a.s.l. M.ROSA). Before expeditions and at different time points during high-altitude sojourn, plasma NO3- and NO2- concentrations were measured by chemiluminescence. Resting peripheral arterial oxygen saturation (SpO2), heart rate (HR) and mean arterial blood pressure (MAP) were monitored during the experimental period. Possible confounding factors such as dietary NO3- intake, physical activity and altitude changes were controlled. Sea level plasma NO3- and NO2- concentrations significantly increased at altitude in both M.CEVEDALE group (+26.2 μM, p ≤ 0.0001, 95% CI [+17.6, +34.8] and +559.2 nM, p ≤ 0.0001, [+332.8, +785.6]) and M.ROSA group (+18.7 μM, p ≤ 0.0001, [+10.8, +26.5] and +463.7 nM, p ≤ 0.0001, [+314.3, +613.0]). Average peak value in NO metabolites concentration occurred earlier in M.CEVEDALE group vs M.ROSA group (NO3-, day 3 vs day 5, p = 0.007; NO2-, day 3 vs day 5, p = 0.019). In both groups, resting SpO2, HR and MAP values changed according to altitude levels. This study shows that exposure to hypobaric hypoxia affects nitric oxide metabolites, resulting in a significant increase in plasma NO3- and NO2- concentrations from sea level values. Interestingly, the higher the altitude reached, the longer the time taken to reach a peak in plasma concentrations of nitric oxide metabolites.
Collapse
|
16
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Bibi S, Zaman MI, Niaz A, Rahim A, Nawaz M, Bilal Arian M. Voltammetric determination of nitrite by using a multiwalled carbon nanotube paste electrode modified with chitosan-functionalized silver nanoparticles. Mikrochim Acta 2019; 186:595. [DOI: 10.1007/s00604-019-3699-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
|
18
|
Kosmachevskaya OV, Topunov AF. Alternate and Additional Functions of Erythrocyte Hemoglobin. BIOCHEMISTRY (MOSCOW) 2019; 83:1575-1593. [PMID: 30878032 DOI: 10.1134/s0006297918120155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The review discusses pleiotropic effects of erythrocytic hemoglobin (Hb) and their significance for human health. Hemoglobin is mostly known as an oxygen carrier, but its biochemical functions are not limited to this. The following aspects of Hb functioning are examined: (i) catalytic functions of the heme component (nitrite reductase, NO dioxygenase, monooxygenase, alkylhydroperoxidase) and of the apoprotein (esterase, lipoxygenase); (ii) participation in nitric oxide metabolism; (iii) formation of membrane-bound Hb and its role in the regulation of erythrocyte metabolism; (iv) physiological functions of Hb catabolic products (iron, CO, bilirubin, peptides). Special attention is given to Hb participation in signal transduction in erythrocytes. The relationships between various erythrocyte metabolic parameters, such as oxygen status, ATP formation, pH regulation, redox balance, and state of the cytoskeleton are discussed with regard to Hb. Hb polyfunctionality can be considered as a manifestation of the principle of biochemical economy.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - A F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
19
|
Han S, Chen X. Copper nanoclusters-enhanced chemiluminescence for folic acid and nitrite detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:315-320. [PMID: 30472594 DOI: 10.1016/j.saa.2018.11.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
The reaction between diperiodatoargentate(III) (DPA) and folic acid (FA) produced weak chemiluminescence (CL) in acid medium, which was greatly enhanced in the presence of copper nanoclusters (CuNCs). The CL intensity of CuNCs-DPA-FA system increased with the concentration of FA ranging from 0.1 to 10.0 μM. The proposed CL system was applied for the detection of FA in pharmaceutical formulation and human urine samples. Further, the CL signal of CuNCs-DPA-FA system was inhibited by nitrite, and the inhibited CL intensity was proportional to the nitrite concentration in the range of 1.0-80.0 μM. The method was successfully applied to determine nitrite in water, pickled vegetable and sausage samples. A possible CL mechanism was briefly discussed.
Collapse
Affiliation(s)
- Suqin Han
- Department of Chemistry, Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, Shanxi, PR China; School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, PR China.
| | - Xiaoxia Chen
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, PR China
| |
Collapse
|
20
|
Troutman AD, Gallardo EJ, Brown MB, Coggan AR. Measurement of nitrate and nitrite in biopsy-sized muscle samples using HPLC. J Appl Physiol (1985) 2018; 125:1475-1481. [PMID: 30113272 DOI: 10.1152/japplphysiol.00625.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studies of rats have indicated that skeletal muscle plays a central role in whole-body nitrate ( NO3- )/nitrite ( NO2- )/nitric oxide (NO) metabolism. Extending these results to humans, however, is challenging due to the small size of needle biopsy samples. We therefore developed a method to precisely and accurately quantify NO3- and NO2- in biopsy-sized muscle samples. NO3- and NO2- were extracted from rat soleus samples using methanol combined with mechanical homogenization + ultrasound, bead beating, pulverization at liquid N2 temperature or pulverization + 0.5% Triton X-100. After centrifugation to remove proteins, NO3- and NO2- were measured using HPLC. Mechanical homogenization + ultrasound resulted in the lowest NO3- content (62 ± 20 pmol/mg), with high variability [coefficient of variation (CV) >50%] across samples from the same muscle. The NO2- / NO3- ratio (0.019 ± 0.006) was also elevated, suggestive of NO3- reduction during tissue processing. Bead beating or pulverization yielded lower NO2- and slightly higher NO3- levels, but reproducibility was still poor. Pulverization + 0.5% Triton X-100 provided the highest NO3- content (124 ± 12 pmol/mg) and lowest NO2- / NO3- ratio (0.008 ± 0.001), with the least variability between duplicate samples (CV ~15%). These values are consistent with literature data from larger rat muscle samples analyzed using chemiluminescence. Samples were stable for at least 5 wk at -80°C, provided residual xanthine oxidoreductase activity was blocked using 0.1 mmol/l oxypurinol. We have developed a method capable of measuring NO3- and NO2- in <1 mg of muscle. This method should prove highly useful in investigating the role of skeletal muscle in NO3- / NO2- /NO metabolism in human health and disease. NEW & NOTEWORTHY Measurement of nitrate and especially nitrite in small, i.e., biopsy-sized, muscle samples is analytically challenging. We have developed a precise, accurate, and convenient method for doing so using an affordable commercial HPLC system.
Collapse
Affiliation(s)
- Ashley D Troutman
- Department of Kinesiology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana.,Department of Physical Therapy, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Edgar J Gallardo
- Department of Kinesiology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Mary Beth Brown
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana-University Purdue University Indianapolis , Indianapolis, Indiana
| |
Collapse
|
21
|
Mukosera GT, Liu T, Ishtiaq Ahmed AS, Li Q, Sheng MHC, Tipple TE, Baylink DJ, Power GG, Blood AB. Detection of dinitrosyl iron complexes by ozone-based chemiluminescence. Nitric Oxide 2018; 79:57-67. [PMID: 30059767 PMCID: PMC6277231 DOI: 10.1016/j.niox.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Dinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification. EPR is limited, however, by its ability to detect only paramagnetic mononuclear DNICs even though EPR-silent binuclear are likely to be prevalent. Furthermore, physiological concentrations of mononuclear DNICs are usually lower than the EPR detection limit (1 μM). We have thus developed a chemiluminescence-based method for the selective detection of both DNIC forms at physiological, pathophysiological, and pharmacologic conditions. We have also demonstrated the use of the new method in detecting DNIC formation in the presence of nitrite and nitrosothiols within biological fluids and tissue. This new method, which can be used alone or in tandem with EPR, has the potential to offer insight about the involvement of DNICs in many NO-dependent pathways.
Collapse
Affiliation(s)
- George T Mukosera
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Taiming Liu
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Abu Shufian Ishtiaq Ahmed
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Center for Dental Research, Loma Linda University School of Dentistry, Loma Linda, CA, 92350, USA
| | - Qian Li
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matilda H-C Sheng
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Trent E Tipple
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David J Baylink
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Gordon G Power
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
22
|
Singh P, Singh MK, Beg YR, Nishad GR. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta 2018; 191:364-381. [PMID: 30262072 DOI: 10.1016/j.talanta.2018.08.028] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
Nitrate is an important pollutant found in environmental samples. Nitrate and nitrite pose various environmental as well as health hazards. Different methods of determining nitrate in various environmental samples developed during previous years include spectrophotometric, chemiluminescence, electrochemical detection, chromatographic, capillary electrophoretic, spectrofluorimetric methods. Out of these, methods based on spectroscopic detection of nitrate have been discussed in this review article due to their easy availability, high sensitivity, low detection limit, economical and facile nature. Methods based on spectrophotometry, Raman Spectroscopy, IR and FTIR Spectroscopy, atomic absorption spectroscopy (AAS), fluorescence spectroscopy, chemiluminescence, mass spectroscopy, molecular emission cavity analysis (MECA), electron paramagnetic resonance spectrometry (EPR) and nuclear magnetic resonance spectroscopy (NMR) have been reviewed. The basic principle, detection limits, detection range, RSD%, sample throughput/h, advantages and disadvantages have been discussed.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Chemistry, Govt. Digvijay PG Autonomous College, Rajnandgaon 491441, Chhattisgarh, India.
| | | | - Younus Raza Beg
- Department of Chemistry, Govt. Digvijay PG Autonomous College, Rajnandgaon 491441, Chhattisgarh, India
| | - Gokul Ram Nishad
- Department of Chemistry, Govt. Digvijay PG Autonomous College, Rajnandgaon 491441, Chhattisgarh, India
| |
Collapse
|
23
|
Amanulla B, Palanisamy S, Chen SM, Chiu TW, Velusamy V, Hall JM, Chen TW, Ramaraj SK. Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide. Sci Rep 2017; 7:14182. [PMID: 29079840 PMCID: PMC5660180 DOI: 10.1038/s41598-017-14584-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023] Open
Abstract
Excess nitrite (NO2-) concentrations in water supplies is considered detrimental to the environment and human health, and is associated with incidence of stomach cancer. In this work, the authors describe a nitrite detection system based on the synthesis of gold nanoparticles (AuNPs) on reduced graphene oxide (rGO) using an aqueous solution of chitosan and succinic acid. The AuNPs-rGO nanocomposite was confirmed by different physicochemical characterization methods including transmission electron microscopy, elemental analysis, X-ray diffraction, UV-visible (UV-vis) and Fourier transform infrared spectroscopy. The AuNPs-rGO nanocomposite was applicable to the sensitive and selective detection of NO2- with increasing concentrations quantifiable by UV-vis spectroscopy and obvious to the naked eye. The color of the AuNPs-rGO nanocomposite changes from wine red to purple with the addition of different concertation of NO2-. Therefore, nitrite ion concentrations can be quantitatively detected using AuNPs-rGO sensor with UV-vis spectroscopy and estimated with the naked eye. The sensor is able to detect NO2- in a linear response ranging from 1 to 20 μM with a detection limit of 0.1 μM by spectrophotometric method. The as-prepared AuNPs-rGO nanocomposite shows appropriate selectivity towards NO2- in the presence of potentially interfering metal anions.
Collapse
Affiliation(s)
- Baishnisha Amanulla
- PG & Research department of Chemistry, Thiagarajar College, Madurai-09, Tamilnadu, India
| | - Selvakumar Palanisamy
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan
| | - Vijayalakshmi Velusamy
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom.
| | - James M Hall
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG & Research department of Chemistry, Thiagarajar College, Madurai-09, Tamilnadu, India.
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan.
| |
Collapse
|
24
|
Gasier HG, Reinhold AR, Loiselle AR, Soutiere SE, Fothergill DM. Effects of oral sodium nitrate on forearm blood flow, oxygenation and exercise performance during acute exposure to hypobaric hypoxia (4300 m). Nitric Oxide 2017; 69:1-9. [DOI: 10.1016/j.niox.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/16/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
|
25
|
Almeida LEF, Kamimura S, Nettleton MY, de Souza Batista CM, Walek E, Khaibullina A, Wang L, Quezado ZMN. Blood collection vials and clinically used intravenous fluids contain significant amounts of nitrite. Free Radic Biol Med 2017; 108:533-541. [PMID: 28416347 DOI: 10.1016/j.freeradbiomed.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022]
Abstract
The biology of the inorganic anion nitrite is linked to nitric oxide (NO) as nitrite can be reduced to NO and mediate its biological activities. Thus, studies of nitrite biology require sensitive and selective chemical assays. The acetic and ascorbic acids method is selective for nitrite and measures it in biological matrices. However, one of the pitfalls of nitrite measurements is its ubiquitous presence in sample collection tubes. Here, we showed high levels of nitrite in collection tubes containing EDTA, sodium citrate or sodium heparin and smaller amounts in tubes containing lithium heparin or serum clot activator. We also showed the presence of nitrite in colloid and crystalloid solutions frequently administered to patients and found variable levels of nitrite in 5% albumin, 0.9% sodium chloride, lactated ringer's, and dextrose-plus-sodium chloride solutions. These levels of nitrite varied across lots and manufacturers of the same type of fluid. Because these fluids are administered intravenously to patients (including those in shock), sometimes in large volumes (liters), it is possible that infusions of these nitrite-containing fluids may have clinical implications. A protocol for blood collection free of nitrite contamination was developed and used to examine nitrite levels in whole blood, red blood cells, plasma and urine from normal volunteers. Nitrite measurements were reproducible, had minimal variability, and did not indicate sex-differences. These findings validated a method and protocol for selective nitrite assay in biological fluids free of nitrite contamination which can be applied for study of diseases where dysfunctional NO signaling has been implicated.
Collapse
Affiliation(s)
- Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Y Nettleton
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Elizabeth Walek
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Siebenmann C, Keramidas ME, Rundqvist H, Mijwel S, Cowburn AS, Johnson RS, Eiken O. Cutaneous exposure to hypoxia does not affect skin perfusion in humans. Acta Physiol (Oxf) 2017; 220:361-369. [PMID: 27809413 DOI: 10.1111/apha.12825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/09/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022]
Abstract
AIM Experiments have indicated that skin perfusion in mice is sensitive to reductions in environmental O2 availability. Specifically, a reduction in skin-surface PO2 attenuates transcutaneous O2 diffusion, and hence epidermal O2 supply. In response, epidermal HIF-1α expression increases and facilitates initial cutaneous vasoconstriction and subsequent nitric oxide-dependent vasodilation. Here, we investigated whether the same mechanism exists in humans. METHODS In a first experiment, eight males rested twice for 8 h in a hypobaric chamber. Once, barometric pressure was reduced by 50%, while systemic oxygenation was preserved by O2 -enriched (42%) breathing gas (HypoxiaSkin ), and once barometric pressure and inspired O2 fraction were normal (Control1 ). In a second experiment, nine males rested for 8 h with both forearms wrapped in plastic bags. O2 was expelled from one bag by nitrogen flushing (AnoxiaSkin ), whereas the other bag was flushed with air (Control2 ). In both experiments, skin blood flux was assessed by laser Doppler on the dorsal forearm, and HIF-1α expression was determined by immunohistochemical staining in forearm skin biopsies. RESULTS Skin blood flux during HypoxiaSkin and AnoxiaSkin remained similar to the corresponding Control trial (P = 0.67 and P = 0.81). Immunohistochemically stained epidermal HIF-1α was detected on 8.2 ± 6.1 and 5.3 ± 5.7% of the analysed area during HypoxiaSkin and Control1 (P = 0.30) and on 2.3 ± 1.8 and 2.4 ± 1.8% during AnoxiaSkin and Control2 (P = 0.90) respectively. CONCLUSION Reductions in skin-surface PO2 do not affect skin perfusion in humans. The unchanged epidermal HIF-1α expression suggests that epidermal O2 homoeostasis was not disturbed by HypoxiaSkin /AnoxiaSkin , potentially due to compensatory increases in arterial O2 extraction.
Collapse
Affiliation(s)
- C. Siebenmann
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| | - M. E. Keramidas
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| | - H. Rundqvist
- Department of Cell and Molecular Biology; Karolinska Institutet; Stockholm Sweden
| | - S. Mijwel
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - A. S. Cowburn
- Departments of Physiology, Development and Neuroscience and Medicine; University of Cambridge; Cambridge UK
| | - R. S. Johnson
- Department of Cell and Molecular Biology; Karolinska Institutet; Stockholm Sweden
- Departments of Physiology, Development and Neuroscience and Medicine; University of Cambridge; Cambridge UK
| | - O. Eiken
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
27
|
Nagababu E, Scott AV, Johnson DJ, Goyal A, Lipsitz JA, Barodka VM, Berkowitz DE, Frank SM. The Impact of Surgery and Stored Red Blood Cell Transfusions on Nitric Oxide Homeostasis. Anesth Analg 2017; 123:274-82. [PMID: 27308950 DOI: 10.1213/ane.0000000000001392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cell-free hemoglobin (Hb) forms in stored red blood cells (RBCs) as a result of hemolysis. Studies suggest that this cell-free Hb may decrease nitric oxide (NO) bioavailability, potentially leading to endothelial dysfunction, vascular injury, and multiorgan dysfunction after transfusion. We tested the hypothesis that moderate doses of stored RBC transfusions increase cell-free Hb and decrease NO availability in postoperative surgical patients. METHODS Twenty-six patients undergoing multilevel spine fusion surgery were studied. We compared those who received no stored RBCs (n = 9) with those who received moderate amounts (6.1 ± 3.0 units) of stored RBCs over 3 perioperative days (n = 17). Percent hemolysis (cell-free Hb), RBC-NO (heme-NO), and plasma nitrite and nitrate were measured in samples from the stored RBC bags and from patients' blood, before and after surgery. RESULTS Posttransfusion hemolysis was increased approximately 3.5-fold over preoperative levels (P = 0.0002) in blood samples collected immediately after surgery but not on postoperative days 1 to 3. Decreases in both heme-NO (by approximately 50%) and plasma nitrite (by approximately 40%) occurred postoperatively, both in nontransfused patients (P = 0.036 and P = 0.026, respectively) and transfused patients (P = 0.0068 and P = 0.003, respectively) and returned to preoperative baseline levels by postoperative day 2 or 3. Postoperative plasma nitrite and nitrate were decreased significantly in both groups, and this change was slower to return to baseline in the transfused patients, suggesting that blood loss and hemodilution from crystalloid administration contribute to this finding. CONCLUSIONS The decrease in NO metabolites occurred irrespective of stored RBC transfusions, suggesting this decrease may be related to blood loss during surgery and hemodilution rather than to scavenging of NO or inhibition of NO synthesis by stored RBC transfusions.
Collapse
Affiliation(s)
- Enika Nagababu
- From the Departments of *Anesthesiology/Critical Care Medicine and ‡Biomedical Engineering, The Johns Hopkins Medical Institutions, Baltimore, Maryland; and †Department of Radiology, Era Medical College, Lucknow, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Seenivasan R, Kolodziej C, Karunakaran C, Burda C. Nanotechnology for Electroanalytical Biosensors of Reactive Oxygen and Nitrogen Species. CHEM REC 2017; 17:886-901. [DOI: 10.1002/tcr.201600143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Rajesh Seenivasan
- Department of Chemistry; Case Western Reserve University; 10900 Euclid Ave. Cleveland OH 44106 USA
- Department of Electrical and Computer Engineering; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093 USA
| | - Charles Kolodziej
- Department of Chemistry; Case Western Reserve University; 10900 Euclid Ave. Cleveland OH 44106 USA
| | - Chandran Karunakaran
- Department of Chemistry, Biomedical Research Lab; VHNSN College (Autonomous); 3/151-1,College Road, Virudhunagar Tamil Nadu 626001 India
| | - Clemens Burda
- Department of Chemistry; Case Western Reserve University; 10900 Euclid Ave. Cleveland OH 44106 USA
| |
Collapse
|
29
|
Wang QH, Yu LJ, Liu Y, Lin L, Lu RG, Zhu JP, He L, Lu ZL. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017; 165:709-720. [PMID: 28153321 DOI: 10.1016/j.talanta.2016.12.044] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
Various techniques for the determination of nitrite and/or nitrate developed during the past 15 years were reviewed in this article. 169 references were covered. The detection principles and analytical parameters such as matrix, detection limits and detection range of each method were tabulated. The advantages and disadvantages of various methods were evaluated. In comparison to other methods, spectrofluorimetric methods have become more attractive due to its facility availability, high sensitivity and selectivity, low limits of detection and low-cost.
Collapse
Affiliation(s)
- Qiu-Hua Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Ju Yu
- Xi'an Jiaotong University, Xi'an 710018, China; National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lan Lin
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ri-Gang Lu
- Guangxi Institute for Food and Drug Control, Guilin 530021, China
| | - Jian-Ping Zhu
- Guangxi Institute for Food and Drug Control, Guilin 530021, China
| | - Lan He
- College of Chemistry, Beijing Normal University, Beijing 100875, China; National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Zhong-Lin Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
30
|
Piknova B, Park JW, Cassel KS, Gilliard CN, Schechter AN. Measuring Nitrite and Nitrate, Metabolites in the Nitric Oxide Pathway, in Biological Materials using the Chemiluminescence Method. J Vis Exp 2016. [PMID: 28060334 DOI: 10.3791/54879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Nitric oxide (NO) is one of the main regulator molecules in vascular homeostasis and also a neurotransmitter. Enzymatically produced NO is oxidized into nitrite and nitrate by interactions with various oxy-heme proteins and other still not well known pathways. The reverse process, reduction of nitrite and nitrate into NO had been discovered in mammals in the last decade and it is gaining attention as one of the possible pathways to either prevent or ease a whole range of cardiovascular, metabolic and muscular disorders that are thought to be associated with decreased levels of NO. It is therefore important to estimate the amount of NO and its metabolites in different body compartments - blood, body fluids and the various tissues. Blood, due to its easy accessibility, is the preferred compartment used for estimation of NO metabolites. Due to its short lifetime (few milliseconds) and low sub-nanomolar concentration, direct reliable measurements of blood NO in vivo present great technical difficulties. Thus NO availability is usually estimated based on the amount of its oxidation products, nitrite and nitrate. These two metabolites are always measured separately. There are several well established methods to determine their concentrations in biological fluids and tissues. Here we present a protocol for chemiluminescence method (CL), based on spectrophotometrical detection of NO after nitrite or nitrate reduction by tri-iodide or vanadium(III) chloride solutions, respectively. The sensitivity for nitrite and nitrate detection is in low nanomolar range, which sets CL as the most sensitive method currently available to determine changes in NO metabolic pathways. We explain in detail how to prepare samples from biological fluids and tissues in order to preserve original amounts of nitrite and nitrate present at the time of collection and how to determine their respective amounts in samples. Limitations of the CL technique are also explained.
Collapse
|
31
|
Anderson JA, Lamichhane S, Mani G. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies. J Biomed Mater Res A 2016; 104:2658-72. [PMID: 27324956 DOI: 10.1002/jbm.a.35808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/16/2016] [Indexed: 01/12/2023]
Abstract
The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016.
Collapse
Affiliation(s)
- Jordan A Anderson
- Biomedical Engineering Program, the University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota, 57107
| | - Sujan Lamichhane
- Biomedical Engineering Program, the University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota, 57107
| | - Gopinath Mani
- Biomedical Engineering Program, the University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota, 57107.
| |
Collapse
|
32
|
Jorge Neto SD, Machado JSR, Palei ACT, Martins WP, Sandrim VC, Araujo Júnior E, Amaral LM, Tanus-Santos JE, Duarte G, Cavalli RC. Assessment of nitrite oxide and maternal-fetal Doppler parameters during pregnancy. J Matern Fetal Neonatal Med 2015; 29:3406-9. [PMID: 26653276 DOI: 10.3109/14767058.2015.1130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The objective was to evaluate and compare the whole blood nitrite concentration in the three trimesters of pregnancy. Additionally, we investigate whether there is any relation between nitrite concentrations and Doppler ultrasound analysis of some maternal and fetal vessels. METHODS Thirty-three healthy pregnant women were examined at the first (11-14 weeks), second (20-24 weeks) and third trimester (34-36 weeks) of pregnancy. In the three exams, we determined the maternal whole blood nitrite concentration and uterine arteries Doppler analysis to determine pulsatility index (PI), and resistance index (RI). In the second and third trimester we also performed fetal umbilical and middle cerebral arteries PI and RI. We compared the concentrations of nitrite in three trimesters and correlated with Doppler parameters. RESULTS No difference was observed in the whole blood nitrite concentrations across trimesters: 151.70 ± 77.90 nmol/ml, 142.10 ± 73.50 nmol/ml and 147.10 ± 87.30 nmol/ml; first, second and third trimesters, respectively. We found no difference in correlation between whole blood nitrite concentration and Doppler parameters from the evaluated vessels. CONCLUSIONS In healthy pregnant women, the nitrite concentrations did not change across gestational trimesters and there was also no strong correlation with Doppler impedance indices from maternal uterine arteries and fetal umbilical and middle cerebral arteries.
Collapse
Affiliation(s)
- Salim Demétrio Jorge Neto
- a Department of Obstetrics and Gynecology , Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP) , Ribeirão Preto - SP , Brazil
| | - Jackeline Souza Rangel Machado
- a Department of Obstetrics and Gynecology , Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP) , Ribeirão Preto - SP , Brazil
| | - Ana Carolina Tavares Palei
- b Departament of Physiology and Biophysics , University of Mississipi Medical Center , Jackson , MS , USA
| | - Wellington Paula Martins
- a Department of Obstetrics and Gynecology , Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP) , Ribeirão Preto - SP , Brazil
| | - Valéria Cristina Sandrim
- c Departament of Pharmacology , Botucatu Medical School, São Paulo State University (UNESP) , Botucatu - SP , Brazil
| | - Edward Araujo Júnior
- d Department of Obstetrics , Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP) , São Paulo - SP , Brazil , and
| | - Lorena Machado Amaral
- b Departament of Physiology and Biophysics , University of Mississipi Medical Center , Jackson , MS , USA
| | - José Eduardo Tanus-Santos
- e Departament of Pharmacology , Ribeirão Preto Medical School, University of Sao Paulo (FMRP-USP) , Ribeirão Preto - SP , Brazil
| | - Geraldo Duarte
- a Department of Obstetrics and Gynecology , Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP) , Ribeirão Preto - SP , Brazil
| | - Ricardo Carvalho Cavalli
- a Department of Obstetrics and Gynecology , Ribeirao Preto Medical School, University of Sao Paulo (FMRP-USP) , Ribeirão Preto - SP , Brazil
| |
Collapse
|
33
|
Salgado MT, Cao Z, Nagababu E, Mohanty JG, Rifkind JM. Red Blood Cell Membrane-Facilitated Release of Nitrite-Derived Nitric Oxide Bioactivity. Biochemistry 2015; 54:6712-23. [DOI: 10.1021/acs.biochem.5b00643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria T. Salgado
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Zeling Cao
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Enika Nagababu
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Joy G. Mohanty
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Joseph M. Rifkind
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| |
Collapse
|
34
|
Almeida LEF, Kamimura S, Kenyon N, Khaibullina A, Wang L, de Souza Batista CM, Quezado ZMN. Validation of a method to directly and specifically measure nitrite in biological matrices. Nitric Oxide 2014; 45:54-64. [PMID: 25445633 DOI: 10.1016/j.niox.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
The bioactivity of nitric oxide (NO) is influenced by chemical species generated through reactions with proteins, lipids, metals, and its conversion to nitrite and nitrate. A better understanding of the functions played by each of these species could be achieved by developing selective assays able of distinguishing nitrite from other NO species. Nagababu and Rifkind developed a method using acetic and ascorbic acids to measure nitrite-derived NO in plasma. Here, we adapted, optimized, and validated this method to assay nitrite in tissues. The method yielded linear measurements over 1-300 pmol of nitrite and was validated for tissue preserved in a nitrite stabilization solution composed of potassium ferricyanide, N-ethylmaleimide and NP-40. When samples were processed with chloroform, but not with methanol, ethanol, acetic acid or acetonitrile, reliable and reproducible nitrite measurements in up to 20 sample replicates were obtained. The method's accuracy in tissue was ≈ 90% and in plasma 99.9%. In mice, during basal conditions, brain, heart, lung, liver, spleen and kidney cortex had similar nitrite levels. In addition, nitrite tissue levels were similar regardless of when organs were processed: immediately upon collection, kept in stabilization solution for later analysis or frozen and later processed. After ip nitrite injections, rapidly changing nitrite concentrations in tissue and plasma could be measured and were shown to change in significantly distinct patterns. This validated method could be valuable for investigations of nitrite biology in conditions such as sickle cell disease, cardiovascular disease, and diabetes, where nitrite is thought to play a role.
Collapse
Affiliation(s)
- Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Sayuri Kamimura
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Nicholas Kenyon
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | | | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
35
|
The effect of intermittent pneumatic compression of legs on the levels of nitric oxide related species in blood and on arterial function in the arm. Nitric Oxide 2014; 40:117-22. [DOI: 10.1016/j.niox.2014.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/20/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
|
36
|
Micić D, Šljukić B, Zujovic Z, Travas-Sejdic J, Ćirić-Marjanović G. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Kubáň P, Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805:1-18. [DOI: 10.1016/j.aca.2013.07.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/31/2022]
|
38
|
Abstract
S-nitrosothiols (RSNO) are involved in post-translational modifications of many proteins analogous to protein phosphorylation. In addition, RSNO have many physiological roles similar to nitric oxide ((•)NO), which are presumably involving the release of (•)NO from the RSNO. However, the much longer life span in biological systems for RSNO than (•)NO suggests a dominant role for RSNO in mediating (•)NO bioactivity. RSNO are detected in plasma in low nanomolar levels in healthy human subjects. These RSNO are believed to be redirecting the (•)NO to the vasculature. However, the mechanism for the formation of RSNO in vivo has not been established. We have reviewed the reactions of (•)NO with oxygen, metalloproteins, and free radicals that can lead to the formation of RSNO and have evaluated the potential for each mechanism to provide a source for RSNO in vivo.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Rm No. 5B131, Baltimore, MD, 21224, USA,
| | | |
Collapse
|
39
|
Shu-yu Z, Qing S, Li L, Xiao-hui F. A simple and accurate method to determine nitrite and nitrate in serum based on high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 2013; 27:1547-53. [PMID: 23760922 DOI: 10.1002/bmc.2958] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 12/18/2022]
Abstract
A simple method for accurate determination of nitrite and nitrate in serum was proposed to avoid the variation of nitrate reduction. For nitrite determination, serum samples were directly precipitated with methanol pre-nitrate conversion, and then the supernatant reacted with 2,3-diaminonaphthalene (DAN) to form 2,3-naphthotriazole (NAT), which was quantitatively analyzed by high-performance liquid chromatography coupled with fluorescence detection (HPLC-FL). For nitrate determination, samples were firstly heated at 70°C for 10 min to inactivate endogenous reductase-inhibiting proteins, then nitrate in the samples was quantitatively reduced to nitrite by reductase added experimentally. The difference in total nitrite concentrations between pre- and post-nitrate conversion was used to calculate the amount of nitrate in the samples. In addition to good specificity, high sensitivity, satisfactory accuracy and reproducibility, our method is simple and suitable for the quantitative determination of nanomolar level of nitrite and nitrate in a large number of serum samples.
Collapse
Affiliation(s)
- Zhan Shu-yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | |
Collapse
|
40
|
Abstract
SIGNIFICANCE The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. RECENT ADVANCES The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. CRITICAL ISSUES The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. FUTURE DIRECTIONS The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, Baltimore, MD 21224, USA.
| | | |
Collapse
|
41
|
Wang Y, Townsend MK, Eliassen AH, Wu T. Stability and Reproducibility of the Measurement of Plasma Nitrate in Large Epidemiologic Studies. NORTH AMERICAN JOURNAL OF MEDICINE & SCIENCE 2013; 6:82-86. [PMID: 24244804 PMCID: PMC3826455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inorganic nitrate has emerged as a therapeutic agent for cardiovascular disease; however, nitrate can also metabolize to carcinogenic nitrosamines under pathologic conditions. Few large epidemiologic studies have examined circulating levels of nitrate in relation to cardiovascular disease and cancer. Data on the validity of nitrate measurement in blood samples collected in typical epidemiologic settings are needed before nitrate can be evaluated as an exposure in large epidemiologic studies. We measured plasma levels of nitrate in three pilot studies to evaluate its laboratory variability, stability with delayed processing, and reproducibility over time among women from the Nurses' Health Study and healthy female volunteers. Laboratory variability of nitrate levels was fairly low, with a coefficient variation (CV) of 7%. Plasma nitrate levels in samples stored as whole blood on ice for up to 48 hrs before processing were very stable; the overall intra-class correlation (ICC) from 0 to 48 hours was 0.89 (95%CI, 0.70-0.97). The within-person reproducibility over a one-year period was modest, with an ICC of 0.49 (95% CI, 0.33- 0.94). Our results indicate that measurement of nitrate in plasma is reliable and stable in blood samples with delayed processing up to 48 hours. Within-person reproducibility was modest but data from this study can be used for measurement error correction in subsequent analyses. The measurement of nitrate cannot be widely used in epidemiologic research without the documentation of its stability and reproducibility.
Collapse
Affiliation(s)
- Yushan Wang
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH
| | | | | | - Tianying Wu
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH
| |
Collapse
|
42
|
Yang X, Bondonno CP, Indrawan A, Hodgson JM, Croft KD. An improved mass spectrometry-based measurement of NO metabolites in biological fluids. Free Radic Biol Med 2013; 56:1-8. [PMID: 23246568 DOI: 10.1016/j.freeradbiomed.2012.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/16/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
Abstract
Assessment of NO metabolism in vivo relies on the accurate measurement of its metabolites nitrite (NO(2)(-)), nitrate (NO(3)(-)), and nitrosothiols (RSNOs) in biological fluids. We report a sensitive method to simultaneously determine NO(2)(-) and NO(3)(-) in biological matrixes. Tetraoctylammonium was used to catalyze the complete conversion of NO(2)(-) and NO(3)(-) to stable pentafluorobenzyl (PFB) derivatives directly from aqueous acetone medium before gas chromatography and negative-ion chemical ionization mass spectrometry (GC/NICI/MS). This catalyst dramatically improved the yield of PFB derivatives for NO(2)(-) (4.5 times) and NO(3)(-) (55 times) compared to noncatalyzed derivatization methods. Analysis was performed using (15)N-labeled internal standards by selected-ion monitoring at m/z 46 for fragment NO(2)(-) and m/z 47 for its isotope analogue, (15)NO(2)(-), and m/z 62 for NO(3)(-) and m/z 63 for (15)NO(3)(-). This method allowed specific detection of both PFB derivatives over a wide dynamic range with a limit of detection below 4.5 pg for NO(2)(-) and 2.5 pg for NO(3)(-). After the specific conversion of RSNOs by HgCl(2) to NO(2)(-), this GC/NICI/MS analysis was used to measure RSNOs in plasma. A further comparison with the widely used tri-iodide chemiluminescence (I(3)(-)-CL) assay indicated that the GC/MS assay validated the lower physiological RSNO and nitrite levels reported using I(3)(-)-CL detection compared with values obtained using UV-photolysis methods. Plasma levels of RSNOs determined by GC/MS and I(3)(-)-CL were well correlated (r = 0.8). The improved GC/MS method was successfully used to determine the changes in plasma, urinary, and salivary NO(2)(-) and NO(3)(-) as well as plasma RSNOs in humans after either a low-NO(3)(-) or a high-NO(3)(-) meal.
Collapse
Affiliation(s)
- Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | |
Collapse
|
43
|
Langrish JP, Unosson J, Bosson J, Barath S, Muala A, Blackwell S, Söderberg S, Pourazar J, Megson IL, Treweeke A, Sandström T, Newby DE, Blomberg A, Mills NL. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J Am Heart Assoc 2013; 2:e004309. [PMID: 23525434 PMCID: PMC3603248 DOI: 10.1161/jaha.112.004309] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Diesel exhaust inhalation causes cardiovascular dysfunction including impaired vascular reactivity, increased blood pressure, and arterial stiffness. We investigated the role of nitric oxide (NO) bioavailability in mediating these effects. Methods and Results In 2 randomized double‐blind crossover studies, healthy nonsmokers were exposed to diesel exhaust or filtered air. Study 1: Bilateral forearm blood flow was measured during intrabrachial infusions of acetylcholine (ACh; 5 to 20 μg/min) and sodium nitroprusside (SNP; 2 to 8 μg/min) in the presence of the NO clamp (NO synthase inhibitor NG‐monomethyl‐l‐arginine (l‐NMMA) 8 μg/min coinfused with the NO donor SNP at 90 to 540 ng/min to restore basal blood flow). Study 2: Blood pressure, arterial stiffness, and cardiac output were measured during systemic NO synthase inhibition with intravenous l‐NMMA (3 mg/kg). Following diesel exhaust inhalation, plasma nitrite concentrations were increased (68±48 versus 41±32 nmol/L; P=0.006) despite similar l‐NMMA–induced reductions in basal blood flow (−20.6±14.7% versus −21.1±14.6%; P=0.559) compared to air. In the presence of the NO clamp, ACh and SNP caused dose‐dependent vasodilatation that was not affected by diesel exhaust inhalation (P>0.05 for both). Following exposure to diesel exhaust, l‐NMMA caused a greater increase in blood pressure (P=0.048) and central arterial stiffness (P=0.007), but reductions in cardiac output and increases in systemic vascular resistance (P>0.05 for both) were similar to those seen with filtered air. Conclusions Diesel exhaust inhalation disturbs normal vascular homeostasis with enhanced NO generation unable to compensate for excess consumption. We suggest the adverse cardiovascular effects of air pollution are, in part, mediated through reduced NO bioavailability. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifiers: NCT00845767 and NCT01060930.
Collapse
Affiliation(s)
- Jeremy P Langrish
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bondonno CP, Yang X, Croft KD, Considine MJ, Ward NC, Rich L, Puddey IB, Swinny E, Mubarak A, Hodgson JM. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med 2012; 52:95-102. [PMID: 22019438 DOI: 10.1016/j.freeradbiomed.2011.09.028] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 01/02/2023]
Abstract
Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; P<0.01) and higher nitrite (control, 35 nmol/L, 27, 46; apple, 69 nmol/L, 53, 90; spinach, 99 nmol/L, 76, 129; apple+spinach, 80 nmol/L, 61, 104; P<0.01). Compared to control, all treatments resulted in higher flow-mediated dilatation (P<0.05) and lower pulse pressure (P<0.05), and apple and spinach resulted in lower systolic blood pressure (P<0.05). No significant effect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower blood pressure acutely, outcomes that may benefit cardiovascular health.
Collapse
Affiliation(s)
- Catherine P Bondonno
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang H, Zhang L, Lu C, Zhao L, Zheng Z. CdTe nanocrystals-enhanced chemiluminescence from peroxynitrous acid-carbonate and its application to the direct determination of nitrite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 85:217-222. [PMID: 22024452 DOI: 10.1016/j.saa.2011.09.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/23/2011] [Accepted: 09/30/2011] [Indexed: 05/31/2023]
Abstract
It was found that CdTe semiconductor nanocrystals (NCs) can induce a great sensitized effect on chemiluminescence (CL) emission from peroxynitrous acid (ONOOH)-Na(2)CO(3) system. CL spectra, fluorescence (FL) spectra, and the quenching effect of reactive oxygen species were used to investigate the CL reaction mechanism. The CL intensity was proportional to the concentration of nitrite in the range from 0.05 to 50μM. The detection limit (S/N=3) was 0.024μM and the relative standard deviation (RSD) for five repeated measurements of 0.5μM nitrite was 4.2%. This method has been successfully applied to determine nitrite in well water samples with recoveries of 94.0-100.5%. This was the first work for direct (not inhibition effect) determination of analytes using semiconductor NCs-based CL sensor.
Collapse
Affiliation(s)
- Hongxia Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | | | |
Collapse
|
46
|
Salgado MT, Ramasamy S, Tsuneshige A, Manoharan PT, Rifkind JM. A new paramagnetic intermediate formed during the reaction of nitrite with deoxyhemoglobin. J Am Chem Soc 2011; 133:13010-22. [PMID: 21755997 PMCID: PMC3166623 DOI: 10.1021/ja1115088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reduction of nitrite by deoxygenated hemoglobin chains has been implicated in red cell-induced vasodilation, although the mechanism for this process has not been established. We have previously demonstrated that the reaction of nitrite with deoxyhemoglobin produces a hybrid intermediate with properties of Hb(II)NO(+) and Hb(III)NO that builds up during the reaction retaining potential NO bioactivity. To explain the unexpected stability of this intermediate, which prevents NO release from the Hb(III)NO component, we had implicated the transfer of an electron from the β-93 thiol to NO(+) producing ·SHb(II)NO. To determine if this species is formed and to characterize its properties, we have investigated the electron paramagnetic resonance (EPR) changes taking place during the nitrite reaction. The EPR effects of blocking the thiol group with N-ethyl-maleimide and using carboxypeptidase-A to stabilize the R-quaternary conformation have demonstrated that ·SHb(II)NO is formed and that it has the EPR spectrum expected for NO bound to the heme in the β-chain plus that of a thiyl radical. This new NO-related paramagnetic species is in equilibrium with the hybrid intermediate "Hb(II)NO(+) ↔ Hb(III)NO", thereby further inhibiting the release of NO from Hb(III)NO. The formation of an NO-related paramagnetic species other than the tightly bound NO in Hb(II)NO was also confirmed by a decrease in the EPR signal by -20 °C incubation, which shifts the equilibrium back to the "Hb(II)NO(+) ↔ Hb(III)NO" intermediate. This previously unrecognized NO hemoglobin species explains the stability of the intermediates and the buildup of a pool of potentially bioactive NO during nitrite reduction. It also provides a pathway for the formation of β-93 cysteine S-nitrosylated hemoglobin [SNOHb:S-nitrosohemoglobin], which has been shown to induce vasodilation, by a rapid radical-radical reaction of any free NO with the thiyl radical of this new paramagnetic intermediate.
Collapse
Affiliation(s)
- Maria T. Salgado
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| | - Somasundaram Ramasamy
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| | - Antonio Tsuneshige
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
| | | | - Joseph M. Rifkind
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| |
Collapse
|
47
|
Rifkind JM, Nagababu E, Ramasamy S. The quaternary hemoglobin conformation regulates the formation of the nitrite-induced bioactive intermediate and the dissociation of nitric oxide from this intermediate. Nitric Oxide 2011; 24:102-9. [PMID: 21236353 PMCID: PMC3178107 DOI: 10.1016/j.niox.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/03/2010] [Accepted: 01/06/2011] [Indexed: 11/21/2022]
Abstract
Deoxyhemoglobin reduces nitrite to nitric oxide (NO). In order to study the effect of the hemoglobin quaternary conformation on the nitrite reaction, we compared T-state deoxyhemoglobin with R-state deoxyhemoglobin produced by reacting hemoglobin with carboxypeptidase-A prior to deoxygenation. The nitrite reaction with deoxyhemoglobin was followed by chemiluminescence, electron paramagnetic resonance and visible spectroscopy. The initial steps in this reaction involve the binding of nitrite to deoxyhemoglobin followed by the formation of an electron delocalized metastable intermediate that retains potential NO bioactivity. This reaction is shown by visible spectroscopy to occur 5.6 times faster in the R-state than in the T-state. However, the dissociation of NO from the delocalized intermediate is shown to be facilitated by the T-quaternary conformation with a 9.6 fold increase in the rate constant. The preferred NO-release in the T-state, which has a higher affinity for the membrane, can result in the NO diffusing out of the RBC and being released to the vasculature at low partial pressures of oxygen.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
48
|
Piknova B, Schechter AN. Measurement of nitrite in blood samples using the ferricyanide-based hemoglobin oxidation assay. Methods Mol Biol 2011; 704:39-56. [PMID: 21161628 PMCID: PMC3489475 DOI: 10.1007/978-1-61737-964-2_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nitrite is currently recognized as a biomarker of the state of nitric oxide metabolism. Therefore, assessing nitrite levels in various organs and compartments is an important issue. As nitrite levels in most organs and tissues are low (in high nanomolar or low micromolar range) several new sensitive methods for quantifying nitrite in various biological samples have been developed. Chemiluminescence, combined with tri-iodide reducing solution, is currently considered the most sensitive method, allowing quantification in the low nanomolar range of nitrite concentrations. Here, we present an overview of chemiluminescence-based determination of nitrite in blood and blood compartments - red blood cells and plasma. We also explain how to preserve the original physiological nitrite concentration in nitrite-hostile environments, such as an excess of hemoglobin in blood.
Collapse
Affiliation(s)
- Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
49
|
Abstract
S-nitrosothiols present in nanomolar concentrations in cells and body fluids play an important role in vasodilation, in preventing platelet aggregation, leukocyte adhesion, and for cellular signaling. However, because of the low levels of s-nitrosothiols and interference with other nitric oxide species, reliable assays that measure both high molecular weight and low molecular weight s-nitrosothiols in plasma and red blood cells red blood cells have been difficult to develop. We have previously developed a sensitive method using Cu(II)-ascorbic acid Cu(II)-ascorbic acid at a neutral pH, which was specific for s-nitrosothiols without interference of nitrite or other NOx species. However, due to neutral pH foaming, this method was not suitable for determinations in plasma or red blood cells with high protein content. This method has now been modified by using copper (II) chloride (CuCl(2)) and ascorbic acid in glacial acetic acid. The low pH solves the foaming problem. However, protonation of nitrite under acidic conditions facilitates the formation of s-nitrosothiols. For this method to specifically measure s-nitrosothiols in the sample, the unreacted thiols are blocked by reacting with N-ethylmaleimide and nitrite is blocked by reacting with acidified sulfanilamide before being analyzed by chemiluminescence. Using this method, s-nitrosothiols have been determined in the range of 2 nM to 26 nM (mean ± SE = 10.18±2.1) in plasma and up to 88.1 nM (mean ± SE = 51.27 ± 10.5) in red blood cells.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA.
| | | |
Collapse
|
50
|
Li J, Li Q, Lu C, Zhao L. Determination of nitrite in tap waters based on fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate and peroxynitrous acid. Analyst 2011; 136:2379-84. [DOI: 10.1039/c0an00918k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|