1
|
Rojas-Solé C, Torres-Herrera B, Gelerstein-Claro S, Medina-Pérez D, Gómez-Venegas H, Alzolay-Sepúlveda J, Chichiarelli S, Saso L, Rodrigo R. Cellular Basis of Adjuvant Role of n-3 Polyunsaturated Fatty Acids in Cancer Therapy: Molecular Insights and Therapeutic Potential against Human Melanoma. APPLIED SCIENCES 2024; 14:4548. [DOI: 10.3390/app14114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Human melanoma is a highly aggressive malignant tumor originating from epidermal melanocytes, characterized by intrinsic resistance to apoptosis and the reprogramming of proliferation and survival pathways during progression, leading to high morbidity and mortality rates. This malignancy displays a marked propensity for metastasis and often exhibits poor responsiveness to conventional therapies. Fatty acids, such as n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic and eicosapentaenoic acids, exert various physiological effects on melanoma, with increasing evidence highlighting the anti-tumorigenic, anti-inflammatory, and immunomodulatory properties. Additionally, n-3 PUFAs have demonstrated their ability to inhibit cancer metastatic dissemination. In the context of cancer treatment, n-3 PUFAs have been investigated in conjunction with chemotherapy as a potential strategy to mitigate severe chemotherapy-induced side effects, enhance treatment efficacy and improve safety profiles, while also enhancing the responsiveness of cancer cells to chemotherapy. Furthermore, dietary intake of n-3 PUFAs has been associated with numerous health benefits, including a decreased risk and improved prognosis in conditions such as heart disease, autoimmune disorders, depression and mood disorders, among others. However, the specific mechanisms underlying their anti-melanoma effects and outcomes remain controversial, particularly when comparing findings from in vivo or in vitro experimental studies to those from human trials. Thus, the objective of this review is to present data supporting the potential role of n-3 PUFA supplementation as a novel complementary approach in the treatment of malignant cancers such as melanoma.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Benjamín Torres-Herrera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Santiago Gelerstein-Claro
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Diego Medina-Pérez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Haziel Gómez-Venegas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Javier Alzolay-Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
2
|
Jiao YT, Kang YR, Wen MY, Wu HQ, Zhang XW, Huang WH. Fast Antioxidation Kinetics of Glutathione Intracellularly Monitored by a Dual-Wire Nanosensor. Angew Chem Int Ed Engl 2023; 62:e202313612. [PMID: 37909054 DOI: 10.1002/anie.202313612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells. These measurements revealed that the glutathione peroxidase (GPx) in the GSH system is rapidly initiated against ROS burst in a sub-second time scale, but the elimination process is short-lived, ending after a few seconds, while some ROS are still present in the cells. This study is expected to open new perspectives for understanding the GSH antioxidant system and studying some redox imbalance-related physiological.
Collapse
Affiliation(s)
- Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Ran Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Withdrawal Notice. Cancer Med 2023; 12:19353. [PMID: 36372952 PMCID: PMC10557851 DOI: 10.1002/cam4.5306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Withdrawal Notice: Zhu, Y, Pu, Q, Zhang, Q, et al. Selenium-binding protein 1 inhibits malignant progression and induces apoptosis via distinct mechanisms in non-small-cell lung cancer. Cancer Med. 2022; 00: 1-22. doi: 10.1002/cam4.5306. The above article, published online on 13th November 2022 in Wiley Online Library (https://onlinelibrary.wiley.com/doi/10.1002/cam4.5306), has been withdrawn by agreement between the journal Editor in Chief, Dr Stephen Tait, the Authors, and John Wiley & Sons, Ltd. The withdrawal has been agreed due to an editorial office error that led to the publication of the article without peer review. The revised article, which has undergone peer review may be read here: https://onlinelibrary.wiley.com/doi/10.1002/cam4.6309.
Collapse
|
4
|
Zhu Y, Pu Q, Zhang Q, Liu Y, Ma Y, Yuan Y, Liu L, Zhu W. Selenium-binding protein 1 inhibits malignant progression and induces apoptosis via distinct mechanisms in non-small cell lung cancer. Cancer Med 2023; 12:17149-17170. [PMID: 37606338 PMCID: PMC10501285 DOI: 10.1002/cam4.6309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Selenium is an essential trace element in the human body. In epidemiological and clinical studies, Se supplementation significantly reduced the incidence of lung cancer in individuals with low baseline Se levels. The significant action of selenium is based on the selenium-containing protein as a mediator. Of note, the previous studies reported that the expression of selenium-binding protein 1 (SELENBP1) was obviously decreased in many human cancer tissues including non-small cell lung cancer (NSCLC). However, its roles in the origin and development of NSCLC are still unclear. METHODS The expression of SELENBP1 was measured by qRT-PCR, Western blotting and IHC in our collected clinical NSCLC tissues and cell lines. Next, the CCK-8, colony formation, wound-haeling, Millicell, Transwell, FCM assay, and in vivo xenograft model were performed to explore the function of SELENBP1 in NSCLC. The molecular mechanisms of SELENBP1 were investigated by Western blotting or IF assay. RESULTS We further identified that the expression of SELENBP1 was significantly decreased in NSCLC tissues in TCGA database and 45 out of 59 collected clinical NSCLC tissues compared with adjacent nontumor tissues, as well as in four NSCLC cell lines compared with normal lung cells. Particularly, we unexpectedly discovered that SELENBP1 was obviously expressed in alveolar type 2 (AT-II) cells for the first time. Then, a series of in vitro experiments uncovered that overexpression of SELENBP1 inhibited the proliferation, migration, and invasion of NSCLC cells, and induced cell apoptosis. Moreover, overexpression of SELENBP1 also inhibited growth and induced apoptosis of NSCLC cells in vivo. Mechanistically, we demonstrated that overexpression of SELENBP1 inhibited the malignant characteristics of NSCLC cells in part via inactivating the PI3K/AKT/mTOR signal pathway. Meanwhile, we found that overexpression of SELENBP1 inducing the apoptosis of NSCLC cells was associated with the activation of caspase-3 signaling pathway under nonhigh level of oxidative stress, but overexpression of SELENBP1 facilitating the cell apoptosis might be related to its combining with GPX1 and colocalizing in the nucleus under high level of oxidative stress. CONCLUSIONS Our findings highlighted that SELENBP1 was an important tumor suppressor during the origin and development of NSCLC. It may help to discover novel biomarkers or drug therapy targets for NSCLC.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiang Pu
- Department of Thoracic SurgeryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiongyin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yang Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yongfang Ma
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yue Yuan
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lunxu Liu
- Department of Thoracic SurgeryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Wen Zhu
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Goltyaev MV, Varlamova EG. The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures. Int J Mol Sci 2023; 24:10547. [PMID: 37445723 DOI: 10.3390/ijms241310547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is the body's largest gland, and regulates a wide variety of physiological processes. The work of the liver can be disrupted in a variety of pathologies, the number of which is several hundred. It is extremely important to monitor the health of the liver and develop approaches to combat liver diseases. In recent decades, nanomedicine has become increasingly popular in the treatment of various liver pathologies, in which nanosized biomaterials, which are inorganic, polymeric, liposomal, albumin, and other nanoparticles, play an important role. Given the need to develop environmentally safe, inexpensive, simple, and high-performance biomedical agents for theragnostic purposes and showing few side effects, special attention is being paid to nanoparticles based on the important trace element selenium (Se). It is known that the metabolism of the microelement Se occurs in the liver, and its deficiency leads to the development of several serious diseases in this organ. In addition, the liver is the depot for most selenoproteins, which can reduce oxidative stress, inhibit tumor growth, and prevent other liver damage. This review is devoted to the description of the results of recent years, revealing the important role of selenium nanoparticles in the therapy and diagnosis of several liver pathologies, depending on the dose and physicochemical properties. The possibilities of selenium nanoparticles in the treatment of liver diseases, disclosed in the review, will not only reveal the advantages of their hepatoprotective properties but also significantly supplement the data on the role of the trace element selenium in the regulation of these diseases.
Collapse
Affiliation(s)
- Michael V Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
6
|
Borgonovi SM, Iametti S, Di Nunzio M. Docosahexaenoic Acid as Master Regulator of Cellular Antioxidant Defenses: A Systematic Review. Antioxidants (Basel) 2023; 12:1283. [PMID: 37372014 DOI: 10.3390/antiox12061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid that benefits the prevention of chronic diseases. Due to its high unsaturation, DHA is vulnerable to free radical oxidation, resulting in several unfavorable effects, including producing hazardous metabolites. However, in vitro and in vivo investigations suggest that the relationship between the chemical structure of DHA and its susceptibility to oxidation may not be as clear-cut as previously thought. Organisms have developed a balanced system of antioxidants to counteract the overproduction of oxidants, and the nuclear factor erythroid 2-related factor 2 (Nrf2) is the key transcription factor identified for transmitting the inducer signal to the antioxidant response element. Thus, DHA might preserve the cellular redox status promoting the transcriptional regulation of cellular antioxidants through Nrf2 activation. Here, we systematically summarize the research on the possible role of DHA in controlling cellular antioxidant enzymes. After the screening process, 43 records were selected and included in this review. Specifically, 29 studies related to the effects of DHA in cell cultures and 15 studies concerned the effects of consumption or treatment with DHA in animal. Despite DHA's promising and encouraging effects at modulating the cellular antioxidant response in vitro/in vivo, some differences observed among the reviewed studies may be accounted for by the different experimental conditions adopted, including the time of supplementation/treatment, DHA concentration, and cell culture/tissue model. Moreover, this review offers potential molecular explanations for how DHA controls cellular antioxidant defenses, including involvement of transcription factors and the redox signaling pathway.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
7
|
Augimeri G, Bonofiglio D. Promising Effects of N-Docosahexaenoyl Ethanolamine in Breast Cancer: Molecular and Cellular Insights. Molecules 2023; 28:molecules28093694. [PMID: 37175104 PMCID: PMC10180201 DOI: 10.3390/molecules28093694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Unhealthy dietary habits have been identified as a risk factor for the development and progression of cancer. Therefore, adopting a healthy eating pattern is currently recommended to prevent the onset of different types of cancers, including breast carcinoma. In particular, the Mediterranean diet, based on high consumption of omega-3 polyunsaturated fatty acids (N-3 PUFAs), such as those found in cold-water fish and other seafood, nuts, and seeds, is recommended to reduce the incidence of several chronic-degenerative diseases. Indeed, the consumption of N-3 PUFAs, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduced the risk of different types of cancer, including breast cancer. Moreover, they can counteract breast cancer progression and reduce the side effects of chemotherapy in breast cancer survival. Studies have demonstrated that DHA, exhibiting greater antitumor activity than EPA in breast cancer, can be attributed to its direct impact on breast cancer cells and also due to its conversion into various metabolites. N-docosahexaenoyl ethanolamine, DHEA, is the most studied DHA derivative for its therapeutic potential in breast cancer. In this review, we emphasize the significance of dietary habits and the consumption of N-3 polyunsaturated fatty acids, particularly DHA, and we describe the current knowledge on the antitumoral action of DHA and its derivative DHEA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Centro Sanitario, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
8
|
Crovella S, Ouhtit A, Rahman SM, Rahman MM. Docosahexaenoic Acid, a Key Compound for Enhancing Sensitization to Drug in Doxorubicin-Resistant MCF-7 Cell Line. Nutrients 2023; 15:nu15071658. [PMID: 37049499 PMCID: PMC10097357 DOI: 10.3390/nu15071658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Drug resistance is a well-known and significant obstacle in the battle against cancer, rendering chemotherapy treatments often ineffective. To improve the effectiveness of chemotherapy, researchers are exploring the use of natural molecules that can enhance its ability to kill cancer cells and limit their spread. Docosahexaenoic acid (DHA), a lipid found in marine fish, has been shown to enhance the cytotoxicity of various anti-cancer drugs in vitro and in vivo. While the combined use of chemotherapeutic drugs with DHA demonstrated promising preliminary results in clinical trials, there is still a significant amount of information to be discovered regarding the precise mechanism of action of DHA. As the biological pathways involved in the chemosensitization of already chemoresistant MCF-7 cells are still not entirely unraveled, in this study, we aimed to investigate whether DHA co-treatment could enhance the ability of the chemotherapy drug doxorubicin to inhibit the growth and invasion of MCF-7 breast cancer cells (MCF-7/Dox) that had become resistant to the drug. Upon treating MCF-7/Dox cells with DHA or DHA-doxorubicin, it was observed that the DHA-doxorubicin combination effectively enhanced cancer cell death by impeding in vitro propagation and invasive ability. In addition, it led to an increase in doxorubicin accumulation and triggered apoptosis by arresting the cell cycle at the G2/M phase. Other observed effects included a decrease in the multi-drug resistance (MDR) carrier P-glycoprotein (P-gp) and TG2, a tumor survival factor. Augmented quantities of molecules promoting apoptosis such as Bak1 and caspase-3 and enhanced lipid peroxidation were also detected. Our findings in the cell model suggest that DHA can be further investigated as a natural compound to be used alongside doxorubicin in the treatment of breast cancer that is unresponsive to chemotherapy.
Collapse
Affiliation(s)
- Sergio Crovella
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Allal Ouhtit
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Shaikh Mizanoor Rahman
- Obesity and Cancer Biology Lab, Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Md Mizanur Rahman
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Kucukbagriacik Y, Dastouri M, Ozgur-Buyukatalay E, Akarca Dizakar O, Yegin K. Investigation of oxidative damage, antioxidant balance, DNA repair genes, and apoptosis due to radiofrequency-induced adaptive response in mice. Electromagn Biol Med 2022; 41:389-401. [PMID: 36062506 DOI: 10.1080/15368378.2022.2117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aims to determine whether exposure to non-ionizing radiofrequency fields could induce an adaptive response (AR) in adult mice and to reveal potential molecular mechanisms triggered by RF-induced AR. The study was performed on 24 adult male Swiss-Albino mice. The average mass of the mice was 37 g. Four groups of adult mice, each consisting of 6, were formed. The radiofrequency group (R) and the adaptive response group (RB) were exposed to 900 MHz of global system for mobile communications (GSM) signal at 0.339 W/kg (1 g average specific absorption rate) 4 h/day for 7 days, while the control group (C) and the bleomycin group (B) were not exposed. 20 minutes after the last radiofrequency field (RF) exposure, the mice in the B and RB groups were injected intraperitoneal (ip) bleomycin (BLM), 37.5 mg/kg. All the animals were sacrificed 30 minutes after the BLM injection. Oxidative damage and antioxidant mechanism were subsequently investigated in the blood samples. Changes in the expression of the genes involved in DNA repair were detected in the liver tissue. TUNEL method was used to determine the apoptosis developed by DNA fragmentation in the liver tissue. The RB group, which produced an adaptive response, was compared with the control group. According to the results, the increase of reactive oxygen species (ROS) in the RB group may have played an important role in triggering the adaptive response and producing the required minimum stress level. Furthermore, tumor suppressor 53(p53), oxo guanine DNA glycosylase (OGG-1) levels responsible for DNA repair mechanism genes expression were increased in conjunction with the increase in ROS. The change in the poly (ADP-ribose) polymerase 1 (PARP-1) and glutathione peroxidase 1 (GPx-1) gene expression were not statistically significant. The antioxidant enzyme levels of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were decreased in the group with adaptive response. According to the data obtained from terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, apoptosis was decreased in the RB group due to the decrease in cell death, which might have resulted from an increase in gene expression responsible for DNA repair mechanisms. The results of our study show that exposure to RF radiation may create a protective reaction against the bleomycin. The minimal oxidative stress due to the RF exposure leads to an adaptive response in the genes that play a role in the DNA repair mechanism and enzymes, enabling the survival of the cell.
Collapse
Affiliation(s)
- Yusuf Kucukbagriacik
- Department of Biophysics, Yozgat Bozok University, Medical School, Yozgat, Turkey
| | - Mohammadreza Dastouri
- Department of Biotechnology, Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - Ozen Akarca Dizakar
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
10
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Zhao Y, Wang H, Zhou J, Shao Q. Glutathione Peroxidase GPX1 and Its Dichotomous Roles in Cancer. Cancers (Basel) 2022; 14:cancers14102560. [PMID: 35626163 PMCID: PMC9139801 DOI: 10.3390/cancers14102560] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.
Collapse
Affiliation(s)
- Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Jingdong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
- Correspondence: (J.Z.); (Q.S.)
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an 223005, China
- Correspondence: (J.Z.); (Q.S.)
| |
Collapse
|
12
|
Wiggs A, Molina S, Sumner SJ, Rushing BR. A Review of Metabolic Targets of Anticancer Nutrients and Nutraceuticals in Pre-Clinical Models of Triple-Negative Breast Cancer. Nutrients 2022; 14:1990. [PMID: 35631131 PMCID: PMC9146055 DOI: 10.3390/nu14101990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is notoriously aggressive and has poorer outcomes as compared with other breast cancer subtypes. Due to a lack of targeted therapies, TNBC is often treated with chemotherapeutics as opposed to hormone therapy or other targeted therapies available to individuals with estrogen receptor positive (ER+) breast cancers. Because of the lack of treatment options for TNBC, other therapeutic avenues are being explored. Metabolic reprogramming, a hallmark of cancer, provides potential opportunities to target cancer cells more specifically, increasing efficacy and reducing side effects. Nutrients serve a significant role in metabolic processes involved in DNA transcription, protein folding, and function as co-factors in enzyme activity, and may provide novel strategies to target cancer cell metabolism in TNBC. This article reviews studies that have investigated how nutrients/nutraceuticals target metabolic processes in TNBC cells alone or in combination with existing drugs to exert anticancer effects. These agents have been shown to cause perturbations in many metabolic processes related to glucose metabolism, fatty acid metabolism, as well as autophagy and oxidative stress-related metabolism. With this information, we present the potential of nutrients as metabolism-directed anticancer agents and the potential for using these agents alone or in cocktails as a new direction for TNBC therapy.
Collapse
Affiliation(s)
- Alleigh Wiggs
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
| | - Sabrina Molina
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| | - Susan J. Sumner
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| | - Blake R. Rushing
- Department of Nutrition, University of North Carolina-Chapel Hill, Durham, NC 27599, USA
- Nutrition Research Institute, University of North Carolina-Chapel Hill, Kannapolis, NC 280821, USA
| |
Collapse
|
13
|
Newell M, Goruk S, Schueler J, Mazurak V, Postovit LM, Field CJ. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem 2022; 107:109018. [PMID: 35489658 DOI: 10.1016/j.jnutbio.2022.109018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA) reduces breast cancer tumor growth in preclinical models. To better understand how DHA amplifies the actions of docetaxel (TXT) chemotherapy, we examined the effects of two doses of dietary DHA on tumor size, membrane DHA content and necroptosis using a drug resistant triple negative breast cancer (TNBC) patient derived xenograft (PDX) model. Female NSG mice bearing TNBC PDXs were randomized to one of three nutritionally complete diets (20% w/w fat): control (0% DHA), high DHA (3.8% HDHA), or low DHA (1.6% LDHA) with or without intraperitoneal injections of 5 mg/kg TXT, twice weekly for 6 weeks (n=8 per group). Tumors from mice fed either HDHA+TXT or LDHA+TXT were similar in size to each other, but were 36% and 32% smaller than tumors from mice fed control+TXT, respectively (P<0.05). A dose effect of DHA incorporation was observed in plasma total phospholipids and in phosphatidylethanolamine and phosphatidylinositol. Both doses of DHA resulted in similarly increased necrotic tissue and decreased NFκB protein expression compared to control tumors, however only the HDHA+TXT had increased expression of necroptosis related proteins: RIPK1, RIPK3 and MLKL (P<0.05). Increased MLKL was observed in the lipid raft portion of HDHA+TXT tumor extracts. This work confirms the efficacy of a combination therapy consisting of DHA supplementation and TXT chemotherapy using two doses of DHA as indicated by reduced tumor growth in a TNBC PDX model. Moreover, the results suggest that decreased growth may occur through increased DHA incorporation into tumor phospholipid membranes and necroptosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.
| |
Collapse
|
14
|
Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv Transl Res 2022; 12:2303-2334. [DOI: 10.1007/s13346-021-01104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
15
|
Han X, Duan X, Liu Z, Long Y, Liu C, Zhou J, Li N, Qin J, Wang Y. ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat 2021; 188:329-342. [PMID: 34169392 DOI: 10.1007/s10549-021-06301-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/12/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Prior studies have noted that zinc finger E-box binding homeobox 1 (ZEB1) is a master transcription regulator, affecting the expression of nearly 2000 genes in breast cancer cells, especially in the epithelial-mesenchymal transition (EMT) process. We now tested the role of ZEB1 on the oxidative stress of cancer cells and explored its possible mechanisms. METHODS Two human breast cancer cell lines MDA-MB-231 and MCF7 were selected for the ROS test, PCR, immunofluorescence, Western blot, chromatin immunoprecipitation assay, luciferase assay, and enzyme assay. Mouse models experiments and bioinformatics analysis were conducted to test the indicated molecules. RESULTS We observed ZEB1 could inhibit GPX4 transcription by binding to the E-box motifs and promote breast cancer progression by accumulating intracellular ROS. From the perspective of ROS clearance, Vitamin E enhanced GPX4 function to consume L-glutathione and eliminated excess intracellular ROS. CONCLUSIONS ZEB1 could not only regulate EMT, but also inhibit GPX4 transcription by binding to the E-box motif. It was important to note that the ZEB1/GPX4 axis had a therapeutic effect on breast cancer metabolism.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Medicinal Chemical Biology & College of Pharmacy, Nankai University, Tianjin, 300354, China
| | - Xianxian Duan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhanzhao Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yaping Long
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin, 300071, China. .,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, 300041, China.
| |
Collapse
|
16
|
El-Gowily AH, Loutfy SA, Ali EMM, Mohamed TM, Mansour MA. Tioconazole and Chloroquine Act Synergistically to Combat Doxorubicin-Induced Toxicity via Inactivation of PI3K/AKT/mTOR Signaling Mediated ROS-Dependent Apoptosis and Autophagic Flux Inhibition in MCF-7 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:254. [PMID: 33799790 PMCID: PMC7998405 DOI: 10.3390/ph14030254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex devastating disease with enormous treatment challenges, including chemo- and radiotherapeutic resistance. Combination therapy demonstrated a promising strategy to target hard-to-treat cancers and sensitize cancer cells to conventional anti-cancer drugs such as doxorubicin. This study aimed to establish molecular profiling and therapeutic efficacy assessment of chloroquine and/or tioconazole (TIC) combination with doxorubicin (DOX) as anew combination model in MCF-7 breast cancer. The drugs are tested against apoptotic/autophagic pathways and related redox status. Molecular docking revealed that chloroquine (CQ) and TIC could be potential PI3K and ATG4B pathway inhibitors. Combination therapy significantly inhibited cancer cell viability, PI3K/AkT/mTOR pathway, and tumor-supporting autophagic flux, however, induced apoptotic pathways and altered nuclear genotoxic feature. Our data revealed that the combination cocktail therapy markedly inhibited tumor proliferation marker (KI-67) and cell growth, along with the accumulation of autophagosomes and elevation of LC3-II and p62 levels indicated autophagic flux blockage and increased apoptosis. Additionally, CQ and/or TIC combination therapy with DOX exerts its activity on the redox balance of cancer cells mediated ROS-dependent apoptosis induction achieved by GPX3 suppression. Besides, Autophagy inhibition causes moderately upregulation in ATGs 5,7 redundant proteins strengthened combinations induced apoptosis, whereas inhibition of PI3K/AKT/mTOR pathway with Beclin-1 upregulation leading to cytodestructive autophagy with overcome drug resistance effectively in curing cancer. Notably, the tumor growth inhibition and various antioxidant effects were observed in vivo. These results suggest CQ and/or TIC combination with DOX could act as effective cocktail therapy targeting autophagy and PI3K/AKT/mTOR pathways in MCF-7 breast cancer cells and hence, sensitizes cancer cells to doxorubicin treatment and combat its toxicity.
Collapse
Affiliation(s)
- Afnan H. El-Gowily
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Samah A. Loutfy
- Virology & Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt;
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia;
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tarek M. Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohammed A. Mansour
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
17
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
18
|
Chen J, Garssen J, Redegeld F. The efficacy of bortezomib in human multiple myeloma cells is enhanced by combination with omega-3 fatty acids DHA and EPA: Timing is essential. Clin Nutr 2020; 40:1942-1953. [PMID: 32977994 DOI: 10.1016/j.clnu.2020.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/22/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Although bortezomib as one of the first line medicines that has greatly improved the overall survival of patients with multiple myeloma (MM), undesired drug resistance is frequently observed. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been shown to be able to enhance the efficacy of chemotherapeutic drugs in many cancer types. The aim of the present study was to further evaluate the anticancer activity of DHA and EPA in relation to bortezomib chemosensitivity in human MM cells. The potential involvement of NF-κB signaling pathway was studied. METHODS MM cells were treated with DHA/EPA with or without bortezomib. Cell viability was estimated by WST-1 assay. Apoptotic cells were determined through flow cytometry using annexin V and propidium iodide (PI) staining. Protein expression and phosphorylation was investigated by western blotting. RESULTS Cell type dependent anticancer potential of DHA and EPA was observed in the cell viability assay. DHA and EPA induced apoptosis in L363, OPM2, MM.1S and U266 cell lines through both mitochondrial and death receptor pathways. Treating MM cells with DHA and EPA significantly downregulated IκBα and upregulated phosphorylation of p65, indicating that they triggered NF-κB activation in MM cells. Treating cells with DHA or EPA prior to bortezomib enhanced the induced cell death. However, concomitant use of bortezomib in combination with either of DHA or EPA decreased the cell death induced by bortezomib, indicating that timing of coincubation is important for the effects on chemosensitivity. CONCLUSIONS The present study provides novel evidence for the anticancer effects of DHA and EPA, and highlights their rational utilization in combination with bortezomib to achieve improved therapeutic outcome for MM.
Collapse
Affiliation(s)
- Jing Chen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, 3508, TB, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, 3508, TB, the Netherlands; Nutricia Research, Utrecht, 3508, TC, the Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, 3508, TB, the Netherlands.
| |
Collapse
|
19
|
Augimeri G, Giordano C, Gelsomino L, Plastina P, Barone I, Catalano S, Andò S, Bonofiglio D. The Role of PPARγ Ligands in Breast Cancer: From Basic Research to Clinical Studies. Cancers (Basel) 2020; 12:cancers12092623. [PMID: 32937951 PMCID: PMC7564201 DOI: 10.3390/cancers12092623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), belonging to the nuclear receptor superfamily, is a ligand-dependent transcription factor involved in a variety of pathophysiological conditions such as inflammation, metabolic disorders, cardiovascular disease, and cancers. In this latter context, PPARγ is expressed in many tumors including breast cancer, and its function upon binding of ligands has been linked to the tumor development, progression, and metastasis. Over the last decade, much research has focused on the potential of natural agonists for PPARγ including fatty acids and prostanoids that act as weak ligands compared to the strong and synthetic PPARγ agonists such as thiazolidinedione drugs. Both natural and synthetic compounds have been implicated in the negative regulation of breast cancer growth and progression. The aim of the present review is to summarize the role of PPARγ activation in breast cancer focusing on the underlying cellular and molecular mechanisms involved in the regulation of cell proliferation, cell cycle, and cell death, in the modulation of motility and invasion as well as in the cross-talk with other different signaling pathways. Besides, we also provide an overview of the in vivo breast cancer models and clinical studies. The therapeutic effects of natural and synthetic PPARγ ligands, as antineoplastic agents, represent a fascinating and clinically a potential translatable area of research with regards to the battle against cancer.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: ; Tel.: +39-0984-496208
| |
Collapse
|
20
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
21
|
Fontaine D, Figiel S, Félix R, Kouba S, Fromont G, Mahéo K, Potier-Cartereau M, Chantôme A, Vandier C. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res 2020; 61:840-858. [PMID: 32265321 PMCID: PMC7269763 DOI: 10.1194/jlr.ra120000634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Indexed: 12/16/2022] Open
Abstract
Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage [i.e., plasmalogens (Pls)] at the sn1 position of the glycerol backbone, and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs) and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.
Collapse
Affiliation(s)
- Delphine Fontaine
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sandy Figiel
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Romain Félix
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Sana Kouba
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France
| | - Gaëlle Fromont
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Department of Pathology, CHRU Bretonneau, F-37044 Tours CEDEX 9, France
| | - Karine Mahéo
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | | | - Aurélie Chantôme
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France; Faculté de Pharmacie, Université de Tours, F-37200 Tours, France
| | - Christophe Vandier
- Inserm N2C UMR1069, Université de Tours, F-37032 Tours CEDEX 1, France. mailto:
| |
Collapse
|
22
|
Jóźwiak M, Filipowska A, Fiorino F, Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur J Pharmacol 2020; 871:172937. [PMID: 31958454 DOI: 10.1016/j.ejphar.2020.172937] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent, but in reality, the long-standing problem of chemotherapy is the lack of tumor-specific treatments. Apart from the impact on tumor cells, the drugs' major limitation is their severe adverse side effects on normal cells and tissues. Nutritional and epidemiological studies have indicated that cancer progression is correlated with the consumption of fatty acids, but the exact mechanisms still remain unknown. In the first part of our review, we discussed the beneficial effects of free fatty acids (saturated and unsaturated) on the progress of carcinogenesis in different tumor cell lines. We presented various mechanisms proposed in the literature, which explain the possible impact on the cells metabolism. The second part describes modifications of different fatty acids with existing anticancer drugs and heterocyclic moieties by condensation reactions. Such conjugations increased the tissue selectivity and made chemotherapy potentially more effective and less toxic in in vivo and in vitro studies. This fatty acid modifications, which change the activity of compounds, their uptake selectivity and alter drug delivery methods, may be the key to unlocking true medical potential of fatty acids.
Collapse
Affiliation(s)
- Michał Jóźwiak
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Zabrze, Poland
| | - Ferdinando Fiorino
- Dipartimento di Farmacia Universita di Napoli "Federico II", Naples, Italy
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
23
|
Ashfaq W, Rehman K, Siddique MI, Khan QAA. Eicosapentaenoic Acid and Docosahexaenoic Acid from Fish Oil and Their Role in Cancer Research. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1686761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wardah Ashfaq
- Department of Medicine, Ameer ud Din Medical College, Lahore, Pakistan
| | - Khurram Rehman
- Department of Pharmacy, Forman Christan College (A Chartered University), Lahore, Pakistan
| | - Muhammad Irfan Siddique
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Qurrat-Al-Ain Khan
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| |
Collapse
|
24
|
Camargo CQ, Brunetta HS, Nunes EA. Effects of cotreatment with omega-3 polyunsaturated fatty acids and anticancer agents on oxidative stress parameters: a systematic review of in vitro, animal, and human studies. Nutr Rev 2019; 76:765-777. [PMID: 30010957 DOI: 10.1093/nutrit/nuy029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid and eicosapentaenoic acid, demonstrate possible beneficial effects as adjuvants in cancer treatment. One mechanism seems to be related to alterations in the redox status of cancer cells. Such alterations are thought to act in synergy with conventional anticancer agents. Objective This review examines published data on the effects of cotreatment with anticancer agents and n-3 PUFAS on oxidative stress parameters to determine whether any patterns of oxidative stress alterations can be identified. Data Sources A systematic search of MEDLINE (via PubMed) was conducted to identify articles published in English, Spanish, or Portuguese until November 2017. Study Selection The following inclusion criteria were applied: (1) individuals or animals with cancer or malignant cell lines supplemented with some source of n-3 PUFAs; (2) concomitant use of anticancer treatment; and (3) evaluation of oxidative stress-related variables. Data Extraction A standardized outline was used to extract the following data: study type, supplement used, type of cells, tumor or patient characteristics, study design, anticancer treatment used, and oxidative stress-related outcomes. Results After the literature search and screening of 1563 citations, 28 studies were included for data extraction and evaluation: 16 in vitro studies (2 of which also used in vivo studies), 8 animal studies, and 4 human studies (3 clinical trials and 1 case series). In most in vitro and animal studies, intervention groups receiving cotreatment with n-3 PUFAs showed enhanced lipid peroxidation and cytotoxicity compared with groups receiving anticancer treatment alone. Eleven of the 12 studies that investigated the effect of vitamin E on the sensitivity of cancer cells to the oxidative stress caused by n-3 PUFAs showed that vitamin E abolished the positive effects of cotreatment. Conclusions Alterations in oxidative stress caused by cotreatment with anticancer agents and n-3 PUFAs can exert positive effects on the efficacy of conventional treatment. This seems to occur in most cells and tumors tested thus far, but not all. Identifying tumors that are sensitive to these oxidative effects may provide support for the rational use of n-3 PUFAs as an adjuvant treatment in specific types of cancer.
Collapse
Affiliation(s)
- Carolina Q Camargo
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Henver S Brunetta
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Everson A Nunes
- Physiological Sciences Department, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Postgraduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Multicenter Postgraduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
25
|
Role of docosahexaenoic acid in enhancement of docetaxel action in patient-derived breast cancer xenografts. Breast Cancer Res Treat 2019; 177:357-367. [DOI: 10.1007/s10549-019-05331-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
26
|
Asai R, Tsuchiya H, Amisaki M, Makimoto K, Takenaga A, Sakabe T, Hoi S, Koyama S, Shiota G. CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med 2019; 8:773-782. [PMID: 30636370 PMCID: PMC6382709 DOI: 10.1002/cam4.1968] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Cancer stem cells (CSCs) have attracted attention as a novel therapeutic target for cancer because they play important roles in the development and aggravation of cancer. CD44 is expressed as a standard isoform (CD44s) and several variant isoforms. CD44v is a major isoform expressed on CSCs of a variety of tumors and has been extensively studied. However, HCC tissues dominantly express CD44s, whose function in CSCs remains unclear. In the present study, we investigated the roles of CD44s in CSCs of HCC. Knock‐out of the CD44 gene in HuH7 HCC cells on which only CD44s is expressed resulted in decreased spheroid formation and increased drug sensitivity. The expression of CSC marker genes, including CD133 and EpCAM, was significantly downregulated in the spheroids of CD44‐deficient cells compared with those in the spheroids of HuH7 cells. In addition, CD44 deficiency impaired antioxidant capacity, concomitant with downregulation of glutathione peroxidase 1 (GPX1) and thioredoxin. Because GPX1 uses the reduced form of glutathione (GSH) to regenerate oxidized cellular components, GSH levels were significantly increased in the CD44‐deficient cells. We also found that NOTCH3 and its target genes were downregulated in the spheroids of CD44‐deficient cells. NOTCH3 expression in HCC tissues was significantly increased compared with that in adjacent nontumor liver tissues and was correlated with CD44 expression. These results suggest that CD44s is involved in maintenance of CSCs in a HCC cell line, possibly through the NOTCH3 signaling pathway.
Collapse
Affiliation(s)
- Ryoma Asai
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Masataka Amisaki
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan.,Faculty of Medicine, Division of Surgical Oncology, Department of Surgery, Tottori University, Yonago, Japan
| | - Kazuki Makimoto
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Ai Takenaga
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Faculty of Medicine, Division of Organ Pathology, Department of Pathology, Tottori University, Yonago, Japan
| | - Shotaro Hoi
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Shigemi Koyama
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
27
|
Shang X, Li C, Li J, Chen Y, Chen H, Wang T. The arginine detection and cytotoxicity of fluorescent probes based on naphthalene derivatives. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuefang Shang
- Key Laboratory of Medical Molecular Probes; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan China
| | - Congshu Li
- Key Laboratory of Medical Molecular Probes; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan China
| | - Jie Li
- Key Laboratory of Medical Molecular Probes; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan China
| | - Yanmei Chen
- Key Laboratory of Medical Molecular Probes; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan China
| | - Hongli Chen
- School of Life Sciences and Technology; Xinxiang Medical University; Xinxiang Henan China
| | - Tianyun Wang
- Department of Biochemistry; Xinxiang Medical University; Xinxiang Henan China
| |
Collapse
|
28
|
The synthesis, crystal, hydrogen sulfide detection and cell assement of novel chemsensors based on coumarin derivatives. Sci Rep 2018; 8:16159. [PMID: 30385799 PMCID: PMC6212500 DOI: 10.1038/s41598-018-34331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/17/2018] [Indexed: 01/29/2023] Open
Abstract
A series of chemsensors (1–4) containing fluorobenzene group based on coumarin derivatives have been developed for the selective and sensitive detection of H2S. The advantages of the synthesized fluorescent probe (compound 1) were the low detection limit (4 × 10−6 mol·L−1), good selectivity and high sensitivity which had been demonstrated through UV-vis, fluorescent titration experiments. Besides cytotoxicity test of compounds (1 and 2) was studied and the results indicated that compounds (1 and 2) showed almost no cytotoxicityat at a concentration of 150 μg·mL−1. The interacted mechanism was the thiolysis reaction of dinitrophenyl ether which had been confirmed by fluorescence and HRMS titration experiment. In addition, probe 1 can also detect HS− selectively by naked eye in pure DMSO solvent.
Collapse
|
29
|
Picou F, Debeissat C, Bourgeais J, Gallay N, Ferrié E, Foucault A, Ravalet N, Maciejewski A, Vallet N, Ducrocq E, Haddaoui L, Domenech J, Hérault O, Gyan E. n-3 Polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation. Pharmacol Res 2018; 136:45-55. [DOI: 10.1016/j.phrs.2018.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
|
30
|
Lee HJ, Han YM, An JM, Kang EA, Park YJ, Cha JY, Hahm KB. Role of omega-3 polyunsaturated fatty acids in preventing gastrointestinal cancers: current status and future perspectives. Expert Rev Anticancer Ther 2018; 18:1189-1203. [DOI: 10.1080/14737140.2018.1524299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ho-Jae Lee
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| | - Young-Min Han
- Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Jeong Min An
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, Korea
| | - Eun A. Kang
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, Korea
| | | | - Ji-Young Cha
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, Korea
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
31
|
Protective effect of 1950 MHz electromagnetic field in human neuroblastoma cells challenged with menadione. Sci Rep 2018; 8:13234. [PMID: 30185877 PMCID: PMC6125585 DOI: 10.1038/s41598-018-31636-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
This study aims to assess whether a 1950 MHz radiofrequency (RF) electromagnetic field could protect human neuroblastoma SH-SY5Y cells against a subsequent treatment with menadione, a chemical agent inducing DNA damage via reactive oxygen species formation. Cells were pre-exposed for 20 h to specific absorption rate of either 0.3 or 1.25 W/kg, and 3 h after the end of the exposure, they were treated with 10 µM menadione (MD) for 1 h. No differences were observed between sham- and RF-exposed samples. A statistically significant reduction in menadione-induced DNA damage was detected in cells pre-exposed to either 0.3 or 1.25 W/kg (P < 0.05). Moreover, our analyses of gene expression revealed that the pre-exposure to RF almost inhibited the dramatic loss of glutathione peroxidase-based antioxidant scavenging efficiency that was induced by MD, and in parallel strongly enhanced the gene expression of catalase-based antioxidant protection. In addition, RF abolished the MD-dependent down-regulation of oxoguanine DNA glycosylase, which is a critical DNA repairing enzyme. Overall, our findings suggested that RF pre-exposure reduced menadione-dependent DNA oxidative damage, most probably by enhancing antioxidant scavenging efficiency and restoring DNA repair capability. Our results provided some insights into the molecular mechanisms underlying the RF-induced adaptive response in human neuroblastoma cells challenged with menadione.
Collapse
|
32
|
Shang X, Li J, Feng Y, Chen H, Guo W, Zhang J, Wang T, Xu X. Low-Cytotoxicity Fluorescent Probes Based on Anthracene Derivatives for Hydrogen Sulfide Detection. Front Chem 2018; 6:202. [PMID: 29988478 PMCID: PMC6024568 DOI: 10.3389/fchem.2018.00202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
Owing to the role of H2S in various biochemical processes and diseases, its accurate detection is a major research goal. Three artificial fluorescent probes based on 9-anthracenecarboxaldehyde derivatives were designed and synthesized. Their anion binding capacity was assessed by UV-Vis titration, fluorescence spectroscopy, HRMS, 1HNMR titration, and theoretical investigations. Although the anion-binding ability of compound 1 was insignificant, two compounds 2 and 3, containing benzene rings, were highly sensitive fluorescent probes for HS− among the various anions studied (HS−, F−, Cl−, Br−, I−, AcO−, H2PO4-, SO32-, Cys, GSH, and Hcy). This may be explained by the nucleophilic reaction between HS− and the electron-poor C=C double bond. Due to the presence of a nitro group, compound 3, with a nitrobenzene ring, showed stronger anion binding ability than that of compound 2. In addition, compound 1 had a proliferative effect on cells, and compounds 2 and 3 showed low cytotoxicity against MCF-7 cells in the concentration range of 0–150 μg·mL−1. Thus, compounds 2 and 3 can be used as biosensors for the detection of H2S in vivo and may be valuable for future applications.
Collapse
Affiliation(s)
- Xuefang Shang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Li
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqian Feng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Wei Guo
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jinlian Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry, Xinxiang Medical University, Xinxiang, China
| | - Xiufang Xu
- Department of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
33
|
Mohajeri M, Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit Rev Oncol Hematol 2018; 122:30-51. [PMID: 29458788 DOI: 10.1016/j.critrevonc.2017.12.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Doxorubicin (DOX)-induced toxicity and resistance are major obstacles in chemotherapeutic approaches. Despite effective in the treatment of numerous malignancies, some clinicians have voiced concern that DOX has the potential to cause debilitating consequences in organ tissues, especially the heart. The mechanisms of toxicity and resistance are respectively related to induction of reactive oxygen species (ROS) and up-regulation of ATP-binding cassette (ABC) transporter. Curcumin (CUR) with several biological and pharmacological properties is expected to restore DOX-mediated impairments to tissues. This review is intended to address the current knowledge on DOX adverse effects and CUR protective actions in the heart, kidneys, liver, brain, and reproductive organs. Coadministration of CUR and DOX is capable of ameliorating DOX toxicity pertained to antioxidant, apoptosis, autophagy, and mitochondrial permeability.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Chen Y, Shang X, Zhao X, Li J, Yuan J, Chen H, Zhang J, Wang T. Highly selective probes of copper(II) complexes for sulfide detection and cytotoxicity assay. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1425410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Xuefang Shang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Xing Zhao
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jie Li
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jianmei Yuan
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jinlian Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Tianyun Wang
- Department of Biochemistry, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
35
|
ω-3 Long Chain Polyunsaturated Fatty Acids as Sensitizing Agents and Multidrug Resistance Revertants in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122770. [PMID: 29261109 PMCID: PMC5751368 DOI: 10.3390/ijms18122770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/23/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy efficacy is strictly limited by the resistance of cancer cells. The ω-3 long chain polyunsaturated fatty acids (ω-3 LCPUFAs) are considered chemosensitizing agents and revertants of multidrug resistance by pleiotropic, but not still well elucidated, mechanisms. Nowadays, it is accepted that alteration in gene expression, modulation of cellular proliferation and differentiation, induction of apoptosis, generation of reactive oxygen species, and lipid peroxidation are involved in ω-3 LCPUFA chemosensitizing effects. A crucial mechanism in the control of cell drug uptake and efflux is related to ω-3 LCPUFA influence on membrane lipid composition. The incorporation of docosahexaenoic acid in the lipid rafts produces significant changes in their physical-chemical properties affecting content and functions of transmembrane proteins, such as growth factors, receptors and ATP-binding cassette transporters. Of note, ω-3 LCPUFAs often alter the lipid compositions more in chemoresistant cells than in chemosensitive cells, suggesting a potential adjuvant role in the treatment of drug resistant cancers.
Collapse
|
36
|
Butt NA, Kumar A, Dhar S, Rimando AM, Akhtar I, Hancock JC, Lage JM, Pound CR, Lewin JR, Gomez CR, Levenson AS. Targeting MTA1/HIF-1α signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression. Cancer Med 2017; 6:2673-2685. [PMID: 29024573 PMCID: PMC5673954 DOI: 10.1002/cam4.1209] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022] Open
Abstract
The metastasis‐associated protein 1(MTA1)/histone deacetylase (HDAC) unit is a cancer progression‐related epigenetic regulator, which is overexpressed in hormone‐refractory and metastatic prostate cancer (PCa). In our previous studies, we found a significantly increased MTA1 expression in a prostate‐specific Pten‐null mouse model. We also demonstrated that stilbenes, namely resveratrol and pterostilbene (Pter), affect MTA1/HDAC signaling, including deacetylation of tumor suppressors p53 and PTEN. In this study, we examined whether inhibition of MTA1/HDAC using combination of Pter and a clinically approved HDAC inhibitor, SAHA (suberoylanilide hydroxamic acid, vorinostat), which also downregulates MTA1, could block prostate tumor progression in vivo. We generated and utilized a luciferase reporter in a prostate‐specific Pten‐null mouse model (Pb‐Cre+; Ptenf/f; Rosa26Luc/+) to evaluate the anticancer efficacy of Pter/SAHA combinatorial approach. Our data showed that Pter sensitized tumor cells to SAHA treatment resulting in inhibiting tumor growth and additional decline of tumor progression. These effects were dependent on the reduction of MTA1‐associated proangiogenic factors HIF‐1α, VEGF, and IL‐1β leading to decreased angiogenesis. In addition, treatment of PCa cell lines in vitro with combined Pter and low dose SAHA resulted in more potent inhibition of MTA1/HIF‐1α than by high dose SAHA alone. Our study provides preclinical evidence that Pter/SAHA combination treatment inhibits MTA1/HIF‐1α tumor‐promoting signaling in PCa. The beneficial outcome of combinatorial strategy using a natural agent and an approved drug for higher efficacy and less toxicity supports further development of MTA1‐targeted therapies in PCa.
Collapse
Affiliation(s)
- Nasir A Butt
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Avinash Kumar
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi.,Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Swati Dhar
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Agnes M Rimando
- United State Department of Agriculture, Agriculture Research Service, Natural Product Utilization Research Unit, University, Mississippi
| | - Israh Akhtar
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - John C Hancock
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Janice M Lage
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Charles R Pound
- Division of Urology, Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jack R Lewin
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi.,Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| |
Collapse
|
37
|
Surikova EI, Goroshinskaya IA, Frantsiyants EM, Shalashnaja EV, Nerodo GA, Neskubina IV, Kachesova PS, Nemashkalova LA, Chudilova AV. [The activity of redox-regulatory systems in the primary and recurrence tumors in vulvar cancer]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:321-326. [PMID: 28862603 DOI: 10.18097/pbmc20176304321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GST), the content of reduced glutathione (GSH) and malondialdehyde (MDA) were investigated in the samples of the tumor, peritumoral zone and healthy tissue, taken at the line of resection, were obtained from 14 patients with primary squamous cell carcinoma of the vulva, and 13 patients with local recurrence appeared in the period from 3 months to 7 years. by conventional spectrophotometric methods. The content of GSH and the activity of SOD, GPx, GR, GST were significantly increased, while MDA was decreased in the tissue of the primary carcinoma of the vulva in compared with the healthy tissue. Differences in the functioning of the investigated system of enzymes in the peritumoral zone were also revealed in the primary and recurrent tumoral process. Similar but much less pronounced changes were also observed in the recurrent tumor. It is suggested that such dynamics of activity of the studied system with the progression of cancer process can be the result of adaptation to changes in the local biochemical status of healthy (nonmalignant) tissue of the organ carrying the tumor and reflect the metabolic features of the recurrent tumor.
Collapse
Affiliation(s)
- E I Surikova
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | | | | | - E V Shalashnaja
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - G A Nerodo
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - I V Neskubina
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | - P S Kachesova
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| | | | - A V Chudilova
- Rostov Research Institute of Oncology, Rostov-on-Don, Russia
| |
Collapse
|
38
|
Baxi K, Ghavidel A, Waddell B, Harkness TA, de Carvalho CE. Regulation of Lysosomal Function by the DAF-16 Forkhead Transcription Factor Couples Reproduction to Aging in Caenorhabditis elegans. Genetics 2017; 207:83-101. [PMID: 28696216 PMCID: PMC5586388 DOI: 10.1534/genetics.117.204222] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/03/2017] [Indexed: 02/06/2023] Open
Abstract
Aging in eukaryotes is accompanied by widespread deterioration of the somatic tissue. Yet, abolishing germ cells delays the age-dependent somatic decline in Caenorhabditis elegans In adult worms lacking germ cells, the activation of the DAF-9/DAF-12 steroid signaling pathway in the gonad recruits DAF-16 activity in the intestine to promote longevity-associated phenotypes. However, the impact of this pathway on the fitness of normally reproducing animals is less clear. Here, we explore the link between progeny production and somatic aging and identify the loss of lysosomal acidity-a critical regulator of the proteolytic output of these organelles-as a novel biomarker of aging in C. elegans The increase in lysosomal pH in older worms is not a passive consequence of aging, but instead is timed with the cessation of reproduction, and correlates with the reduction in proteostasis in early adult life. Our results further implicate the steroid signaling pathway and DAF-16 in dynamically regulating lysosomal pH in the intestine of wild-type worms in response to the reproductive cycle. In the intestine of reproducing worms, DAF-16 promotes acidic lysosomes by upregulating the expression of v-ATPase genes. These findings support a model in which protein clearance in the soma is linked to reproduction in the gonad via the active regulation of lysosomal acidification.
Collapse
Affiliation(s)
- Kunal Baxi
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Ata Ghavidel
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Brandon Waddell
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Troy A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Carlos E de Carvalho
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| |
Collapse
|
39
|
Li J, Zhang Y, Chen Y, Shang X, Ti T, Chen H, Wang T, Zhang J, Xu X. Synthesis, binding ability, and cell cytotoxicity of fluorescent probes for l
-arginine detection based on naphthalene derivatives: Experiment and theory. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Li
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Yang Zhang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Yanmei Chen
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Xuefang Shang
- Key Laboratory of Medical Molecular Probes, School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang Henan 453003 China
| | - Tongyu Ti
- Department of biochemistry; Xinxiang Medical University; Jinsui Road 601 Xinxiang Henan 453003 China
| | - Hongli Chen
- School of Life Sciences and Technology; Xinxiang Medical University; Jinsui Road 601 Xinxiang Henan 453003 China
| | - Tianyun Wang
- Department of biochemistry; Xinxiang Medical University; Jinsui Road 601 Xinxiang Henan 453003 China
| | - Jinlian Zhang
- School of Pharmacy; Xinxiang Medical University; Jinsui Road 601 Xinxiang Henan 453003 China
| | - Xiufang Xu
- Nankai University; Weijin Road Tianjin 300071 China
| |
Collapse
|
40
|
Abstract
OBJECTIVE Several studies have demonstrated that abnormal glutathione peroxidases 1 (Gpx1) expression can influence the biological behavior of malignant cells. However, the roles of Gpx1 in laryngeal squamous cell carcinoma (LSCC) remain unknown. The purpose of this study is to analyze the Gpx1 expression and prognostic significance in LSCC patients. METHODS Gpx1 mRNA levels in laryngeal tissues were determined by qRT-PCR. Meanwhile, We examined the expression levels of Gpx1 protein in 140 primary tumor tissues and 28 cases of normal tissues by immunohistochemistry (IHC) analysis on tissue microarrays (TMA). RESULTS Our results revealed that the frequency of high Gpx1 was significantly higher in cancer tissue compared to normal surgical margins; Gpx1 expression correlated with clinical features and overall survival (OS). Gpx1 overexpression was significantly associated with lymph node metastasis (P=0.023) and TNM stage (P=0.008); Kaplan-Meier survival curves revealed that patients with high Gpx1 expression had worse prognoses than patients with low Gpx1 expression; By multivariate analysis, we revealed that high Gpx1 expression level (HR 2.101, 95%CI 1.011-4.367; P=0.047) was an independent prognostic factor of survival in LSCC patients. CONCLUSION We speculate that Gpx1 can be applied to predict the prognosis in LSCC patients.
Collapse
|
41
|
Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of l-Arginine. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
AL Shabanah OA, Alotaibi MR, Al Rejaie SS, Alhoshani AR, Almutairi MM, Alshammari MA, Hafez MM. Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53. Asian Pac J Cancer Prev 2016; 17:4965-4971. [PMID: 28032724 PMCID: PMC5454704 DOI: 10.22034/apjcp.2016.17.11.4965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Othman A AL Shabanah
- College of Pharmacy, Pharmacology and Toxicology Department, Kind Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 2016; 28:383-96. [PMID: 27647966 PMCID: PMC5018533 DOI: 10.21147/j.issn.1000-9604.2016.04.01] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.
Collapse
Affiliation(s)
- Donika Ivanova
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria; Institute of Biophysics & Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Medical Faculty, Sofia University, Sofia 1407, Bulgaria
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
44
|
Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells. Int J Mol Sci 2016; 17:ijms17081257. [PMID: 27527148 PMCID: PMC5000655 DOI: 10.3390/ijms17081257] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.
Collapse
|
45
|
Abstract
Considerable debate exists regarding the potential antineoplastic effect of dietary long-chain n-3 PUFA contained in fatty fishes. Since the majority of published data has proven that their intake does not induce toxic or carcinogenic effects in humans, their possible preventive use against cancer has been suggested. On the other hand, it is unlikely that they could be effective in cancer patients as a single therapy. Nevertheless, a considerable effort has been put forth in recent years to evaluate the hypothesis that n-3 PUFA might improve the antineoplastic efficiency of currently used anticancer agents. The rationale for this therapeutic combinatory strategy is trying to increase cancer sensitivity to conventional therapies. This could allow the use of lower drug/radiation doses and, thereby, a reduction in the detrimental health effects associated with these treatments. We will here critically examine the studies that have investigated this possibility, by focusing particularly on the biological and molecular mechanisms underlying the antineoplastic effect of these combined treatments. A possible use of n-3 PUFA in combination with the innovative single-targeted anti-cancer therapies, that often are not completely devoid of dangerous side-effects, is also suggested.
Collapse
|
46
|
Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCε/δ-induced ERK pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:380-90. [DOI: 10.1016/j.bbalip.2016.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
|
47
|
Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy. J Clin Med 2016; 5:jcm5020015. [PMID: 26821053 PMCID: PMC4773771 DOI: 10.3390/jcm5020015] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy.
Collapse
|
48
|
1,25-Dihydroxyvitamin D3 alleviates salivary adenoid cystic carcinoma progression by suppressing GPX1 expression through the NF-κB pathway. Int J Oncol 2016; 48:1271-9. [DOI: 10.3892/ijo.2016.3341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/31/2015] [Indexed: 11/05/2022] Open
|
49
|
Surikova E, Goroshinskaja I, Nerodo G, Frantsiyants E, Malejko M, Shalashnaja E, Kachesova P, Nemashkalova L, Leonova A. The activity of redox-regulatory systems in the tumor and its surrounding tissues in various histological types of tumor. ACTA ACUST UNITED AC 2016; 62:187-92. [DOI: 10.18097/pbmc20166202187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
According to modern concepts cancer is a complex dynamic system having multiple relationships with both the immediate environment and with remote nonmalignant tissues and organs. Changes in the redox balance in them can result in disruption of the normal tissue control. Understanding of the biology of redox processes in a particular tumor and its surroundings, and of their functioning mechanisms is necessary for the development of new anti-cancer strategies based on the effects on the redox state of the tumor and surrounding tissue. Thus the aim of this work was to investigate activity of enzymatic systems influencing the redox state in the tumor tissue, peritumoral area and nonmalignant tissue (taken along the line of resection) for different histological types of tumors. The data obtained showed a similar level of reduced glutathione (GSH) in tumor tissues of gastric adenocarcinoma and vulvar squamous cell carcinoma, but its dynamics in the tissues surrounding the tumor was different. In contrast to the gastric adenocarcinoma the carcinoma of the vulva had a significant level of GSH and higher activity of glutathione dependent enzymes in the tumor tissue and its peritumoral area compared with the surrounding nonmalignant tissue. The results indicate that there are differences in the functioning of the redox regulatory systems in the tumor tissue and its surrounding tissues of various histological origin and localization, possibly due to different mechanisms involved in maintenance of the redox balance in the originally nonmalignant tissue
Collapse
Affiliation(s)
- E.I. Surikova
- Rostov Research Oncological Institute, Rostov-on-Don, Russia
| | | | - G.A. Nerodo
- Rostov Research Oncological Institute, Rostov-on-Don, Russia
| | | | - M.L. Malejko
- Rostov Research Oncological Institute, Rostov-on-Don, Russia
| | | | - P.S. Kachesova
- Rostov Research Oncological Institute, Rostov-on-Don, Russia
| | | | - A.V. Leonova
- Rostov Research Oncological Institute, Rostov-on-Don, Russia
| |
Collapse
|
50
|
AlGhamdi S, Leoncikas V, Plant KE, Plant NJ. Synergistic interaction between lipid-loading and doxorubicin exposure in Huh7 hepatoma cells results in enhanced cytotoxicity and cellular oxidative stress: implications for acute and chronic care of obese cancer patients. Toxicol Res (Camb) 2015; 4:1479-1487. [PMID: 26744621 PMCID: PMC4692330 DOI: 10.1039/c5tx00173k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/11/2015] [Indexed: 01/29/2023] Open
Abstract
There has been a dramatic increase in the number of clinically obese individuals in the last twenty years. This has resulted in an increasingly common scenario where obese individuals are treated for other diseases, including cancer. Here, we examine interactions between lipid-induced steatosis and doxorubicin treatment in the human hepatoma cell line Huh7. The response of cells to either doxorubicin, lipid-loading or a combination were examined at the global level by DNA microarray, and for specific endpoints of cytotoxicity, lipid-loading, reactive oxygen species, anti-oxidant response systems, and apoptosis. Both doxorubicin and lipid-loading caused a significant accumulation of lipid within Huh7 cells, with the combination resulting in an additive accumulation. In contrast, cytotoxicity was synergistic for the combination compared to the individual components, suggesting an enhanced sensitivity of lipid-loaded cells to the acute hepatotoxic effects of doxorubicin. We demonstrate that a synergistic increase in reactive oxygen species and deregulation of protective anti-oxidant systems, most notably metallothionein expression, underlies this effect. Transcriptome analysis confirms synergistic changes at the global level, and is consistent with enhanced pro-inflammatory signalling in steatotic cells challenged with doxorubicin. Such effects are consistent with a potentiation of progression along the fatty liver disease spectrum. This suggests that treatment of obese individuals with doxorubicin may increase the risk of both acute (i.e. hepatotoxicity) and chronic (i.e. progress of fatty liver disease) adverse effects. This work highlights the need for more study in the growing therapeutic area to develop risk mitigation strategies.
Collapse
Affiliation(s)
- S AlGhamdi
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| | - V Leoncikas
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| | - K E Plant
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| | - N J Plant
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| |
Collapse
|