1
|
McCrimmon A, Corbin S, Shrestha B, Roman G, Dhungana S, Stadler K. Redox phospholipidomics analysis reveals specific oxidized phospholipids and regions in the diabetic mouse kidney. Redox Biol 2022; 58:102520. [PMID: 36334379 PMCID: PMC9640328 DOI: 10.1016/j.redox.2022.102520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022] Open
Abstract
While it is generally accepted that oxidative stress impacts the diabetic kidney and contributes to pathogenesis, there is a substantial lack of knowledge about the molecular entity and anatomic location of a variety of reactive species. Here we provide a novel "oxidative stress map" of the diabetic kidney - the first of its kind, and identify specific, oxidized and other reactive lipids and their location. We used the db/db mouse model and Desorption Electrospray Ionization (DESI) mass spectrometry combined with heatmap image analysis. We analyzed a comprehensive array of phospholipid peroxide species in normal (db/m) and diabetic (db/db) kidneys using DESI imaging. Oxilipidomics heatmaps of the kidneys were generated focusing on phospholipids and their potential peroxidized products. We identified those lipids that undergo peroxidation in diabetic nephropathy. Several phospholipid peroxides and their spatial distribution were identified that were specific to the diabetic kidney, with significant enrichment in oxygenated phosphatidylethanolamines (PE) and lysophosphatidylethanolamine. Beyond qualitative and semi-quantitative information about the targets, the approach also reveals the anatomic location and the extent of lipid peroxide signal propagation across the kidney. Our approach provides novel, in-depth information of the location and molecular entity of reactive lipids in an organ with a very heterogeneous landscape. Many of these reactive lipids have been previously linked to programmed cell death mechanisms. Thus, the findings may be relevant to understand what impact phospholipid peroxidation has on cell and mitochondria membrane integrity and redox lipid signaling in diabetic nephropathy.
Collapse
Affiliation(s)
- Allison McCrimmon
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA
| | - Sydney Corbin
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA
| | | | | | | | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA.
| |
Collapse
|
2
|
Yang HY, Hsu YSO, Lee TH, Wu CY, Tsai CY, Chou LF, Tu HT, Huang YT, Chang SH, Yen CL, Hsieh MH, Lee CC, Kuo G, Hsiao CY, Lin HL, Chen JJ, Yen TH, Chen YC, Tian YC, Yang CW, Anderson GF. Reduced Risk of Sepsis and Related Mortality in Chronic Kidney Disease Patients on Xanthine Oxidase Inhibitors: A National Cohort Study. Front Med (Lausanne) 2022; 8:818132. [PMID: 35174186 PMCID: PMC8841527 DOI: 10.3389/fmed.2021.818132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Advanced chronic kidney disease (CKD) patients are at higher risk of sepsis-related mortality following infection and bacteremia. Interestingly, the urate-lowering febuxostat and allopurinol, both xanthine oxidase inhibitors (XOis), have been suggested to influence the sepsis course in animal studies. In this study, we aim to investigate the relationship between XOis and infection/sepsis risk in pre-dialysis population. Methods Pre-dialysis stage 5 CKD patients with gout were identified through the National Health Insurance Research Database (NHIRD) in Taiwan from 2012 to 2016. Outcomes were also compared with national data. Results In our nationwide, population-based cohort study, 12,786 eligible pre-dialysis stage 5 CKD patients were enrolled. Compared to non-users, febuxostat users and allopurinol users were associated with reduced sepsis/infection risk [hazard ratio (HR), 0.93; 95% confidence interval (CI), 0.87–0.99; P = 0.0324 vs. HR, 0.92; 95% CI, 0.86–0.99; P = 0.0163]. Significant sepsis/infection-related mortality risk reduction was associated with febuxostat use (HR, 0.68; 95% CI, 0.52–0.87). Subgroup analysis demonstrated preference of febuxostat over allopurinol in sepsis/infection-related mortality among patients younger than 65 years of age, stain users, non-steroidal anti-inflammatory drug non-users, and non-diabetics. There was no significant difference in major adverse cardiac and cerebrovascular event (MACCE) risk between users and non-users while reduced risk of all-cause mortality was observed for XOi users. Conclusions Use of XOi in pre-dialysis stage 5 CKD patients may be associated with reduced risk of sepsis/infection and their related mortality without increased MACCE and overall mortality.
Collapse
Affiliation(s)
- Huang-Yu Yang
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yun-Shiuan Olivia Hsu
- Department of Medical Education, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tao Han Lee
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Li-Fang Chou
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hui-Tzu Tu
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Tung Huang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shang-Hung Chang
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Taoyuan, Taiwan
- Graduate Institute of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chieh-Li Yen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Hsuan Hsieh
- Division of Nephrology, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - George Kuo
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hsing-Lin Lin
- Division of Critical Care Surgery, Department of Critical Care Medicine, Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Jin Chen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tzung-Hai Yen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Chong Tian
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Nephrology Department, Kidney Research Institute, Chang Gung Memorial Hospital in Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Gerard F. Anderson
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- *Correspondence: Gerard F. Anderson
| |
Collapse
|
3
|
Multiorgan Development of Oxidative and Nitrosative Stress in LPS-Induced Endotoxemia in C57Bl/6 Mice: DHE-Based In Vivo Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7838406. [PMID: 31249650 PMCID: PMC6556324 DOI: 10.1155/2019/7838406] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Detection of free radicals in tissues is challenging. Most approaches rely on incubating excised sections or homogenates with reagents, typically at supraphysiologic oxygen tensions, to finally detect surrogate, nonspecific end products. In the present work, we explored the potential of using intravenously (i.v.) injected dihydroethidine (DHE) to detect superoxide radical (O2 ∙-) abundance in vivo by quantification of the superoxide-specific DHE oxidation product, 2-hydroxyethidium (2-OH-E+), as well as ethidium (E+) and DHE in multiple tissues in a murine model of endotoxemia induced by lipopolysaccharide (LPS). LPS was injected intraperitoneally (i.p.), while DHE was delivered via the tail vein one hour before sacrifice. Tissues (kidney, lung, liver, and brain) were harvested and subjected to HPLC/fluorescent analysis of DHE and its monomeric oxidation products. In parallel, electron spin resonance (EPR) spin trapping was used to measure nitric oxide (∙NO) production in the aorta, lung, and liver isolated from the same mice. Endotoxemic inflammation was validated by analysis of plasma biomarkers. The concentration of 2-OH-E+ varied in the liver, lung, and kidney; however, the ratios of 2-OH-E+/E+ and 2-OH-E+/DHE were increased in the liver and kidney but not in the lung or the brain. An LPS-induced robust level of ∙NO burst was observed in the liver, whereas the lung demonstrated a moderate yet progressive increase in the rate of ∙NO production. Interestingly, endothelial dysfunction was observed in the aorta, as evidenced by decreased ∙NO production 6 hours post-LPS injection that coincided with the inflammatory burden of endotoxemia (e.g. elevated serum amyloid A and prostaglandin E2). Combined, these data demonstrate that systemic delivery of DHE affords the capacity to specifically detect O2 ∙- production in vivo. Furthermore, the ratio of 2-OH-E+/E+ oxidation products in tissues provides a tool for comparative insight into the oxidative environments in various organs. Based on our findings, we demonstrate that the endotoxemic liver is susceptible to both O2 ∙--mediated and nonspecific oxidant stress as well as nitrosative stress. Oxidant stress in the lung was detected to a lesser extent, thus underscoring a differential response of liver and lung to endotoxemic injury induced by intraperitoneal LPS injection.
Collapse
|
4
|
Proniewski B, Czarny J, Khomich TI, Kus K, Zakrzewska A, Chlopicki S. Immuno-Spin Trapping-Based Detection of Oxidative Modifications in Cardiomyocytes and Coronary Endothelium in the Progression of Heart Failure in Tgαq*44 Mice. Front Immunol 2018; 9:938. [PMID: 29867936 PMCID: PMC5949515 DOI: 10.3389/fimmu.2018.00938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest both beneficial and detrimental role of increased reactive oxygen species and oxidative stress in heart failure (HF). However, it is not clear at which stage oxidative stress and oxidative modifications occur in the endothelium in relation to cardiomyocytes in non-ischemic HF. Furthermore, most methods used to date to study oxidative stress are either non-specific or require tissue homogenization. In this study, we used immuno-spin trapping (IST) technique with fluorescent microscopy-based detection of DMPO nitrone adducts to localize and quantify oxidative modifications of the hearts from Tgαq*44 mice; a murine model of HF driven by cardiomyocyte-specific overexpression of Gαq* protein. Tgαq*44 mice and age-matched FVB controls at early, transition, and late stages of HF progression were injected with DMPO in vivo and analyzed ex vivo for DMPO nitrone adducts signals. Progressive oxidative modifications in cardiomyocytes, as evidenced by the elevation of DMPO nitrone adducts, were detected in hearts from 10- to 16-month-old, but not in 8-month-old Tgαq*44 mice, as compared with age-matched FVB mice. The DMPO nitrone adducts were detected in left and right ventricle, septum, and papillary muscle. Surprisingly, significant elevation of DMPO nitrone adducts was also present in the coronary endothelium both in large arteries and in microcirculation simultaneously, as in cardiomyocytes, starting from 10-month-old Tgαq*44 mice. On the other hand, superoxide production in heart homogenates was elevated already in 6-month-old Tgαq*44 mice and progressively increased to high levels in 14-month-old Tgαq*44 mice, while the enzymatic activity of catalase, glutathione reductase, and glutathione peroxidase was all elevated as early as in 4-month-old Tgαq*44 mice and stayed at a similar level in 14-month-old Tgαq*44. In summary, this study demonstrates that IST represents a unique method that allows to quantify oxidative modifications in cardiomyocytes and coronary endothelium in the heart. In Tgαq*44 mice with slowly developing HF, driven by cardiomyocyte-specific overexpression of Gαq* protein, an increase in superoxide production, despite compensatory activation of antioxidative mechanisms, results in the development of oxidative modifications not only in cardiomyocytes but also in coronary endothelium, at the transition phase of HF, before the end-stage disease.
Collapse
Affiliation(s)
- Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Czarny
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tamara I Khomich
- Institute of Pharmacology and Biochemistry, NAS of Belarus, Grodno, Belarus
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Ramos MFDP, Monteiro de Barros ADCM, Razvickas CV, Borges FT, Schor N. Xanthine oxidase inhibitors and sepsis. Int J Immunopathol Pharmacol 2018; 32:2058738418772210. [PMID: 29786457 PMCID: PMC5967155 DOI: 10.1177/2058738418772210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
Xanthine oxidase activation occurs in sepsis and results in the generation of uric acid (UrAc) and reactive oxygen species (ROS). We aimed to evaluate the effect of xanthine oxidase inhibitors (XOis) in rats stimulated with lipopolysaccharide (LPS). LPS (10 mg/kg) was administered intraperitoneally (i.p.) immediately after allopurinol (Alo, 2 mg/kg) or febuxostat (Feb, 1 mg/kg) every 24 h for 3 days. To increase UrAc levels, oxonic acid (Oxo) was administered by gavage (750 mg/kg per day) for 5 days. Animals were divided into the following 10 groups (n = 6 each): (1) Control, (2) Alo, (3) Feb, (4) LPS, (5) LPSAlo, (6) LPSFeb, (7) Oxo, (8) OxoLPS, (9) OxoLPSAlo, and (10) OxoLPSFeb. Feb with or without Oxo did not aggravate sepsis. LPS administration (with or without Oxo) significantly decreased the creatinine clearance (ClCr) in LPSAlo (60%, P < 0.01) versus LPS (44%, P < 0.05) and LPSFeb (35%, P < 0.05). Furthermore, a significant increase in mortality was observed with LPSAlo (28/34, 82%) compared to LPS treatment alone (10/16, 63%) and LPSFeb (11/17, 65%, P < 0.05). In addition, increased levels of thiobarbituric acid reactive substances (TBARS), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 were observed at 72 h compared to the groups that received LPS and LPSFeb with or without Oxo. In this study, coadministration of Alo in LPS-induced experimental sepsis aggravated septic shock, leading to mortality, renal function impairment, and high ROS and proinflammatory IL levels. In contrast, administration of Feb did not potentiate sepsis, probably because it did not interfere with other metabolic events.
Collapse
Affiliation(s)
- Maria Fátima de Paula Ramos
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
| | | | - Clara Versolato Razvickas
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
| | - Fernanda T Borges
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
- Universidade Cruzeiro do Sul, São Paulo,
Brazil
| | - Nestor Schor
- Division of Nephrology, Department of
Medicine, Escola Paulista De Medicina (EPM), Universidade Federal de São Paulo
(UNIFESP), São Paulo, Brazil
| |
Collapse
|
6
|
Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS One 2017; 12:e0172914. [PMID: 28328972 PMCID: PMC5362211 DOI: 10.1371/journal.pone.0172914] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.
Collapse
|
7
|
Jernigan NL, Resta TC, Gonzalez Bosc LV. Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:83-103. [PMID: 29047083 DOI: 10.1007/978-3-319-63245-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Normally, the pulmonary circulation is maintained in a low-pressure, low-resistance state with little resting tone. Pulmonary arteries are thin-walled and rely heavily on pulmonary arterial distension and recruitment for reducing pulmonary vascular resistance when cardiac output is elevated. Under pathophysiological conditions, however, active vasoconstriction and vascular remodeling lead to enhanced pulmonary vascular resistance and subsequent pulmonary hypertension (PH). Chronic hypoxia is a critical pathological factor associated with the development of PH resulting from airway obstruction (COPD, sleep apnea), diffusion impairment (interstitial lung disease), developmental lung abnormalities, or high altitude exposure (World Health Organization [WHO]; Group III). The rise in pulmonary vascular resistance increases right heart afterload causing right ventricular hypertrophy that can ultimately lead to right heart failure in patients with chronic lung disease. PH is typically characterized by diminished paracrine release of vasodilators, antimitogenic factors, and antithrombotic factors (e.g., nitric oxide and protacyclin) and enhanced production of vasoconstrictors and mitogenic factors (e.g., reactive oxygen species and endothelin-1) from the endothelium and lung parenchyma. In addition, phenotypic changes to pulmonary arterial smooth muscle cells (PASMC), including alterations in Ca2+ homeostasis, Ca2+ sensitivity, and activation of transcription factors are thought to play prominent roles in the development of both vasoconstrictor and arterial remodeling components of hypoxia-associated PH. These changes in PASMC function are briefly reviewed in Sect. 1 and the influence of altered reactive oxygen species homeostasis on PASMC function discussed in Sects. 2-4.
Collapse
Affiliation(s)
- Nikki L Jernigan
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Thomas C Resta
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Laura V Gonzalez Bosc
- Department Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Khoo NKH, Cantu-Medellin N, St Croix C, Kelley EE. In Vivo Immuno-Spin Trapping: Imaging the Footprints of Oxidative Stress. CURRENT PROTOCOLS IN CYTOMETRY 2015; 74:12.42.1-12.42.11. [PMID: 26423693 PMCID: PMC4889111 DOI: 10.1002/0471142956.cy1242s74] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A plethora of disease processes are associated with elevated reactive species formation and allied reactions with biomolecules that alter cell signaling, induce overt damage, and promote dysfunction of tissues. Unfortunately, effective detection of reactive species in tissues is wrought with issues that significantly limit capacity for validating species identity, establishing accurate concentrations, and identifying anatomic sites of production. These shortcomings reveal the pressing need for new approaches to more precisely assess reactive species generation in vivo. Herein, we describe an in vivo immuno-spin trapping method for indirectly assessing oxidant levels by detecting free radicals resulting from reaction of oxidants with biomolecules to form stable, immunologically detectable nitrone-biomolecular adducts. This process couples the reactivity and sensitivity of an electron paramagnetic resonance spin trap with the resolution of confocal imaging to visualize the extent of cell and tissue oxidation and anatomic sites of production by detecting resultant free radical formation.
Collapse
Affiliation(s)
- Nicholas K H Khoo
- Departments of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric E Kelley
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Seth RK, Das S, Pourhoseini S, Dattaroy D, Igwe S, Ray JB, Fan D, Michelotti GA, Diehl AM, Chatterjee S. M1 polarization bias and subsequent nonalcoholic steatohepatitis progression is attenuated by nitric oxide donor DETA NONOate via inhibition of CYP2E1-induced oxidative stress in obese mice. J Pharmacol Exp Ther 2015; 352:77-89. [PMID: 25347994 PMCID: PMC4279102 DOI: 10.1124/jpet.114.218131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/23/2014] [Indexed: 12/15/2022] Open
Abstract
Activation of M1 macrophages in nonalcoholic steatohepatitis (NASH) is produced by several external or endogenous factors: inflammatory stimuli, oxidative stress, and cytokines are known. However, any direct role of oxidative stress in causing M1 polarization in NASH has been unclear. We hypothesized that CYP2E1-mediated oxidative stress causes M1 polarization in experimental NASH, and that nitric oxide (NO) donor administration inhibits CYP2E1-mediated inflammation with concomitant attenuation of M1 polarization. Because CYP2E1 takes center stage in these studies, we used a toxin model of NASH that uses a ligand and a substrate of CYP2E1 for inducing NASH. Subsequently, we used a methionine and choline-deficient diet-induced rodent NASH model where the role of CYP2E1 in disease progression has been shown. Our results show that CYP2E1 causes M1 polarization bias, which includes a significant increase in interleukin-1β (IL-1β) and IL-12 in both models of NASH, whereas CYP2E1-null mice or diallyl sulfide administration prevented it. Administration of gadolinium chloride (GdCl3), a macrophage toxin, attenuated both the initial M1 response and the subsequent M2 response, showing that the observed increase in cytokine levels is primarily from macrophages. Based on the evidence of an adaptive NO increase, the NO donor administration in vivo that mechanistically inhibited CYP2E1 catalyzed the oxidative stress during the entire study in NASH-abrogated M1 polarization and NASH progression. The results obtained show the association of CYP2E1 in M1 polarization, and that inhibition of CYP2E1 catalyzed oxidative stress by an NO donor (DETA NONOate [(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate]) can be a promising therapeutic strategy in NASH.
Collapse
Affiliation(s)
- Ratanesh Kumar Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Suvarthi Das
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Sahar Pourhoseini
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Stephen Igwe
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Julie Basu Ray
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Daping Fan
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Gregory A Michelotti
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Anna Mae Diehl
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (R.K.S., S.D., S.P., D.D., S.C.); School of Science, Technology, Engineering and Mathematics (STEM), Dillard University, New Orleans, Louisiana (S.I., J.B.R.); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina (D.F.); and Division of Gastroenterology, Duke University, Durham, North Carolina (G.A.M., A.M.D.)
| |
Collapse
|
10
|
Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, Bonini MG, Mason RP, Oh U, Block ML. Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 2014; 63:423-40. [PMID: 25331559 DOI: 10.1002/glia.22762] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2 O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2 O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50(-/-) mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1 mg/kg, IP) administration in the NF-κB p50(-/-) mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50(+/+) mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50(-/-) mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Das S, Seth RK, Kumar A, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2013; 305:G950-63. [PMID: 24157968 PMCID: PMC3882442 DOI: 10.1152/ajpgi.00235.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that metabolic oxidative stress, autophagy, and inflammation are hallmarks of nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanisms that link these important events in NASH remain unclear. In this study, we investigated the mechanistic role of purinergic receptor X7 (P2X7) in modulating autophagy and resultant inflammation in NASH in response to metabolic oxidative stress. The study uses two rodent models of NASH. In one of them, a CYP2E1 substrate bromodichloromethane is used to induce metabolic oxidative stress and NASH. Methyl choline-deficient diet feeding is used for the other NASH model. CYP2E1 and P2X7 receptor gene-deleted mice are used to establish their roles in regulating metabolic oxidative stress and autophagy. Autophagy gene expression, protein levels, confocal microscopy based-immunolocalization of lysosome-associated membrane protein (LAMP)2A and histopathological analysis were performed. CYP2E1-dependent metabolic oxidative stress induced increases in P2X7 receptor expression and chaperone-mediated autophagy markers LAMP2A and heat shock cognate 70 but caused depletion of light chain 3 isoform B (LC3B) protein levels. P2X7 receptor gene deletion significantly decreased LAMP2A and inflammatory indicators while significantly increasing LC3B protein levels compared with wild-type mice treated with bromodichloromethane. P2X7 receptor-deleted mice were also protected from NASH pathology as evidenced by decreased inflammation and fibrosis. Our studies establish that P2X7 receptor is a key regulator of autophagy induced by metabolic oxidative stress in NASH, thereby modulating hepatic inflammation. Furthermore, our findings presented here form a basis for P2X7 receptor as a potential therapeutic target in the treatment for NASH.
Collapse
Affiliation(s)
- Suvarthi Das
- Environmental Health and Disease Laboratory, Dept. of Environmental Health Sciences, Univ. of South Carolina, Columbia, SC 29208.
| | - Ratanesh Kumar Seth
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Ashutosh Kumar
- 2Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| | - Maria B. Kadiiska
- 2Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| | | | - Anna Mae Diehl
- 3Division of Gastroenterology, Duke University, Durham North Carolina
| | - Saurabh Chatterjee
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| |
Collapse
|
12
|
Towner RA, Garteiser P, Bozza F, Smith N, Saunders D, d'Avila JCP, Magno F, Oliveira MF, Ehrenshaft M, Lupu F, Silasi-Mansat R, Ramirez DC, Gomez-Mejiba SE, Mason RP, Castro Faria-Neto HC. In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping. Free Radic Biol Med 2013; 65:828-837. [PMID: 23978375 DOI: 10.1016/j.freeradbiomed.2013.08.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 11/20/2022]
Abstract
Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin-gadolinium-diethylene triamine pentaacetic acid-biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p < 0.0001) compared to controls. MRI detected the presence of anti-DMPO adducts via a substantial decrease in %T1 change within the hippocampus, striatum, occipital, and medial cortex brain regions (p < 0.01 for all) in septic animals compared to shams, which was sustained for over 60 min (p < 0.05 for all). Fluorescently labeled streptavidin was used to target the anti-DMPO probe biotin, which was elevated in septic brain, liver, and lungs compared to sham. Ex vivo DMPO adducts (qualitative) and oxidative products, including 4-hydroxynonenal and 3-nitrotyrosine (quantitative, p < 0.05 for both), were elevated in septic brains compared to shams. This is the first study that has reported on the detection of in vivo and in situ levels of free radicals in murine septic encephalopathy.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Philippe Garteiser
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Fernando Bozza
- Instituto de Pesquisa Clinica Evandro Chagas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Joana C P d'Avila
- Instituto de Pesquisa Clinica Evandro Chagas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Flora Magno
- Instituto de Pesquisa Clinica Evandro Chagas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marcus F Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Marilyn Ehrenshaft
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Florea Lupu
- Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Dario C Ramirez
- Laboratory of Experimental Medicine & Therapeutics, Instituto Multidisciplinario de Investigaciones Biologicas-San Luis, CONICET, National University of San Luis, San Luis 5700, Argentina
| | - Sandra E Gomez-Mejiba
- Laboratory of Experimental Medicine & Therapeutics, Instituto Multidisciplinario de Investigaciones Biologicas-San Luis, CONICET, National University of San Luis, San Luis 5700, Argentina
| | - Ronald P Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
13
|
Das S, Kumar A, Seth RK, Tokar EJ, Kadiiska MB, Waalkes MP, Mason RP, Chatterjee S. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity. Toxicol Appl Pharmacol 2013; 269:297-306. [PMID: 23438451 PMCID: PMC3654077 DOI: 10.1016/j.taap.2013.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/17/2022]
Abstract
Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation, protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver.
Collapse
Affiliation(s)
- Suvarthi Das
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia SC 29208
| | - Ashutosh Kumar
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Ratanesh Kumar Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia SC 29208
| | - Erik J Tokar
- Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Maria B. Kadiiska
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Michael P Waalkes
- Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia SC 29208
| |
Collapse
|
14
|
Gilkeson GS, Mashmoushi AK, Ruiz P, Caza TN, Perl A, Oates JC. Endothelial nitric oxide synthase reduces crescentic and necrotic glomerular lesions, reactive oxygen production, and MCP1 production in murine lupus nephritis. PLoS One 2013; 8:e64650. [PMID: 23741359 PMCID: PMC3669382 DOI: 10.1371/journal.pone.0064650] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/17/2013] [Indexed: 12/04/2022] Open
Abstract
Systemic lupus erythematosus, in both animal models and in humans, is characterized by autoantibody production followed by immune complex deposition in target tissues. Ensuing target organ damage is modulated by reactive intermediates, including reactive nitrogen and oxygen species, through as of now incompletely understood mechanisms. Endothelial nitric oxide synthase is known to impact vascular reactivity; however its impact on reactive intermediate production and inflammatory renal disease is less well defined. In this study, we assessed the impact of endothelial nitric oxide synthase (eNOS) on disease in lupus prone MRL/lpr mice. Mice lacking eNOS developed earlier more severe disease with decreased survival. eNOS deficient mice died sooner and developed significantly more glomerular crescents, necrosis, inflammatory infiltrates and vasculitis, indicating a role for eNOS in modulating these renal lesions. Immune complex deposition was similar between groups, indicating the impact of eNOS is distal to antibody/complement glomerular deposition. Urinary nitric oxide production was decreased in the eNOS deficient mice, while proteinuria was increased. Urinary monocyte chemotactic protein-1 was also increased in the knockout mice. CD4+ T cells from MRL/lpr mice demonstrated mitochondrial hyperpolarization, increased nitric oxide and superoxide production and increased calcium flux compared to B6 control mice. Deficiency of eNOS resulted in decreased nitric oxide and mitochondrial calcium levels but had no effect on mitochondrial hyperpolarization. Renal cortices from MRL/lpr mice that are eNOS deficient demonstrated increased superoxide production, which was blocked by both nitric oxide synthase and NADPH oxidase inhibitors. These studies thus demonstrate a key role for eNOS in modulating renal disease in lupus prone MRL/lpr mice. The impact appears to be mediated by effects on superoxide production in the kidney, impacting downstream mediators such as monocyte chemotactic protein-1. These results suggest that modulation of eNOS may be a novel therapeutic approach to treating lupus nephritis.
Collapse
Affiliation(s)
- Gary S. Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| | - Ahmad K. Mashmoushi
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Phillip Ruiz
- Transplant Laboratories and Immunopathology, Department of Surgery and Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Tiffany N. Caza
- Division of Rheumatology, Department of Medicine, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Jim C. Oates
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| |
Collapse
|
15
|
Gomez-Mejiba SE, Zhai Z, Della-Vedova MC, Muñoz MD, Chatterjee S, Towner RA, Hensley K, Floyd RA, Mason RP, Ramirez DC. Immuno-spin trapping from biochemistry to medicine: advances, challenges, and pitfalls. Focus on protein-centered radicals. Biochim Biophys Acta Gen Subj 2013; 1840:722-9. [PMID: 23644035 DOI: 10.1016/j.bbagen.2013.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Immuno-spin trapping (IST) is based on the reaction of a spin trap with a free radical to form a stable nitrone adduct, followed by the use of antibodies, rather than traditional electron paramagnetic resonance spectroscopy, to detect the nitrone adduct. IST has been successfully applied to mechanistic in vitro studies, and recently, macromolecule-centered radicals have been detected in models of drug-induced agranulocytosis, hepatotoxicity, cardiotoxicity, and ischemia/reperfusion, as well as in models of neurological, metabolic and immunological diseases. SCOPE OF THE REVIEW To critically evaluate advances, challenges, and pitfalls as well as the scientific opportunities of IST as applied to the study of protein-centered free radicals generated in stressed organelles, cells, tissues and animal models of disease and exposure. MAJOR CONCLUSIONS Because the spin trap has to be present at high enough concentrations in the microenvironment where the radical is formed, the possible effects of the spin trap on gene expression, metabolism and cell physiology have to be considered in the use of IST and in the interpretation of results. These factors have not yet been thoroughly dealt with in the literature. GENERAL SIGNIFICANCE The identification of radicalized proteins during cell/tissue response to stressors will help define their role in the complex cellular response to stressors and pathogenesis; however, the fidelity of spin trapping/immuno-detection and the effects of the spin trap on the biological system should be considered. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sandra E Gomez-Mejiba
- Laboratory of Experimental Medicine and Therapeutics, Institute Multidisciplinary of Biological Investigations-San Luis (IMIBIO-SL), National Bureau of Science and Technology (CONICET) and National University of San Luis, San Luis, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chatterjee S, Ganini D, Tokar EJ, Kumar A, Das S, Corbett J, Kadiiska MB, Waalkes MP, Diehl AM, Mason RP. Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J Hepatol 2013; 58:778-84. [PMID: 23207144 PMCID: PMC3596459 DOI: 10.1016/j.jhep.2012.11.035] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Progression from steatosis to steatohepatitic lesions is hypothesized to require a second hit. These lesions have been associated with increased oxidative stress, often ascribed to high levels of leptin and other proinflammatory mediators. Here we have examined the role of leptin in inducing oxidative stress and Kupffer cell activation in CCl4-mediated steatohepatitic lesions of obese mice. METHODS Male C57BL/6 mice fed with a high-fat diet (60%kcal) at 16 weeks were administered CCl₄ to induce steatohepatitic lesions. Approaches included use of immuno-spin trapping for measuring free radical stress, gene-deficient mice for leptin, p47 phox, iNOS and adoptive transfer of leptin primed macrophages in vivo. RESULTS Diet-induced obese (DIO) mice, treated with CCl4 increased serum leptin levels. Oxidative stress was significantly elevated in the DIO mouse liver, but not in ob/ob mice, or in DIO mice treated with leptin antibody. In ob/ob mice, leptin supplementation restored markers of free radical generation. Markers of free radical formation were significantly decreased by the peroxynitrite decomposition catalyst FeTPPS, the iNOS inhibitor 1400W, the NADPH oxidase inhibitor apocynin, or in iNOS or p47 phox-deficient mice. These results correlated with the decreased expression of TNF-alpha and MCP-1. Kupffer cell depletion eliminated oxidative stress and inflammation, whereas in macrophage-depleted mice, the adoptive transfer of leptin-primed macrophages significantly restored inflammation. CONCLUSIONS These results, for the first time, suggest that leptin action in macrophages of the steatotic liver, through induction of iNOS and NADPH oxidase, causes peroxynitrite-mediated oxidative stress thus activating Kupffer cells.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Oxidative stress and diabetes, both Type 1 and Type 2 as well as their related conditions have been extensively studied. As diabetes, obesity and metabolic syndrome have reached at epidemic levels, there is a huge need and effort to understand the detailed molecular mechanisms of the possible redox imbalance, underlying the cause of pathology and progression of the disease. These studies provide new insights at cellular and subcellular levels to design effective clinical interventions. This chapter is intended to emphasize the latest knowledge and current evidence on the role of oxidative stress in diabetes as well as to discuss some key questions that are currently under discussion.
Collapse
|
18
|
Cao H, Chapital DC, Howard OD, Deterding LJ, Mason CB, Shockey JM, Klasson KT. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2. Appl Microbiol Biotechnol 2012; 96:711-27. [PMID: 22270236 PMCID: PMC11338361 DOI: 10.1007/s00253-012-3869-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/11/2022]
Abstract
Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
20
|
Davis MF, Zhou L, Ehrenshaft M, Ranguelova K, Gunawardena HP, Chen X, Bonini M, Mason RP, Campbell SL. Detection of Ras GTPase protein radicals through immuno-spin trapping. Free Radic Biol Med 2012; 53:1339-45. [PMID: 22819983 PMCID: PMC3549333 DOI: 10.1016/j.freeradbiomed.2012.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 01/05/2023]
Abstract
Over the past decade immuno-spin trapping (IST) has been used to detect and identify protein radical sites in numerous heme and metalloproteins. To date, however, the technique has had little application toward nonmetalloproteins. In this study, we demonstrate the successful application of IST in a system free of transition metals and present the first conclusive evidence of (•)NO-mediated protein radical formation in the HRas GTPase. HRas is a nonmetalloprotein that plays a critical role in regulating cell-growth control. Protein radical formation in Ras GTPases has long been suspected of initiating premature release of bound guanine nucleotide. This action results in altered Ras activity both in vitro and in vivo. As described herein, successful application of IST may provide a means for detecting and identifying radical-mediated Ras activation in many different cancers and disease states in which Ras GTPases play an important role.
Collapse
Affiliation(s)
- Michael F. Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Li Zhou
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Marilyn Ehrenshaft
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, MD F0-01, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
| | - Kalina Ranguelova
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, MD F0-01, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
| | - Harsha P. Gunawardena
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Marcelo Bonini
- UIC Section of Cardiology, University of Illinois at Chicago, Chicago IL 60612
| | - Ronald P. Mason
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, MD F0-01, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709
| | - Sharon L. Campbell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Khoo NK, Cantu-Medellin N, Devlin JE, St. Croix CM, Watkins SC, Fleming AM, Champion HC, Mason RP, Freeman BA, Kelley EE. Obesity-induced tissue free radical generation: an in vivo immuno-spin trapping study. Free Radic Biol Med 2012; 52:2312-9. [PMID: 22564528 PMCID: PMC3601796 DOI: 10.1016/j.freeradbiomed.2012.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 12/31/2022]
Abstract
Assessment of tissue free radical production is routinely accomplished by measuring secondary by-products of redox reactions and/or diminution of key antioxidants such as reduced thiols. However, immuno-spin trapping, a newly developed immunohistochemical technique for detection of free radical formation, is garnering considerable interest as it allows for the visualization of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-adducted molecules. Yet, to date, immuno-spin trapping reports have utilized in vivo models in which successful detection of free radical adducts required exposure to lethal levels of oxidative stress not reflective of chronic inflammatory disease. To study the extents and anatomic locations of more clinically relevant levels of radical formation, we examined tissues from high-fat (HF) diet-fed mice, a model of low-grade chronic inflammation known to demonstrate enhanced rates of reactive species production. Mice subjected to 20 weeks of HF diet displayed increased free radical formation (anti-DMPO mean fluorescence staining) in skeletal muscle (0.863±0.06 units vs 0.512±0.07 units), kidney (0.076±0.0036 vs 0.043±0.0025), and liver (0.275±0.012 vs 0.135±0.014) compared to control mice fed normal laboratory chow (NC). Western blot analysis of tissue homogenates confirmed these results showing enhanced DMPO immunoreactivity in HF mice compared to NC samples. The obesity-related results were confirmed in a rat model of pulmonary hypertension and right heart failure in which intense immunodetectable radical formation was observed in the lung and right ventricle of monocrotaline-treated rats compared to saline-treated controls. Combined, these data affirm the utility of immuno-spin trapping as a tool for in vivo assessment of altered extents of macromolecule oxidation to radical intermediates under chronic inflammatory conditions.
Collapse
Affiliation(s)
- Nicholas K.H. Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Nadiezhda Cantu-Medellin
- Department of Anesthesiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Jason E. Devlin
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Claudette M. St. Croix
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Simon C. Watkins
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Alexander M. Fleming
- Department of Anesthesiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Hunter C. Champion
- Vascular Medicine Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Ronald P. Mason
- Laboratory of Pharmacology and Toxicology, National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Eric E. Kelley
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anesthesiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Corresponding author at: University of Pittsburgh, School of Medicine, Departments of Anesthesiology and Pharmacology, W-1357 Biomedical Sciences Tower, 200 Lothrop Street, Pittsburgh, PA 15213, United States. Fax: +1 412 648 9587. (E.E. Kelley)
| |
Collapse
|
22
|
Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J, Mason RP. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med 2012; 52:1666-79. [PMID: 22343416 PMCID: PMC3341527 DOI: 10.1016/j.freeradbiomed.2012.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 01/21/2023]
Abstract
While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Bhattacharjee S, Chatterjee S, Jiang J, Sinha BK, Mason RP. Detection and imaging of the free radical DNA in cells--site-specific radical formation induced by Fenton chemistry and its repair in cellular DNA as seen by electron spin resonance, immuno-spin trapping and confocal microscopy. Nucleic Acids Res 2012; 40:5477-86. [PMID: 22387463 PMCID: PMC3384307 DOI: 10.1093/nar/gks180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress-related damage to the DNA macromolecule produces lesions that are implicated in various diseases. To understand damage to DNA, it is important to study the free radical reactions causing the damage. Measurement of DNA damage has been a matter of debate as most of the available methods measure the end product of a sequence of events and provide limited information on the initial free radical formation. We report a measurement of free radical damage in DNA induced by a Cu(II)-H2O2 oxidizing system using immuno-spin trapping supplemented with electron paramagnetic resonance. In this investigation, the short-lived radical generated is trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) immediately upon formation. The DMPO adduct formed is initially electron paramagnetic resonance active, but is subsequently oxidized to the stable nitrone adduct, which can be detected and visualized by immuno-spin trapping and has the potential to be further characterized by other analytical techniques. The radical was found to be located on the 2′-deoxyadenosine (dAdo) moiety of DNA. The nitrone adduct was repaired on a time scale consistent with DNA repair. In vivo experiments for the purpose of detecting DMPO–DNA nitrone adducts should be conducted over a range of time in order to avoid missing adducts due to the repair processes.
Collapse
Affiliation(s)
- Suchandra Bhattacharjee
- Laboratory of Toxicology and Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
25
|
Davis MF, Vigil D, Campbell SL. Regulation of Ras proteins by reactive nitrogen species. Free Radic Biol Med 2011; 51:565-75. [PMID: 21616138 PMCID: PMC3549334 DOI: 10.1016/j.freeradbiomed.2011.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/11/2011] [Accepted: 05/03/2011] [Indexed: 11/28/2022]
Abstract
Ras GTPases have been a subject of intense investigation since the early 1980s, when single point mutations in Ras were shown to cause deregulated cell growth control. Subsequently, Ras was identified as the most prevalent oncogene found in human cancer. Ras proteins regulate a host of pathways involved in cell growth, differentiation, and apoptosis by cycling between inactive GDP-bound and active GTP-bound states. Regulation of Ras activity is controlled by cellular factors that alter guanine nucleotide cycling. Oncogenic mutations prevent protein regulatory factors from down-regulating Ras activity, thereby maintaining Ras in a chronically activated state. The central dogma in the field is that protein modulatory factors are the primary regulators of Ras activity. Since the mid-1990s, however, evidence has accumulated that small molecule reactive nitrogen species (RNS) can also influence Ras guanine nucleotide cycling. Herein, we review the basic chemistry behind RNS formation and discuss the mechanism through which various RNS enhance nucleotide exchange in Ras proteins. In addition, we present studies that demonstrate the physiological relevance of RNS-mediated Ras activation within the context of immune system function, brain function, and cancer development. We also highlight future directions and experimental methods that may enhance our ability to detect RNS-mediated activation in cell cultures and in vivo. The development of such methods may ultimately pave new directions for detecting and elucidating how Ras proteins are regulated by redox species, as well as for targeting redox-activated Ras in cancer and other disease states.
Collapse
Affiliation(s)
- Michael F. Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Dom Vigil
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Sharon L. Campbell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
26
|
Bhattacharjee S, Deterding LJ, Chatterjee S, Jiang J, Ehrenshaft M, Lardinois O, Ramirez DC, Tomer KB, Mason RP. Site-specific radical formation in DNA induced by Cu(II)-H₂O₂ oxidizing system, using ESR, immuno-spin trapping, LC-MS, and MS/MS. Free Radic Biol Med 2011; 50:1536-45. [PMID: 21382477 PMCID: PMC3100166 DOI: 10.1016/j.freeradbiomed.2011.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 11/29/2022]
Abstract
Oxidative stress-related damage to the DNA macromolecule produces a multitude of lesions that are implicated in mutagenesis, carcinogenesis, reproductive cell death, and aging. Many of these lesions have been studied and characterized by various techniques. Of the techniques that are available, the comet assay, HPLC-EC, GC-MS, HPLC-MS, and especially HPLC-MS/MS remain the most widely used and have provided invaluable information on these lesions. However, accurate measurement of DNA damage has been a matter of debate. In particular, there have been reports of artifactual oxidation leading to erroneously high damage estimates. Further, most of these techniques measure the end product of a sequence of events and thus provide only limited information on the initial radical mechanism. We report here a qualitative measurement of DNA damage induced by a Cu(II)-H₂O₂ oxidizing system using immuno-spin trapping (IST) with electron paramagnetic resonance (EPR), MS, and MS/MS. The radical generated is trapped by DMPO immediately upon formation. The DMPO adduct formed is initially EPR active but subsequently is oxidized to the stable nitrone, which can then be detected by IST and further characterized by MS and MS/MS.
Collapse
Affiliation(s)
- Suchandra Bhattacharjee
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chatterjee S, Lardinois O, Bhattacharjee S, Tucker J, Corbett J, Deterding L, Ehrenshaft M, Bonini MG, Mason RP. Oxidative stress induces protein and DNA radical formation in follicular dendritic cells of the germinal center and modulates its cell death patterns in late sepsis. Free Radic Biol Med 2011; 50:988-99. [PMID: 21215311 PMCID: PMC3051032 DOI: 10.1016/j.freeradbiomed.2010.12.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 12/10/2010] [Accepted: 12/27/2010] [Indexed: 12/20/2022]
Abstract
Profound depletion of follicular dendritic cells (FDCs) is a hallmark of sepsis-like syndrome, but the exact causes of the ensuing cell death are unknown. The cell death-driven depletion contributes to immunoparalysis and is responsible for most of the morbidity and mortality in sepsis. Here we have utilized immuno-spin trapping, a method for detection of free radical formation, to detect oxidative stress-induced protein and DNA radical adducts in FDCs isolated from the spleens of septic mice and from human tonsil-derived HK cells, a subtype of germinal center FDCs, to study their role in FDC depletion. At 24h post-lipopolysaccharide administration, protein radical formation and oxidation were significantly elevated in vivo and in HK cells as shown by ELISA and confocal microscopy. The xanthine oxidase inhibitor allopurinol and the iron chelator desferrioxamine significantly decreased the formation of protein radicals, suggesting the role of xanthine oxidase and Fenton-like chemistry in radical formation. Protein and DNA radical formation correlated mostly with apoptotic features at 24h and necrotic morphology of all the cell types studied at 48h with concomitant inhibition of caspase-3. The cytotoxicity of FDCs resulted in decreased CD45R/CD138-positive plasma cell numbers, indicating a possible defect in B cell differentiation. In one such mechanism, radical formation initiated by xanthine oxidase formed protein and DNA radicals, which may lead to cell death of germinal center FDCs.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chatterjee S, Lardinois O, Bonini MG, Bhattacharjee S, Stadler K, Corbett J, Deterding LJ, Tomer KB, Kadiiska M, Mason RP. Site-specific carboxypeptidase B1 tyrosine nitration and pathophysiological implications following its physical association with nitric oxide synthase-3 in experimental sepsis. THE JOURNAL OF IMMUNOLOGY 2009; 183:4055-66. [PMID: 19717511 DOI: 10.4049/jimmunol.0900593] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS-induced sepsis results in oxidative modification and inactivation of carboxypeptidase B1 (CPB1). In this study, immunoprecipitated CPB1 was probed for tyrosine nitration using monoclonal nitrotyrosine-specific Abs in a murine model of LPS-induced sepsis. Tyrosine nitration of CPB1 was significantly reduced in the presence of NO synthase (NOS) inhibitors and the xanthine oxidase (XO) inhibitor allopurinol and in NOS-3 knockout (KO) mice. CPB1 tyrosine nitration and loss of activity by the concerted action of NOS-3 and XO were also confirmed in vitro using both the NO donor 3-morpholinosydnonimine and peroxynitrite. Liquid chromatography/tandem mass spectrometry data indicated five sites of tyrosine nitration in vitro including Tyr(248), the tyrosine at the catalytic site. The site- and protein-specific nitration of CPB1 and the possible high nitration yield to inactivate it were elucidated by confocal microscopy. The studies indicated that CPB1 colocalized with NOS-3 in the cytosol of sinus-lining cells in the red pulp of the spleen. Further analysis of CPB1-immunoprecipitated samples indicated immunoreactivity to a monoclonal NOS-3 Ab, suggesting protein complex formation with CPB1. XO and NOS inhibitors and NOS-3 KO mice injected with LPS had decreased levels of C5a in spleens of septic mice, indicating peroxynitrite as a possible cause for CPB1 functional alteration. Thus, CPB1 colocalization, coupling, and proximity to NOS-3 in the sinus-lining cells of spleen red pulp could explain the site-specific tyrosine nitration and inactivation of CPB1. These results open up new avenues for the investigation of several enzymes involved in inflammation and their site-specific oxidative modifications by protein-protein interactions as well as their role in sepsis.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Free Radical Metabolism Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|