1
|
Yamashima T. 4-Hydroxynonenal from Mitochondrial and Dietary Sources Causes Lysosomal Cell Death for Lifestyle-Related Diseases. Nutrients 2024; 16:4171. [PMID: 39683565 DOI: 10.3390/nu16234171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity. In patients with metabolic syndrome, saturated fatty acids, especially palmitate, are used as an energy source. Since abundant reactive oxygen species are produced during β-oxidation of the palmitate in mitochondria, an increased amount of 4-hydroxy-2-nonenal (4-HNE) is endogenously generated from linoleic acids constituting cardiolipin of the inner membranes. Further, due to the daily intake of deep-fried foods and/or high-fat diets cooked using vegetable oils, exogenous 4-HNE being generated via lipid peroxidation during heating is incorporated into the blood. By binding with atheromatous and/or senile plaques, 4-HNE inactivates proteins via forming hybrid covalent chemical addition compounds and causes cellular dysfunction and tissue damage by the specific oxidation carbonylation. 4-HNE overstimulates G-protein-coupled receptors to induce abnormal Ca2+ mobilization and µ-calpain activation. This endogenous and exogenous 4-HNE synergically causes POMC neuronal degeneration/death and obesity. Then, the resultant metabolic disorder facilitates degeneration/death of hippocampal neurons, pancreatic β-cells, and hepatocytes. Hsp70.1 is a molecular chaperone which is crucial for both protein quality control and the stabilization of lysosomal limiting membranes. Focusing on the monkey hippocampus after ischemia, previously we formulated the 'calpain-cathepsin hypothesis', i.e., that calpain-mediated cleavage of carbonylated Hsp70.1 is a trigger of programmed neuronal death. This review aims to report that in diverse organs, lysosomal cell degeneration/death occurs via the calpain-cathepsin cascade after the consecutive injections of synthetic 4-HNE in monkeys. Presumably, 4-HNE is a root substance of lysosomal cell death for lifestyle-related diseases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Takara-machi 13-1, Kanazawa 920-8040, Japan
| |
Collapse
|
2
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
3
|
Yamashima T, Mochly-Rosen D, Wakatsuki S, Mizukoshi E, Seike T, Larus IM, Chen CH, Takemura M, Saito H, Ohashi A. Cleavage of Hsp70.1 causes lysosomal cell death under stress conditions. Front Mol Biosci 2024; 11:1378656. [PMID: 38859931 PMCID: PMC11163108 DOI: 10.3389/fmolb.2024.1378656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Autophagy mediates the degradation of intracellular macromolecules and organelles within lysosomes. There are three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Heat shock protein 70.1 (Hsp70.1) exhibits dual functions as a chaperone protein and a lysosomal membrane stabilizer. Since chaperone-mediated autophagy participates in the recycling of ∼30% cytosolic proteins, its disorder causes cell susceptibility to stress conditions. Cargo proteins destined for degradation such as amyloid precursor protein and tau protein are trafficked by Hsp70.1 from the cytosol into lysosomes. Hsp70.1 is composed of an N-terminal nucleotide-binding domain (NBD) and a C-terminal domain that binds to cargo proteins, termed the substrate-binding domain (SBD). The NBD and SBD are connected by the interdomain linker LL1, which modulates the allosteric structure of Hsp70.1 in response to ADP/ATP binding. After the passage of the Hsp70.1-cargo complex through the lysosomal limiting membrane, high-affinity binding of the positive-charged SBD with negative-charged bis(monoacylglycero)phosphate (BMP) at the internal vesicular membranes activates acid sphingomyelinase to generate ceramide for stabilizing lysosomal membranes. As the integrity of the lysosomal limiting membrane is critical to ensure cargo protein degradation within the acidic lumen, the disintegration of the lysosomal limiting membrane is lethal to cells. After the intake of high-fat diets, however, β-oxidation of fatty acids in the mitochondria generates reactive oxygen species, which enhance the oxidation of membrane linoleic acids to produce 4-hydroxy-2-nonenal (4-HNE). In addition, 4-HNE is produced during the heating of linoleic acid-rich vegetable oils and incorporated into the body via deep-fried foods. This endogenous and exogenous 4-HNE synergically causes an increase in its serum and organ levels to induce carbonylation of Hsp70.1 at Arg469, which facilitates its conformational change and access of activated μ-calpain to LL1. Therefore, the cleavage of Hsp70.1 occurs prior to its influx into the lysosomal lumen, which leads to lysosomal membrane permeabilization/rupture. The resultant leakage of cathepsins is responsible for lysosomal cell death, which would be one of the causative factors of lifestyle-related diseases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Isabel Maria Larus
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Miho Takemura
- Laboratory of Gene Function, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Hisashi Saito
- Division of Collaborative Research and Development, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Akihiro Ohashi
- Division of Collaborative Research and Development, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
4
|
Martínez-Orgado J, Martínez-Vega M, Silva L, Romero A, de Hoz-Rivera M, Villa M, del Pozo A. Protein Carbonylation as a Biomarker of Oxidative Stress and a Therapeutic Target in Neonatal Brain Damage. Antioxidants (Basel) 2023; 12:1839. [PMID: 37891918 PMCID: PMC10603858 DOI: 10.3390/antiox12101839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress (OS) constitutes a pivotal factor within the mechanisms underlying brain damage, for which the immature brain is particularly vulnerable. This vulnerability is caused by the abundance of immature oligodendrocytes in the immature brain, which are highly susceptible to OS-induced harm. Consequently, any injurious process involving OS within the immature brain can lead to long-term myelination impairment. Among the detrimental repercussions of OS, protein carbonylation stands out as a prominently deleterious consequence. Noteworthy elevation of protein carbonylation is observable across diverse models of neonatal brain injury, following both diffuse and focal hypoxic-ischemic insults, as well as intraventricular hemorrhage, in diverse animal species encompassing rodents and larger mammals, and at varying stages of brain development. In the immature brain, protein carbonylation manifests as a byproduct of reactive nitrogen species, bearing profound implications for cell injury, particularly in terms of inflammation amplification. Moreover, protein carbonylation appears as a therapeutic target for mitigating neonatal brain damage. The administration of a potent antioxidant, such as cannabidiol, yields substantial neuroprotective effects. These encompass the reduction in cerebral damage, restoration of neurobehavioral performance, and preservation of physiological myelination. Such effects are linked to the modulation of protein carbonylation. The assessment of protein carbonylation emerges as a reliable method for comprehending the intricate mechanisms underpinning damage and neuroprotection within neonatal brain injury.
Collapse
Affiliation(s)
- José Martínez-Orgado
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
- Department of Neonatology, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain
| | - María Martínez-Vega
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Laura Silva
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Angela Romero
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - María de Hoz-Rivera
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - María Villa
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Aarón del Pozo
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| |
Collapse
|
5
|
Yamashima T, Seike T, Mochly-Rosen D, Chen CH, Kikuchi M, Mizukoshi E. Implication of the cooking oil-peroxidation product "hydroxynonenal" for Alzheimer's disease. Front Aging Neurosci 2023; 15:1211141. [PMID: 37693644 PMCID: PMC10486274 DOI: 10.3389/fnagi.2023.1211141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that reduces cell injuries via detoxification of lipid-peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal). It is generated exogenously via deep-frying of linoleic acid-rich cooking oils and/or endogenously via oxidation of fatty acids involved in biomembranes. Although its toxicity for human health is widely accepted, the underlying mechanism long remained unknown. In 1998, Yamashima et al. have formulated the "calpain-cathepsin hypothesis" as a molecular mechanism of ischemic neuronal death. Subsequently, they found that calpain cleaves Hsp70.1 which became vulnerable after the hydroxynonenal-induced carbonylation at the key site Arg469. Since it is the pivotal aberration that induces lysosomal membrane rupture, they suggested that neuronal death in Alzheimer's disease similarly occurs by chronic ischemia via the calpain-cathepsin cascade triggered by hydroxynonenal. For nearly three decades, amyloid β (Aβ) peptide was thought to be a root substance of Alzheimer's disease. However, because of both the insignificant correlations between Aβ depositions and occurrence of neuronal death or dementia, and the negative results of anti-Aβ medicines tested so far in the patients with Alzheimer's disease, the strength of the "amyloid cascade hypothesis" has been weakened. Recent works have suggested that hydroxynonenal is a mediator of programmed cell death not only in the brain, but also in the liver, pancreas, heart, etc. Increment of hydroxynonenal was considered an early event in the development of Alzheimer's disease. This review aims at suggesting ways out of the tunnel, focusing on the implication of hydroxynonenal in this disease. Herein, the mechanism of Alzheimer neuronal death is discussed by focusing on Hsp70.1 with a dual function as chaperone protein and lysosomal stabilizer. We suggest that Aβ is not a culprit of Alzheimer's disease, but merely a byproduct of autophagy/lysosomal failure resulting from hydroxynonenal-induced Hsp70.1 disorder. Enhancing ALDH2 activity to detoxify hydroxynonenal emerges as a promising strategy for preventing and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
6
|
Alvarez FJ, Alvarez AA, Rodríguez JJ, Lafuente H, Canduela MJ, Hind W, Blanco-Bruned JL, Alonso-Alconada D, Hilario E. Effects of Cannabidiol, Hypothermia, and Their Combination in Newborn Rats with Hypoxic-Ischemic Encephalopathy. eNeuro 2023; 10:ENEURO.0417-22.2023. [PMID: 37072177 PMCID: PMC10166126 DOI: 10.1523/eneuro.0417-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
Therapeutic hypothermia is well established as a standard treatment for infants with hypoxic-ischemic (HI) encephalopathy but it is only partially effective. The potential for combination treatments to augment hypothermic neuroprotection has major relevance. Our aim was to assess the effects of treating newborn rats following HI injury with cannabidiol (CBD) at 0.1 or 1 mg/kg, i.p., in normothermic (37.5°C) and hypothermic (32.0°C) conditions, from 7 d of age (neonatal phase) to 37 d of age (juvenile phase). Placebo or CBD was administered at 0.5, 24, and 48 h after HI injury. Two sensorimotor (rotarod and cylinder rearing) and two cognitive (novel object recognition and T-maze) tests were conducted 30 d after HI. The extent of brain damage was determined by magnetic resonance imaging, histologic evaluation, magnetic resonance spectroscopy, amplitude-integrated electroencephalography, and Western blotting. At 37 d, the HI insult produced impairments in all neurobehavioral scores (cognitive and sensorimotor tests), brain activity (electroencephalography), neuropathological score (temporoparietal cortexes and CA1 layer of hippocampus), lesion volume, magnetic resonance biomarkers of brain injury (metabolic dysfunction, excitotoxicity, neural damage, and mitochondrial impairment), oxidative stress, and inflammation (TNFα). We observed that CBD or hypothermia (to a lesser extent than CBD) alone improved cognitive and motor functions, as well as brain activity. When used together, CBD and hypothermia ameliorated brain excitotoxicity, oxidative stress, and inflammation, reduced brain infarct volume, lessened the extent of histologic damage, and demonstrated additivity in some parameters. Thus, coadministration of CBD and hypothermia could complement each other in their specific mechanisms to provide neuroprotection.
Collapse
Affiliation(s)
| | - Antonia A Alvarez
- Department of Cell Biology, University of the Basque Country, 48940 Leioa, Spain
| | - José J Rodríguez
- Functional Neuroanatomy Group, Biocruces Health Research Institute, 48903 Barakaldo, Spain
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Spain
- Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Hector Lafuente
- Biodonostia Health Research Institute, 20014 Donostia, Spain
| | - M Josune Canduela
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - William Hind
- Jazz Pharmaceuticals, Cambridge CB24 9BZ, United Kingdom
| | - José L Blanco-Bruned
- Department of Pediatric Surgery, Cruces University Hospital, OSI-Ezkerraldea Enkarterri Cruces, 48903 Barakaldo, Spain
| | | | - Enrique Hilario
- Department of Cell Biology, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
7
|
Yamashima T, Mori Y, Seike T, Ahmed S, Boontem P, Li S, Oikawa S, Kobayashi H, Yamashita T, Kikuchi M, Kaneko S, Mizukoshi E. Vegetable Oil-Peroxidation Product 'Hydroxynonenal' Causes Hepatocyte Injury and Steatosis via Hsp70.1 and BHMT Disorders in the Monkey Liver. Nutrients 2023; 15:nu15081904. [PMID: 37111122 PMCID: PMC10145254 DOI: 10.3390/nu15081904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hsp70.1 has a dual function as a chaperone protein and lysosomal stabilizer. In 2009, we reported that calpain-mediated cleavage of carbonylated Hsp70.1 causes neuronal death by inducing lysosomal rupture in the hippocampal CA1 neurons of monkeys after transient brain ischemia. Recently, we also reported that consecutive injections of the vegetable oil-peroxidation product 'hydroxynonenal' induce hepatocyte death via a similar cascade in monkeys. As Hsp70.1 is also related to fatty acid β-oxidation in the liver, its deficiency causes fat accumulation. The genetic deletion of betaine-homocysteine S-methyltransferase (BHMT) was reported to perturb choline metabolism, inducing a decrease in phosphatidylcholine and resulting in hepatic steatosis. Here, focusing on Hsp70.1 and BHMT disorders, we studied the mechanisms of hepatocyte degeneration and steatosis. Monkey liver tissues with and without hydroxynonenal injections were compared using proteomics, immunoblotting, immunohistochemical, and electron microscopy-based analyses. Western blotting showed that neither Hsp70.1 nor BHMT were upregulated, but an increased cleavage was observed in both. Proteomics showed a marked downregulation of Hsp70.1, albeit a two-fold increase in the carbonylated BHMT. Hsp70.1 carbonylation was negligible, in contrast to the ischemic hippocampus, which was associated with ~10-fold increments. Although histologically, the control liver showed very little lipid deposition, numerous tiny lipid droplets were seen within and around the degenerating/dying hepatocytes in monkeys after the hydroxynonenal injections. Electron microscopy showed permeabilization/rupture of lysosomal membranes, dissolution of the mitochondria and rough ER membranes, and proliferation of abnormal peroxisomes. It is probable that the disruption of the rough ER caused impaired synthesis of the Hsp70.1 and BHMT proteins, while impairment of the mitochondria and peroxisomes contributed to the sustained generation of reactive oxygen species. In addition, hydroxynonenal-induced disorders facilitated degeneration and steatosis in the hepatocytes.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
8
|
Yamashima T, Seike T, Oikawa S, Kobayashi H, Kido H, Yanagi M, Yamamiya D, Li S, Boontem P, Mizukoshi E. Hsp70.1 carbonylation induces lysosomal cell death for lifestyle-related diseases. Front Mol Biosci 2023; 9:1063632. [PMID: 36819480 PMCID: PMC9936620 DOI: 10.3389/fmolb.2022.1063632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease, type 2 diabetes, and non-alcoholic steatohepatitis (NASH) constitute increasingly prevalent disorders. Individuals with type 2 diabetes are well-known to be susceptible to Alzheimer's disease. Although the pathogenesis of each disorder is multifactorial and the causal relation remains poorly understood, reactive oxygen species (ROS)-induced lipid and protein oxidation conceivably plays a common role. Lipid peroxidation product was recently reported to be a key factor also for non-alcoholic steatohepatitis, because of inducing hepatocyte degeneration/death. Here, we focus on implication of the representative lipid-peroxidation product 'hydroxynonenal' for the cell degeneration/death of brain, pancreas, and liver. Since Hsp70.1 has dual roles as a chaperone and lysosomal membrane stabilizer, hydroxynonenal-mediated oxidative injury (carbonylation) of Hsp70.1 was highlighted. After intake of high-fat diets, oxidation of free fatty acids in mitochondria generates ROS which enhance oxidation of ω-6 polyunsaturated fatty acids (PUFA) involved within biomembranes and generate hydroxynonenal. In addition, hydroxynonenal is generated during cooking deep-fried foods with vegetable oils especially containing linoleic acids. These intrinsic and exogenous hydroxynonenal synergically causes an increase in its serum and organ levels to induce Hsp70.1 oxidation. As it is amphiphilic; being water-soluble but displays strong lipophilic characteristics, hydroxynonenal can diffuse within the cells and react with targets like senile and/or atheromatous plaques outside the cells. Hydroxynonenal can deepen and expand lysosomal injuries by facilitating 'calpain-mediated cleavage of the carbonylated Hsp70.1'. Despite the unique anatomical, physiological, and biochemical characteristics of each organ for its specific disease, there should be a common cascade of the cell degeneration/death which is caused by hydroxynonenal. This review aims to implicate hydroxynonenal-mediated Hsp70.1 carbonylation for lysosomal membrane permeabilization/rupture and the resultant cathepsin leakage for inducing cell degeneration/death. Given the tremendous number of worldwide people suffering various lifestyle-related diseases, it is valuable to consider how ω-6 PUFA-rich vegetable oils is implicated for the organ disorder.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,*Correspondence: Tetsumori Yamashima,
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Kido
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masahiro Yanagi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Daisuke Yamamiya
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
9
|
Implication of Vegetable Oil-Derived Hydroxynonenal in the Lysosomal Cell Death for Lifestyle-Related Diseases. Nutrients 2023; 15:nu15030609. [PMID: 36771317 PMCID: PMC9921130 DOI: 10.3390/nu15030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Lysosomes are membrane-bound vesicular structures that mediate degradation and recycling of damaged macromolecules and organelles within the cell. For ensuring the place of degradation within the acidic organelle, the integrity of the lysosomal-limiting membrane is critical in order to not injure the cell. As lysosomes fade away in response to acute intense insults or long-term mild insults, dissolving lysosomes are hardly detected during the phase of cell degeneration. If observed at the right time, however, lysosomal membrane rupture/permeabilization can be detected using an electron microscope. In both the experimental and clinical materials, here the author reviewed electron microphotographs showing disintegrity of the lysosomal-limiting membrane. Regardless of insults, cell types, organs, diseases, or species, leakage of lysosomal content occurred either by the apparent disruption of the lysosomal membrane (rupture) and/or through the ultrastructurally blurred membrane (permeabilization). Since lysosomal rupture occurs in the early phase of necrotic cell death, it is difficult to find vivid lysosomes after the cell death or disease are completed. A lipid peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal), is incorporated into the serum by the intake of ω-6 polyunsaturated fatty acid-rich vegetable oils (exogenous), and/or is generated by the peroxidation of membrane lipids due to the oxidative stress (intrinsic). Exogenous and intrinsic hydroxynonenal may synergically oxidize the representative cell stress protein Hsp70.1, which has dual functions as a 'chaperone protein' and 'lysosomal stabilizer'. Hydroxynonenal-mediated carbonylation of Hsp70.1 facilitates calpain-mediated cleavage to induce lysosomal membrane rupture and the resultant cell death. Currently, vegetable oils such as soybean and canola oils are the most widely consumed cooking oils at home and in restaurants worldwide. Accordingly, high linoleic acid content may be a major health concern, because cells can become damaged by its major end product, hydroxynonenal. By focusing on dynamic changes of the lysosomal membrane integrity at the ultrastructural level, implications of its rupture/permeabilization on cell death/degeneration were discussed as an etiology of lifestyle-related diseases.
Collapse
|
10
|
Seike T, Boontem P, Yanagi M, Li S, Kido H, Yamamiya D, Nakagawa H, Okada H, Yamashita T, Harada K, Kikuchi M, Shiraishi Y, Ozaki N, Kaneko S, Yamashima T, Mizukoshi E. Hydroxynonenal Causes Hepatocyte Death by Disrupting Lysosomal Integrity in Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2022; 14:925-944. [PMID: 35787976 PMCID: PMC9500440 DOI: 10.1016/j.jcmgh.2022.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS The lipid oxidation is a key factor for damaging hepatocytes and causing cell death. However, the mechanisms underlying hepatocyte death and the role of the most popular lipid peroxidation product 4-hydroxy-2-nonenal (HNE) in nonalcoholic steatohepatitis (NASH) remains unclear. METHODS We demonstrated using hepatoma cell lines, a NASH mouse model, HNE-treated monkeys, and biopsy specimens from patients with NASH that HNE induced hepatocyte death by disintegrating the lysosomal limiting membrane. RESULTS The degree of HNE deposition in human NASH hepatocytes was more severe in cases with high lobular inflammation, ballooning, and fibrosis scores, and was associated with enlargement of the staining of lysosomes in hepatocytes. In in vitro experiments, HNE activated μ-calpain via G-protein coupled receptor (GPR) 120. The resultant rupture/permeabilization of the lysosomal limiting membrane induced the leakage of cathepsins from lysosomes and hepatocyte death. The blockade of G-protein coupled receptor 120 (GPR120) or μ-calpain expression suppressed lysosomal membrane damage and hepatocyte death by HNE. Alda-1, which activates aldehyde dehydrogenase 2 to degrade HNE, prevented HNE-induced hepatocyte death. Intravenous administration of HNE to monkeys for 6 months resulted in hepatocyte death by a mechanism similar to that of cultured cells. In addition, intraperitoneal administration of Alda-1 to choline-deficient, amino-acid defined treated mice for 8 weeks inhibited HNE deposition, decreased liver inflammation, and disrupted lysosomal membranes in hepatocytes, resulting in improvement of liver fibrosis. CONCLUSIONS These results provide novel insights into the mechanism of hepatocyte death in NASH and will contribute to the development of new therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masahiro Yanagi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hidenori Kido
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Daisuke Yamamiya
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hidetoshi Nakagawa
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yoshitake Shiraishi
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tetsumori Yamashima
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Tetsumori Yamashima, MD, PhD, Research Fellow, Monkey Project Team Leader, Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa 920-8641, Japan. tel: +81-76-265-2230; fax: +81-76-234-4250.
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Correspondence Address correspondence to: Eishiro Mizukoshi, MD, PhD, Associate Professor, Department of Gastroenterology,
| |
Collapse
|
11
|
Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. The Reactive Species Interactome in the Brain. Antioxid Redox Signal 2021; 35:1176-1206. [PMID: 34498917 DOI: 10.1089/ars.2020.8238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Redox pioneer Helmut Sies attempted to explain reactive species' challenges faced by organelles, cells, tissues, and organs via three complementary definitions: (i) oxidative stress, that is, the disturbance in the prooxidant-antioxidant defense balance in favor of the prooxidants; (ii) oxidative eustress, the low physiological exposure to prooxidants; and (iii) oxidative distress, the supraphysiological exposure to prooxidants. Recent Advances: Identification, concentration, and interactions are the most important elements to improve our understanding of reactive species in physiology and pathology. In this context, the reactive species interactome (RSI) is a new multilevel redox regulatory system that identifies reactive species families, reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species, and it integrates their interactions with their downstream biological targets. Critical Issues: We propose a united view to fully combine reactive species identification, oxidative eustress and distress, and the RSI system. In this view, we also propose including the forgotten reactive carbonyl species, an increasingly rediscovered reactive species family related to the other reactive families, and key enzymes within the RSI. We focus on brain physiology and pathology to demonstrate why this united view should be considered. Future Directions: More studies are needed for an improved understanding of the contributions of reactive species through their identification, concentration, and interactions, including in the brain. Appreciating the RSI in its entirety should unveil new molecular players and mechanisms in physiology and pathology in the brain and elsewhere.
Collapse
Affiliation(s)
- Elise Malard
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Elodie Pérès
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Laurent Chatre
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| |
Collapse
|
12
|
Boontem P, Yamashima T. Hydroxynonenal causes Langerhans cell degeneration in the pancreas of Japanese macaque monkeys. PLoS One 2021; 16:e0245702. [PMID: 34748564 PMCID: PMC8575276 DOI: 10.1371/journal.pone.0245702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background For their functions of insulin biosynthesis and glucose- and fatty acid- mediated insulin secretion, Langerhans β-cells require an intracellular milieu rich in oxygen. This requirement makes β-cells, with their constitutively low antioxidative defense, susceptible to the oxidative stress. Although much progress has been made in identifying its molecular basis in experimental systems, whether the oxidative stress due to excessive fatty acids plays a crucial role in the Langerhans cell degeneration in primates is still debated. Methods Focusing on Hsp70.1, which has dual functions as molecular chaperone and lysosomal stabilizer, the mechanism of lipotoxicity to Langerhans cells was studied using macaque monkeys after the consecutive injections of the lipid peroxidation product ‘hydroxynonenal’. Based on the ‘calpain-cathepsin hypothesis’ formulated in 1998, calpain activation, Hsp70.1 cleavage, and lysosomal integrity were studied by immunofluorescence histochemistry, electron microscopy, and Western blotting. Results Light microscopy showed more abundant vacuole formation in the hydroxynonenal-treated islet cells than the control cells. Electron microscopy showed that vacuolar changes, which were identified as enlarged rough ER, occurred mainly in β-cells followed by δ-cells. Intriguingly, both cell types showed a marked decrease in insulin and somatostatin granules. Furthermore, they exhibited marked increases in peroxisomes, autophagosomes/autolysosomes, lysosomal and peroxisomal membrane rupture/permeabilization, and mitochondrial degeneration. Disrupted peroxisomes were often localized in the close vicinity of degenerating mitochondria or autolysosomes. Immunofluorescence histochemical analysis showed an increased co-localization of activated μ-calpain and Hsp70.1 with the extralysosomal release of cathepsin B. Western blotting showed increases in μ-calpain activation, Hsp70.1 cleavage, and expression of the hydroxynonenal receptor GPR109A. Conclusions Taken together, these data implicate hydroxynonenal in both oxidation of Hsp70.1 and activation of μ-calpain. The calpain-mediated cleavage of the carbonylated Hsp70.1, may cause lysosomal membrane rupture/permeabilization. The low defense of primate Langerhans cells against hydroxynonenal and peroxisomally-generated hydrogen peroxide, was presumably overwhelmed to facilitate cell degeneration.
Collapse
Affiliation(s)
| | - Tetsumori Yamashima
- Departments of Cell Metabolism and Nutrition, Kanazawa, Japan
- Psychiatry and Behavioral Science, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
13
|
Mori Y, Oikawa S, Kurimoto S, Kitamura Y, Tada-Oikawa S, Kobayashi H, Yamashima T, Murata M. Proteomic analysis of the monkey hippocampus for elucidating ischemic resistance. J Clin Biochem Nutr 2020; 67:167-173. [PMID: 33041514 PMCID: PMC7533853 DOI: 10.3164/jcbn.19-78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023] Open
Abstract
It is well-known that the cornu Ammonis 1 (CA1) sector of hippocampus is vulnerable for the ischemic insult, whereas the dentate gyrus (DG) is resistant. Here, to elucidate its underlying mechanism, alternations of protein oxidation and expression of DG in the monkey hippocampus after ischemia-reperfusion by the proteomic analysis were studied by comparing CA1 data. Oxidative damage to proteins such as protein carbonylation interrupt the protein function. Carbonyl modification of molecular chaperone, heat shock 70 kDa protein 1 (Hsp70.1) was increased remarkably in CA1, but slightly in DG. In addition, expression levels of nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-2 (SIRT2) was significantly increased in DG after ischemia, but decreased in CA1. Accordingly, it is likely that SIRT2 upregulation and negligible changes of carbonylation of Hsp70.1 exert its neuroprotective effect in DG. On the contrary, carbonylation level of dihydropyrimidinase related protein 2 (DRP-2) and l-lactate dehydrogenase B chain (LDHB) were slightly increased in CA1 as shown previously, but remarkably increased in DG after ischemia. It is considered that DRP-2 and LDHB are specific targets of oxidative stress by ischemia insult and high carbonylation levels of DRP-2 may play an important role in modulating ischemic neuronal death.
Collapse
Affiliation(s)
- Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shota Kurimoto
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka-motomachi, Chikusa-ku, Nagoya, Aichi 464-8662, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsumori Yamashima
- Departments of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Takakura-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| |
Collapse
|
14
|
Liu W, Fu R, Wang Z, Liu S, Tang C, Li L, Yin D. Regular Aerobic Exercise-Alleviated Dysregulation of CAMKIIα Carbonylation to Mitigate Parkinsonism via Homeostasis of Apoptosis With Autophagy. J Neuropathol Exp Neurol 2020; 79:46-61. [PMID: 31750928 DOI: 10.1093/jnen/nlz106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated carbonylation of proteins with oxidative modification profiling in the striatum of aging and Parkinson disease (PD) rats, as well as the long-term effects of regular aerobic exercise on the carbonylation process and the damaging effects of PD vs habitual sedentary behavior. Regular aerobic exercise improved the PD rats' rotational behavior, increased tyrosine hydroxylase expression in both the striatum and substantia nigra pars compacta, and decreased α-synuclein expression significantly. Interestingly, apoptotic nuclei and autophagosomes were increased in the aerobic exercise PD rat striatum. Carbonylated protein Ca2+/calmodulin-dependent protein kinase alpha (CAMKIIα) was present in the middle-aged and aged groups but only in the sedentary, not the exercise, PD rat striatum. Notably, CAMKIIα was characterized by a 4-hydroxynonenal adduct. Regular aerobic exercise upregulated CAMKIIα expression level, activated the CAMK signaling pathway, and promoted the expression of autophagy markers Beclin1 and microtubule-associated proteins 1 A/1B light chain 3II. Aberrant carbonylation of CAMKII initiated age-related changes and might be useful as a potential biomarker of PD. Regular aerobic exercise alleviated protein carbonylation modification of CAMKIIα and regulated the CAMK signaling pathway, thereby affecting and regulating the homeostasis of apoptosis and autophagy in the striatum to alleviate the neurodegenerative process of PD lesions.
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Rang Fu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Shaopeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Li Li
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Dazhong Yin
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| |
Collapse
|
15
|
Yamashima T, Ota T, Mizukoshi E, Nakamura H, Yamamoto Y, Kikuchi M, Yamashita T, Kaneko S. Intake of ω-6 Polyunsaturated Fatty Acid-Rich Vegetable Oils and Risk of Lifestyle Diseases. Adv Nutr 2020; 11:1489-1509. [PMID: 32623461 PMCID: PMC7666899 DOI: 10.1093/advances/nmaa072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Although excessive consumption of deep-fried foods is regarded as 1 of the most important epidemiological factors of lifestyle diseases such as Alzheimer's disease, type 2 diabetes, and obesity, the exact mechanism remains unknown. This review aims to discuss whether heated cooking oil-derived peroxidation products cause cell degeneration/death for the occurrence of lifestyle diseases. Deep-fried foods cooked in ω-6 PUFA-rich vegetable oils such as rapeseed (canola), soybean, sunflower, and corn oils, already contain or intrinsically generate "hydroxynonenal" by peroxidation. As demonstrated previously, hydroxynonenal promotes carbonylation of heat-shock protein 70.1 (Hsp70.1), with the resultant impaired ability of cells to recycle damaged proteins and stabilize the lysosomal membrane. Until now, the implication of lysosomal/autophagy failure due to the daily consumption of ω-6 PUFA-rich vegetable oils in the progression of cell degeneration/death has not been reported. Since the "calpain-cathepsin hypothesis" was formulated as a cause of ischemic neuronal death in 1998, its relevance to Alzheimer's neuronal death has been suggested with particular attention to hydroxynonenal. However, its relevance to cell death of the hypothalamus, liver, and pancreas, especially related to appetite/energy control, is unknown. The hypothalamus senses information from both adipocyte-derived leptin and circulating free fatty acids. Concentrations of circulating fatty acid and its oxidized form, especially hydroxynonenal, are increased in obese and/or aged subjects. As overactivation of the fatty acid receptor G-protein coupled receptor 40 (GPR40) in response to excessive or oxidized fatty acids in these subjects may lead to the disruption of Ca2+ homeostasis, it should be evaluated whether GPR40 overactivation contributes to diverse cell death. Here, we describe the molecular implication of ω-6 PUFA-rich vegetable oil-derived hydroxynonenal in lysosomal destabilization leading to cell death. By oxidizing Hsp70.1, both the dietary PUFA- (exogenous) and the membrane phospholipid- (intrinsic) peroxidation product "hydroxynonenal," when combined, may play crucial roles in the occurrence of diverse lifestyle diseases including Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Yasuhiko Yamamoto
- Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | |
Collapse
|
16
|
Zhang X, Morikawa K, Mori Y, Zong C, Zhang L, Garner E, Huang C, Wu W, Chang J, Nagashima D, Sakurai T, Ichihara S, Oikawa S, Ichihara G. Proteomic analysis of liver proteins of mice exposed to 1,2-dichloropropane. Arch Toxicol 2020; 94:2691-2705. [PMID: 32435916 DOI: 10.1007/s00204-020-02785-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative agent for cholangiocarcinoma among offset color proof-printing workers in Japan. The aim of the present study was to characterize the molecular mechanisms of 1,2-DCP-induced hepatotoxic effects by proteomic analysis. We analyzed quantitatively the differential expression of proteins in the mouse liver and investigated the role of P450 in mediating the effects of 1,2-DCP. Male C57BL/6JJcl mice were exposed to 0, 50, 250, or 1250 ppm 1,2-DCP and treated with either 1-aminobenzotriazole (1-ABT), a nonselective P450 inhibitor, or saline, for 8 h/day for 4 weeks. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF/MS) was used to detect and identify proteins affected by the treatment. PANTHER overrepresentation test on the identified proteins was conducted. 2D-DIGE detected 61 spots with significantly different intensity between 0 and 250 ppm 1,2-DCP groups. Among them, 25 spots were identified by MALDI-TOF/TOF/MS. Linear regression analysis showed significant trend with 1,2-DCP level in 17 proteins in mice co-treated with 1-ABT. 1-ABT mitigated the differential expression of these proteins. The gene ontology enrichment analysis showed overrepresentation of proteins functionally related to nickel cation binding, carboxylic ester hydrolase activity, and catalytic activity. The results demonstrated that exposure to 1,2-DCP altered the expression of proteins related with catalytic and carboxylic ester hydrolase activities, and that such effect was mediated by P450 enzymatic activity.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.,Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, People's Republic of China
| | - Kota Morikawa
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yurie Mori
- Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Edwin Garner
- Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Chinyen Huang
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Wenting Wu
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jie Chang
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daichi Nagashima
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Sahoko Ichihara
- Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan
| | - Shinji Oikawa
- Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.
| |
Collapse
|
17
|
Zhang J, Liu D, Zhang M, Zhang Y. Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. Br J Pharmacol 2019; 176:4319-4339. [PMID: 29774530 PMCID: PMC6887687 DOI: 10.1111/bph.14363] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Excessive death of cardiac myocytes leads to many cardiac diseases, including myocardial infarction, arrhythmia, heart failure and sudden cardiac death. For the last several decades, most work on cell death has focused on apoptosis, which is generally considered as the only form of regulated cell death, whereas necrosis has been regarded to be an unregulated process. Recent findings reveal that necrosis also occurs in a regulated manner and that it is closely related to the physiology and pathophysiology of many organs, including the heart. The recognition of necrosis as a regulated process mandates a re-examination of cell death in the heart together with the mechanisms and therapy of cardiac diseases. In this study, we summarize the regulatory mechanisms of the programmed necrosis of cardiomyocytes, that is, the intrinsic (mitochondrial) and extrinsic (death receptor) pathways. Furthermore, the role of this programmed necrosis in various heart diseases is also delineated. Finally, we describe the currently known pharmacological inhibitors of several of the key regulatory molecules of regulated cell necrosis and the opportunities for their therapeutic use in cardiac disease. We intend to systemically summarize the recent progresses in the regulation and pathological significance of programmed cardiomyocyte necrosis along with its potential therapeutic applications to cardiac diseases. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Junxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Dairu Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| |
Collapse
|
18
|
Martín-Nieto J, Uribe ML, Esteve-Rudd J, Herrero MT, Campello L. A role for DJ-1 against oxidative stress in the mammalian retina. Neurosci Lett 2019; 708:134361. [PMID: 31276729 DOI: 10.1016/j.neulet.2019.134361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
Abstract
We have previously reported the expression of Parkinson disease-associated genes encoding α-synuclein, parkin and UCH-L1 in the retina across mammals. DJ-1, or parkinsonism-associated deglycase, is a redox-sensitive protein with putative roles in cellular protection against oxidative stress, among a variety of functions, acting through distinct pathways and mechanisms in a wide variety of tissues. Its function in counteracting oxidative stress in the retina, as it occurs in Parkinson and other human neurodegenerative diseases, is, however, poorly understood. In the present study, we address the expression of DJ-1 in the mammalian retina and its putative neuroprotective role in this tissue in a well-known model of parkinsonism, the rotenone-treated rat. As a result, we demonstrate that the DJ1 gene is expressed at both mRNA and protein levels in the neural retina and retinal pigment epithelium (RPE) of all mammalian species studied. We also present evidence that DJ-1 functions in the retina as a sensor of cellular redox homeostasis, which reacts to oxidative stress by increasing its intracellular levels and additionally becoming oxidized. Levels of α-synuclein also became upregulated, although parkin and UCH-L1 expression remained unchanged. It is inferred that DJ-1 likely exerts in the retina a potential neuroprotective role against oxidative stress, including α-synuclein oxidation and aggregation, which should be operative under both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain; Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef" (IMEM), Universidad de Alicante, 03080 Alicante, Spain.
| | - Mary Luz Uribe
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | - Julián Esteve-Rudd
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | - María Trinidad Herrero
- Neurociencia Clínica y Experimental (NiCE), Facultad de Medicina, Instituto de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, 30071 Murcia, Spain
| | - Laura Campello
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
19
|
Liu W, Xia Y, Kuang H, Wang Z, Liu S, Tang C, Yin D. Proteomic Profile of Carbonylated Proteins Screen the Regulation of Calmodulin-Dependent Protein Kinases-AMPK-Beclin1 in Aerobic Exercise-Induced Autophagy in Middle-Aged Rat Hippocampus. Gerontology 2019; 65:620-633. [PMID: 31242498 DOI: 10.1159/000500742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/04/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Carbonylation is an oxidative modification of the proteins and a marker of oxidative stress. The accumulation of toxic carbonylated proteins might be one of the onsets of pathogenesis in hippocampal aging or neurodegeneration. Enormous evidence indicates that regular aerobic exercise might alleviate the dysfunction of carbonylated proteins, but the adaptational mechanisms in response to exercise are unclear. OBJECTIVE This study explored the carbonyl stress mechanism in the hippocampus using proteomics and the role of calmodulin-dependent protein kinases (CAMK)-AMP-activated protein kinase (AMPK)-Beclin1 signaling pathways in alleviating aging or improving function with regular aerobic exercise. METHODS Twenty-four healthy 13-month-old male Sprague-Dawley rats (average 693.21 ± 68.85 g) were randomly divided into middle-aged sedentary control group (M-SED, n = 12) and middle-aged aerobic exercise runner group (M-EX, n = 12). The M-EX group participated in regular aerobic exercise - treadmill running - with exercise intensity increasing gradually from 50-55% to 65-70% of maximum oxygen consumption (V˙O2max) over 10 weeks. The targeted proteins of oxidative modification were profiled by avidin magnetic beads and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS). Western blots were used to test for molecular targets. RESULTS Regular aerobic exercise restores the intersessional habituation and rescues the hippocampus morphological structure in middle-aged rats. -ESI-Q-TOF-MS screened 56 carbonylated proteins only found in M-SED and 16 carbonylated proteins only found in M-EX, indicating aerobic exercise decreased carbonyl stress. Intriguingly, Ca2+/CAMK II alpha (CAMKIIα) was carbonylated only in the M-SED group at the oxidative modification site of 4-hydroxynonenal adducts, while regular aerobic exercise alleviated CAMKIIα carbonylation. Regular aerobic exercise significantly increased the expression and phosphorylated, active levels of CAMKIIα and AMPKα1. It also upregulated the expression of Beclin1 and microtubule-associated protein1-light chain 3 in the hippocampus. CONCLUSION Quantification of CAMKIIα carbonylation may be a potential biomarker of the hippocampal senescence. Additionally, regular aerobic exercise-induced autophagy via the activation of CAMK-AMPK-Beclin1 signaling pathway may mitigate the hippocampal neurodegeneration or pathological changes by alleviating protein carbonylation (carbonyl stress).
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China, .,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA,
| | - Yan Xia
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Heyu Kuang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Shaopeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Dazhong Yin
- Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Nagashima D, Zhang L, Kitamura Y, Ichihara S, Watanabe E, Zong C, Yamano Y, Sakurai T, Oikawa S, Ichihara G. Proteomic analysis of hippocampal proteins in acrylamide-exposed Wistar rats. Arch Toxicol 2019; 93:1993-2006. [DOI: 10.1007/s00204-019-02484-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023]
|
21
|
Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res 2019; 74:18-30. [PMID: 30710597 DOI: 10.1016/j.plipres.2019.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Beyond guarding the cellular proteome the major stress inducible heat shock protein Hsp70 has been shown to interact with lipids. Non-cytosolic Hsp70 stabilizes membranes during stress challenges and, in pathophysiological states, facilitates endocytosis, counteracts apoptotic mechanisms, sustains survival pathways or represents a signal that can be recognized by the immune system. Disease-coupled lipid-associated functions of Hsp70 may be targeted via distinct subcellular localizations of Hsp70 itself or its specific interacting lipids. With a special focus on interacting lipids, here we discuss localization-dependent roles of the membrane-bound Hsp70 in the context of its therapeutic potential, particularly in cancer and neurodegenerative diseases.
Collapse
|
22
|
Dibas J, Al-Saad H, Dibas A. Basics on the use of acid-sensing ion channels' inhibitors as therapeutics. Neural Regen Res 2019; 14:395-398. [PMID: 30539804 PMCID: PMC6334597 DOI: 10.4103/1673-5374.245466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Since the discovery of acid-sensing ion channels in 1997, their importance in the health of neurons and other non-neuronal cells has gained significant importance. Acid-sensing ion channels play important roles in mediating pain sensation during diseases such as stroke, inflammation, arthritis, cancer, and recently migraine. More interestingly, acid-sensing ion channels may explain the sex differences in pain between males and females. Also, the ability of acid-sensing ion channel blockers to exert neuroprotective effects in a number of neurodegenerative diseases has added a new dimension to their therapeutic value. The current failure rate of ~45% of new drugs (due to toxicity issues) and saving of up to 7 years in the life span of drug approval makes drug repurposing a high priority. If acid-sensing ion channels’ blockers undergo what is known as “drug repurposing”, there is a great potential to bring them as medications with known safety profiles to new patient populations. However, the route of administration remains a big challenge due to their poor penetration of the blood brain and retinal barriers. In this review, the promise of using acid-sensing ion channel blockers as neuroprotective drugs is discussed.
Collapse
Affiliation(s)
- Jamileh Dibas
- Faculty of Pharmacy, Applied University, Amman, Jordan
| | - Houssam Al-Saad
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Adnan Dibas
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| |
Collapse
|
23
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
24
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
25
|
Dibas A, Millar C, Al-Farra A, Yorio T. Neuroprotective Effects of Psalmotoxin-1, an Acid-Sensing Ion Channel (ASIC) Inhibitor, in Ischemia Reperfusion in Mouse Eyes. Curr Eye Res 2018; 43:921-933. [PMID: 29595330 DOI: 10.1080/02713683.2018.1454478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE The purpose of the current study is to assess changes in the expression of Acid-Sensing Ion Channel (ASIC)1a and ASIC2 in retinal ganglion cells (RGCs) after retinal ischemia and reperfusion (I/R) injury and to test if inhibition of ASIC1a provides RGC neuroprotection. METHODS Transient ischemia was induced in one eye of C57BL/6 mice by raising intraocular pressure to 120 mmHg for 60 min followed by retinal reperfusion by restoring normal pressure. RGC function was measured by Pattern electroretinography (PERG). In addition, retinal ASIC1a and ASIC2 were observed by immunohistochemistry and western blot. Changes in calpain, fodrin, heat shock protein 70 (HSP70), Brn3a, super oxide dismutase-1 (SOD1), catalase, and glutathione perioxidase-4 (GPX4) protein levels were assessed by western blot. RGC numbers were measured by immunohistochemistry on whole retinal flat mounts using anti-RNA binding protein with multiple splicing (RBPMS) antibodies. Intravitreal injection of psalmotoxin-1, a selective ASIC1a blocker, was used to assess the neuroprotective effect of ASIC1a inhibition. RESULTS Levels of ASIC1a and ASIC2 after I/R increased in RGCs. Upregulation of ASIC1a but not ASIC2 was attenuated by intravitreal injection of psalmotoxin-1. I/R induced activation of calpain and degradation of fodrin, HSP70, and reduction in Brn3a. In contrast, while psalmotoxin-1 attenuated calpain activation and increased Brn3a levels, it failed to block HSP70 degradation. Unlike SOD1 protein which was reduced, catalase protein levels increased after I/R. Psalmotoxin-1, although not affecting SOD1 and GPX4, increased catalase levels significantly. Psalmotoxin-1 also increased RBPMS-labeled RGCs following I/R as judged by immunohistochemistry of retinal flat mounts. Finally, psalmotoxin-1 enhanced the amplitude of PERG following I/R, suggesting partial rescue of RGC function. CONCLUSION Psalmotoxin-1 appears to exert a neuroprotective effect under ischemic insults and targeting inhibition of ASICs may represent a new therapeutic approach in ischemic retinal diseases.
Collapse
Affiliation(s)
- Adnan Dibas
- a North Texas Eye Research Institute, Dept. of Pharmacology & Neuroscience , University of North Texas Health Science Center at Fort Worth, Fort Worth , TX , USA
| | - Cameron Millar
- a North Texas Eye Research Institute, Dept. of Pharmacology & Neuroscience , University of North Texas Health Science Center at Fort Worth, Fort Worth , TX , USA
| | | | - Thomas Yorio
- a North Texas Eye Research Institute, Dept. of Pharmacology & Neuroscience , University of North Texas Health Science Center at Fort Worth, Fort Worth , TX , USA
| |
Collapse
|
26
|
Ou Y, Weber SG. Higher Aminopeptidase Activity Determined by Electroosmotic Push-Pull Perfusion Contributes to Selective Vulnerability of the Hippocampal CA1 Region to Oxygen Glucose Deprivation. ACS Chem Neurosci 2018; 9:535-544. [PMID: 29078045 DOI: 10.1021/acschemneuro.7b00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been known for over a century that the hippocampus, the center for learning and memory in the brain, is selectively vulnerable to ischemic damage, with the CA1 being more vulnerable than the CA3. It is also known that leucine enkephalin, or YGGFL, is neuroprotective. We hypothesized that the extracellular hydrolysis of YGGFL may be greater in the CA1 than the CA3, which would lead to the observed difference in susceptibility to ischemia. In rat organotypic hippocampal slice cultures, we estimated the Michaelis constant and the maximum velocity for membrane-bound aminopeptidase activity in the CA1 and CA3 regions. Using electroosmotic push-pull perfusion and offline capillary liquid chromatography, we inferred enzyme activity based on the production rate of GGFL, a natural and inactive product of the enzymatic hydrolysis of YGGFL. We found nearly 3-fold higher aminopeptidase activity in the CA1 than the CA3. The aminopeptidase inhibitor bestatin significantly reduced hydrolysis of YGGFL in both regions by increasing apparent Km. Based on propidium iodide cell death measurements 24 h after oxygen-glucose deprivation, we demonstrate that inhibition of aminopeptidase activity using bestatin selectively protected CA1 against delayed cell death due to oxygen-glucose deprivation and that this neuroprotection occurs through enkephalin-dependent pathways.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Ichihara S, Suzuki Y, Chang J, Kuzuya K, Inoue C, Kitamura Y, Oikawa S. Involvement of oxidative modification of proteins related to ATP synthesis in the left ventricles of hamsters with cardiomyopathy. Sci Rep 2017; 7:9243. [PMID: 28835655 PMCID: PMC5569096 DOI: 10.1038/s41598-017-08546-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammation enhanced by accumulation of reactive oxygen species plays an essential role in the progression of cardiovascular diseases. Using the 2D-oxyblot analysis and 2D-difference image gel electrophoresis (2D-DIGE), we compared the levels of ROS-induced carbonyl modification of myocardial proteins in the whole left ventricles between 6-week-old hamsters with dilated (TO-2) and hypertrophic cardiomyopathy (Bio14.6) and control hamsters (F1B). Then, 2D electrophoresis combined with MALDI-TOF/TOF tandem mass spectrometry detected 18 proteins with increased carbonyl level in cardiomyopathy hamsters compared with control hamster. Carbonyl modification of proteins related to ATP synthesis, including citric acid cycle and electron transport system, was observed in the hearts of hamsters with both types of cardiomyopathy. Further analysis indicated that left ventricular carbonyl production correlated negatively with succinyl-CoA:3-ketoacid-coenzyme A transferase 1 activity (r 2 = 0.60, P = 0.0007) and ATP concentration (r 2 = 0.29, P = 0.037), suggesting that protein carbonylation has negative effects on the levels of these biomolecules. Furthermore, carbonyl production significantly correlated with plasma Troponin T level (r 2 = 0.33, P = 0.026). Reduction of energy metabolism by oxidative damage may contribute to the development of left ventricular impairment in cardiomyopathy.
Collapse
Affiliation(s)
- Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Tsu, Japan.
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan.
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan.
| | - Yuka Suzuki
- Graduate School of Regional Innovation Studies, Tsu, Japan
- Community-University Research Cooperation Center, Mie University, Tsu, Japan
| | - Jie Chang
- Graduate School of Regional Innovation Studies, Tsu, Japan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Kentaro Kuzuya
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
| | - Chisa Inoue
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
28
|
Can 'calpain-cathepsin hypothesis' explain Alzheimer neuronal death? Ageing Res Rev 2016; 32:169-179. [PMID: 27306474 DOI: 10.1016/j.arr.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
Neurons are highly specialized post-mitotic cells, so their homeostasis and survival depend on the tightly-regulated, continuous protein degradation, synthesis, and turnover. In neurons, autophagy is indispensable to facilitate recycling of long-lived, damaged proteins and organelles in a lysosome-dependent manner. Since lysosomal proteolysis under basal conditions performs an essential housekeeping function, inhibition of the proteolysis exacerbates level of neurodegeneration. The latter is characterized by an accumulation of abnormal proteins or organelles within autophagic vacuoles which reveal as 'granulo-vacuolar degenerations' on microscopy. Heat-shock protein70.1 (Hsp70.1), as a means of molecular chaperone and lysosomal stabilizer, is a potent survival protein that confers neuroprotection against diverse stimuli, but its depletion induces neurodegeneration via autophagy failure. In response to hydroxynonenal generated from linoleic or arachidonic acids by the reactive oxygen species, a specific oxidative injury 'carbonylation' occurs at the key site Arg469 of Hsp70.1. Oxidative stress-induced carbonylation of Hsp70.1, in coordination with the calpain-mediated cleavage, leads to lysosomal destabilization/rupture and release of cathepsins with the resultant neuronal death. Hsp70.1 carbonylation which occurs anywhere in the brain is indispensable for neuronal death, but extent of calpain activation should be more crucial for determining the cell death fate. Importantly, not only acute ischemia during stroke but also chronic ischemia due to ageing may cause calpain activation. Here, role of Hsp70.1-mediated lysosomal rupture is discussed by comparing ischemic and Alzheimer neuronal death. A common neuronal death cascade may exist between cerebral ischemia and Alzheimer's disease.
Collapse
|
29
|
Lafuente H, Pazos MR, Alvarez A, Mohammed N, Santos M, Arizti M, Alvarez FJ, Martinez-Orgado JA. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia. Front Neurosci 2016; 10:323. [PMID: 27462203 PMCID: PMC4940392 DOI: 10.3389/fnins.2016.00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult.
Collapse
Affiliation(s)
- Hector Lafuente
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | - Maria R. Pazos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Antonia Alvarez
- Department of Cell Biology, University of the Basque CountryLeioa, Spain
| | - Nagat Mohammed
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Martín Santos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Maialen Arizti
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | | | - Jose A. Martinez-Orgado
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
- Department of Neonatology, Hospital Clínico San Carlos–Instituto de Investigación Sanitaria San Carlos (IdISSC)Madrid, Spain
| |
Collapse
|
30
|
Xu Y, Wang J, Song X, Wei R, He F, Peng G, Luo B. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 2016; 120:97-105. [PMID: 26562519 DOI: 10.1016/j.brainresbull.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
Many studies have demonstrated the key role of lysosomes in ischemic cell death in the brain and have led to the "lysosomocentric" hypothesis. In this hypothesis, the release of cathepsin-B due to a change of lysosomal membrane permeabilization (LMP) or rupture is critical, and this can be prevented by its inhibitors CA074 and CA074-me. However, the role of CA074-me in neuronal death and its effect on the change of lysosomal membrane integrity after global cerebral ischemia/reperfusion (I/R) injury is not clear, so we investigated this here. Rat hippocampal CA1 neuronal death was evaluated after 20-min global cerebral I/R injury. CA074-me (1 μg, 10 μg) were given intracerebroventricularly 1h before ischemia or 1h post reperfusion. The changes of heat shock protein 70 (Hsp70), cathepsin-B, lysosomal-associated membrane protein 1 (LAMP-1), receptor-interacting protein 3 (RIP3), and the change of lysosomal pH were evaluated respectively. Hippocampal CA1 neuronal programmed necrosis induced by global cerebral I/R injury was prevented by CA074-me both pre-treatment and post-treatment. Diffuse cytoplasmic cathepsin-B and LAMP-1 immunostaining synchronized with the pyknotic nuclear changes 2 days post reperfusion, and a rise of lysosomal pH with the leakage of DND-153, a dye of lysosomes, after oxygen-glucose deprivation (OGD) was detected. Both of these changes demonstrated the rupture of lysosomal membrane and the leakage of cathepsin-B, and this was strongly inhibited by CA074-me pre-treatment. The overexpression and nuclear translocation of RIP3 and the reduction of NAD(+) level after I/R injury were also inhibited, while the upregulation of Hsp70 was strengthened by CA074-me pre-treatment. Delayed fulminant leakage of cathepsin-B due to lysosomal rupture is a critical harmful factor in neuronal programmed necrosis induced by 20-min global I/R injury. In addition to being an inhibitor of cathepsin-B, CA074-me may have an indirect neuroprotective effect by maintaining lysosomal membrane integrity and protecting against lysosomal rupture.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Jingye Wang
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Xinghui Song
- Core Facilities, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ruili Wei
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Guoping Peng
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Benyan Luo
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
31
|
Furukawa A, Koriyama Y. [A potential of novel therapeutic approach by heat shock protein 70 expression in retinitis pigmentosa]. Nihon Yakurigaku Zasshi 2015; 146:321-6. [PMID: 26657123 DOI: 10.1254/fpj.146.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
33
|
Furukawa A, Koriyama Y. A role of Heat Shock Protein 70 in Photoreceptor Cell Death: Potential as a Novel Therapeutic Target in Retinal Degeneration. CNS Neurosci Ther 2015; 22:7-14. [PMID: 26507240 DOI: 10.1111/cns.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023] Open
Abstract
Retinal degenerative diseases (RDs) such as retinitis pigmentosa (RP) are a genetically heterogeneous group of disorders characterized by night blindness and peripheral vision loss, which caused by the dysfunction and death of photoreceptor cells. Although many causative gene mutations have been reported, the final common end stage is photoreceptor cell death. Unfortunately, no effective treatments or therapeutic agents have been discovered. Heat shock protein 70 (HSP70) is highly conserved and has antiapoptotic activities. A few reports have shown that HSP70 plays a role in RDs. Thus, we focused on the role of HSP70 in photoreceptor cell death. Using the N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death model in mice, we could examine two stages of the novel cell death mechanism; the early stage, including HSP70 cleavage through protein carbonylation by production of reactive oxygen species, lipid peroxidation and Ca(2+) influx/calpain activation, and the late stage of cathepsin and/or caspase activation. The upregulation of intact HSP70 expression by its inducer is likely to protect photoreceptor cells. In this review, we focus on the role of HSP70 and the novel cell death signaling process in RDs. We also describe candidate therapeutic agents for RDs.
Collapse
Affiliation(s)
- Ayako Furukawa
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
34
|
Lee JG, McKinney KQ, Lee YY, Chung HN, Pavlopoulos AJ, Jung KY, Kim WK, Kuroda MJ, Han DK, Hwang S. A draft map of rhesus monkey tissue proteome for biomedical research. PLoS One 2015; 10:e0126243. [PMID: 25974132 PMCID: PMC4431823 DOI: 10.1371/journal.pone.0126243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/28/2015] [Indexed: 01/14/2023] Open
Abstract
Though the rhesus monkey is one of the most valuable non-human primate animal models for various human diseases because of its manageable size and genetic and proteomic similarities with humans, proteomic research using rhesus monkeys still remains challenging due to the lack of a complete protein sequence database and effective strategy. To investigate the most effective and high-throughput proteomic strategy, comparative data analysis was performed employing various protein databases and search engines. The UniProt databases of monkey, human, bovine, rat and mouse were used for the comparative analysis and also a universal database with all protein sequences from all available species was tested. At the same time, de novo sequencing was compared to the SEQUEST search algorithm to identify an optimal work flow for monkey proteomics. Employing the most effective strategy, proteomic profiling of monkey organs identified 3,481 proteins at 0.5% FDR from 9 male and 10 female tissues in an automated, high-throughput manner. Data are available via ProteomeXchange with identifier PXD001972. Based on the success of this alternative interpretation of MS data, the list of proteins identified from 12 organs of male and female subjects will benefit future rhesus monkey proteome research.
Collapse
Affiliation(s)
- Jin-Gyun Lee
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Kimberly Q. McKinney
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Yong-Yook Lee
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Hae-Na Chung
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Antonis J. Pavlopoulos
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Kook Y. Jung
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Marcelo J. Kuroda
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - David K. Han
- Department of Cell Biology and Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sunil Hwang
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
36
|
Hsu WL, Yoshioka T. Role of TRP channels in the induction of heat shock proteins (Hsps) by heating skin. Biophysics (Nagoya-shi) 2015; 11:25-32. [PMID: 27493511 PMCID: PMC4736782 DOI: 10.2142/biophysics.11.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure.
Collapse
Affiliation(s)
- Wen-Li Hsu
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; The Institute of Basic Medical Sciences, National Cheng Kung University Medical College, 1 University Road, Tainan 70101, Taiwan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
37
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Hu S, Huang H, Ichihara G. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2015; 282:151-60. [PMID: 25448045 DOI: 10.1016/j.taap.2014.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn(2+))-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn(2+)-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhenlie Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China; Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Jie Chang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shijie Hu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China
| | - Hanlin Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| |
Collapse
|
38
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
39
|
Gellert M, Hanschmann EM, Lepka K, Berndt C, Lillig CH. Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1575-87. [PMID: 25450486 DOI: 10.1016/j.bbagen.2014.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The cytoskeleton, unlike the bony vertebrate skeleton or the exoskeleton of invertebrates, is a highly dynamic meshwork of protein filaments that spans through the cytosol of eukaryotic cells. Especially actin filaments and microtubuli do not only provide structure and points of attachments, but they also shape cells, they are the basis for intracellular transport and distribution, all types of cell movement, and--through specific junctions and points of adhesion--join cells together to form tissues, organs, and organisms. SCOPE OF REVIEW The fine tuned regulation of cytoskeletal dynamics is thus indispensible for cell differentiation and all developmental processes. Here, we discussed redox signalling mechanisms that control this dynamic remodeling. Foremost, we emphasised recent discoveries that demonstrated reversible thiol and methionyl switches in the regulation of actin dynamics. MAJOR CONCLUSIONS Thiol and methionyl switches play an essential role in the regulation of cytoskeletal dynamics. GENERAL SIGNIFICANCE The dynamic remodeling of the cytoskeleton is controlled by various redox switches. These mechanisms are indispensible during development and organogenesis and might contribute to numerous pathological conditions. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Manuela Gellert
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Eva-Maria Hanschmann
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Klaudia Lepka
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Carsten Berndt
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| |
Collapse
|
40
|
Zhu H, Yoshimoto T, Yamashima T. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J Biol Chem 2014; 289:27432-43. [PMID: 25074941 PMCID: PMC4183783 DOI: 10.1074/jbc.m114.560334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/18/2014] [Indexed: 12/17/2022] Open
Abstract
The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion.
Collapse
Affiliation(s)
- Hong Zhu
- From the Departments of Restorative Neurosurgery, Molecular Pharmacology, and
| | | | - Tetsumori Yamashima
- From the Departments of Restorative Neurosurgery, Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Japan
| |
Collapse
|
41
|
Rogowska-Wrzesinska A, Wojdyla K, Nedić O, Baron CP, Griffiths HR. Analysis of protein carbonylation--pitfalls and promise in commonly used methods. Free Radic Res 2014; 48:1145-62. [PMID: 25072785 DOI: 10.3109/10715762.2014.944868] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the pathophysiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods.
Collapse
Affiliation(s)
- A Rogowska-Wrzesinska
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark , Odense , Denmark
| | | | | | | | | |
Collapse
|
42
|
Luo C, Ren H, Wan JB, Yao X, Zhang X, He C, So KF, Kang JX, Pei Z, Su H. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J Lipid Res 2014; 55:1288-97. [PMID: 24875538 DOI: 10.1194/jlr.m046466] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 12/13/2022] Open
Abstract
Transient global cerebral ischemia, one of the consequences of cardiac arrest and cardiovascular surgery, usually leads to delayed death of hippocampal cornu Ammonis1 (CA1) neurons and cognitive deficits. Currently, there are no effective preventions or treatments for this condition. Omega-3 (ω-3) PUFAs have been shown to have therapeutic potential in a variety of neurological disorders. Here, we report that the transgenic mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs, were protected from global cerebral ischemia injury. The results of the study show that the hippocampal CA1 neuronal loss and cognitive deficits induced by global ischemia insult were significantly less severe in fat-1 mice than in WT mice controls. The protection against global cerebral ischemia injury was closely correlated with increased production of resolvin D1, suppressed nuclear factor-kappa B activation, and reduced generation of pro-inflammatory mediators in the hippocampus of fat-1 mice compared with WT mice controls. Our study demonstrates that fat-1 mice with high endogenous ω-3 PUFAs exhibit protective effects on hippocampal CA1 neurons and cognitive functions in a global ischemia injury model.
Collapse
Affiliation(s)
- Chuanming Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaojing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
43
|
Oikawa S, Kobayashi H, Kitamura Y, Zhu H, Obata K, Minabe Y, Dazortsava M, Ohashi K, Tada-Oikawa S, Takahashi H, Yata K, Murata M, Yamashima T. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion. Free Radic Res 2014; 48:694-705. [DOI: 10.3109/10715762.2014.901509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hong Zhu
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kumi Obata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yoshio Minabe
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Maryia Dazortsava
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kyoko Ohashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata,
Niigata, Japan
| | - Kenichiro Yata
- Department of Neurology, Mie University Graduate School of Medicine,
Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Tetsumori Yamashima
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| |
Collapse
|
44
|
Chang J, Oikawa S, Iwahashi H, Kitagawa E, Takeuchi I, Yuda M, Aoki C, Yamada Y, Ichihara G, Kato M, Ichihara S. Expression of proteins associated with adipocyte lipolysis was significantly changed in the adipose tissues of the obese spontaneously hypertensive/NDmcr-cp rat. Diabetol Metab Syndr 2014; 6:8. [PMID: 24468282 PMCID: PMC3937142 DOI: 10.1186/1758-5996-6-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/09/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The etiology of the metabolic syndrome is complex, and is determined by the interplay of both genetic and environmental factors. The present study was designed to identify genes and proteins in the adipose tissues with altered expression in the spontaneously hypertensive/NIH -corpulent rat, SHR/NDmcr-cp (CP) and to find possible molecular targets associated with the pathogenesis or progression of obesity related to the metabolic syndrome. METHODS We extracted RNAs and proteins from the epididymal adipose tissues in CP, SHR/Lean (Lean), and Wistar Kyoto (WKY) rats and performed microarray analysis and two-dimensional difference in gel electrophoresis (2D-DIGE) linked to a matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS). RESULTS The results showed different mRNA and protein expression levels in the adipose tissue: oligo DNA microarray identified 33 genes that were significantly (P < 0.01) up-regulated and 17 genes significantly down-regulated in CP compared with WKY and Lean rats at both 6 and 25 weeks of age. The affected genes-proteins were associated with lipolytic enzymes stimulated by peroxisome proliferator-activated receptor (PPAR) signaling. Further analysis using the 2D-DIGE connected with MALDI-TOF/TOF analysis, the expression of monoglyceride lipase (MGLL) was significantly up-regulated and that of carboxylesterase 3 (CES3) was significantly down-regulated in 6- and 25-week-old CP compared with age-matched control (WKY and Lean rats). CONCLUSIONS Our results suggest the possible involvement of proteins associated with adipocyte lipolysis in obesity related to the metabolic syndrome.
Collapse
Affiliation(s)
- Jie Chang
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Oikawa
- Department of Molecular and Environmental Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hitoshi Iwahashi
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Present address: Graduate School of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Emiko Kitagawa
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Present address: Applied Science, Roche Diagnostics, Tokyo, Japan
| | - Ichiro Takeuchi
- Department of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Chieko Aoki
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
| |
Collapse
|
45
|
Thanan R, Pairojkul C, Pinlaor S, Khuntikeo N, Wongkham C, Sripa B, Ma N, Vaeteewoottacharn K, Furukawa A, Kobayashi H, Hiraku Y, Oikawa S, Kawanishi S, Yongvanit P, Murata M. Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis. Free Radic Biol Med 2013; 65:1464-1472. [PMID: 23917144 DOI: 10.1016/j.freeradbiomed.2013.07.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 07/06/2013] [Accepted: 07/18/2013] [Indexed: 01/21/2023]
Abstract
Nitrative and oxidative DNA damage plays an important role in inflammation-related carcinogenesis. Chronic inflammation such as parasite infection and primary sclerosing cholangitis can be an etiological factor of cholangiocarcinoma. Using a proteomic approach and double-fluorescent staining, we identified high expression and colocalization of albumin and cytokeratin-19 in liver fluke-associated cholangiocarcinoma tissues, compared with normal livers from cholangiocarcinoma patients and cadaveric donors, respectively. Albumin was detected not only in cells of hyperplastic bile ducts and cholangiocarcinoma, but also in liver stem/progenitor cell origin, such as canal of Hering, ductules, and ductular reactions, suggesting the involvement of stem/progenitor cells in cholangiocarcinoma development. To clarify the involvement of liver stem/progenitor cells in cholangiocarcinoma, we examined several stem/progenitor cell markers (CD133, CD44, OV6, and Oct3/4) in cholangiocarcinoma tissues analyzed by immunohistochemical staining, and measured 8-oxodG levels by using HPLC-ECD as an inflammation-related DNA lesion. In addition, a stem/progenitor cell factor Bmi1, 8-nitroguanine (formed during nitrative DNA damage), DNA damage response (DDR) proteins (phosphorylated ATM and γ-H2AX), and manganese-SOD (Mn-SOD) were analyzed by immunohistochemistry. Stem/progenitor cell markers (CD133, OV6, CD44, and Oct3/4) were positively stained in 56, 38, 47, and 56% of 34 cholangiocarcinoma cases, respectively. Quantitative analysis of 8-oxodG revealed significantly increased levels in CD133- and/or Oct3/4-positive tumor tissues compared to negative tumor tissues, as well as 8-nitroguanine formation detected by immunohistochemistry. In the cases of CD44- and/or OV6-positive tissue, no significant difference was observed. Cholangiocarcinoma patients with CD133- and/or Oct3/4-positive tumor tissues showed significantly lower expression of Mn-SOD and higher DDR protein, γ-H2AX. Moreover, CD133- and/or Oct3/4-positive cholangiocarcinoma patients had significant associations with tumor histology types, tumor stage, and poor prognoses. Our results suggest that CD133 and Oct3/4 in cholangiocarcinoma are associated with increased formation of DNA lesions and the DDR protein, which may be involved in genetic instability and lead to cholangiocarcinoma development with aggressive clinical features.
Collapse
Affiliation(s)
- Raynoo Thanan
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ning Ma
- Faculty of Health Science, Suzuka, Mie, 510-0293, Japan
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ayako Furukawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shosuke Kawanishi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
46
|
Ramadasan-Nair R, Gayathri N, Mishra S, Sunitha B, Mythri RB, Nalini A, Subbannayya Y, Harsha HC, Kolthur-Seetharam U, Srinivas Bharath MM. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies. J Biol Chem 2013; 289:485-509. [PMID: 24220031 DOI: 10.1074/jbc.m113.493270] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.
Collapse
|
47
|
|
48
|
Castro JP, Jung T, Grune T, Almeida H. Actin carbonylation: from cell dysfunction to organism disorder. J Proteomics 2013; 92:171-80. [PMID: 23684956 DOI: 10.1016/j.jprot.2013.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Protein carbonylation is an important event in the context of proteostasis because of its frequency, non-enzymatic nature and irreversible effects. The carbonylation of proteins disturbs their function and leads to protein aggregates, which may precede cellular senescence and cell death. Actin, an evolutionarily conserved cytoskeletal protein that is involved in important cellular processes, is one of the proteins most susceptible to carbonylation. Conditions resulting in oxidative stress are likely to lead to its carbonylation, loss of function and aggregate formation. In this review, we summarise actin susceptibility to carbonylation, as verified in cell free extracts, cell lines and animal models, and review its fate through the activation of cell mechanisms aimed at removing damaged proteins. Their insufficient activity may underlie age-related diseases and the ageing process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- José Pedro Castro
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; Institute of Nutrition, Friedrich Schiller Universität Jena, Dornburger Str. 24, 07743 Jena, Germany
| | | | | | | |
Collapse
|
49
|
Seo JW, Kim Y, Hur J, Park KS, Cho YW. Proteomic Analysis of Primary Cultured Rat Cortical Neurons in Chemical Ischemia. Neurochem Res 2013; 38:1648-60. [DOI: 10.1007/s11064-013-1067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 01/15/2023]
|
50
|
Pazos MR, Mohammed N, Lafuente H, Santos M, Martínez-Pinilla E, Moreno E, Valdizan E, Romero J, Pazos A, Franco R, Hillard CJ, Alvarez FJ, Martínez-Orgado J. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology 2013; 71:282-91. [PMID: 23587650 DOI: 10.1016/j.neuropharm.2013.03.027] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying the neuroprotective effects of cannabidiol (CBD) were studied in vivo using a hypoxic-ischemic (HI) brain injury model in newborn pigs. One- to two-day-old piglets were exposed to HI for 30 min by interrupting carotid blood flow and reducing the fraction of inspired oxygen to 10%. Thirty minutes after HI, the piglets were treated with vehicle (HV) or 1 mg/kg CBD, alone (HC) or in combination with 1 mg/kg of a CB₂ receptor antagonist (AM630) or a serotonin 5HT(1A) receptor antagonist (WAY100635). HI decreased the number of viable neurons and affected the amplitude-integrated EEG background activity as well as different prognostic proton-magnetic-resonance-spectroscopy (H(±)-MRS)-detectable biomarkers (lactate/N-acetylaspartate and N-acetylaspartate/choline ratios). HI brain damage was also associated with increases in excitotoxicity (increased glutamate/N-acetylaspartate ratio), oxidative stress (decreased glutathione/creatine ratio and increased protein carbonylation) and inflammation (increased brain IL-1 levels). CBD administration after HI prevented all these alterations, although this CBD-mediated neuroprotection was reversed by co-administration of either WAY100635 or AM630, suggesting the involvement of CB₂ and 5HT(1A) receptors. The involvement of CB₂ receptors was not dependent on a CBD-mediated increase in endocannabinoids. Finally, bioluminescence resonance energy transfer studies indicated that CB₂ and 5HT(1A) receptors may form heteromers in living HEK-293T cells. In conclusion, our findings demonstrate that CBD exerts robust neuroprotective effects in vivo in HI piglets, modulating excitotoxicity, oxidative stress and inflammation, and that both CB₂ and 5HT(1A) receptors are implicated in these effects.
Collapse
Affiliation(s)
- M Ruth Pazos
- Experimental Unit, Pediatric Department, University Hospital Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|