1
|
Su Y, Yu Y, Quan J, Zhang J, Xu Y. Alcohol exposure during pregnancy induces cardiac mitochondrial damage in offspring mice. Birth Defects Res 2024; 116:e2369. [PMID: 38877673 DOI: 10.1002/bdr2.2369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has been linked to congenital heart disease and fetal alcohol syndrome. The heart primarily relies on mitochondria to generate energy, so impaired mitochondrial function due to alcohol exposure can significantly affect cardiac development and function. Our study aimed to investigate the impact of PAE on myocardial and mitochondrial functions in offspring mice. METHODS We administered 30% alcohol (3 g/kg) to pregnant C57BL/6 mice during the second trimester. We assessed cardiac function by transthoracic echocardiography, observed myocardial structure and fibrosis through staining tests and electron transmission microscopy, and detected cardiomyocyte apoptosis with dUTP nick end labeling assay and real-time quantitative PCR. Additionally, we measured the reactive oxygen species content, ATP level, and mitochondrial DNA copy number in myocardial mitochondria. Mitochondrial damage was evaluated by assessing the level of mitochondrial membrane potential and the opening degree of mitochondrial permeability transition pores. RESULTS Our findings revealed that PAE caused cardiac systolic dysfunction, ventricular enlargement, thinned ventricular wall, cardiac fibrosis in the myocardium, scattered loss of cardiomyocytes, and disordered arrangement of myocardial myotomes in the offspring. Furthermore, we observed a significant increase in mitochondrial reactive oxygen species content, a decrease in mitochondrial membrane potential, ATP level, and mitochondrial DNA copy number, and sustained opening of mitochondrial permeability transition pores in the heart tissues of the offspring. CONCLUSIONS These results indicated that PAE had adverse effects on the cardiac structure and function of the newborn mice and could trigger oxidative stress in their myocardia and contribute to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yujuan Su
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yujuan Yu
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjun Quan
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Zhang
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Lu Q, Qin X, Chen C, Yu W, Lin J, Liu X, Guo R, Reiter RJ, Ashrafizadeh M, Yuan M, Ren J. Elevated levels of alcohol dehydrogenase aggravate ethanol-evoked cardiac remodeling and contractile anomalies through FKBP5-yap-mediated regulation of ferroptosis and ER stress. Life Sci 2024; 343:122508. [PMID: 38382873 DOI: 10.1016/j.lfs.2024.122508] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Alcohol intake provokes severe organ injuries including alcoholic cardiomyopathy with hallmarks of cardiac remodeling and contractile defects. This study examined the toxicity of facilitated ethanol metabolism in alcoholism-evoked changes in myocardial morphology and contractile function, insulin signaling and various cell death domains using cardiac-selective overexpression of alcohol dehydrogenase (ADH). WT and ADH mice were offered an alcohol liquid diet for 12 weeks prior to assessment of cardiac geometry, function, ER stress, apoptosis and ferroptosis. Alcohol intake provoked pronounced glucose intolerance, cardiac remodeling and contractile anomalies with apoptosis, ER stress, and ferroptosis, the effects were accentuated by ADH with the exception of global glucose intolerance. Hearts from alcohol ingesting mice displayed dampened insulin-stimulated phosphorylation of insulin receptor (tyr1146) and IRS-1 (tyrosine) along with elevated IRS-1 serine phosphorylation, the effect was augmented by ADH. Alcohol challenge dampened phosphorylation of Akt and GSK-3β, and increased phosphorylation of c-Jun and JNK, the effects were accentuated by ADH. Alcohol challenge promoted ER stress, FK506 binding protein 5 (FKBP5), YAP, apoptosis and ferroptosis, the effects were exaggerated by ADH. Using a short-term ethanol challenge model (3 g/kg, i.p., twice in three days), we found that inhibition of FKBP5-YAP signaling or facilitated ethanol detoxification by Alda-1 alleviated ethanol cardiotoxicity. In vitro study revealed that the ethanol metabolite acetaldehyde evoked cardiac contractile anomalies, lipid peroxidation, and apoptosis, the effects of which were mitigated by Alda-1, inhibition of ER stress, FKBP5 and YAP. These data suggest that facilitated ethanol metabolism via ADH exacerbates alcohol-evoked myocardial remodeling, functional defects, and insulin insensitivity possibly through a FKBP5-YAP-associated regulation of ER stress and ferroptosis.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China.
| | - Xing Qin
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Jie Lin
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaoyu Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Milad Ashrafizadeh
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Yuan
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
Liu W, Zhao M, Zhang X, Chi J, Yin X, Liu Y. Alcohol Intake Provoked Cardiomyocyte Apoptosis Via Activating Calcium-Sensing Receptor and Increasing Endoplasmic Reticulum Stress and Cytosolic [Ca2+]i. Cell Biochem Biophys 2023; 81:707-716. [PMID: 37639185 DOI: 10.1007/s12013-023-01167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cardiomyocyte apoptosis plays an important role in alcoholic cardiac injury. However, the association between calcium-sensing receptor (CaSR) and alcohol-induced cardiomyocyte apoptosis remain unclear. Therefore, we investigated the role and its moleculer mechanism of CaSR in rat cardiomyocyte apoptosis induced by alcohol. METHODS Alcohol-induced cardiomyocyte apoptosis in vivo and in vitro model of rats were applied in this study. The expression of CaSR, endoplasmic reticulum stress markers and apoptosis were tested by immunohistological staining, western blot, TUNEL and flow cytometry, respectively. [Ca2+]i were detected by confocal laser scanning microscopy. RESULTS Compared with the control group, alcohol intake (AI) led to abnormal arrangements of cardiomyocytes and obvious increase of myocardial apoptosis. Moreover, AI also significantly upregulated protein expression of CaSR, GRP94, caspase-12 and CHOP. Alcohol induced apoptosis of cultured cardiomyocytes of rats in a dose-dependent way. Activation of CaSR markedly enhanced cardiomyocyte apoptosis and ERS induced by alcohol, ERS inducer also significantly increased cardiomyocyte apoptosis without activating CaSR. Furthermore, GdCl3 augmented alcohol-induced increase of [Ca2+]i in cardiomyocytes, which was attenuated by NPS2390 but not 4-PBA pre-treatment. CONCLUSIONS Alcohol could induce cardiomyocyte apoptosis in rats in vivo and in vitro, which was mediated probably via activating CaSR, and then ERS and the increase of the cytosolic [Ca2+]i. This provides a potential target for preventing cardiomyocyte apoptosis and cardiomyopathy induced by alochol.
Collapse
Affiliation(s)
- Wenxiu Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Meng Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Xin Zhang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Jinyu Chi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Xinhua Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China.
| | - Yue Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China.
| |
Collapse
|
4
|
Chen Y, Zhu S, Lin Z, Zhang Y, Jin C, He S, Chen X, Zhou X. Metformin alleviates ethanol-induced cardiomyocyte injury by activating AKT/Nrf2 signaling in an ErbB2-dependent manner. Mol Biol Rep 2023; 50:3469-3478. [PMID: 36765018 DOI: 10.1007/s11033-023-08310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Metformin, a first-line oral anti-diabetic drug, has recently been reported to exert protective effect on various cardiovascular diseases. However, the potential role of metformin in ethanol-induced cardiomyocyte injury is still unknown. Therefore, this study was aimed to investigate the effect of metformin on ethanol-induced cardiomyocyte injury and its underlying mechanism. METHODS AND RESULTS H9c2 cardiomyocytes were exposed to ethanol for 24 h to establish an ethanol-induced cardiomyocyte injury model, and followed by treatment with metformin in the presence or absence of Lapatinib (an ErbB2 inhibition). CCK8 and LDH assays demonstrated that metformin improved cell viability in cardiomyocytes exposed to ethanol. Furthermore, metformin suppressed cardiomyocyte apoptosis and reduced the expressions of apoptosis-related proteins (Bax and C-CAS-3). In addition, our results showed that metformin activated the AKT/Nrf2 pathway, and then promoted Nrf2 nuclear translocation and the transcription of its downstream antioxidant genes (HO-1, CAT and SOD2), thereby inhibiting oxidative stress. Interestingly, we found that ErbB2 protein expression was significantly inhibited in ethanol-treated cardiomyocytes, which was markedly reversed by metformin. In contrast, Lapatinib largely abrogated the activation of AKT/Nrf2 signaling by metformin, accompanied by the increases in oxidative stress and cardiomyocyte apoptosis, indicating that metformin prevented ethanol-induced cardiomyocyte injury in an ErbB2-dependent manner. CONCLUSION In summary, our study provides the first evidence that metformin protects cardiomyocyte against ethanol-induced oxidative stress and apoptosis by activating ErbB2-mediated AKT/Nrf2 signaling. Thus, metformin may be a potential novel treatment approach for alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Yunjie Chen
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.,Central Laboratory of the Medical Research Center, Ningbo First Hospital, 315010, Ningbo, People's Republic of China
| | - Suyan Zhu
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China
| | - Zhu Lin
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China
| | - Yuanbin Zhang
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.,Central Laboratory of the Medical Research Center, Ningbo First Hospital, 315010, Ningbo, People's Republic of China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, Ningbo First Hospital, 315010, Ningbo, People's Republic of China.
| | - Xuan Zhou
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.
| |
Collapse
|
5
|
Kutsche HS, Schreckenberg R, Schlüter KD. Uncoupling Proteins in Striated Muscle Tissue: Known Facts and Open Questions. Antioxid Redox Signal 2022; 37:324-335. [PMID: 35044239 DOI: 10.1089/ars.2021.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Collapse
Affiliation(s)
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
6
|
Shirpoor A, Naderi R. Maternal Ethanol Exposure-Induced Cardiac Fibrosis is Associated with Changes in TGF-β and SIRT1/FOXO3a Signaling in Male Rat Offspring: A Three-Month Follow-up Study. Cardiovasc Toxicol 2022; 22:858-865. [PMID: 35900665 DOI: 10.1007/s12012-022-09761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Ethanol exposure during pregnancy induces cardiac fibrosis in the fetal heart. However, the mechanisms by which consumption of ethanol induces fibrotic changes are not known. Pregnant rats were received ethanol 4.5 g/kg BW once per day from the 7th day of pregnancy (GD7) throughout lactation. Our findings demonstrated that, area of fibrosis increased in cardiac tissue in the pups on both postnatal day twenty one (PN21) and postnatal day ninety (PN90) after prenatal and early postnatal period ethanol treatment compared with the controls. It was accompanied by a decline in the expression of SIRT1 protein along with the elevation of FOXO3a and TGF-β protein expressions which were determined by western blot. Overall, our data reveal that prenatal alcohol usage increase in fibrotic regions in the pup hearts possibly by regulating TGF-β, FOXO3a and SIRT1 protein levels. These are potential therapeutic molecular targets that can be modulated to protect heart against maternal ethanol exposure.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran. .,Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Zeng H, Zhang P, Ye H, Ji Y, Hogstrand C, Green I, Xiao J, Fu Q, Guo Z. Waterborne zinc bioaccumulation influences glucose metabolism in orange-spotted grouper embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117325. [PMID: 34030065 DOI: 10.1016/j.envpol.2021.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Fish embryos, as an endogenous system, strictly regulate an energy metabolism that is particularly sensitive to environmental pressure. This study used orange-spotted grouper embryos and stable isotope 67Zn to test the hypothesis that waterborne Zn exposure had a significant effect on energy metabolism in embryos. The fish embryos were exposed to a gradient level of waterborne 67Zn, and then sampled to quantify 67Zn bioaccumulation and mRNA expressions of key genes involved glucose metabolism. The results indicated that the bioaccumulated 67Zn generally increased with increasing waterborne 67Zn concentrations, while it tended to be saturated at waterborne 67Zn > 0.7 mg L-1. As we hypothesized, the expression of PK and PFK gene involved glycolysis pathway was significantly up-regulated under waterborne 67Zn exposure >4 mg L-1. Waterborne 67Zn exposure >2 mg L-1 significantly suppressed PCK and G6PC gene expression involved gluconeogenesis pathway, and also inhibited the AKT2, GSK-3beta and GLUT4 genes involved Akt signaling pathway. Our findings first characterized developmental stage-dependent Zn uptake and genotoxicity in fish embryos. We suggest fish embryos, as a small-scale modeling biosystem, have a large potential and wide applicability for determining cytotoxicity/genotoxicity of waterborne metal in aquatic ecosystem.
Collapse
Affiliation(s)
- Huiling Zeng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Peifeng Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Hengzhen Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yuxiang Ji
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Christer Hogstrand
- Metals Metabolism Group, School of Life Course Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Qiongyao Fu
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Life and Pharmaceutical Sciences, College of Food Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
9
|
Perfilova VN, Kustova MV, Popova TA, Khusainova GH, Prokofiev II, Nesterova KI, Tyurenkov IN. Cardioprotective effects of a new glutamic acid derivative in chronic alcohol intoxication. Alcohol 2021; 93:1-10. [PMID: 33737055 DOI: 10.1016/j.alcohol.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Alcohol abuse is a risk factor for heart damage and deterioration of its inotropic function. Currently, there is no pathogenetic pharmacological treatment for alcohol-induced myocardial injury. Therefore, the study of drugs with cardioprotective action is of current interest. Our earlier studies of stress-induced heart damage showed that a new derivative of glutamic acid - glufimet - protects the myocardium's inotropic function and limits lipid peroxidation. Additionally, we found that it increases the activity of antioxidant enzymes and improves mitochondrial respiration. The purpose of our study was to assess the effect of glufimet on the heart after chronic alcohol intoxication (CAI). The comparison drug was mildronate, which possesses cardioprotective properties and is used to treat alcohol withdrawal. We conducted our study using female Wistar rats (10 months old, 280-320 g). CAI was simulated by replacing drinking water with a 10% ethanol solution sweetened with sucrose (50 g/L) over a period of 24 weeks. The day after the animals stopped ethanol solution drinking, the control group was injected intraperitoneally (i.p.) with a saline solution once a day for 14 days, while the experimental groups received glufimet (28.7 mg/kg) and the drug of comparison mildronate (50 mg/kg), respectively. After that, we studied the heart contractility by measuring volume load, adrenergic reactivity, and maximum isometric load. Under CAI, the control group showed significantly lower growth in left ventricular pressure (LVP), myocardium contraction rate, and relaxation rate during functional tests. Higher concentrations of LPO products (malondialdehyde) and low activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase), indicating a disturbance in mitochondrial respiration compared to the control group, were registered. While being treated with glufimet and mildronate, the animals demonstrated higher growth rates of myocardial contraction, myocardial relaxation, and LVP, compared to the control group. Mitochondrial functioning and activity of the antioxidant enzymes increased in the same group as well.
Collapse
|
10
|
do Vale GT, da Silva CBP, Sousa AH, Gonzaga NA, Parente JM, Araújo KM, Castro MM, Tirapelli CR. Nebivolol Prevents Up-Regulation of Nox2/NADPH Oxidase and Lipoperoxidation in the Early Stages of Ethanol-Induced Cardiac Toxicity. Cardiovasc Toxicol 2021; 21:224-235. [PMID: 33067693 DOI: 10.1007/s12012-020-09614-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Changes in redox state are described in the early stages of ethanol-induced cardiac toxicity. Here, we evaluated whether nebivolol would abrogate ethanol-induced redox imbalance in the heart. Male Wistar rats were treated with a solution of ethanol (20% v/v) for 3 weeks. Treatment with nebivolol (10 mg/kg/day; p.o. gavage) prevented the increase of both superoxide (O2•-) and thiobarbituric acid reactive substances (TBARS) in the left ventricle of rats chronically treated with ethanol. Neither ethanol nor nebivolol affected the expression of Nox4, p47phox, or Rac-1. Nebivolol prevented ethanol-induced increase of Nox2 expression in the left ventricle. Superoxide dismutase (SOD) activity as well as the concentration of reduced glutathione (GSH) was not altered by ethanol or nebivolol. Augmented catalase activity was detected in the left ventricle of both ethanol- and nebivolol-treated rats. Treatment with nebivolol, but not ethanol increased eNOS expression in the left ventricle. No changes in the activity of matrix metalloproteinase (MMP)2 or in the expressions of MMP2, MMP9, and tissue inhibitor metalloproteinase (TIMP)1 were detected after treatment with ethanol or nebivolol. However, ethanol increased the expression of TIMP2, and this response was prevented by nebivolol. Our results provided novel insights into the mechanisms underlying the early stages of the cardiac injury induced by ethanol consumption. We demonstrated that Nox2/NADPH oxidase-derived ROS play a role in ethanol-induced lipoperoxidation and that this response was prevented by nebivolol. In addition, we provided evidence that MMPs are not activated in the early stages of ethanol-induced cardiac toxicity.
Collapse
Affiliation(s)
- Gabriel T do Vale
- Universidade do Estado de Minas Gerais (UEMG), Passos, MG, Brazil
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carla B P da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Programa de Pós-graduação em Toxicologia, USP, Ribeirão Preto, SP, Brazil
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Arthur H Sousa
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Natália A Gonzaga
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Juliana M Parente
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Katiúscia M Araújo
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Michele M Castro
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Ferrer‐Curriu G, Guitart‐Mampel M, Rupérez C, Zamora M, Crispi F, Villarroya F, Fernández‐Solà J, Garrabou G, Planavila A. The protective effect of fibroblast growth factor‐21 in alcoholic cardiomyopathy: a role in protecting cardiac mitochondrial function. J Pathol 2020; 253:198-208. [DOI: 10.1002/path.5573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/20/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Gemma Ferrer‐Curriu
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| | - Mariona Guitart‐Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex‐IDIBAPS, Faculty of Medicine and Health Science University of Barcelona, Internal Medicine Service – Hospital Clínic of Barcelona, Barcelona and CIBERER Barcelona Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal –Barcelona Center for Maternal–Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu) Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona Barcelona Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal –Barcelona Center for Maternal–Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu) Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona Barcelona Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| | - Joaquim Fernández‐Solà
- Alcohol Unit, Department of Medicine Hospital Clinic, University of Barcelona Barcelona Spain
- CIBEROBN Fisiopatología de la Obesidad y la Nutrición, Instituto Carlos III Madrid Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex‐IDIBAPS, Faculty of Medicine and Health Science University of Barcelona, Internal Medicine Service – Hospital Clínic of Barcelona, Barcelona and CIBERER Barcelona Spain
| | - Anna Planavila
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| |
Collapse
|
12
|
Deng H, Yu B, Yu Y, Tian G, Yang L. NO66 overexpression rescues ethanol-induced cell apoptosis in human AC16 cardiomyocytes by suppressing PTEN and activating the PI3K/Akt signaling. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1093-1101. [PMID: 33085743 DOI: 10.1093/abbs/gmaa100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Previously, Nucleolar protein 66 (NO66) was reported to be closely associated with alcohol exposure-induced injury. However, the role of NO66 in alcohol-induced cytotoxicity remains unclear. In this study, we explored the potential effect and mechanism of NO66 on ethanol-induced apoptosis in human AC16 cardiomyocytes. The AC16 cell lines with NO66 and phosphatase and tensin homolog (PTEN) overexpression were constructed. Cell counting kit-8 (CCK-8), lactate dehydrogenase (LDH) assay, Annexin V-FITC/PI staining, and flow cytometry were used to evaluate the cell viability, membrane damage, and apoptosis, respectively. Quantitative real-time PCR (qRT-PCR) and western blot analysis were applied to measure mRNA and protein expression. The results showed that acute ethanol exposure markedly augmented cytotoxicity and reduced NO66 level in AC16 cardiomyocytes. Overexpression of NO66 partially reversed ethanol-induced apoptosis. NO66 upregulation reversed the decrease in phosphorylation of protein kinase B (Akt) and B-cell lymphoma-2/Bcl-2-associated x (Bcl-2/Bax) ratio and the increase in PTEN, p53, and caspase-3 activity induced by ethanol treatment. Meanwhile, the application of PI3K inhibitor (LY294002) and PTEN overexpression attenuated the inhibition efficiency of NO66 on cell apoptosis. In addition, PTEN overexpression weakened the effect of NO66 on PI3K/Akt activation, without affecting the level of NO66. Our data suggested that NO66 overexpression might play an anti-apoptotic role in ethanol-induced cell injury via reducing PTEN and upregulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hanyu Deng
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Bo Yu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yang Yu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ge Tian
- Department of Cardiology, Jinzhou Medical University, Jinzhou 121001, China
| | - Liu Yang
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
13
|
Rampoldi A, Singh M, Wu Q, Duan M, Jha R, Maxwell JT, Bradner JM, Zhang X, Saraf A, Miller GW, Gibson G, Brown LA, Xu C. Cardiac Toxicity From Ethanol Exposure in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicol Sci 2020; 169:280-292. [PMID: 31059573 DOI: 10.1093/toxsci/kfz038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol use prior to and during pregnancy remains a significant societal problem and can lead to developmental fetal abnormalities including compromised myocardia function and increased risk for heart disease later in life. Alcohol-induced cardiac toxicity has traditionally been studied in animal-based models. These models have limitations due to physiological differences from human cardiomyocytes (CMs) and are also not suitable for high-throughput screening. We hypothesized that human-induced pluripotent stem cell-derived CMs (hiPSC-CMs) could serve as a useful tool to study alcohol-induced cardiac defects and/or toxicity. In this study, hiPSC-CMs were treated with ethanol at doses corresponding to the clinically relevant levels of alcohol intoxication. hiPSC-CMs exposed to ethanol showed a dose-dependent increase in cellular damage and decrease in cell viability, corresponding to increased production of reactive oxygen species. Furthermore, ethanol exposure also generated dose-dependent increased irregular Ca2+ transients and contractility in hiPSC-CMs. RNA-seq analysis showed significant alteration in genes belonging to the potassium voltage-gated channel family or solute carrier family, partially explaining the irregular Ca2+ transients and contractility in ethanol-treated hiPSC-CMs. RNA-seq also showed significant upregulation in the expression of genes associated with collagen and extracellular matrix modeling, and downregulation of genes involved in cardiovascular system development and actin filament-based process. These results suggest that hiPSC-CMs can be a novel and physiologically relevant system for the study of alcohol-induced cardiac toxicity.
Collapse
Affiliation(s)
- Antonio Rampoldi
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Joshua T Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Anita Saraf
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Lou Ann Brown
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Nakashima MA, Silva CB, Gonzaga NA, Simplicio JA, Omoto AC, Tirapelli LF, Tanus-Santos JE, Tirapelli CR. Chronic ethanol consumption increases reactive oxygen species generation and the synthesis of pro-inflammatory proteins in the heart through TNFR1-dependent mechanisms. Cytokine 2019; 121:154734. [DOI: 10.1016/j.cyto.2019.154734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
|
15
|
Liu Y, Yu B. MicroRNA‑186‑5p is expressed highly in ethanol‑induced cardiomyocytes and regulates apoptosis via the target gene XIAP. Mol Med Rep 2019; 19:3179-3189. [PMID: 30816481 PMCID: PMC6423630 DOI: 10.3892/mmr.2019.9953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Ethanol has a toxic effect on the heart, resulting in cardiomyocyte damage. Long-term high intake of ethanol leads to a non-ischemic dilated cardiomyopathy termed alcoholic cardiomyopathy (ACM). However, the pathogenesis of alcoholic cardiomyopathy remains unclear. The apoptosis of cardiomyocytes serves an important role in the pathogenesis of ACM. X-linked inhibitor of apoptosis protein (XIAP) is an important anti-apoptotic protein in human tissue cells. To the best of our knowledge, no studies have reported on its function in ethanol-induced cardiomyopathy. Previous works have screened the ACM-associated differentially expressed microRNAs (miRs), including miR-186-5p and miR-488-3p. TargetScan bioinformatics software was used to predict 949 target genes associated with miR-186-5p, and XIAP was demonstrated to be a target of miR-186-5p. The present study firstly analyzed the levels of apoptosis in ethanol-treated cardiomyocytes using flow cytometry. Alterations in the expression levels of miR-186-5p and XIAP were subsequently evaluated in ethanol-treated AC16 cardiomyocytes to assess the specific molecular mechanisms of ethanol-induced cardiomyocyte apoptosis. The levels of apoptosis in AC16 cardiomyocytes increased following ethanol treatment, and further increased with the rise in concentration and action time of ethanol. The expression levels of miR-186-5p were upregulated, and the expression levels of XIAP were downregulated in ethanol-treated cardiomyocytes. miR-186-5p may regulate ethanol-induced apoptosis in cardiomyocytes using XIAP as the direct target gene. This study provides a novel therapeutic target for the prevention and treatment of ACM.
Collapse
Affiliation(s)
- Ye Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
16
|
Chen Y, Zhu D, Gao J, Xu Z, Tao S, Yin W, Zhang Y, Gao Y, Zhang C. Diminished membrane recruitment of Akt is instrumental in alcohol‐associated osteopenia via thePTEN/Akt/GSK‐3β/β‐catenin axis. FEBS J 2019; 286:1101-1119. [PMID: 30656849 DOI: 10.1111/febs.14754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Xuan Chen
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Dao‐Yu Zhu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Junjie Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Zheng‐Liang Xu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Shi‐Cong Tao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Wen‐Jing Yin
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yue‐Lei Zhang
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - You‐Shui Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Chang‐Qing Zhang
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Institute of Microsurgery on Extremities Shanghai China
| |
Collapse
|
17
|
Liu B, Zhang R, Wei S, Yuan Q, Xue M, Hao P, Xu F, Wang J, Chen Y. ALDH2 protects against alcoholic cardiomyopathy through a mechanism involving the p38 MAPK/CREB pathway and local renin-angiotensin system inhibition in cardiomyocytes. Int J Cardiol 2018; 257:150-159. [PMID: 29506687 DOI: 10.1016/j.ijcard.2017.11.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) in the local cardiac renin-angiotensin system (RAS) is closely associated with alcoholic cardiomyopathy (ACM). Inhibition of local cardiac RAS has great significance in the treatment of ACM. Although aldehyde dehydrogenase 2 (ALDH2) has been demonstrated to protect against ACM through detoxification of aldehydes, the precise mechanisms are largely unknown. In the present study, we determined whether ALDH2 improved cardiac damage by inhibiting the local RAS in ACM and investigated the related regulatory mechanisms. METHODS AND RESULTS Adult male mice were fed with 5% ethanol or a control diet for 2months, with or without the ALDH2 activator Alda-1. Heavy ethanol consumption induced cardiac damage, increased angiotensinogen (AGT) and Ang II and decreased myocardial ALDH2 activity in hearts. ALDH2 activation improved ethanol-induced cardiac damage and decreased AGT and Ang II in hearts. In vitro, ALDH2 activation or overexpression decreased AGT and Ang II in cultured cardiomyocytes treated with 400mmol/L ethanol for 24h. Furthermore, p38 MAP kinase (p38 MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) pathway activation by ethanol increased AGT and Ang II in cardiomyocytes. In addition, ALDH2 activation or overexpression inhibited the p38 MAPK/CREB pathway leading to decreased AGT and Ang II in cardiomyocytes. We also found that p38 MAPK activation effectively mitigated Alda-1-decreased AGT and Ang II, the effect of which was reversed by inhibition of CREB. CONCLUSIONS ALDH2 decreased AGT and Ang II in the local cardiac RAS via inhibiting the p38 MAPK/CREB pathway in ACM, thus improving ethanol-induced cardiac damage.
Collapse
MESH Headings
- Adenoviridae/genetics
- Aldehyde Dehydrogenase, Mitochondrial/administration & dosage
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Angiotensin II/metabolism
- Angiotensinogen/antagonists & inhibitors
- Angiotensinogen/metabolism
- Animals
- Animals, Newborn
- Cardiomyopathy, Alcoholic/metabolism
- Cardiomyopathy, Alcoholic/prevention & control
- Cardiotonic Agents/administration & dosage
- Cardiotonic Agents/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors
- Cyclic AMP Response Element-Binding Protein/metabolism
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Wistar
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Baoshan Liu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Mengyang Xue
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency, Qilu Hospital, Shandong University, Jinan, China; Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling & Function Research, Chinese Ministry of Education & Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
18
|
Srivastava VK, Hiney JK, Dees WL. Alcohol Delays the Onset of Puberty in the Female Rat by Altering Key Hypothalamic Events. Alcohol Clin Exp Res 2018; 42:1166-1176. [PMID: 29689132 DOI: 10.1111/acer.13762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Because alcohol (ALC) delays signs of pubertal development, we assessed the time course of events associated with the synthesis of critical hypothalamic peptides that regulate secretion of luteinizing hormone-releasing hormone (LHRH), the peptide that drives the pubertal process. METHODS Immature female rats were administered either laboratory chow or BioServe isocaloric control or ALC-liquid diets from 27 through 33 days of age. On days 28, 29, 31, and 33, animals were killed by decapitation and tissue blocks containing the medial basal hypothalamus (MBH) and the rostral hypothalamic area (RHA) were isolated and stored frozen until assessed by Western blot analysis. RESULTS Synthesis of dynorphin (DYN), a prepubertal inhibitor of LHRH secretion, was increased (p < 0.05) in the MBH of ALC-treated animals by day 29. DYN was further elevated (p < 0.01) on day 33 and was associated with an increase (p < 0.01) in DYN receptor expression. ALC did not affect synthesis of neurokinin B (NKB), a prepubertal stimulator of LHRH; however, it did suppress (p < 0.05) NKB receptor expression in the MBH by day 31. The most potent stimulator of prepubertal LHRH secretion, kisspeptin (Kp), was also decreased (p < 0.05) in the MBH as early as day 29, with continued suppression (p < 0.01) through day 33. Similar timely suppressions of mammalian target of rapamycin (mTOR), an immediate upstream regulator of Kp, were also noted. These decreases in mTOR and Kp were consistent with ALC stimulating (p < 0.05) the p-AMP-activated protein kinase/Raptor inhibitory pathway to mTOR on day 29, then later suppressing (p < 0.001) an Akt-mediated induction pathway to mTOR by day 31. In the RHA, ALC affected the pathways regulating Kp in a manner similar to that described in the MBH; however, these effects were not noted until day 33. CONCLUSIONS ALC acts within the MBH as early as 29 days to induce inhibitor and repressor inputs to LHRH, while depressing stimulatory inputs to the peptide. Collectively, these events lead to delayed signs of pubertal development.
Collapse
Affiliation(s)
- Vinod K Srivastava
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Jill K Hiney
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - William L Dees
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| |
Collapse
|
19
|
Sun W, Yang J, Wang W, Hou J, Cheng Y, Fu Y, Xu Z, Cai L. The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 2018; 46:117-127. [PMID: 29413101 DOI: 10.1016/j.jtemb.2017.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Zinc is one of the essential trace elements and participates in numerous physiological processes. Abnormalities in zinc homeostasis often result in the pathogenesis of various chronic metabolic disorders, such as diabetes and its complications. Zinc has insulin-mimetic and anti-diabetic effects and deficiency has been shown to aggravate diabetes-induced oxidative stress and tissue injury in diabetic rodent models and human subjects with diabetes. Akt signaling pathway plays a central role in insulin-stimulated glucose metabolism and cell survival. Anti-diabetic effects of zinc are largely dependent on the activation of Akt signaling. Zn is also an inducer of metallothionein that plays important role in anti-oxidative stress and damage. However, the exact molecular mechanisms underlying zinc-induced activation of Akt signaling pathway remains to be elucidated. This review summarizes the recent advances in deciphering the possible mechanisms of zinc on Akt-mediated insulin and cell survival signaling pathways in diabetes conditions. Insights into the effects of zinc on epigenetic regulation and autophagy in diabetic nephropathy are also discussed in the latter part of this review.
Collapse
Affiliation(s)
- Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Jie Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
20
|
Sheng M, Huang Z, Pan L, Yu M, Yi C, Teng L, He L, Gu C, Xu C, Li J. SOCS2 exacerbates myocardial injury induced by ischemia/reperfusion in diabetic mice and H9c2 cells through inhibiting the JAK-STAT-IGF-1 pathway. Life Sci 2017; 188:101-109. [DOI: 10.1016/j.lfs.2017.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
|
21
|
Steiner JL, Lang CH. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 2017; 89:125-135. [PMID: 28606389 DOI: 10.1016/j.biocel.2017.06.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022]
Abstract
Putative mechanisms leading to the development of alcoholic cardiomyopathy (ACM) include the interrelated cellular processes of mitochondria metabolism, oxidative stress and apoptosis. As mitochondria fuel the constant energy demands of this continually contracting tissue, it is not surprising that alcohol-induced molecular changes in this organelle contribute to cardiac dysfunction and ACM. As the causal relationship of these processes with ACM has already been established, the primary objective of this review is to provide an update of the experimental findings to more completely understand the aforementioned mechanisms. Accordingly, recent data indicate that alcohol impairs mitochondria function assessed by membrane potential and respiratory chain activity. Indictors of oxidative stress including superoxide dismutase, glutathione metabolites and malondialdehyde are also adversely affected by alcohol oftentimes in a sex-dependent manner. Additionally, myocardial apoptosis is increased based on assessment of TUNEL staining and caspase activity. Recent work has also emerged linking alcohol-induced oxidative stress with apoptosis providing new insight on the codependence of these interrelated mechanisms in ACM. Attention is also given to methodological differences including the dose of alcohol, experimental model system and the use of males versus females to highlight inconsistencies and areas that would benefit from establishment of a consistent model.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| |
Collapse
|
22
|
Steiner JL, Lang CH. Alcoholic Cardiomyopathy: Disrupted Protein Balance and Impaired Cardiomyocyte Contractility. Alcohol Clin Exp Res 2017; 41:1392-1401. [PMID: 28425109 DOI: 10.1111/acer.13405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022]
Abstract
Alcoholic cardiomyopathy (ACM) can develop after consumption of relatively large amounts of alcohol over time or from acute binge drinking. Of the many factors implicated in the etiology of ACM, chronic perturbation in protein balance has been strongly implicated. This review focused on recent contributions (since 2010) in the area of protein metabolism and cardiac function related to ACM. Data reviewed include that from in vitro and preclinical in vivo animal studies where alcohol or an oxidative metabolite was studied and outcome measures in either cardiomyocytes or whole heart pertaining to protein synthesis or degradation were reported. Additionally, studies on the contractile properties of cardiomyocytes were also included to link signal transduction with function. Methodological differences including the potential impact of sex, dosing, and duration/timing of alcohol administration are addressed. Acute and chronic alcohol consumption decreases cardiac protein synthesis and/or activation of proteins within the regulatory mammalian/mechanistic target of rapamycin complex pathway. Albeit limited, evidence suggests that myocardial protein degradation via the ubiquitin pathway is not altered, while autophagy may be enhanced in ACM. Alcohol impairs ex vivo cardiomyocyte contractility in relation to its metabolism and expression of proteins within the growth factor pathway. Dysregulation of protein metabolism, including the rate of protein synthesis and autophagy, may contribute to contractile deficits and is a hallmark feature of ACM meriting additional sex-inclusive, methodologically consistent studies.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
23
|
Tuttolomondo A, Simonetta I, Pinto A. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure. Expert Opin Ther Targets 2016; 20:1287-1300. [PMID: 27409295 DOI: 10.1080/14728222.2016.1212017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Irene Simonetta
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| | - Antonio Pinto
- a U.O.C di Medicina Interna con Stroke Care, Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S) , University of Palermo , Palermo , Italy
| |
Collapse
|
24
|
Matyas C, Varga ZV, Mukhopadhyay P, Paloczi J, Lajtos T, Erdelyi K, Nemeth BT, Nan M, Hasko G, Gao B, Pacher P. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am J Physiol Heart Circ Physiol 2016; 310:H1658-H1670. [PMID: 27106042 PMCID: PMC4935511 DOI: 10.1152/ajpheart.00214.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/15/2016] [Indexed: 12/31/2022]
Abstract
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Tamas Lajtos
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Katalin Erdelyi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Balazs T Nemeth
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Mintong Nan
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gyorgy Hasko
- Department of Surgery, Rutgers New Jersey Medical School, University Heights, Newark, New Jersey; and
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
25
|
Saeedi Saravi SS, Ghazi-Khansari M, Ejtemaei Mehr S, Nobakht M, Mousavi SE, Dehpour AR. Contribution of mammalian target of rapamycin in the pathophysiology of cirrhotic cardiomyopathy. World J Gastroenterol 2016; 22:4685-4694. [PMID: 27217700 PMCID: PMC4870075 DOI: 10.3748/wjg.v22.i19.4685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/27/2016] [Accepted: 03/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of mammalian target of rapamycin (mTOR) in the pathogenesis of cirrhotic cardiomyopathy and the potential of rapamycin to improve this pathologic condition. METHODS Male albino Wistar rats weighing 100-120 g were treated with tetrachloride carbon (CCl4) for 8 wk to induce cirrhosis. Subsequently, animals were administered rapamycin (2 mg/kg per day). The QTc intervals were calculated in a 5-min electrocardiogram. Then, the left ventricular papillary muscles were isolated to examine inotropic responsiveness to β-adrenergic stimulation using a standard organ bath equipped by Powerlab system. Phosphorylated-mTOR localization in left ventricles was immunohistochemically assessed, and ventricular tumor necrosis factor (TNF)-α was measured. Western blot was used to measure levels of ventricular phosphorylated-mTOR protein. RESULTS Cirrhosis was confirmed by hematoxylin and eosin staining of liver tissues, visual observation of lethargy, weight loss, jaundice, brown urine, ascites, liver stiffness, and a significant increase of spleen weight (P < 0.001). A significant prolongation in QTc intervals occurred in cirrhotic rats exposed to CCl4 (P < 0.001), while this prolongation was decreased with rapamycin treatment (P < 0.01). CCl4-induced cirrhosis caused a significant decrease of contractile responsiveness to isoproterenol stimulation and a significant increase in cardiac TNF-α. These findings were correlated with data from western blot and immunohistochemical studies on phosphorylated-mTOR expression in left ventricles. Phosphorylated-mTOR was significantly enhanced in cirrhotic rats, especially in the endothelium, compared to controls. Rapamycin treatment significantly increased contractile force and myocardial localization of phosphorylated-mTOR and decreased cardiac TNF-α concentration compared to cirrhotic rats with no treatment. CONCLUSION In this study, we demonstrated a potential role for cardiac mTOR in the pathophysiology of cirrhotic cardiomyopathy. Rapamycin normalized the inotropic effect and altered phosphorylated-mTOR expression and myocardial localization in cirrhotic rats.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Mahmoud Ghazi-Khansari
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Shahram Ejtemaei Mehr
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Maliheh Nobakht
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Seyyedeh Elaheh Mousavi
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| | - Ahmad Reza Dehpour
- Seyed Soheil Saeedi Saravi, Mahmoud Ghazi-Khansari, Shahram Ejtemaei Mehr, Seyyedeh Elaheh Mousavi, Ahmad Reza Dehpour, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145, Iran
| |
Collapse
|
26
|
Raymond AR, Becker J, Woodiwiss AJ, Booysen HL, Norton GR, Brooksbank RL. Ethanol-Associated Cardiomyocyte Apoptosis and Left Ventricular Dilation Are Unrelated to Changes in Myocardial Telomere Length in Rats. J Card Fail 2016; 22:294-302. [DOI: 10.1016/j.cardfail.2015.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/07/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022]
|
27
|
Abstract
The consumption of ethanol can have both beneficial and detrimental effects on the function of the heart and cardiovascular system, depending on the amount consumed. Low-to-moderate amounts of ethanol intake are associated with improvements in cardiac function and vascular health. On the other hand, ethanol chronically consumed in large amounts acts as a toxin to the heart and vasculature. The cardiac injury produced by chronic alcohol abuse can progress to heart failure and eventual death. Furthermore, alcohol abuse may exacerbate preexisting heart conditions, such as hypertension and cardiomyopathy. This article focuses on the molecular mechanisms and pathophysiology of both the beneficial and detrimental cardiac effects of alcohol.
Collapse
Affiliation(s)
- Jason D Gardner
- Department of Physiology, Alcohol and Drugs of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
28
|
Wang Z, Wu Q, Nie X, Guo J, Yang C. Infusion of esmolol attenuates lipopolysaccharide-induced myocardial dysfunction. J Surg Res 2016; 200:283-9. [DOI: 10.1016/j.jss.2015.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/28/2022]
|
29
|
Myostatin and insulin-like growth factor-1 in hypertensive heart disease. J Hypertens 2015; 33:851-8; discussion 859. [DOI: 10.1097/hjh.0000000000000493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Abstract
Alcoholic cardiomyopathy (ACM) is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. ACM is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of ACM.
Collapse
Affiliation(s)
- Mariann R. Piano
- Professor and Department Head, Department of Biobehavioral Health Science (MC 807), University of Illinois at Chicago, 845 S. Damen Ave., Chicago, IL 60612, 312-413-0132 (TEL), 312-996-4979,
| | - Shane A. Phillips
- Associate Professor and Associate Department Head, Department of Physical Therapy, University of Illinois at Chicago, 1919 W. Taylor St. (MC 898), Chicago, IL 60612, 312-355-0277 (TEL),
| |
Collapse
|
31
|
Umoh NA, Walker RK, Al-Rubaiee M, Jeffress MA, Haddad GE. Acute alcohol modulates cardiac function as PI3K/Akt regulates oxidative stress. Alcohol Clin Exp Res 2014; 38:1847-64. [PMID: 24962888 DOI: 10.1111/acer.12459] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/07/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinical manifestations of alcohol abuse on the cardiac muscle include defective contractility with the development of heart failure. Interestingly, low alcohol consumption has been associated with reduced risk of cardiovascular disease. Although several hypotheses have been postulated for alcoholic cardiomyopathy and for the low-dose beneficial cardiovascular effects, the precise mechanisms and mediators remain largely undefined. We hypothesize that modulation of oxidative stress by PI3K/Akt plays a key role in the cardiac functional outcome to acute alcohol exposure. METHODS Thus, acutely exposed rat cardiac tissue and cardiocytes to low (LA: 5 mM), moderate (MA: 25 mM), and high (HA: 100 mM) alcohol were assessed for markers of oxidative stress in the presence and absence of PI3K/Akt activators (IGF-1 0.1 μM or constitutively active PI3K: Ad.BD110 transfection) or inhibitor (LY294002 1 μM or Akt-negative construct Ad.Akt(K179M) transfection). RESULTS Acute LA reduced Akt, superoxide dismutase (SOD-3) and NFκB, ERK1, and p38 MAPK gene expression. Acute HA only increased that of SOD-3 and NFκB. These effects were generally inhibited by Ad.Akt(K179M) and enhanced with Ad.BD110 transfection. In parallel, LA reduced but HA enhanced Akt activity, which was reversed by IGF-1 and inhibited by Ad.Akt(K179M), respectively. Also, LA reduced caspase 3/7 activity and oxidative stress, while HA increased both. The former was blocked, while the latter effect was enhanced by Ad.Akt(K179M). The reverse was true with PI3K/Akt activation. This translated into reduced viability with HA, with no effect with LA. On the functional level, acute LA improved cardiac output and ejection fraction, mainly through increased stroke volume. This was accompanied with enhanced end-systolic pressure-volume relationship and preload recruitable stroke work. Opposite effect was recorded for HA. LA and HA in vivo functional effects were alleviated by LY and enhanced by IGF-1 treatment. CONCLUSIONS Acute LA and HA seem to oppositely affect cardiac function through modulation of oxidative stress where PI3K/Akt plays a pivotal role.
Collapse
Affiliation(s)
- Nsini A Umoh
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, District of Columbia
| | | | | | | | | |
Collapse
|
32
|
A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:319-31. [PMID: 24874076 DOI: 10.1016/j.bbadis.2014.05.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 12/18/2022]
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) is known to offer myocardial protection against stress conditions including ischemia-reperfusion injury, alcoholism and diabetes mellitus although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on diabetes-induced myocardial injury with a focus on autophagy. Wild-type FVB and ALDH2 transgenic mice were challenged with streptozotozin (STZ, 200mg/kg, i.p.) for 3months to induce experimental diabetic cardiomyopathy. Diabetes triggered cardiac remodeling and contractile dysfunction as evidenced by cardiac hypertrophy, decreased cell shortening and prolonged relengthening duration, the effects of which were mitigated by ALDH2. Lectin staining displayed that diabetes promoted cardiac hypertrophy, the effect of which was alleviated by ALDH2. Western blot analysis revealed dampened autophagy protein markers including LC3B ratio and Atg7 along with upregulated p62 following experimental diabetes, the effect of which was reconciled by ALDH2. Phosphorylation level of AMPK was decreased and its downstream signaling molecule FOXO3a was upregulated in both diabetic cardiac tissue and in H9C2 cells with high glucose exposure. All these effect were partly abolished by ALDH2 overexpression and ALDH2 agonist Alda1. High glucose challenge dampened autophagy in H9C2 cells as evidenced by enhanced p62 levels and decreased levels of Atg7 and LC3B, the effect of which was alleviated by the ALDH2 activator Alda-1. High glucose-induced cell death and apoptosis were reversed by Alda-1. The autophagy inhibitor 3-MA and the AMPK inhibitor compound C mitigated Alda-1-offered beneficial effect whereas the autophagy inducer rapamycin mimicked or exacerbated high glucose-induced cell injury. Moreover, compound C nullified Alda-1-induced protection against STZ-induced changes in autophagy and function. Our results suggested that ALDH2 protects against diabetes-induced myocardial dysfunction possibly through an AMPK -dependent regulation of autophagy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
|
33
|
Ablation of Akt2 protects against lipopolysaccharide-induced cardiac dysfunction: role of Akt ubiquitination E3 ligase TRAF6. J Mol Cell Cardiol 2014; 74:76-87. [PMID: 24805195 DOI: 10.1016/j.yjmcc.2014.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/08/2014] [Accepted: 04/22/2014] [Indexed: 01/03/2023]
Abstract
Lipopolysaccharide (LPS), an essential component of the outer membrane of Gram-negative bacteria, plays a pivotal role in myocardial anomalies in sepsis. Recent evidence has depicted a role of Akt in LPS-induced cardiac sequelae although little information is available with regard to the contribution of Akt isoforms in the endotoxin-induced cardiac dysfunction. This study examined the effect of Akt2 knockout on LPS-induced myocardial contractile dysfunction and the underlying mechanism(s) with a focus on TNF receptor-associated factor 6 (TRAF6). Echocardiographic properties and cardiomyocyte contractile function [peak shortening (PS), maximal velocity of shortening/relengthening, time-to-PS, time-to-90% relengthening] were examined in wild-type and Akt2 knockout mice following LPS challenge (4mg/kg, 4h). LPS challenge enlarged LV end systolic diameter, reduced fractional shortening and cardiomyocyte contractile capacity, prolonged TR90, promoted apoptosis, upregulated caspase-3/-12, ubiquitin, and the ubiquitination E3 ligase TRAF6 as well as decreased mitochondrial membrane potential without affecting the levels of TNF-α, toll-like receptor 4 and the mitochondrial protein ALDH2. Although Akt2 knockout failed to affect myocardial function, apoptosis, and ubiquitination, it significantly attenuated or mitigated LPS-induced changes in cardiac contractile and mitochondrial function, apoptosis and ubiquitination but not TRAF6. LPS facilitated ubiquitination, phosphorylation of Akt, GSK3β and p38, the effect of which with the exception of p38 was ablated by Akt2 knockout. TRAF6 inhibitory peptide or RNA silencing significantly attenuated LPS-induced Akt2 ubiquitination, cardiac contractile anomalies and apoptosis. These data collectively suggested that TRAF6 may play a pivotal role in mediating LPS-induced cardiac injury via Akt2 ubiquitination.
Collapse
|
34
|
Ling S, Nanhwan M, Qian J, Kodakandla M, Castillo AC, Thomas B, Liu H, Ye Y. Modulation of microRNAs in hypertension-induced arterial remodeling through the β1 and β3-adrenoreceptor pathways. J Mol Cell Cardiol 2013; 65:127-36. [PMID: 24161401 DOI: 10.1016/j.yjmcc.2013.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/14/2013] [Accepted: 10/05/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dysregulation of microRNAs (miRNAs) in arterial dysfunction and hypertension has not been extensively investigated yet. This project determined the effects of two anti-hypertensive β1 adrenergic selective blockers on miRNA expression in the Dahl Salt Sensitive (DSS) hypertensive rat model. METHODS AND RESULTS Microarray analysis showed that a set of miRNAs is differently expressed in the aorta of high salt (HS) treated rats with miR-320 increased and miR-26b and -21 decreased. All of these changes were reverted to normal by nebivolol (NEB, a β1 selective-blocker and β3 activator). The selective β3-adrenoceptor antagonist S-(-)-cyanopindolol (Syc) counteracted the effect of NEB on these miRNAs. Atenolol (ATN, a pure β1-blocker) combined with specific β3 agonist BRL37344 restored the expression of all three miRNAs, similar to NEB, while ATN alone had only a partial effect on miR-320 expression. Computational analysis found Insulin Growth Factor-1 Receptor (IGF1R) as a putative target of miR-320, and Phosphatase and tensin homolog on chromosome ten (PTEN) as a putative target of miR-26b and -21. The targets were verified by luciferase reporter assays. Inhibition of miR-320 by an antisense inhibitor or NEB increased IGF1R expression, while miR-320 overexpression reversed the effect of NEB. Overexpression of miR-26b or -21 or NEB decreased PTEN levels, while inhibition of miR-26b or -21 attenuated the effect of NEB. HS diet induced downregulation of IGF1R and upregulation of PTEN in the aorta. NEB normalized the aberrant expression of IGF1R and PTEN and also improved the impairment of vascular AKT/eNOS signaling. Moreover, both NEB and ATN showed to have protective effects on salt-induced hypertension, oxidative stress, and vascular remodeling. NEB had a greater effect than ATN. CONCLUSIONS Our data supports a differential miRNA expression profile in salt-induced hypertension. Manipulation of dysregulated miRNAs by β-blockers may substantially induce alterations of gene expression and prevent arterial dysfunction and remodeling.
Collapse
Affiliation(s)
- Shukuan Ling
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Borrisser-Pairó F, Antúnez E, Tobías E, Fernández-Solà J. Insulin-like growth factor 1 myocardial expression decreases in chronic alcohol consumption. Regen Med Res 2013; 1:3. [PMID: 25984322 PMCID: PMC4375930 DOI: 10.1186/2050-490x-1-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/02/2013] [Indexed: 01/21/2023] Open
Abstract
Background Alcoholic cardiomyopathy (CMP) is one of the major complications of chronic excessive alcohol consumption. The pathogenic mechanisms implicated are diverse, inducing functional and structural changes in the myocardium. Insulin-like Growth Factor 1 (IGF-1) plays an important role in modulating the cell cycle, and helps the differentiation and proliferation of cardiac tissue inhibiting apoptosis. Experimental studies have suggested the role of IGF-1 in alcohol-induced cardiac damage. The aim of the present study was to determine the effect of chronic alcohol consumption on IGF-1 myocardial expression and to compare this expression in cases of hypertension and other cardiac diseases. Methods We studied heart samples from human organ donors: 10 healthy donors, 16 with hypertension, 23 with chronic alcohol consumption and 7 with other causes of cardiac disease. IGF-1 myocardial expression was evaluated with a specific immunohistochemistry assay using a semi-quantitative method. Results A significant decrease in IGF-1 myocardial expression was observed comparing all the cases included with control donors. This decrease in IGF-1 myocardial expression was significantly lower in the group of donors with chronic alcohol consumption compared to controls. On group evaluation according to the presence of CMP, donors with chronic alcohol consumption without CMP presented significantly lower IGF-1 expression than controls, whereas donors with chronic alcohol consumption with CMP showed a downward trend without achieving significance. Conclusions Chronic alcohol consumption significantly reduces IGF-1 myocardial expression. This decrease induced by alcohol is partially compensated in the presence of structural myocardial damage.
Collapse
Affiliation(s)
- Francesc Borrisser-Pairó
- Alcohol Research Unit. Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Emilia Antúnez
- Alcohol Research Unit. Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Ester Tobías
- Alcohol Research Unit. Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Fernández-Solà
- Alcohol Research Unit. Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Roe ND, Ren J. Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 2013; 304:H828-39. [PMID: 23316062 PMCID: PMC3602775 DOI: 10.1152/ajpheart.00752.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/20/2012] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum (ER) stress elicits oxidative stress and intracellular Ca(2+) derangement via activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). This study was designed to examine the role of CaMKII in ER stress-induced cardiac dysfunction and apoptosis as well as the effect of antioxidant catalase. Wild-type FVB and transgenic mice with cardiac-specific overexpression of catalase were challenged with the ER stress inducer tunicamycin (3 mg/kg ip for 48 h). Presence of ER stress was verified using the ER stress protein markers immunoglobulin binding protein (BiP) and C/EBP homologous protein (CHOP), the effect of which was unaffected by catalase overexpression. Echocardiographic assessment revealed that tunicamycin elicited cardiac remodeling (enlarged end-systolic diameter without affecting diastolic and ventricular wall thickness), depressed fractional shortening, ejection fraction, and cardiomyocyte contractile capacity, intracellular Ca(2+) mishandling, accumulation of reactive oxygen species (superoxide production and NADPH oxidase p47phox level), CaMKII oxidation, and apoptosis (evidenced by Bax, Bcl-2/Bax ratio, and TUNEL staining), the effects of which were obliterated by catalase. Interestingly, tunicamycin-induced cardiomyocyte mechanical anomalies and cell death were ablated by the CaMKII inhibitor KN93, in a manner reminiscent of catalase. These data favored a permissive role of oxidative stress and CaMKII activation in ER stress-induced cardiac dysfunction and cell death. Our data further revealed the therapeutic potential of antioxidant or CaMKII inhibition in cardiac pathological conditions associated with ER stress. This research shows for the first time that contractile dysfunction caused by ER stress is a result of the oxidative activation of the CaMKII pathway.
Collapse
Affiliation(s)
- Nathan D Roe
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, School of Pharmacy, Laramie, WY 82071, USA
| | | |
Collapse
|
37
|
Turdi S, Han X, Huff AF, Roe ND, Hu N, Gao F, Ren J. RETRACTED: Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: Role of autophagy. Free Radic Biol Med 2012; 53:1327-1338. [PMID: 22902401 PMCID: PMC3495589 DOI: 10.1016/j.freeradbiomed.2012.07.084] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 07/29/2012] [Accepted: 07/31/2012] [Indexed: 01/20/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. After an institutional investigation into the work of Dr. Jun Ren, University of Wyoming subsequently conducted an examination of other selected publications of Dr. Ren's under the direction of the HHS Office of Research Integrity. Based on the findings of this examination, the University of Wyoming recommended this article be retracted due to concerns regarding data irregularities inconsistent with published conclusions. Specifically, University of Wyoming found evidence of data irregularities and image reuse in Figure 2 that significantly affect the results and conclusions reported in the manuscript.
Collapse
Affiliation(s)
- Subat Turdi
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Xuefeng Han
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Anna F Huff
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Nathan D Roe
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Nan Hu
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Jun Ren
- Division of Pharmaceutical Sciences, Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
38
|
Zhang RH, Gao JY, Guo HT, Scott GI, Eason AR, Wang XM, Ren J. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:128-41. [PMID: 22967841 DOI: 10.1016/j.bbadis.2012.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 02/07/2023]
Abstract
Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling.
Collapse
Affiliation(s)
- Rong-Huai Zhang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Hu N, Hua Y, Richmond KL, Dong F, Ren J. Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med 2012; 53:194-207. [PMID: 22565031 PMCID: PMC3392511 DOI: 10.1016/j.freeradbiomed.2012.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Cold exposure is associated with an increased prevalence of cardiovascular disease although the mechanism is unknown. Metallothionein, a heavy-metal-scavenging antioxidant, protects against cardiac anomalies. This study was designed to examine the impact of metallothionein on cold exposure-induced myocardial dysfunction, intracellular Ca(2+) derangement, fibrosis, endoplasmic reticulum (ER) stress, and apoptosis. Echocardiography, cardiomyocyte function, and Masson trichrome staining were evaluated in Friend virus B (FVB) and cardiac-specific metallothionein transgenic mice after cold exposure (3 months, 4 °C). Cold exposure increased plasma levels of norepinephrine, endothelin-1, and TGF-β; reduced plasma NO levels and cardiac antioxidant capacity; enlarged ventricular end-systolic diameter; compromised fractional shortening; promoted reactive oxygen species (ROS) production and apoptosis; and suppressed the ER stress markers Bip, calregulin, and phospho-eIF2α, accompanied by cardiac fibrosis and elevated levels of matrix metalloproteinases and Smad-2/3 in FVB mice. Cold exposure-induced echocardiographic, histological, ER stress, ROS, apoptotic, and fibrotic signaling changes (but not plasma markers) were greatly improved by metallothionein. In vitro metallothionein induction by zinc chloride ablated H(2)O(2)- but not TGF-β-induced cell proliferation in fibroblasts. In summary, our data suggest that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of myocardial fibrosis.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Kacy L. Richmond
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Feng Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| |
Collapse
|
40
|
Law BA, Levick SP, Carver WE. Alterations in cardiac structure and function in a murine model of chronic alcohol consumption. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:453-461. [PMID: 22571914 DOI: 10.1017/s1431927612000372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Male, wild-type, FVB strain mice were fed a nutritionally complete liquid diet supplemented with 4% ethanol v/v over a time course of 1, 2, 4, 8, 12, and 14 weeks. Controls were offered an isocaloric liquid equivalent and pair fed with their ethanol counterparts. Changes in cardiac physiology were assessed at respective time points via echocardiography. Additionally, the use of histological techniques, mRNA analysis, apoptosis determination, and immunohistochemistry were employed to determine the functional and structural changes on the heart. Echocardiograph analysis revealed a compensatory phase that occurred early in the time course (1-8 weeks) and decompensation reverting toward heart failure at weeks 12 and 14. Throughout the study, an increase in cardiomyocyte hypertrophy, cardiac fibrosis, apoptosis, TGF-β, and the presence of α-SMA-positive cells were determined. A compensatory period in mice treated with ethanol occurred early followed by a transition to a dilated phenotype over time. A number of factors may be involved in this process including the activation of myofibroblasts and their fibrotic activities that is correlated with the presence of transforming growth factor beta.
Collapse
Affiliation(s)
- Brittany A Law
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
41
|
Zhang Y, Babcock SA, Hu N, Maris JR, Wang H, Ren J. Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3β and mitochondrial function. BMC Med 2012; 10:40. [PMID: 22524197 PMCID: PMC3439670 DOI: 10.1186/1741-7015-10-40] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/23/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mitochondrial aldehyde dehydrogenase (ALDH2) displays some promise in the protection against cardiovascular diseases although its role in diabetes has not been elucidated. METHODS This study was designed to evaluate the impact of ALDH2 on streptozotocin-induced diabetic cardiomyopathy. Friendly virus B(FVB) and ALDH2 transgenic mice were treated with streptozotocin (intraperitoneal injection of 200 mg/kg) to induce diabetes. RESULTS Echocardiographic evaluation revealed reduced fractional shortening, increased end-systolic and -diastolic diameter, and decreased wall thickness in streptozotocin-treated FVB mice. Streptozotocin led to a reduced respiratory exchange ratio; myocardial apoptosis and mitochondrial damage; cardiomyocyte contractile and intracellular Ca2+ defects, including depressed peak shortening and maximal velocity of shortening and relengthening; prolonged duration of shortening and relengthening; and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of Akt, glycogen synthase kinase-3β and Foxo3a (but not mammalian target of rapamycin), elevated PTEN phosphorylation and downregulated expression of mitochondrial proteins, peroxisome proliferator-activated receptor γ coactivator 1α and UCP-2. Intriguingly, ALDH2 attenuated or ablated streptozotocin-induced echocardiographic, mitochondrial, apoptotic and myocardial contractile and intracellular Ca2+ anomalies as well as changes in the phosphorylation of Akt, glycogen synthase kinase-3β, Foxo3a and phosphatase and tensin homologue on chromosome ten, despite persistent hyperglycemia and a low respiratory exchange ratio. In vitro data revealed that the ALDH2 activator Alda-1 and glycogen synthase kinase-3β inhibition protected against high glucose-induced mitochondrial and mechanical anomalies, the effect of which was cancelled by mitochondrial uncoupling. CONCLUSIONS In summary, our data revealed that ALDH2 acted against diabetes-induced cardiac contractile and intracellular Ca2+ dysregulation, possibly through regulation of apoptosis, glycogen synthase kinase-3β activation and mitochondrial function independent of the global metabolic profile.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | |
Collapse
|
42
|
Movva R, Figueredo VM. Alcohol and the heart: to abstain or not to abstain? Int J Cardiol 2012; 164:267-76. [PMID: 22336255 DOI: 10.1016/j.ijcard.2012.01.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/07/2012] [Accepted: 01/19/2012] [Indexed: 12/12/2022]
Abstract
Alcohol has been consumed by most societies over the last 7000 years. Abraham Lincoln said "It has long been recognized that the problems with alcohol relate not to the use of a bad thing, but to the abuse of a good thing." Light to moderate alcohol consumption reduces the incidence of coronary heart disease (CHD), ischemic stroke, peripheral arterial disease, CHD mortality, and all-cause mortality, especially in the western populations. However, heavy alcohol consumption is detrimental causing cardiomyopathy, cardiac arrhythmias, hepatic cirrhosis, pancreatitis, and hemorrhagic stroke. In this article, we review the effects of alcohol on CHD, individual cardiovascular risk factors, cardiomyopathy, and cardiac arrhythmias, including the most recent evidence of the effects of alcohol on CHD.
Collapse
Affiliation(s)
- Rajesh Movva
- Albert Einstein Medical Center, Philadelphia, PA 19141, United States
| | | |
Collapse
|
43
|
Zhang Y, Yuan M, Bradley KM, Dong F, Anversa P, Ren J. Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 2012; 59:680-93. [PMID: 22275536 DOI: 10.1161/hypertensionaha.111.181867] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is often associated with reduced plasma insulin-like growth factor 1 (IGF-1) levels, oxidative stress, mitochondrial damage, and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high-fat diet-induced oxidative, myocardial, geometric, and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low- (10%) or high-fat (45%) diet to induce obesity. High-fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin 6, insulin, and triglyceride, as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end-systolic and end-diastolic diameter, increased wall thickness, and cardiac hypertrophy in high-fat-fed FVB mice. High-fat diet promoted reactive oxygen species generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca(2+) dysregulation (including depressed peak shortening and maximal velocity of shortening/relengthening), prolonged duration of relengthening, and dampened intracellular Ca(2+) rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor and postreceptor signaling molecules insulin receptor substrate 1 (tyrosine/serine phosphorylation), Akt, glycogen synthase kinase 3β, forkhead transcriptional factors, and mammalian target of rapamycin, as well as downregulated expression of mitochondrial proteins peroxisome proliferator-activated receptor-γ coactivator 1α and uncoupling protein 2. Intriguingly, IGF-1 mitigated high-fat-diet feeding-induced alterations in reactive oxygen species, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca(2+) handling, and insulin signaling but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high-fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high-fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly because of preserved cell survival, mitochondrial function, and insulin signaling.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Ren J. RETRACTED: Thapsigargin triggers cardiac contractile dysfunction via NADPH oxidase-mediated mitochondrial dysfunction: Role of Akt dephosphorylation. Free Radic Biol Med 2011; 51:2172-2184. [PMID: 21996563 PMCID: PMC3224204 DOI: 10.1016/j.freeradbiomed.2011.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 02/09/2023]
Abstract
ER stress triggers myocardial contractile dysfunction although the underlying mechanism is still elusive. Given that NADPH oxidase was recently implicated in ER stress-induced tissue injury, this study was designed to examine the role of NADPH oxidase in ER stress-induced cardiac mechanical defects and the impact of Akt activation on ER stress-induced cardiac anomalies. Wild-type and transgenic mice with cardiac-specific overexpression of an active mutant of Akt (MyAkt) were subjected to the ER stress inducer thapsigargin (1 and 3mg/kg, ip, for 48h). Thapsigargin compromised echocardiographic parameters, including elevating LVESD and reducing fractional shortening; suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, and cell survival; and enhanced carbonyl formation, apoptosis, superoxide production, NADPH oxidase expression, and mitochondrial damage. Interestingly, these anomalies were attenuated or mitigated by chronic Akt activation. Treatment with thapsigargin also dephosphorylated Akt and its downstream signal GSK3β (leading to activation of GSK3β), the effect of which was abrogated in MyAkt hearts. Knockdown of the cytosolic subunit of NADPH oxidase, p47(phox), using siRNA abrogated thapsigargin-induced apoptosis and cell death in H9C2 myoblasts. In vitro exposure to thapsigargin induced murine cardiomyocyte dysfunction reminiscent of the in vivo setting, the effects of which were ablated by the NADPH oxidase inhibitor apocynin and the mitochondrial Ca(2+) uptake inhibitor Ru360. In addition, apocynin abrogated thapsigargin-induced loss of mitochondrial membrane potential and permeability transition pore opening, similar to chronic Akt activation. In summary, these data suggest that ER stress interrupts cardiac contractile and intracellular Ca(2+) homeostasis, cell survival, and mitochondrial integrity through an Akt dephosphorylation- and NADPH oxidase-dependent mechanism.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
45
|
Ceylan-Isik AF, Li Q, Ren J. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis. Toxicol Lett 2011; 206:130-8. [PMID: 21763763 PMCID: PMC3163688 DOI: 10.1016/j.toxlet.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022]
Abstract
Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
46
|
Zhang Y, Ren J. ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther 2011; 132:86-95. [PMID: 21664374 DOI: 10.1016/j.pharmthera.2011.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 01/12/2023]
Abstract
Alcoholic cardiomyopathy is manifested as cardiac hypertrophy, disrupted contractile function and myofibrillary architecture. An ample amount of clinical and experimental evidence has depicted a pivotal role for alcohol metabolism especially the main alcohol metabolic product acetaldehyde, in the pathogenesis of this myopathic state. Findings from our group and others have revealed that the mitochondrial isoform of aldehyde dehydrogenase (ALDH2), which metabolizes acetaldehyde, governs the detoxification of acetaldehyde formed following alcohol consumption and the ultimate elimination of alcohol from the body. The ALDH2 enzymatic cascade may evolve as a unique detoxification mechanism for environmental alcohols and aldehydes to alleviate the undesired cardiac anomalies in ischemia-reperfusion and alcoholism. Polymorphic variants of the ALDH2 gene encode enzymes with altered pharmacokinetic properties and a significantly higher prevalence of cardiovascular diseases associated with alcoholism. The pathophysiological effects of ALDH2 polymorphism may be mediated by accumulation of acetaldehyde and other reactive aldehydes. Inheritance of the inactive ALDH2*2 gene product is associated with a decreased risk of alcoholism but an increased risk of alcoholic complications. This association is influenced by gene-environment interactions such as those associated with religion and national origin. The purpose of this review is to recapitulate the pathogenesis of alcoholic cardiomyopathy with a special focus on ALDH2 enzymatic metabolism. It will be important to dissect the links between ALDH2 polymorphism and prevalence of alcoholic cardiomyopathy, in order to determine the mechanisms underlying such associations. The therapeutic value of ALDH2 as both target and tool in the management of alcoholic tissue damage will be discussed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | |
Collapse
|