1
|
Fry LG, Washam CL, Roys H, Bowlin AK, Venugopal G, Bird JT, Byrum SD, Weinkopff T. HIF-α signaling regulates the macrophage inflammatory response during Leishmania major infection. Front Immunol 2025; 16:1487311. [PMID: 40191198 PMCID: PMC11969800 DOI: 10.3389/fimmu.2025.1487311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Cutaneous leishmaniasis (CL) contributes significantly to the global burden of neglected tropical diseases, with 12 million people currently infected with Leishmania parasites. CL encompasses a range of disease manifestations, from self-healing skin lesions to permanent disfigurations. Currently there is no vaccine available, and many patients are refractory to treatment, emphasizing the need for new therapeutic targets. Previous work demonstrated macrophage HIF-α-mediated lymphangiogenesis is necessary to achieve efficient wound resolution during murine L. major infection. Here, we investigate the role of macrophage HIF-α signaling independent of lymphangiogenesis. We sought to determine the relative contributions of the parasite and the host-mediated inflammation in the lesional microenvironment to myeloid HIF-α signaling. Because HIF-α activation can be detected in infected and bystander macrophages in leishmanial lesions, we hypothesize it is the host's inflammatory response and microenvironment, rather than the parasite, that triggers HIF-α activation. To address this, macrophages from mice with intact HIF-α signaling (LysMCreARNTf/+) or mice with deleted HIF-α signaling (LysMCreARNTf/f) were subjected to RNASequencing after L. major infection and under pro-inflammatory stimulus. We report that L. major infection alone is enough to induce some minor HIF-α-dependent transcriptomic changes, while infection with L. major in combination with pro-inflammatory stimuli induces numerous transcriptomic changes that are both dependent and independent of HIF-α signaling. Additionally, by coupling transcriptomic analysis with several pathway analyses, we found HIF-α suppresses pathways involved in protein translation during L. major infection in a pro-inflammatory environment. Together these findings show L. major induces a HIF-α-dependent transcriptomic program, but HIF-α only suppresses protein translation in a pro-inflammatory environment. Thus, this work indicates the host inflammatory response, rather than the parasite, largely contributes to myeloid HIF-α signaling during Leishmania infection.
Collapse
Affiliation(s)
- Lucy G. Fry
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anne K. Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jordan T. Bird
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
2
|
Das S, Babu NK, Mazire P, Roy A, Kumar R, Singh S, Sharma DK. Indolylmaleimide derivatives as a new class of anti-leishmanial agents: synthesis and biological evaluation. RSC Med Chem 2025:d5md00132c. [PMID: 40256310 PMCID: PMC12004262 DOI: 10.1039/d5md00132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/09/2025] [Indexed: 04/22/2025] Open
Abstract
Leishmaniasis is a neglected tropical disease, primarily affecting poor and developing countries. The present therapeutic approach faces various limitations, such as concerns regarding toxicity, route of administration, and the emergence of drug resistance. Therefore, there is a critical need to identify novel scaffolds to combat this fatal parasitic infection. Leishmanial DNA topoisomerase 1B is a heterodimeric protein and plays a crucial role in resolving topological problems during various biological processes. It is structurally distinct from its human counterparts, making it an attractive target for drug discovery. In this study, we synthesized various aminated indolylmaleimide derivatives targeting the leishmanial topoisomerase 1B enzyme. In vitro leishmanicidal assays on Leishmania promastigotes identified one highly potent hit (3m), showing considerable inhibition with single-digit micromolar IC50 values. Moreover, molecular docking analysis of the potent hit (3m) confirmed its strong binding affinity with the enzyme. Thus, the hit molecule (3m) holds promise as a lead for developing novel therapeutic strategies against leishmaniasis.
Collapse
Affiliation(s)
- Samarpita Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005 India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar (Mohali)-160062 India
| | - Priyanka Mazire
- Department of Biotechnology, Savitribai Phule Pune University Pune-411007 India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University Pune-411007 India
| | - Rohit Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005 India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Sector-67, S.A.S. Nagar (Mohali)-160062 India
| | - Deepak K Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005 India
| |
Collapse
|
3
|
Bag S, Seth A, Ghosh D, Datta R, De P. Degradable Theranostic Polyurethane for Macrophage-Targeted Antileishmanial Drug Delivery. Biomacromolecules 2025; 26:967-980. [PMID: 39752556 DOI: 10.1021/acs.biomac.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane (PU2M) with aryl boronic ester-based diol (M2) moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by 1H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both L. donovani and L. major intracellular amastigote burden compared to the free AmB. Overall, this work illustrated a promising therapeutic application of dual endogenous stimuli-triggered degradable theranostic polyurethane for target-specific drug delivery of AmB, to mitigate leishmaniasis.
Collapse
Affiliation(s)
- Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Arunava Seth
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| |
Collapse
|
4
|
Zarrinkar F, Sharifi I, Tavakoli Oliaee R, Afgar A, Molaakbari E, Bamorovat M, Babaei Z, Eskandari E, Salarkia E, Asadi M. Identification of CβS and ODC antimony resistance markers in anthroponotic cutaneous leishmaniasis field isolates by gene expression profiling. Parasite Epidemiol Control 2025; 28:e00413. [PMID: 39959455 PMCID: PMC11830360 DOI: 10.1016/j.parepi.2025.e00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Antiparasitic resistance represents a serious global public health concern with tremendous economic and safety implications. This study intended to investigate the expression of the two major resistant markers: cystathionine β synthase (CβS) and ornithine decarboxylase (ODC) in antimony unresponsive Leishmania tropica isolates compared to responsive ones. Twenty-six patients were randomly selected from widely known foci of anthroponotic cutaneous leishmaniasis in southeastern Iran. Written informed consent of the patients was obtained. Two smears were prepared from the edge of each active lesion; one for microscopic direct smear preparation and the other for inoculation into monophasic NNN media, then for mass production of promastigotes into RPMI-1640 monophasic culture for performing nested PCR and gene expression quantification by real-time PCR. Twenty-six patients consisting of 13 unresponsive and 13 responsive equally distributed among female and male groups. All cases were identified to be L. tropica. Both resistant gene markers were significantly up-regulated in unresponsive and responsive isolates. The findings showed that CβS and ODC are directly linked with the resistance to L. tropica. Alternative drugs or combination therapy and monitoring drug resistance to prevent the spread of resistant isolates are proper strategies to control the disease.
Collapse
Affiliation(s)
- Farzaneh Zarrinkar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ali Afgar
- Center for Hydatid Disease, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ebrahim Eskandari
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Asadi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Zhang H, Yan R, Liu Y, Yu M, He Z, Xiao J, Li K, Liu G, Ning Q, Li Y. Progress in antileishmanial drugs: Mechanisms, challenges, and prospects. PLoS Negl Trop Dis 2025; 19:e0012735. [PMID: 39752369 PMCID: PMC11698350 DOI: 10.1371/journal.pntd.0012735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine. Despite toxicity and resistance (antimonials), hospitalization needs and side effects (amphotericin B), regional efficacy variability (miltefosine), inconsistent outcomes (paromomycin), and severe side effects (pentamidine), these drugs are vital. Novel strategies to overcome the deficiencies of current therapies are highlighted, including combination regimens, advanced drug delivery systems, and immunomodulatory approaches. Comprehensive and cooperative efforts are crucial to fully realize the potential of advancements in antileishmanial pharmacotherapy and to reduce the unacceptable worldwide burden imposed by this neglected disease.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Yan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Mengtao Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Xiao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kaijie Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
García-Soriano JC, de Lucio H, Elvira-Blázquez D, Alcón-Calderón M, Sanz del Olmo N, Sánchez-Murcia PA, Ortega P, de la Mata FJ, Jiménez-Ruiz A. The repertoire of iron superoxide dismutases from Leishmania infantum as targets in the search for therapeutic agents against leishmaniasis. J Enzyme Inhib Med Chem 2024; 39:2377586. [PMID: 39037009 PMCID: PMC11571740 DOI: 10.1080/14756366.2024.2377586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.
Collapse
Affiliation(s)
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | | | - Natalia Sanz del Olmo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Division of Medicinal Chemistry, Laboratory of Computer-Aided Molecular Design, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Paula Ortega
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
7
|
Bhatt M, Sharma M, Das B. The Role of Inflammatory Cascade and Reactive Astrogliosis in Glial Scar Formation Post-spinal Cord Injury. Cell Mol Neurobiol 2024; 44:78. [PMID: 39579235 PMCID: PMC11585509 DOI: 10.1007/s10571-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Reactive astrogliosis and inflammation are pathologic hallmarks of spinal cord injury. After injury, dysfunction of glial cells (astrocytes) results in glial scar formation, which limits neuronal regeneration. The blood-spinal cord barrier maintains the structural and functional integrity of the spinal cord and does not allow blood vessel components to leak into the spinal cord microenvironment. After the injury, disruption in the spinal cord barrier causes an imbalance of the immunological microenvironment. This triggers the process of neuroinflammation, facilitated by the actions of microglia, neutrophils, glial cells, and cytokines production. Recent work has revealed two phenotypes of astrocytes, A1 and A2, where A2 has a protective type, and A1 releases neurotoxins, further promoting glial scar formation. Here, we first describe the current understanding of the spinal cord microenvironment, both pre-, and post-injury, and the role of different glial cells in the context of spinal cord injury, which forms the essential update on the cellular and molecular events following injury. We aim to explore in-depth signaling pathways and molecular mediators that trigger astrocyte activation and glial scar formation. This review will discuss the activated signaling pathways in astrocytes and other glial cells and their collaborative role in the development of gliosis through inflammatory responses.
Collapse
Affiliation(s)
- Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India
| | - Muskan Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India.
| |
Collapse
|
8
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Qin L, Madden R, Burks H, Gao P, Wu JQ, Sheikh SW, Joice AC, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. Nat Commun 2024; 15:9409. [PMID: 39482311 PMCID: PMC11528044 DOI: 10.1038/s41467-024-53790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Visceral leishmaniasis is a life-threatening parasitic disease, but current antileishmanial drugs have severe drawbacks. Antifungal azoles inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. CYP5122A1 overexpression results in growth delay, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1 possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Arline M Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lingli Qin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, 66047, USA
| | - Judy Qiju Wu
- Department of Pharmacy Practice, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Salma Waheed Sheikh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - April C Joice
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA.
| |
Collapse
|
9
|
Fry LG, Washam CL, Roys H, Bowlin AK, Venugopal G, Bird JT, Byrum SD, Weinkopff T. HIF-α signaling regulates the macrophage inflammatory response during Leishmania major infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.605844. [PMID: 39253467 PMCID: PMC11383058 DOI: 10.1101/2024.08.27.605844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cutaneous leishmaniasis (CL) contributes significantly to the global burden of neglected tropical diseases, with 12 million people currently infected with Leishmania parasites. CL encompasses a range of disease manifestations, from self-healing skin lesions to permanent disfigurations. Currently there is no vaccine available, and many patients are refractory to treatment, emphasizing the need for new therapeutic targets. Previous work demonstrated macrophage HIF-α-mediated lymphangiogenesis is necessary to achieve efficient wound resolution during murine L. major infection. Here, we investigate the role of macrophage HIF-α signaling independent of lymphangiogenesis. We sought to determine the relative contributions of the parasite and the host-mediated inflammation in the lesional microenvironment to myeloid HIF-α signaling. Because HIF-α activation can be detected in infected and bystander macrophages in leishmanial lesions, we hypothesize it is the host's inflammatory response and microenvironment, rather than the parasite, that triggers HIF-α activation. To address this, macrophages from mice with intact HIF-α signaling (LysM Cre ARNT f/+ ) or mice with deleted HIF-α signaling (LysM Cre ARNT f/f ) were subjected to RNASequencing after L. major infection and under pro-inflammatory stimulus. We report that L. major infection alone is enough to induce some minor HIF-α-dependent transcriptomic changes, while infection with L. major in combincation with pro-inflammatory stimuli induces numerous transcriptomic changes that are both dependent and independent of HIF-α signaling. Additionally, by coupling transcriptomic analysis with several pathway analyses, we found HIF-α suppresses pathways involved in protein translation during L. major infection in a pro-inflammatory environment. Together these findings show L. major induces a HIF-α-dependent transcriptomic program, but HIF-α only suppresses protein translation in a pro-inflammatory environment. Thus, this work indicates the host inflammatory response, rather than the parasite, largely contributes to myeloid HIF-α signaling during Leishmania infection.
Collapse
|
10
|
Azevedo LG, Sosa E, de Queiroz ATL, Barral A, Wheeler RJ, Nicolás MF, Farias LP, Do Porto DF, Ramos PIP. High-throughput prioritization of target proteins for development of new antileishmanial compounds. Int J Parasitol Drugs Drug Resist 2024; 25:100538. [PMID: 38669848 PMCID: PMC11068527 DOI: 10.1016/j.ijpddr.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Leishmaniasis, a vector-borne disease, is caused by the infection of Leishmania spp., obligate intracellular protozoan parasites. Presently, human vaccines are unavailable, and the primary treatment relies heavily on systemic drugs, often presenting with suboptimal formulations and substantial toxicity, making new drugs a high priority for LMIC countries burdened by the disease, but a low priority in the agenda of most pharmaceutical companies due to unattractive profit margins. New ways to accelerate the discovery of new, or the repositioning of existing drugs, are needed. To address this challenge, our study aimed to identify potential protein targets shared among clinically-relevant Leishmania species. We employed a subtractive proteomics and comparative genomics approach, integrating high-throughput multi-omics data to classify these targets based on different druggability metrics. This effort resulted in the ranking of 6502 ortholog groups of protein targets across 14 pathogenic Leishmania species. Among the top 20 highly ranked groups, metabolic processes known to be attractive drug targets, including the ubiquitination pathway, aminoacyl-tRNA synthetases, and purine synthesis, were rediscovered. Additionally, we unveiled novel promising targets such as the nicotinate phosphoribosyltransferase enzyme and dihydrolipoamide succinyltransferases. These groups exhibited appealing druggability features, including less than 40% sequence identity to the human host proteome, predicted essentiality, structural classification as highly druggable or druggable, and expression levels above the 50th percentile in the amastigote form. The resources presented in this work also represent a comprehensive collection of integrated data regarding trypanosomatid biology.
Collapse
Affiliation(s)
- Lucas G Azevedo
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Ezequiel Sosa
- Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Artur T L de Queiroz
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Aldina Barral
- Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| | - Leonardo P Farias
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | | | - Pablo Ivan P Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| |
Collapse
|
11
|
Zhou Q, Zheng Z, Yin S, Duan D, Liao X, Xiao Y, He J, Zhong J, Zeng Z, Su L, Luo L, Dong C, Chen J, Li J. Nicotinamide mitigates visceral leishmaniasis by regulating inflammatory response and enhancing lipid metabolism. Parasit Vectors 2024; 17:288. [PMID: 38971783 PMCID: PMC11227177 DOI: 10.1186/s13071-024-06370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Currently, treatment regimens for visceral leishmaniasis (VL) are limited because of the presence of numerous adverse effects. Nicotinamide, a readily available and cost-effective vitamin, has been widely acknowledged for its safety profile. Several studies have demonstrated the anti-leishmanial effects of nicotinamide in vitro. However, the potential role of nicotinamide in Leishmania infection in vivo remains elusive. METHODS In this study, we assessed the efficacy of nicotinamide as a therapeutic intervention for VL caused by Leishmania infantum in an experimental mouse model and investigated its underlying molecular mechanisms. The potential molecular mechanism was explored through cytokine analysis, examination of spleen lymphocyte subsets, liver RNA-seq analysis, and pathway validation. RESULTS Compared to the infection group, the group treated with nicotinamide demonstrated significant amelioration of hepatosplenomegaly and recovery from liver pathological damage. The NAM group exhibited parasite reduction rates of 79.7% in the liver and 86.7% in the spleen, respectively. Nicotinamide treatment significantly reduced the activation of excessive immune response in infected mice, thereby mitigating hepatosplenomegaly and injury. Furthermore, nicotinamide treatment enhanced fatty acid β-oxidation by upregulating key enzymes to maintain lipid homeostasis. CONCLUSIONS Our findings provide initial evidence supporting the safety and therapeutic efficacy of nicotinamide in the treatment of Leishmania infection in BALB/c mice, suggesting its potential as a viable drug for VL.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dengbinpei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| |
Collapse
|
12
|
Roy PK, Paul A, Lalchhuanawmi S, Babu NK, Singh S. Pyridoxal kinase gene deletion leads to impaired growth, deranged redox metabolism and cell cycle arrest in Leishmania donovani. Biochimie 2024; 222:72-86. [PMID: 38403043 DOI: 10.1016/j.biochi.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Pyridoxal kinase (PdxK) is a vitamin B6 salvage pathway enzyme which produces pyridoxal phosphate. We have investigated the impact of PdxK deletion in Leishmania donovani on parasite survivability, infectivity and cellular metabolism. LdPdxK mutants were generated by gene replacement strategy. All mutants showed significant reduction in growth in comparison to wild type. For PdxK mediated biochemical perturbations, only heterozygous mutants and complementation mutants were used as the growth of null mutants were compromised. Heterozygous mutant showed reduction invitro infectivity and higher cytosolic and mitochondrial ROS levels. Glutathione levels decreased significantly in heterozygous mutant indicating its involvement in cellular oxidative metabolism. Pyridoxal kinase gene deletion resulted in reduced ATP levels in parasites and arrest at G0/G1 phase of cell cycle. All these perturbations were rescued by PdxK gene complementation. This is the first report to confirm that LdPdxK plays an indispensable role in cell survival, pathogenicity, redox metabolism and cell cycle progression of L. donovani parasites. These results provide substantial evidence supporting PdxK as a therapeutic target for the development of specific antileishmanial drug candidates.
Collapse
Affiliation(s)
- Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Sandra Lalchhuanawmi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
13
|
Sarkar D, Monzote L, Gille L, Chatterjee M. Natural endoperoxides as promising anti-leishmanials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155640. [PMID: 38714091 DOI: 10.1016/j.phymed.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.
Collapse
Affiliation(s)
- Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Havana 10400, Cuba
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India.
| |
Collapse
|
14
|
Banerjee S, Gadpayle MP, Samanta S, Dutta P, Das S, Datta R, Maiti S. Role of Macrophage PIST Protein in Regulating Leishmania major Infection. ACS Infect Dis 2024; 10:1414-1428. [PMID: 38556987 DOI: 10.1021/acsinfecdis.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PDZ protein interacting specifically with Tc10 or PIST is a mammalian trans-Golgi resident protein that regulates subcellular sorting of plasma membrane receptors. PIST has recently emerged as a key player in regulating viral pathogenesis. Nevertheless, the involvement of PIST in parasitic infections remains unexplored. Leishmania parasites infiltrate their host macrophage cells through phagocytosis, where they subsequently multiply within the parasitophorous vacuole (PV). Host cell autophagy has been found to be important in regulating this parasite infection. Since PIST plays a pivotal role in triggering autophagy through the Beclin 1-PI3KC3 pathway, it becomes interesting to identify the status of PIST during Leishmania infection. We found that while macrophage cells are infected with Leishmania major (L. major), the expression of PIST protein remains unaltered; however, it traffics from the Golgi compartment to PV. Further, we identified that in L. major-infected macrophage cells, PIST associates with the autophagy regulatory protein Beclin 1 within the PVs; however, PIST does not interact with LC3. Reduction in PIST protein through siRNA silencing significantly increased parasite burden, whereas overexpression of PIST in macrophages restricted L. major infectivity. Together, our study reports that the macrophage PIST protein is essential in regulating L. major infectivity.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Mandip Pratham Gadpayle
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Suman Samanta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Priyanka Dutta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Swagata Das
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| |
Collapse
|
15
|
Delgado-Domínguez J, Mejía-Camacho L, Torres-Martínez L, Zamora-Chimal J, Cervantes-Sarabia R, Espinoza-Guillen A, Ruiz-Azuara L, Becker I. Casiopeina III-ia: A Copper Compound with Potential Use for Treatment of Infections Caused by Leishmania mexicana. Chemotherapy 2024; 69:168-176. [PMID: 38498996 PMCID: PMC11373577 DOI: 10.1159/000538360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Casiopeina III-ia (CasIII-ia) is a mixed chelate copper (II) compound capable of interacting with free radicals generated in the respiratory chain through redox reactions, producing toxic reactive oxygen species (ROS) that compromise the viability of cancer cells, bacteria and protozoa. Due to its remarkable effect on protozoa, this study evaluated the effect of CasIII-ia on Leishmania mexicana amastigotes and its potential use as a treatment for cutaneous leishmaniasis in the murine model. METHODS We analyzed the leishmanicidal effect of CasIII-ia on L. mexicana amastigotes and on their survival in bone marrow-derived macrophages. Furthermore, we evaluated the production of ROS in treated parasites and the efficacy of CasIII-ia in the treatment of mice infected with L. mexicana. RESULTS Our results show that CasIII-ia reduces parasite viability in a dose-dependent manner that correlates with increased ROS production. A decrease in the size of footpad lesions and in parasite loads was observed in infected mice treated with the intraperitoneal administration of CasIII-ia. CONCLUSIONS We propose CasIII-ia as a potential drug for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lizet Mejía-Camacho
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lisset Torres-Martínez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocely Cervantes-Sarabia
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrián Espinoza-Guillen
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
Nawaz A, Priya B, Singh K, Ali V. Unveiling the role of serine o-acetyltransferase in drug resistance and oxidative stress tolerance in Leishmania donovani through the regulation of thiol-based redox metabolism. Free Radic Biol Med 2024; 213:371-393. [PMID: 38272324 DOI: 10.1016/j.freeradbiomed.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.
Collapse
Affiliation(s)
- Afreen Nawaz
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Bhawna Priya
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Vahab Ali
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India.
| |
Collapse
|
17
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
18
|
Dutta S, Ghosh A. Case Study-Based Approaches of Systems Biology in Addressing Infectious Diseases. SYSTEMS BIOLOGY APPROACHES: PREVENTION, DIAGNOSIS, AND UNDERSTANDING MECHANISMS OF COMPLEX DISEASES 2024:115-143. [DOI: 10.1007/978-981-99-9462-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
da Cruz Filho IJ, Duarte DMFA, Marques DSC, da Rocha JVR, Diniz EGM, Brayner FA, Alves LC, de Azevedo Albuquerque MCP, de Lima Aires A, Nogueira F, de Lima MDCA. Evaluation of the hydroalcoholic extract of Clarisia racemosa as an antiparasitic agent: an in vitro approach. 3 Biotech 2023; 13:391. [PMID: 37953832 PMCID: PMC10635994 DOI: 10.1007/s13205-023-03799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023] Open
Abstract
Clarisia racemosa Ruiz & Pav is a neotropical species found in humid forests from southern Mexico to southern Brazil. There are few studies related to the ethnopharmacological use of C. racemosa. Our objective was to evaluate the hydroalcoholic extract of C. racemosa as a potential antiparasitic agent. For this, we performed in vitro assays against strains of Leishmania amazonensis, Trypanosoma cruzi, Plasmodium falciparum, and Schistosoma mansoni. At the same time, immunomodulatory activity tests were carried out. The results demonstrated that the extract was able to stimulate and activate immune cells. In preliminary antiparasitic tests, structural modifications were observed in the promastigote form of L. amazonensis and in adult worms of S. mansoni. The extract was able to inhibit the growth of trypomastigote form of T. cruzi and finally showed low antiparasitic activity against strains of P. falciparum. It is pioneering work and these results demonstrate that C. racemosa extract is a promising alternative and contributes to the arsenal of possible forms of treatment to combat parasites. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03799-2.
Collapse
Affiliation(s)
- Iranildo José da Cruz Filho
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | | | - Diego Santa Clara Marques
- Department of Antibiotics, Biosciences Center, Federal University of Pernambuco, Recife, PE 50670-420 Brazil
| | | | | | - Fábio André Brayner
- Laboratory of Immunopathology and Infectious-Parasitic Diseases Keizo Asami – LIKA, Recife, PE 50670-420 Brazil
| | - Luiz Carlos Alves
- Laboratory of Immunopathology and Infectious-Parasitic Diseases Keizo Asami – LIKA, Recife, PE 50670-420 Brazil
| | | | - André de Lima Aires
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Recife, PE 50670-420 Brazil
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Institute of Hygiene and Tropical Medicine, IHMT, New University of Lisbon, 1349-008 Lisbon, Portugal
| | | |
Collapse
|
20
|
Li M, Wang S, Kang L, Xu F, Lan X, He M, Jin K, Xia Y. Arginine metabolism governs microcycle conidiation by changing nitric oxide content in Metarhizium acridum. Appl Microbiol Biotechnol 2023; 107:1257-1268. [PMID: 36640205 DOI: 10.1007/s00253-022-12355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Microcycle conidiation commonly exists in filamentous fungi and has great potential for mass production of mycoinsecticides. L-Arginine metabolism is essential for conidiation and conditional growth and virulence, but its role in microcycle conidiation has not been explored. Here, a unique putative arginase (MaAGA) was characterized in the entomopathogenic fungus Metarhizium acridum. Conidial germination and thermotolerance were facilitated by the disruption of MaAGA. Despite little impact on fungal growth and virulence, the disruption resulted in normal conidiation after a 60-h incubation on microcycle conidiation medium (SYA) under normal culture conditions. In the MaAGA-disruption mutant (ΔMaAGA), intracellular arginine accumulation was sharply increased. Replenishment of the direct metabolites of arginase, namely ornithine and/or urea, was unable to restore the disruption mutant's microcycle conidiation on SYA. Interestingly, nitric oxide synthase (NOS) activity and nitric oxide (NO) levels of the ΔMaAGA strain were markedly decreased in the 60-h-old SYA cultures. Finally, adding Nω-nitro-L-arginine, an inhibitor of NOS, into the SYA converted the microcycle conidiation of the wild-type strain to normal conidiation. In contrast, adding sodium nitroprusside, an NO donor, into the SYA recovered the mutant's microcycle conidiation. The results indicate that arginine metabolism controls microcycle conidiation by changing the content of NO. KEY POINTS: • The MaAGA-disruption led to normal conidiation on microcycle conidiation medium SYA. • Nitric oxide (NO) level of the ΔMaAGA strain was markedly decreased. • Adding an NO donor into the SYA recovered the microcycle conidiation of ΔMaAGA.
Collapse
Affiliation(s)
- Mengfei Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Shuqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Luhong Kang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Fei Xu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Xia Lan
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Min He
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China.
| |
Collapse
|
21
|
Mukherjee N, Banerjee S, Amin SA, Jha T, Datta S, Das Saha K. Host P2X 7R-p 38MAPK axis mediated intra-macrophage leishmanicidal activity of Spergulin-A. Exp Parasitol 2022; 241:108365. [PMID: 36007587 DOI: 10.1016/j.exppara.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
Current drugs are inefficient for the treatment of visceral leishmaniasis an immunosuppressive ailment caused by Leishmania donovani. Regrettably, there is no plant-origin antileishmanial drug present. P2X7R is constitutively present on macrophage surfaces and can be a putative therapeutic target in intra-macrophage pathogens with function attributes towards inflammation, host cell apoptosis, altered redox, and phagolysosomal maturation by activating p38MAPK. Here we demonstrated that the initial interaction of Spergulin-A (Sp A), a triterpenoid saponin with RAW 264.7 macrophages was mediated through P2X7R involving the signaling cascade intermediates Ca++, p38MAPK, and NF-κβ. Phospho (P)-p38MAPK involvement is shown to have specific and firm importance in leishmanial killing with increased NF-κβp65. Phago-lysosomal maturation by Sp A also campaigns for another contribution of P2X7R. In vivo evaluation of the anti-leishmanial activity of Sp A was monitored through expression analyses of P2X7R, P-p38MAPK, and NF-κβp65 in murine spleen and bone-marrow macrophages and supported Sp A being a natural compound of leishmanicidal functions which acted through the P2X7R-p38MAPK axis.
Collapse
Affiliation(s)
- Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India; Techno India University, EM-4, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
22
|
Single nucleotide polymorphisms in genes involved in immune responses and outcome of tegumentary leishmaniasis. Acta Trop 2022; 235:106660. [PMID: 35988820 DOI: 10.1016/j.actatropica.2022.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Leishmaniases are neglected tropical diseases with a broad clinical spectrum. Tegumentary leishmaniasis (TL) is a disease caused by different Leishmania species, transmitted by phlebotomine sand flies and distributed worldwide. TL can present a cutaneous (CL) or mucocutaneous (MCL) clinical form depending on factors inherent to the parasite, the host and the vector. Polymorphisms in the immune response genes are host genetic factors that influence the pathogenesis or control of leishmaniasis. Single nucleotide polymorphisms (SNPs) in immune genes have been evaluated in several countries where leishmaniasis is endemic. In this review, we report studies on SNPs in several immune genes that might be associated with susceptibility or resistance to TL. We summarize studies from around the world and in Brazil, highlight the difficulties of these studies and future analyses needed to enhance our knowledge regarding host genetic factors in TL. Understanding the genetic characteristics of the host that facilitate resistance or susceptibility to leishmaniasis can contribute to the development of immunotherapy schedules for this disease. The current treatment methods are toxic, and no human vaccine is available.
Collapse
|
23
|
Nateghi-Rostami M, Tasbihi M, Darzi F. Involvement of tryparedoxin peroxidase (TryP) and trypanothione reductase (TryR) in antimony unresponsive of Leishmania tropica clinical isolates of Iran. Acta Trop 2022; 230:106392. [PMID: 35276060 DOI: 10.1016/j.actatropica.2022.106392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022]
Abstract
Clinical resistance to pentavalent antimonial compounds has long been recognized as a major problem in the treatment of human leishmaniasis. Trypanothione metabolism, the main form of thiol, has shown to play a central role in antimony resistance of laboratory-generated resistant Leishmania spp. and field-isolated resistant L. donovani; but the mechanism of antimony resistance in the clinical isolates of L. tropica causing anthroponotic cutaneous leishmaniasis (ACL) is less studied. Patients were selected among confirmed positive ACL cases who referred to Pasteur Institute of Iran, Tehran, from endemic regions of north-east and south of Iran. L. tropica clinical isolates were collected from patients who were either treatment-responsive (MAS=S1 to S5) or unresponsive (MAR=R1 to R4) to Glucantime® (meglumine antimoniate=MA). Isolates were tested for sensitivity to trivalent antimony (SbIII) in promastigotes and to pentavalent antimony (SbV) in intracellular amastigotes stages. Intracellular thiol levels were assayed and trypanothione-dependent components, including trypanothione reductase (TR) and tryparedoxin peroxidase I (TryP) were analysed at protein level and enzymatic activity in isolates. The MAR isolates had an approximate two fold increase in the levels of intracellular thiols (P< 0.05) accompanied by an average 5-10 fold increase in in vitro resistance to antimony. TryP was amplified at the protein level in all MAR strains as compared to the MAS strains (range: 2.8-5.6 fold). All MAR isolates metabolized H2O2 at higher rates than MAS isolates (8.55±0.75 nmol/min/mg vs. 3.14±0.36 nmol/min/mg) (P< 0.05). In addition, levels of TryR protein were also markedly elevated in 3 out of 4 MAR isolates (range: 2.2-4.1 fold). This was accompanied by overexpressed TryR activity (mean level of 46.83±2.43 for extracts of MAR vs. 20.98±3.02 for MAS strains) (P< 0.05). Elevated levels of TryP, active enzyme in peroxide detoxification, were observed in MAR parasites resulting in an increased metabolism of H2O2. TryR activity was overexpressed on average in extracts of MAR strains, but not in all isolates. Enhanced anti-oxidant defenses through thiol metabolism may play a significant role in clinical resistance of ACL patients to Glucantime.
Collapse
Affiliation(s)
- Mahmoud Nateghi-Rostami
- Department of Parasitology, Pasteur Institute of Iran, No. 69, 12 Farvardin St., Pasteur Sq., 1316943551, Tehran, Iran.
| | - Minoo Tasbihi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darzi
- Department of Parasitology, Pasteur Institute of Iran, No. 69, 12 Farvardin St., Pasteur Sq., 1316943551, Tehran, Iran
| |
Collapse
|
24
|
Britten NS, Butler JA. Ruthenium metallotherapeutics: novel approaches to combatting parasitic infections. Curr Med Chem 2022; 29:5159-5178. [PMID: 35366762 DOI: 10.2174/0929867329666220401105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Human parasitic infections cause a combined global mortality rate of over one million people per annum and represent some of the most challenging diseases for medical intervention. Current chemotherapeutic strategies often require prolonged treatment, coupled with subsequent drug-induced cytotoxic morbidity to the host, while resistance generation is also a major concern. Metals have been used extensively throughout the history of medicine, with more recent applications as anticancer and antimicrobial agents. Ruthenium metallotherapeutic antiparasitic agents are highly effective at targeting a range of key parasites, including the causative agents of malaria, trypanosomiasis, leishmaniasis, amoebiasis, toxoplasmosis and other orphan diseases, while demonstrating lower cytotoxicity profiles than current treatment strategies. Generally, such compounds also demonstrate activity against multiple cellular target sites within parasites, including inhibition of enzyme function, cell membrane perturbation, and alterations to metabolic pathways, therefore reducing the opportunity for resistance generation. This review provides a comprehensive and subjective analysis of the rapidly developing area of ruthenium metal-based antiparasitic chemotherapeutics, in the context of rational drug design and potential clinical approaches to combatting human parasitic infections.
Collapse
Affiliation(s)
- Nicole S. Britten
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jonathan A. Butler
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
25
|
Immune Responses in Leishmaniases: An Overview. Trop Med Infect Dis 2022; 7:tropicalmed7040054. [PMID: 35448829 PMCID: PMC9029249 DOI: 10.3390/tropicalmed7040054] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a parasitic, widespread, and neglected disease that affects more than 90 countries in the world. More than 20 Leishmania species cause different forms of leishmaniasis that range in severity from cutaneous lesions to systemic infection. The diversity of leishmaniasis forms is due to the species of parasite, vector, environmental and social factors, genetic background, nutritional status, as well as immunocompetence of the host. Here, we discuss the role of the immune system, its molecules, and responses in the establishment, development, and outcome of Leishmaniasis, focusing on innate immune cells and Leishmania major interactions.
Collapse
|
26
|
Pinho N, Bombaça AC, Wiśniewski JR, Dias-Lopes G, Saboia-Vahia L, Cupolillo E, de Jesus JB, de Almeida RP, Padrón G, Menna-Barreto R, Cuervo P. Nitric Oxide Resistance in Leishmania ( Viannia) braziliensis Involves Regulation of Glucose Consumption, Glutathione Metabolism and Abundance of Pentose Phosphate Pathway Enzymes. Antioxidants (Basel) 2022; 11:277. [PMID: 35204161 PMCID: PMC8868067 DOI: 10.3390/antiox11020277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
In American Tegumentary Leishmaniasis production of cytokines, reactive oxygen species and nitric oxide (NO) by host macrophages normally lead to parasite death. However, some Leishmania braziliensis strains exhibit natural NO resistance. NO-resistant strains cause more lesions and are frequently more resistant to antimonial treatment than NO-susceptible ones, suggesting that NO-resistant parasites are endowed with specific mechanisms of survival and persistence. To tests this, we analyzed the effect of pro- and antioxidant molecules on the infectivity in vitro of L. braziliensis strains exhibiting polar phenotypes of resistance or susceptibility to NO. In addition, we conducted a comprehensive quantitative mass spectrometry-based proteomics analysis of those parasites. NO-resistant parasites were more infective to peritoneal macrophages, even in the presence of high levels of reactive species. Principal component analysis of protein concentration values clearly differentiated NO-resistant from NO-susceptible parasites, suggesting that there are natural intrinsic differences at molecular level among those strains. Upon NO exposure, NO-resistant parasites rapidly modulated their proteome, increasing their total protein content and glutathione (GSH) metabolism. Furthermore, NO-resistant parasites showed increased glucose analogue uptake, and increased abundance of phosphotransferase and G6PDH after nitrosative challenge, which can contribute to NADPH pool maintenance and fuel the reducing conditions for the recovery of GSH upon NO exposure. Thus, increased glucose consumption and GSH-mediated redox capability may explain the natural resistance of L. braziliensis against NO.
Collapse
Affiliation(s)
- Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Ana Cristina Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Planegg, Germany;
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Leonardo Saboia-Vahia
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - José Batista de Jesus
- Departamento de Medicina, Universidade Federal de São João Del Rei, São João del Rei 35501-296, MG, Brazil;
| | - Roque P. de Almeida
- Department of Medicine, Hospital Universitário, EBSERH, Universidade Federal de Sergipe, Aracaju 49100-000, SE, Brazil;
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil; (N.P.); (L.S.-V.); (E.C.); (G.P.)
| |
Collapse
|
27
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
28
|
Wei FR, Gao CH, Wang JY, Yang YT, Shi F, Zheng B. Label-Free Quantitative Proteomic Analysis of Three Strains of Viscerotropic Leishmania Isolated from Patients with Different Epidemiological Types of Visceral Leishmaniasis in China. Acta Parasitol 2021; 66:1366-1386. [PMID: 34019278 DOI: 10.1007/s11686-021-00387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND There are three epidemiological types of visceral leishmaniasis in China, which are caused by Leishmania strains belonging to the L. donovani complex. The mechanisms underlying their differences in the population affected, disease latency, and animal host, etc., remain unclear. We investigated the protein abundance differences among Leishmania strains isolated from three types of visceral leishmaniasis endemic areas in China. METHODS Promastigotes of the three Leishmania strains were cultured to the log phase and harvested. The protein tryptic digests were analyzed with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free quantitative analysis. The MS experiment was performed on a Q Exactive mass spectrometer. Raw spectra were quantitatively analyzed with the MaxQuant software (ver 1.3.0.5) and matched with the reference database. Differentially expressed proteins were analyzed using the bioinformatics method. The MS analysis was repeated three times for each sample. RESULTS A total of 5012 proteins were identified across the KS-2, JIASHI-5 and SC6 strains in at least 2 of the three samples replicate. Of them, 1758 were identified to be differentially expressed at least between 2 strains, including 349 with known names. These differentially expressed proteins with known names are involved in biological functions such as energy and lipid metabolic process, nucleotide acid metabolic process, amino acid metabolic process, response to stress, cell membrane/cytoskeleton, cell cycle and proliferation, biological adhesion and proteolysis, localization and transport, regulation of the biological process, and signal transduction. CONCLUSION The differentially expressed proteins and their related biological functions may shed light on the pathogenicity of Leishmania and targets for the development of vaccines and medicines.
Collapse
Affiliation(s)
- Fu-Rong Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Chun-Hua Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Jun-Yun Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| | - Yue-Tao Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Feng Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
29
|
Beasley EA, Pessôa-Pereira D, Scorza BM, Petersen CA. Epidemiologic, Clinical and Immunological Consequences of Co-Infections during Canine Leishmaniosis. Animals (Basel) 2021; 11:3206. [PMID: 34827938 PMCID: PMC8614518 DOI: 10.3390/ani11113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Canine leishmaniosis (CanL) is a vector-borne, parasitic disease. CanL is endemic in the Mediterranean basin and South America but also found in Northern Africa, Asia, and the U.S. Regions with both competent sand fly vectors and L. infantum parasites are also endemic for additional infectious diseases that could cause co-infections in dogs. Growing evidence indicates that co-infections can impact immunologic responses and thus the clinical course of both CanL and the comorbid disease(s). The aim for this review is to summarize epidemiologic, clinical, and immunologic factors contributing to eight primary co-infections reported with CanL: Ehrlichia spp., Anaplasma spp., Borrelia spp., Babesia spp., Trypanosoma cruzi, Toxoplasma gondii, Dirofilaria immitis, Paracoccidioides braziliensis. Co-infection causes mechanistic differences in immunity which can alter diagnostics, therapeutic management, and prognosis of dogs with CanL. More research is needed to further explore immunomodulation during CanL co-infection(s) and their clinical impact.
Collapse
Affiliation(s)
- Erin A. Beasley
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Danielle Pessôa-Pereira
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna M. Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Clementino LDC, Fernandes GFS, Prokopczyk IM, Laurindo WC, Toyama D, Motta BP, Baviera AM, Henrique-Silva F, dos Santos JL, Graminha MAS. Design, synthesis and biological evaluation of N-oxide derivatives with potent in vivo antileishmanial activity. PLoS One 2021; 16:e0259008. [PMID: 34723989 PMCID: PMC8559926 DOI: 10.1371/journal.pone.0259008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected disease that affects 12 million people living mainly in developing countries. Herein, 24 new N-oxide-containing compounds were synthesized followed by in vitro and in vivo evaluation of their antileishmanial activity. Compound 4f, a furoxan derivative, was particularly remarkable in this regard, with EC50 value of 3.6 μM against L. infantum amastigote forms and CC50 value superior to 500 μM against murine peritoneal macrophages. In vitro studies suggested that 4f may act by a dual effect, by releasing nitric oxide after biotransformation and by inhibiting cysteine protease CPB (IC50: 4.5 μM). In vivo studies using an acute model of infection showed that compound 4f at 7.7 mg/Kg reduced ~90% of parasite burden in the liver and spleen of L. infantum-infected BALB/c mice. Altogether, these outcomes highlight furoxan 4f as a promising compound for further evaluation as an antileishmanial agent.
Collapse
Affiliation(s)
- Leandro da Costa Clementino
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Guilherme Felipe Santos Fernandes
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Wilquer Castro Laurindo
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Danyelle Toyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Bruno Pereira Motta
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Jean Leandro dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- * E-mail: (JLS); (MASG)
| | - Marcia A. S. Graminha
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
- * E-mail: (JLS); (MASG)
| |
Collapse
|
31
|
de Sousa Gonçalves R, de Pinho FA, Dinis-Oliveira RJ, Mendes MO, de Andrade TS, da Silva Solcà M, Larangeira DF, Silvestre R, Barrouin-Melo SM. Nutritional adjuvants with antioxidant properties in the treatment of canine leishmaniasis. Vet Parasitol 2021; 298:109526. [PMID: 34271314 DOI: 10.1016/j.vetpar.2021.109526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
Clinical improvement of dogs treated for canine leishmaniasis (CanL) requires reducing Leishmania infantum loads, which depend on intracellular oxidant compounds to destroy the parasite. However, oxidative species' excess and antioxidants consumption can culminate in oxidative stress, resulting in increased, widespread inflammation. We aimed to evaluate if early or late addition of nutritional adjuvants (NAs) - omega-3 polyunsaturated fatty acids and B vitamins - to anti-Leishmania drugs (ALDs) in the treatment of CanL would be clinically beneficial. For that, serum biomarkers including oxidative stress parameters were analyzed during 12 months in dogs allocated to two treatment groups: (G1) NAs administered from 30 days prior to the beginning of ALDs; and (G2) NAs administered from 61 days after the beginning of ALDs. Both G1 and G2 continued to receive NAs until the 12th month. The ALDs administered were metronidazole associated with ketoconazole (40 days), followed by allopurinol from day 41 until the 12th month. G1 exhibited superior inflammation control, with reduced globulins (p = 0.025), specific anti-Leishmania immunoglobulins (p = 0.016), total protein (p = 0.031), and an increased serum albumin/globulin ratio (p = 0.033), compared to G2. The early use of NAs associated with ALDs is clinically beneficial in treating dogs with CanL.
Collapse
Affiliation(s)
- Rafaela de Sousa Gonçalves
- Laboratory of Veterinary Infectious Diseases, Teaching Hospital of Veterinary Medicine, Federal University of Bahia, 40170-110, Salvador, BA, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Flaviane Alves de Pinho
- Laboratory of Veterinary Infectious Diseases, Teaching Hospital of Veterinary Medicine, Federal University of Bahia, 40170-110, Salvador, BA, Brazil; Department of Veterinary Anatomy, Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, 40170-110, Salvador, BA, Brazil
| | - Ricardo Jorge Dinis-Oliveira
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Rua Central de Gandra, 1317, 4585-116, Gandra, Portugal; Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Mariana Oliveira Mendes
- Laboratory of Veterinary Infectious Diseases, Teaching Hospital of Veterinary Medicine, Federal University of Bahia, 40170-110, Salvador, BA, Brazil
| | - Tiago Sena de Andrade
- Laboratory of Veterinary Infectious Diseases, Teaching Hospital of Veterinary Medicine, Federal University of Bahia, 40170-110, Salvador, BA, Brazil
| | - Manuela da Silva Solcà
- Department of Preventive Veterinary Medicine and Animal Production of the School of Veterinary Medicine and Zootechny, UFBA, 40170-110, Salvador, Bahia, Brazil
| | - Daniela Farias Larangeira
- Laboratory of Veterinary Infectious Diseases, Teaching Hospital of Veterinary Medicine, Federal University of Bahia, 40170-110, Salvador, BA, Brazil; Department of Veterinary Anatomy, Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, 40170-110, Salvador, BA, Brazil
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's Associate Laboratory, 4710-057, Braga, Portugal
| | - Stella Maria Barrouin-Melo
- Laboratory of Veterinary Infectious Diseases, Teaching Hospital of Veterinary Medicine, Federal University of Bahia, 40170-110, Salvador, BA, Brazil; Department of Veterinary Anatomy, Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, 40170-110, Salvador, BA, Brazil.
| |
Collapse
|
32
|
Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express 2021; 11:69. [PMID: 33983454 PMCID: PMC8119515 DOI: 10.1186/s13568-021-01229-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Protozoan diseases such as malaria, leishmaniasis, Chagas disease, and sleeping sickness still levy a heavy toll on human lives. Deplorably, only few classes of anti-protozoan drugs have thus far been developed. The problem is further compounded by their intrinsic toxicity, emergence of drug resistance, and the lack of licensed vaccines. Thus, there is a genuine exigency to develop novel anti-protozoan medications. Over the past years, melittin, the major constituent in the venom of European honeybee Apis mellifera, has gathered the attention of researchers due to its potential therapeutic applications. Insofar as we are aware, there has been no review pertinent to anti-protozoan properties of melittin. The present review outlines the current knowledge about anti-protozoan effects of melittin and its underlying mechanisms. The peptide has proven to be efficacious in killing different protozoan parasites such as Leishmania, Plasmodium, Toxoplasma, and Trypanosoma in vitro. Apart from direct membrane-disruptive activity, melittin is capable of destabilizing calcium homeostasis, reducing mitochondrial membrane potential, disorganizing kinetoplast DNA, instigating apoptotic cell death, and induction of autophagy in protozoan pathogens. Emerging evidence suggests that melittin is a promising candidate for future vaccine adjuvants. Transmission-blocking activity of melittin against vector-borne pathogens underscores its potential utility for both transgenic and paratransgenic manipulations. Nevertheless, future research should focus upon investigating anti-microbial activities of melittin, alone or in combination with the current anti-protozoan medications, against a far broader spectrum of protozoan parasites as well as pre-clinical testing of the peptide in animal models.
Collapse
|
33
|
Sangenito LS, Rodrigues HD, Santiago SO, Bombaça ACS, Menna-Barreto RFS, Reddy A, Branquinha MH, Velasco-Torrijos T, Santos ALS. In vitro effects of bis(N-[4-(hydroxyphenyl)methyl]-2-pyridinemethamine)zinc perchlorate monohydrate 4 on the physiology and interaction process of Leishmania amazonensis. Parasitol Int 2021; 84:102376. [PMID: 33951539 DOI: 10.1016/j.parint.2021.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is one of the most relevant neglected tropical diseases in the world, affecting 14 million people. Despite the high morbidity, mortality and socio-economic impact, few therapeutic options are available for this disease. To make matters worse, the available molecules have several limitations such as limited efficacy, high cost, side effects and increased resistance. In this context, our group previously synthesized new compounds with anti-leishmania potential being the bis(N-[4-(hydroxyphenyl)methyl]-2-pyridinemethamine)zinc perchlorate monohydrate 4 (complex 4) the most promising one. Therefore, this present work revealed some morphological and physiological changes promoted by complex 4 on Leishmania amazonensis promastigotes as well as it was evidenced its potential against intramacrophage amastigotes. Complex 4 promoted a progressive reduction on the promastigotes size and a remarkable increase on the granularity/complexity as judged by flow cytometry. Transmission electron microscopy (TEM) analysis revealed extensive mitochondrial and plasma membrane alterations, although plasma membrane integrity remained. The mitochondrial changes observed by TEM were accompanied by a decrease in the activity of mitochondrial dehydrogenases with increased production of reactive oxygen species. Interestingly, promastigotes also showed changes in lipid metabolism. Besides the very low toxicity to macrophages, complex 4 had a great effect on intramacrophage amastigotes, displaying an IC50 of 3.91 μM. Collectively, the data presented here reinforce the potential of aminopyridyl compounds complexed to zinc against L. amazonensis. Thus, our work serves as a basis for in vivo assays to be designed or even the synthesis of more selective/effective compounds with lower cost.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Hallana D Rodrigues
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone O Santiago
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina S Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Andrew Reddy
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Trinidad Velasco-Torrijos
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Rostami MN, Khamesipour A. Potential biomarkers of immune protection in human leishmaniasis. Med Microbiol Immunol 2021; 210:81-100. [PMID: 33934238 PMCID: PMC8088758 DOI: 10.1007/s00430-021-00703-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease endemic in over 100 countries around the world. Available control measures are not always successful, therapeutic options are limited, and there is no vaccine available against human leishmaniasis, although several candidate antigens have been evaluated over the last decades. Plenty of studies have aimed to evaluate the immune response development and a diverse range of host immune factors have been described to be associated with protection or disease progression in leishmaniasis; however, to date, no comprehensive biomarker(s) have been identified as surrogate marker of protection or exacerbation, and lack of enough information remains a barrier for vaccine development. Most of the current understanding of the role of different markers of immune response in leishmaniasis has been collected from experimental animal models. Although the data generated from the animal models are crucial, it might not always be extrapolated to humans. Here, we briefly review the events during Leishmania invasion of host cells and the immune responses induced against Leishmania in animal models and humans and their potential role as a biomarker of protection against human leishmaniasis.
Collapse
Affiliation(s)
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, 14155-6383, Tehran, Iran.
| |
Collapse
|
35
|
Asfaram S, Fakhar M, Keighobadi M, Akhtari J. Promising Anti-Protozoan Activities of Propolis (Bee Glue) as Natural Product: A Review. Acta Parasitol 2021; 66:1-12. [PMID: 32691360 DOI: 10.1007/s11686-020-00254-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Propolis (bee glue) is a resinous mixture of different plant exudates that possesses a wide range of biological and antimicrobial activities and has been used as a food supplement and in complementary medicine for centuries. Some researchers have proposed that propolis could be a potential curative compound against microbial agents such as protozoan parasitic infections by different and occasionally unknown mechanisms due to the immunoregulatory function and antioxidant capacity of this natural product. METHODS In this review, we concentrate on in vitro and in vivo anti-protozoan activities of propolis extracts/fractions in the published literature. RESULTS In Leishmania, propolis inhibits the proliferation of promastigotes and produces an anti-inflammatory effect via the inhibition of nitric oxide (NO) production. In addition, it increases macrophage activation, TLR-2, TNF-α, IL-4, IL-17 production, and downregulation of IL-12. In Plasmodium and Trypanosoma, propolis inhibits the parasitemia, improving anemia and increasing the IFN-γ, TNF-α, and GM-CSF cytokines levels, most likely due to its strong immunomodulatory activity. Moreover, propolis extract arrests proliferation of T. cruzi, because it has aromatic acids and flavonoids. In toxoplasmosis, propolis increases the specific IgM and IgG titers via decreasing the serum IFN-γ, IL-1, and IL-6 cytokines levels in the rats infected with T. gondii. In Cryptosporidium and Giardia, it decreases oocysts shedding due to phytochemical constituents, particularly phenolic compounds, and increases the number of goblet cells. Propolis inhibits the growth of Blastocystis, possibly by apoptotic mechanisms like metronidazole. Unfortunately, the mechanism action of propolis' anti-Trichomonas and anti-Acanthamoeba is not well-known yet. CONCLUSION Reviewing the related literature could highlight promising antimicrobial activities of propolis against intracellular and extracellular protozoan parasites; this could shed light on the exploration of more effective drugs for the treatment of protozoan parasitic infections in the near future.
Collapse
Affiliation(s)
- Shabnam Asfaram
- Research Center for Zoonoses, Parasitic and Microbial Diseases, Ardabil University of Medical Sciences, Ardabil, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Masoud Keighobadi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Farah-Abad Road, P.O Box: 48471-91971, Sari, Iran.
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
36
|
Rizk YS, Santos-Pereira S, Gervazoni L, Hardoim DDJ, Cardoso FDO, de Souza CDSF, Pelajo-Machado M, Carollo CA, de Arruda CCP, Almeida-Amaral EE, Zaverucha-do-Valle T, Calabrese KDS. Amentoflavone as an Ally in the Treatment of Cutaneous Leishmaniasis: Analysis of Its Antioxidant/Prooxidant Mechanisms. Front Cell Infect Microbiol 2021; 11:615814. [PMID: 33718267 PMCID: PMC7950538 DOI: 10.3389/fcimb.2021.615814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 12/29/2022] Open
Abstract
Treatment of leishmaniasis is a challenging subject. Although available, chemotherapy is limited, presenting toxicity and adverse effects. New drugs with antileishmanial activity are being investigated, such as antiparasitic compounds derived from plants. In this work, we investigated the antileishmanial activity of the biflavonoid amentoflavone on the protozoan Leishmania amazonensis. Although the antileishmanial activity of amentoflavone has already been reported in vitro, the mechanisms involved in the parasite death, as well as its action in vivo, remain unknown. Amentoflavone demonstrated activity on intracellular amastigotes in macrophages obtained from BALB/c mice (IC50 2.3 ± 0.93 μM). No cytotoxicity was observed and the selectivity index was estimated as greater than 10. Using BALB/c mice infected with L. amazonensis we verified the effect of an intralesional treatment with amentoflavone (0.05 mg/kg/dose, in a total of 5 doses every 4 days). Parasite quantification demonstrated that amentoflavone reduced the parasite load in treated footpads (46.3% reduction by limiting dilution assay and 56.5% reduction by Real Time Polymerase Chain Reaction). Amentoflavone decreased the nitric oxide production in peritoneal macrophages obtained from treated animals. The treatment also increased the expression of ferritin and decreased iNOS expression at the site of infection. Furthemore, it increased the production of ROS in peritoneal macrophages infected in vitro. The increase of ROS in vitro, associated with the reduction of NO and iNOS expression in vivo, points to the antioxidant/prooxidant potential of amentoflavone, which may play an important role in the balance between inflammatory and anti-inflammatory patterns at the infection site. Taken together these results suggest that amentoflavone has the potential to be used in the treatment of cutaneous leishmaniasis, working as an ally in the control and development of the lesion.
Collapse
Affiliation(s)
- Yasmin Silva Rizk
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sandy Santos-Pereira
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luiza Gervazoni
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daiana de Jesus Hardoim
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Flávia de Oliveira Cardoso
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo-Machado
- Laboratório de Patologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Carla Cardozo Pinto de Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Elmo Eduardo Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tânia Zaverucha-do-Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
38
|
Redox Status in Canine Leishmaniasis. Animals (Basel) 2021; 11:ani11010119. [PMID: 33429894 PMCID: PMC7828002 DOI: 10.3390/ani11010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Leishmaniasis is under strict observation by World Health Organization but its pathogenesis has not been completely clarified yet. Our aim was to compare healthy and affected dogs measuring parameters related to oxidative stress, namely reactive oxygen species, reactive nitrogen species and scavenger activities, using colorimetric assays. Our results demonstrate that several of the examined parameters are modified in canine Leishmaniasis. Therefore, it is essential to further investigate this topic to shed light on the pathogenesis of the disease. Abstract The World Health Organization defined leishmaniasis as one of the priority attention diseases. Aiming to clarify some aspects of its pathogenetic mechanisms, our study focused on the assessment of redox status in dogs, the main reservoir for Leishmania infantum. Forty-five dogs from an endemic area in southern Italy were divided into four different groups (from mild disease with negative to low positive antibody levels to very severe disease with medium to high positive antibody levels) according to the LeishVet group guidelines. Their plasma and/or sera were tested for reactive oxygen species (ROS), namely the superoxide anion (O2−), reactive nitrogen species (RNS), such as nitric oxide (NO) and hydroperoxides (ROOH), as well as activity of the detoxifying enzyme superoxide dismutase (SOD), and total nonenzymatic antioxidant capacity, as determined by the ferric reducing-antioxidant power (FRAP) assay. O2− generation was significantly (p < 0.05) reduced in leishmaniasis-affected dogs independently of the clinical stage, while NO production was stimulated (p < 0.05) only in II and III stage patients. No difference could be found for the levels of hydroperoxides and SOD activity between healthy and pathological subjects. FRAP values were lower in affected dogs but only in stage II. Taken together, although we demonstrated that several redox status parameters are altered in the plasma of dog affected by leishmaniasis, the oxidative stress changes that are observed in this disease, are possibly mainly due to cellular blood components i.e., neutrophils responsible for the elimination of the parasite. Further studies are required to assess the clinical values of the collected data.
Collapse
|
39
|
Torres Suarez E, Granados-Falla DS, Robledo SM, Murillo J, Upegui Y, Delgado G. Antileishmanial activity of synthetic analogs of the naturally occurring quinolone alkaloid N-methyl-8-methoxyflindersin. PLoS One 2020; 15:e0243392. [PMID: 33370295 PMCID: PMC7769561 DOI: 10.1371/journal.pone.0243392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Leishmaniasis is a neglected, parasitic tropical disease caused by an intracellular protozoan from the genus Leishmania. Quinoline alkaloids, secondary metabolites found in plants from the Rutaceae family, have antiparasitic activity against Leishmania sp. N-methyl-8-methoxyflindersin (1), isolated from the leaves of Raputia heptaphylla and also known as 7-methoxy-2,2-dimethyl-2H,5H,6H-pyran[3,2-c]quinolin-5-one, shows antiparasitic activity against Leishmania promastigotes and amastigotes. This study used in silico tools to identify synthetic quinoline alkaloids having structure similar to that of compound 1 and then tested these quinoline alkaloids for their in vitro antiparasitic activity against Leishmania (Viannia) panamensis, in vivo therapeutic response in hamsters suffering from experimental cutaneous leishmaniasis (CL), and ex vivo immunomodulatory potential in healthy donors' human peripheral blood (monocyte)-derived macrophages (hMDMs). Compounds 1 (natural), 2 (synthetic), and 8 (synthetic) were effective against intracellular promastigotes (9.9, 3.4, and 1.6 μg/mL medial effective concentration [EC50], respectively) and amastigotes (5.07, 7.94, and 1.91 μg/mL EC50, respectively). Compound 1 increased nitric oxide production in infected hMDMs and triggered necrosis-related ultrastructural alterations in intracellular amastigotes, while compound 2 stimulated oxidative breakdown in hMDMs and caused ultrastructural alterations in the parasite 4 h posttreatment, and compound 8 failed to induce macrophage modulation but selectively induced apoptosis of infected hMDMs and alterations in the intracellular parasite ultrastructure. In addition, synthetic compounds 2 and 8 improved the health of hamsters suffering from experimental CL, without evidence of treatment-associated adverse toxic effects. Therefore, synthetic compounds 2 and 8 are potential therapeutic candidates for topical treatment of CL.
Collapse
Affiliation(s)
- Elaine Torres Suarez
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana Susana Granados-Falla
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
- Vicerrectoría de Investigaciones, Universidad El Bosque, Bogotá, Colombia
| | - Sara María Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Javier Murillo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Yulieth Upegui
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
40
|
Regulation of macrophage subsets and cytokine production in leishmaniasis. Cytokine 2020; 147:155309. [PMID: 33334669 DOI: 10.1016/j.cyto.2020.155309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
Macrophages are host cells for parasites of the genus Leishmania where they multiply inside parasitophorous vacuoles. Paradoxically, macrophages are also the cells responsible for killing or controlling parasite growth, if appropriately activated. In this review, we will cover the patterns of macrophage activation and the mechanisms used by the parasite to circumvent being killed. We will highlight the impacts of the vector bite on macrophage activation. Finally, we will discuss the ontogeny of macrophages that are infected by Leishmania spp.
Collapse
|
41
|
Banerjee S, Datta R. Leishmania infection triggers hepcidin-mediated proteasomal degradation of Nramp1 to increase phagolysosomal iron availability. Cell Microbiol 2020; 22:e13253. [PMID: 32827218 DOI: 10.1111/cmi.13253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Natural resistance-associated macrophage protein 1 (Nramp1) was originally discovered as a genetic determinant of resistance against multiple intracellular pathogens, including Leishmania. It encodes a transmembrane protein of the phago-endosomal compartments, where it functions as an iron transporter. But the mechanism by which Nramp1 controls host-pathogen dynamics and determines final outcome of an infection is yet to be fully deciphered. Whether the expression of Nramp1 is altered in response to a pathogen attack is also unknown. To address these, Nramp1 status was examined in Leishmania major-infected murine macrophages. We observed that at 12 hrs post infection, there was drastic lowering of Nramp1 level accompanied by increased phagolysosomal iron content and enhanced intracellular parasite growth. Leishmania infection-induced Nramp1 downregulation was caused by ubiquitin-proteasome degradation pathway, which in turn was found to be mediated by the iron-regulatory peptide hormone hepcidin. Blocking of Nramp1 degradation with proteasome inhibitor or transcriptional agonist of hepcidin resulted in depletion of phagolysosomal iron pool that led to significant reduction of intracellular parasite burden. Interestingly, Nramp1 level was restored to normalcy after 30 hrs of infection with a concomitant drop in phagolysosomal iron, which is suggestive of a host counteractive response to deprive the pathogen of this essential micronutrient. Taken together, our study implicates Nramp1 as a central player in the host-pathogen battle for phagolysosomal iron. We also report Nramp1 as a novel target for hepcidin, and this 'hepcidin-Nramp1' axis may have a broader role in regulating macrophage iron homeostasis.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| |
Collapse
|
42
|
Assolini JP, Tomiotto-Pellissier F, da Silva Bortoleti BT, Gonçalves MD, Sahd CS, Carloto ACM, Feuser PE, Cordeiro AP, Borghi SM, Verri WA, Sayer C, Hermes de Araújo PH, Costa IN, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. Diethyldithiocarbamate encapsulation reduces toxicity and promotes leishmanicidal effect through apoptosis-like mechanism in promastigote and ROS production by macrophage. J Drug Target 2020; 28:1110-1123. [DOI: 10.1080/1061186x.2020.1783669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| | - Manoela Daiele Gonçalves
- Department of Chemical, Center of Exact Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Claudia Stoeglehner Sahd
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Sergio Marques Borghi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Idessania Nazareth Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Curitiba, PR, Brazil
| |
Collapse
|
43
|
Nadaes NR, Silva da Costa L, Santana RC, LaRocque-de-Freitas IF, Vivarini ÁDC, Soares DC, Wardini AB, Gazos Lopes U, Saraiva EM, Freire-de-Lima CG, Decote-Ricardo D, Pinto-da-Silva LH. DH82 Canine and RAW264.7 Murine Macrophage Cell Lines Display Distinct Activation Profiles Upon Interaction With Leishmania infantum and Leishmania amazonensis. Front Cell Infect Microbiol 2020; 10:247. [PMID: 32596164 PMCID: PMC7303514 DOI: 10.3389/fcimb.2020.00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/29/2020] [Indexed: 11/15/2022] Open
Abstract
Leishmaniasis is an anthropozoonotic disease, and dogs are considered the main urban reservoir of the parasite. Macrophages, the target cells of Leishmania sp., play an important role during infection. Although dogs have a major importance in the epidemiology of the disease, the majority of the current knowledge about Leishmania–macrophage interaction comes from murine experimental models. To assess whether the canine macrophage strain DH82 is an accurate model for the study of Leishmania interaction, we compared its infection by two species of Leishmania (Leishmania infantum and L. amazonensis) with the murine macrophage cell line (RAW264.7). Our results demonstrated that L. amazonensis survival was around 40% at 24 h of infection inside both macrophage cell lines; however, a reduction of 4.3 times in L. amazonensis infection at 48 h post-infection in RAW 264.7 macrophages was observed. The survival index of L. infantum in DH82 canine macrophages was around 3 times higher than that in RAW264.7 murine cells at 24 and 48 h post-infection; however, at 48 h a reduction in both macrophages was observed. Surprisingly at 24 h post-infection, NO and ROS production by DH82 canine cells stimulated with LPS or menadione or during Leishmania infection was minor compared to murine RAW264.7. However, basal arginase activity was higher in DH82 cells when compared to murine RAW264.7 cells. Analysis of the cytokines showed that these macrophages present a different response profile. L. infantum induced IL-12, and L. amazonensis induced IL-10 in both cell lines. However, L. infantum and L. amazonensis also induced TGF-β in RAW 264.7. CD86 and MHC expression showed that L. amazonensis modulated them in both cell lines. Conversely, the parasite load profile did not show significant difference between both macrophage cell lines after 48 h of infection, which suggests that other mechanisms of Leishmania control could be involved in DH82 cells.
Collapse
Affiliation(s)
- Natalia Rocha Nadaes
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Leandro Silva da Costa
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raissa Couto Santana
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | | | | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Brito Wardini
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | - Ulisses Gazos Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Brazil
| | | |
Collapse
|
44
|
Silva LLDL, Gomes RS, Silva MVT, Joosten LAB, Ribeiro-Dias F. IL-15 enhances the capacity of primary human macrophages to control Leishmania braziliensis infection by IL-32/vitamin D dependent and independent pathways. Parasitol Int 2020; 76:102097. [PMID: 32114085 DOI: 10.1016/j.parint.2020.102097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
How human macrophages can control the intracellular infection with Leishmania is not completely understood. IL-15 and IL-32 are cytokines produced by monocytes/macrophages that can induce antimicrobial mechanisms. Here, we evaluated the effects of recombinant human IL-15 (rhIL-15) on primary human macrophage infection and response to L. braziliensis. Priming with rhIL-15 reduced the phagocytosis of L. braziliensis and increased the killing of the parasites in monocyte-derived macrophages from healthy donors. rhIL-15 induced TNFα and IL-32 in uninfected cells. After infection, the high levels of rhIL-15-induced TNFα and IL-32 were maintained. In addition, there was an increase of NO and an inhibition of the parasite-induced IL-10 production. Inhibition of NO reversed the leishmanicidal effects of rhIL-15. Although rhIL-15 did not increase L. braziliensis-induced reactive oxygen intermediates (ROS) production, inhibition of ROS reversed the control of infection induced by rhIL-15. Treatment of the cells with rhIL-32γ increased microbicidal capacity of macrophages in the presence of high levels of vitamin D (25D3), but not in low concentrations of this vitamin. rhIL-15 together with rhIL-32 lead to the highest control of the L. braziliensis infection in high concentrations of vitamin D. In this condition, NO and ROS mediated rhIL-32γ effects on microbicidal activity. The data showed that priming of human macrophages with rhIL-15 or rhIL-32γ results in the control of L. braziliensis infection through induction of NO and ROS. In addition, rhIL-32γ appears to synergize with rhIL-15 for the control of L. braziliensis infection in a vitamin D-dependent manner.
Collapse
Affiliation(s)
- Lucas Luiz de Lima Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Muriel Vilela Teodoro Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
45
|
Pessanha de Carvalho L, Held J, de Melo EJT. Essential and nonessential metal effects on extracellular Leishmania amazonensis in vitro. Exp Parasitol 2019; 209:107826. [PMID: 31881207 DOI: 10.1016/j.exppara.2019.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Protozoan parasites like Leishmania amazonensis are excellent models to test the effects of new drugs against a functional molecular arsenal used to establish successfully an infection in the vertebrate host, where they invade the cells of the monocytic system. However, little is known about the influence of metal ions on the cellular functionality of the infective forms of L. amazonensis. In the present work, we show that ZnCl2 (an essential metal to cellular metabolism) did not induce drastic effects on the survival of the promastigote under the conditions tested. However, incubation of ZnCl2 prior to subsequent treatment with CdCl2 and HgCl2 led to a drastic toxic effect on parasite survival in vitro. Nonessential metals such as CdCl2 and HgCl2 promoted a drastic effect on parasite survival progressively with increasing dose and time of exposure. Notably, HgCl2 produced an effective elimination of the parasite in doses/time smaller than the CdCl2. This toxic action induced in the parasite a high condensation of the nuclear heterochromatin, besides the absence or de-structuring of functional organelles such as glycosomes, acidocalcisomes, and mitochondria in the cytoplasm. Our results suggest that promastigotes of L. amazonensis are sensitive to the toxic activity of nonessential metals, and that this activity increases when parasites are previously exposed to Zn. To summarize, toxic effects of the tested metals are dose and time dependent and can be used as a study model to better understand the functionality of the molecular arsenal responsible for the parasitism.
Collapse
Affiliation(s)
- Laís Pessanha de Carvalho
- Laboratory of Tissue and Cell Biology, Center for Bioscience and Biotechnology, State University of Northern Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil; Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Edésio José Tenório de Melo
- Laboratory of Tissue and Cell Biology, Center for Bioscience and Biotechnology, State University of Northern Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.
| |
Collapse
|
46
|
Leishmania Infection Induces Macrophage Vascular Endothelial Growth Factor A Production in an ARNT/HIF-Dependent Manner. Infect Immun 2019; 87:IAI.00088-19. [PMID: 31451620 PMCID: PMC6803331 DOI: 10.1128/iai.00088-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cutaneous leishmaniasis is characterized by vascular remodeling. Following infection with Leishmania parasites, the vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway mediates lymphangiogenesis, which is critical for lesion resolution. Therefore, we investigated the cellular and molecular mediators involved in VEGF-A/VEGFR-2 signaling using a murine model of infection. We found that macrophages are the predominant cell type expressing VEGF-A during Leishmania major infection. Given that Leishmania parasites activate hypoxia-inducible factor 1α (HIF-1α) and this transcription factor can drive VEGF-A expression, we analyzed the expression of HIF-1α during infection. We showed that macrophages were also the major cell type expressing HIF-1α during infection and that infection-induced VEGF-A production is mediated by ARNT/HIF activation. Furthermore, mice deficient in myeloid ARNT/HIF signaling exhibited larger lesions without differences in parasite numbers. These data show that L. major infection induces macrophage VEGF-A production in an ARNT/HIF-dependent manner and suggest that ARNT/HIF signaling may limit inflammation by promoting VEGF-A production and, thus, lymphangiogenesis during infection.
Collapse
|
47
|
Does physical exercise influence in the development of neuroeschistosomiasis? Brain Res Bull 2019; 152:311-322. [PMID: 31377443 DOI: 10.1016/j.brainresbull.2019.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022]
Abstract
Neuroschistosomiasis is a severe form of presentation of schistosomiasis in which Schistosoma spp. affects the central nervous system. This is the first study performed to analyze whether there is any relationship between physical effort and the appearance of neuroschistosomiasis, through clinical, molecular and immunological evaluations. An experimental controlled study using 64 male Balb/c inbred mice divided into four groups according to presence or absence of S. mansoni infection and submitted to physical effort or resting was conducted. Thirteen weeks after exercise training, S. mansoni DNA was detected in the brain or spinal cord in about 30% of the infected animals moreover, only S. mansoni-positive samples showed positive labeling for S. mansoni antigens in the brain or spinal cord, with a striking reaction inside the microglia. However, the behavioral tests did not show any clinical symptoms of neuroschistosomiasis in animals submitted to physical effort or in resting. In animals with S. mansoni-positive DNA, immunohistochemical data revealed astrogliosis and microgliosis, elevated IL-10 levels and decreased TNF-α expression. This study demonstrated that isometric exercise does not promote neuroschistosomiasis, furthermore, ectopic forms of schistosomiasis in the central nervous system were largely asymptomatic and exhibited a Th2 immune response profile. More experimental studies are necessary in order to characterize the pathological process of experimental neuroschistosomiasis.
Collapse
|
48
|
Pawar H, Puri M, Fischer Weinberger R, Madhubala R, Zilberstein D. The arginine sensing and transport binding sites are distinct in the human pathogen Leishmania. PLoS Negl Trop Dis 2019; 13:e0007304. [PMID: 31017889 PMCID: PMC6502434 DOI: 10.1371/journal.pntd.0007304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/06/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
The intracellular protozoan parasite Leishmania donovani causes human visceral leishmaniasis. Intracellular L. donovani that proliferate inside macrophage phagolysosomes compete with the host for arginine, creating a situation that endangers parasite survival. Parasites have a sensor that upon arginine deficiency activates an Arginine Deprivation Response (ADR). L. donovani transport arginine via a high-affinity transporter (LdAAP3) that is rapidly up-regulated by ADR in intracellular amastigotes. To date, the sensor and its ligand have not been identified. Here, we show that the conserved amidino group at the distal cap of the arginine side chain is the ligand that activates ADR, in both promastigotes and intracellular amastigotes, and that arginine sensing and transport binding sites are distinct in L. donovani. Finally, upon addition of arginine and analogues to deprived cells, the amidino ligand activates rapid degradation of LdAAP3. This study provides the first identification of an intra-molecular ligand of a sensor that acts during infection. Leishmania donovani, the causative agent of visceral leishmaniasis, leads a digenetic life cycle as a flagellated promastigote in the vector sandfly and aflagellated amastigote within phagolysosomes of infected macrophages. Arginine is an essential amino acid for Leishmania which possesses a high specificity arginine transporter (LdAAP3), a protein that imports the amino acid into parasite cells. Arginine is primarily utilized in de novo protein synthesis and for biosynthesis of trypanothione via the polyamine pathway. It was previously reported by our group that L. donovani senses lack of arginine in the surrounding micro environment and activates a unique arginine deprivation response (ADR) pathway, thus upregulating the expression of LdAAP3 as well as other transporters. In the present study, we identified the region on the arginine molecule which is the ligand that activates ADR. We show that the conserved amidino group at the distal cap of the arginine side chain is the ligand that activates/suppresses ADR. Using arginine analogues that contain this group we observed that arginine sensing and transport are distinct in L. donovani, both in axenic promastigotes and intracellular amastigotes. Additionally, the arginine sensor responds to both arginine starvation and sufficiency.
Collapse
Affiliation(s)
- Harsh Pawar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Madhu Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
49
|
Pereira MA, Alexandre-Pires G, Câmara M, Santos M, Martins C, Rodrigues A, Adriana J, Passero LFD, Pereira da Fonseca I, Santos-Gomes G. Canine neutrophils cooperate with macrophages in the early stages of Leishmania infantum in vitro infection. Parasite Immunol 2019; 41:e12617. [PMID: 30735568 DOI: 10.1111/pim.12617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
Leishmania infantum is the aetiological agent of human visceral leishmaniasis and canine leishmaniasis, both systemic and potentially fatal diseases. Polymorphonuclear neutrophils (PMN) are the first cells to phagocyte this parasite at the inoculation site, but macrophages (MØ) are the definitive host cells, ensuring parasite replication. The interaction between dog MØ, PMN and L infantum promastigotes was in vitro investigated. It was observed that promastigotes establish contact with blood monocyte-derived MØ mainly by the tip of the flagellum. These cells, that efficiently bind and internalize parasites, underwent major morphological changes, produced nitric oxide (NO) and released histone H1 in order to inactivate the parasite. Transfer of intracellular parasites from PMN to MØ was confirmed by flow cytometry, using L infantum expressing a green fluorescent protein. The interaction of MØ with L infantum-infected PMN lead to NO production and release of extracellular traps, which may contribute to parasite containment and inactivation. This study highlights for the first time the diversity of cellular and molecular events triggered by the interaction between canine PMN and MØ, which can promote a reduction of parasite burden in the early phase of L infantum infection.
Collapse
Affiliation(s)
- Maria A Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisboa, Portugal.,Instituto Politécnico de Portalegre (IPP), Portalegre, Portugal
| | - Graça Alexandre-Pires
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Lisboa, Portugal
| | - Margarida Câmara
- Câmara Municipal de Évora, Serviço Veterinário Municipal, Évora, Portugal
| | - Marcos Santos
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Lisboa, Portugal
| | - Catarina Martins
- CEDOC-Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Armanda Rodrigues
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisboa, Portugal
| | - Jéssica Adriana
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, São Paulo, Brazil
| | - Luiz Felipe D Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Paulo, Brazil.,São Paulo State University (UNESP), Institute for Advanced Studies of Ocean, São Paulo, Brazil
| | - Isabel Pereira da Fonseca
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Lisboa, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisboa, Portugal
| |
Collapse
|
50
|
Balanco JMF, Sussmann RAC, Verdaguer IB, Gabriel HB, Kimura EA, Katzin AM. Tocopherol biosynthesis in Leishmania ( L.) amazonensis promastigotes. FEBS Open Bio 2019; 9:743-754. [PMID: 30984548 PMCID: PMC6443866 DOI: 10.1002/2211-5463.12613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 01/25/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by a trypanosomatid protozoan of the genus Leishmania. Most drugs used to treat leishmaniasis are highly toxic, and the emergence of drug‐resistant strains has been observed. Therefore, new therapeutic targets against leishmaniasis are required. Several isoprenoid compounds, including dolichols or ubiquinones, have been shown to be important for cell viability and proliferation in various trypanosomatid species. Here, we detected the biosynthesis of tocopherol in Leishmania (L.) amazonensis promastigotes in vitro through metabolic labelling with [1‐(n)‐3H]‐phytol. Subsequently, we confirmed the presence of vitamin E in the parasite by gas chromatography–mass spectrometry. Treatment with usnic acid or nitisinone, inhibitors of precursors of vitamin E synthesis, inhibited growth of the parasite in a concentration‐dependent manner. This study provides the first evidence of tocopherol biosynthesis in a trypanosomatid and suggests that inhibitors of the enzyme 4‐hydroxyphenylpyruvate dioxygenase may be suitable for use as antileishmanial compounds. Database The amino acid sequence of a conserved hypothetical protein [Leishmania mexicana MHOM/GT/2001/U1103] has been deposited in GenBank (CBZ28005.1)
Collapse
Affiliation(s)
- José Mário F Balanco
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Rodrigo A C Sussmann
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Ignasi B Verdaguer
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Heloisa B Gabriel
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Emilia A Kimura
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Alejandro M Katzin
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| |
Collapse
|