1
|
Zhao X, Zhang M, He J, Li X, Zhuang X. Emerging insights into ferroptosis in cholangiocarcinoma (Review). Oncol Lett 2024; 28:606. [PMID: 39483963 PMCID: PMC11526429 DOI: 10.3892/ol.2024.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 11/03/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that arises within the biliary system, which exhibits a progressively increasing incidence and a poor patient prognosis. A thorough understanding of the molecular pathogenesis that drives the progression of CCA is essential for the development of effective molecular target therapeutic approaches. Ferroptosis is driven by excessive iron accumulation and catalysis, lipid peroxidation and the failure of antioxidant defense systems. Key molecular targets of iron metabolism, lipid metabolism and antioxidant defense systems involve molecules such as transferrin receptor, ACSL4 and GPX4, respectively. Inhibitors of ferroptosis include ferrostatin-1, liproxstatin-1, vitamin E and coenzyme Q10. By contrast, compounds such as erastin, RSL3 and FIN56 have been identified as inducers of ferroptosis. Ferroptosis serves a notable role in the onset and progression of CCA. CCA cells exhibit high sensitivity to ferroptosis and aberrant iron metabolism in these cells increases oxidative stress and iron accumulation. The induction of ferroptosis markedly reduces the ability of CCA cells to proliferate and migrate. Certain ferroptosis agonists, such as RSL3 and erastin, cause lipid peroxide build up and GPX4 inhibition to induce ferroptosis in CCA cells. Current serological markers, such as CA-199, have low specificity and cause difficulties in the diagnosis of CCA. However, novel techniques, such as non-invasive liquid biopsy and assays for oxidative stress markers and double-cortin-like kinase 1, could improve diagnostic accuracy. CCA is primarily treated with surgery and chemotherapy. A close association between the progression of CCA with ferroptosis mechanisms and related regulatory pathways has been demonstrated. Therefore, it could be suggested that multi-targeted therapeutic approaches, such as ferroptosis inducers, iron chelating agents and novel modulators such as YL-939, may improve treatment efficacy. Iron death-related genes, such as GPX4, that are highly expressed in CCA and are associated with a poor prognosis for patients may represent potential prognostic markers for CCA. The present review focused on molecular targets such as p53 and ACSL4, the process of targeted medications in combination with PDT in CCA and the pathways of lipid peroxidation, the Xc-system and GSH-GPX4 in ferroptosis. The present review thus offered novel perspectives to improve the current understanding of CCA.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Miao Zhang
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Jing He
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xin Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xuewei Zhuang
- Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
2
|
Yan Z, Zheng H, Feng J, Li Y, Hu Z, Wu Y, Liao G, Miao T, Qiu Z, Mo Q, Li J, Lai A, Lu Y, Chen B. Causal links between circulatory inflammatory cytokines and risk of digestive polyps: a Mendelian randomization analysis. Front Pharmacol 2024; 15:1405503. [PMID: 39439893 PMCID: PMC11493649 DOI: 10.3389/fphar.2024.1405503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background There is a high morbidity of polyps in the digestive tract, and certain subtypes of polyps are thought to induce cancer progression and often recur, which may be associated with chronic inflammation. Mendelian randomization (MR) can help identify potential causative relationships and inform early treatment action. Methods We performed a bidirectional two-sample MR analysis implementing the results from genome-wide association studies for 41 serum cytokines from 8,293 Finnish individuals, and three types of polyps from European ancestry, respectively, including gastric polyp (6,155 cases vs. 341,871 controls), colonic polyp (22,049 cases vs. 332,368 controls) and gallbladder polyp (458 cases vs. 340,083 controls). Inverse-variance weighted (IVW), weight median (WM), and MR-Egger methods were used for calculating causal estimates. Furthermore, Bayesian model averaging MR (MR-BMA) method was employed to detect the dominant causal circulatory cytokines with adjustment for pleiotropy effects. Results Our univariable MR using inverse-variance weight method identified causal associations of IL-2ra (OR: 0.892, 95%CI: 0.828-0.961, p = 0.003), MIG (OR: 1.124, 95%CI: 1.046-1.207, p = 0.001) and IL-18 (OR: 0.912, 95%CI: 0.852-0.977, p = 0.008) with gastric polyp, MIP1b (OR: 0.956, 95%CI: 0.927-0.987, p = 0.005) and IL-6 (OR: 0.931, 95%CI: 0.870-0.995, p = 0.035) with colonic polyp and IL-9 (OR: 0.523, 95%CI: 0.345-0.794, p = 0.0007) with gallbladder polyp. Finally, our MR-BMA analysis prioritized MIG (MIP = 0.332, MACE = 0.022; PP: 0.264, MSCE = 0.059), IL-18 (MIP = 0.302, MACE = -0.020; PP: 0.243, MSCE = -0.059) and IL-2ra (MIP: 0.129; MACE: -0.005; PP: 0.112, MSCE: -0.031) for gastric polyp, and MIP1b (MIP = 0.752, MACE = -0.033; PP: 0.665, MSCE = -0.044) and IL-6 (MIP: 0.196; MACE: -0.012; PP: 0.140, MSCE: -0.064) for colonic polyp, and IL-9 (MIP = 0.936, MACE = -0.446; PP: 0.781, MSCE = -0.478) for gallbladder polyp as the top-ranked protective factors. Conclusion Our research advances the current understanding of the function of certain inflammatory biomarker pathways in the genesis and malignant mutation of polyps in the digestive tract. Deeper substantiation is necessary to assess the potential of these cytokines as pharmacological or lifestyle targets for digestive polyps prevention.
Collapse
Affiliation(s)
- Ziqi Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongming Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guibin Liao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Taosheng Miao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexin Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiaolan Mo
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ailin Lai
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Alsharabasy AM, Aljaabary A, Farràs P, Pandit A. Engineering hemin-loaded hyaluronan needle-like microparticles with photoprotective properties against UV-induced tissue damage. J Mater Chem B 2024; 12:9639-9655. [PMID: 39194146 DOI: 10.1039/d4tb01529k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
This study aimed to develop hyaluronan (HA)-based hydrogel microparticles (MPs) loaded with hemin to address the limitations of traditional macroscale hydrogels. The objective is to design MPs such that they can modulate their physicochemical properties. Given the widespread use of ultraviolet C (UVC) light in various industries and the need for protective measures against accidental exposure, this study evaluated the potential of hemin-loaded MPs to protect human dermal fibroblasts from oxidative stress and cell death caused by UVC exposure. Multiple MP formulations were developed and analysed for size, surface charge, swelling behaviour, degradation rate, and radical scavenging capabilities, both with and without hemin loading. The most promising formulations were tested against UVC-exposed cells to assess cell viability, intracellular nitric oxide (˙NO) and reactive oxygen species levels, and protein carbonylation. The fabricated particles were in the form of microneedles, and the degree of their crosslinking and the role of hemin in the chemical crosslinking reaction were found to influence the surface charge and hydrodynamic diameter of the MPs. Increased crosslinking resulted in reduced swelling, slower degradation, and decreased hemin release rate. MPs with a higher degree of swelling were capable of releasing hemin into the culture medium, leading to enhanced bilirubin generation in dermal fibroblasts following cellular uptake. Pre-treatment with these MPs protected the cells from UVC-induced cell death, nitrosative stress, and protein carbonylation. These findings highlight the potential of the studied MPs to release hemin and to minimise the harmful effects of UVC on dermal fibroblasts.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Amal Aljaabary
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91 TK33, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| |
Collapse
|
4
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
5
|
Khuntikeo N, Padthaisong S, Loilome W, Klanrit P, Ratchatapusit S, Techasen A, Jareanrat A, Thanasukarn V, Srisuk T, Luvira V, Chindaprasirt J, Sa-ngiamwibool P, Aphivatanasiri C, Intarawichian P, Koonmee S, Prajumwongs P, Titapun A. Mismatch Repair Deficiency Is a Prognostic Factor Predicting Good Survival of Opisthorchis viverrini-Associated Cholangiocarcinoma at Early Cancer Stage. Cancers (Basel) 2023; 15:4831. [PMID: 37835526 PMCID: PMC10572072 DOI: 10.3390/cancers15194831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The mismatch repair (MMR) system prevents DNA mutation; therefore, deficient MMR protein (dMMR) expression causes genetic alterations and microsatellite instability (MSI). dMMR is correlated with a good outcome and treatment response in various cancers; however, the situation remains ambiguous in cholangiocarcinoma (CCA). This study aims to evaluate the prevalence of dMMR and investigate the correlation with clinicopathological features and the survival of CCA patients after resection. MATERIALS AND METHODS Serum and tissues were collected from CCA patients who underwent resection from January 2005 to December 2017. Serum OV IgG was examined using ELISA. The expression of MMR proteins MLH1, MSH2, MSH6 and PMS2 was investigated by immunohistochemistry; subsequently, MMR assessment was evaluated as either proficient or as deficient by pathologists. The clinicopathological features and MMR status were compared using the Chi-square test. Univariate and multivariate analyses were conducted to identify prognostic factors. RESULTS Among the 102 CCA patients, dMMR was detected in 22.5%. Survival analysis revealed that dMMR patients had better survival than pMMR (HR = 0.50, p = 0.008). In multivariate analysis, dMMR was an independent factor for a good prognosis in CCA patients (HR = 0.58, p = 0.041), especially at an early stage (HR = 0.18, p = 0.027). Moreover, subgroup analysis showed dMMR patients who received adjuvant chemotherapy had better survival than surgery alone (HR = 0.28, p = 0.012). CONCLUSION This study showed a high prevalence of dMMR in cholangiocarcinoma with dMMR being the independent prognostic factor for good survival, especially in early-stage CCA and for patients who received adjuvant chemotherapy. dMMR should be the marker for selecting patients to receive a specific adjuvant treatment after resection for CCA.
Collapse
Affiliation(s)
- Natcha Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Sureerat Padthaisong
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soontaree Ratchatapusit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Jareanrat
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Vasin Thanasukarn
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Tharatip Srisuk
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Jarin Chindaprasirt
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Medical Oncology Program, Department of Medicine Srinagarind Hospital, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prakasit Sa-ngiamwibool
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaiwat Aphivatanasiri
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyapharom Intarawichian
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supinda Koonmee
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piya Prajumwongs
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (N.K.); (A.J.); (V.T.); (T.S.); (V.L.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (W.L.); (P.K.); (S.R.); (A.T.); (J.C.); (P.S.-n.); (C.A.); (P.I.); (S.K.); (P.P.)
| |
Collapse
|
6
|
Yang M, Li M, Lyu Z, Yang Z. Implication of Ferroptosis in Cholangiocarcinoma: A Potential Future Target? Cancer Manag Res 2023; 15:335-342. [PMID: 37063167 PMCID: PMC10093512 DOI: 10.2147/cmar.s406150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Cholangiocarcinoma (CCA), the second most common liver neoplasm, has a poor overall 5-year survival rate of less than 10%. A deeper understanding of the molecular pathogenesis contributing to CCA progression is essential for developing better therapeutic approaches to manage this disease. Ferroptosis, an oxidative iron-dependent form of regulated cell death, has been reported to be involved in tumorigenesis and progression. In particular, ferroptosis and inflammation, which are common issues in cholangiocarcinogenesis and CCA development, might be in concert with disease progression. Notably, the key feature of cancer cells is "iron addiction", which is crucial for the high metabolic demand in carcinogenesis and cancer progression. Additionally, iron metabolism is of great importance in ferroptosis. Moreover, that cancer cells are vulnerable to ferroptosis might be a possible mechanism of CCA development. Although the underlying mechanism of how ferroptosis is implicated in CCA development requires further investigation, developing a new strategy combined with a pro-ferroptotic treatment would be an exciting CCA treatment approach in the future.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Meng Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhuozhen Lyu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 25000, People’s Republic of China
- Correspondence: Zhen Yang, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, JingWu Road, Jinan, Shandong, 25000, People’s Republic of China, Tel +86 15168867123, Email
| |
Collapse
|
7
|
Wang Y, Wang D, Yang L, Zhang Y. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chin Med J (Engl) 2022; 135:2405-2416. [PMID: 36385099 PMCID: PMC9945195 DOI: 10.1097/cm9.0000000000002426] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are an essential proportion of tumor-infiltrating immune cells in the tumor microenvironment (TME) and have immunosuppressive functions. The high plasticity and corresponding phenotypic transformation of TAMs facilitate oncogenesis and progression, and suppress antineoplastic responses. Due to the uncontrolled proliferation of tumor cells, metabolism homeostasis is regulated, leading to a series of alterations in the metabolite profiles in the TME, which have a commensurate influence on immune cells. Metabolic reprogramming of the TME has a profound impact on the polarization and function of TAMs, and can alter their metabolic profiles. TAMs undergo a series of metabolic reprogramming processes, involving glucose, lipid, and amino acid metabolism, and other metabolic pathways, which terminally promote the development of the immunosuppressive phenotype. TAMs express a pro-tumor phenotype by increasing glycolysis, fatty acid oxidation, cholesterol efflux, and arginine, tryptophan, glutamate, and glutamine metabolism. Previous studies on the metabolism of TAMs demonstrated that metabolic reprogramming has intimate crosstalk with anti-tumor or pro-tumor phenotypes and is crucial for the function of TAMs themselves. Targeting metabolism-related pathways is emerging as a promising therapeutic modality because of the massive metabolic remodeling that occurs in malignant cells and TAMs. Evidence reveals that the efficacy of immune checkpoint inhibitors is improved when combined with therapeutic strategies targeting metabolism-related pathways. In-depth research on metabolic reprogramming and potential therapeutic targets provides more options for anti-tumor treatment and creates new directions for the development of new immunotherapy methods. In this review, we elucidate the metabolic reprogramming of TAMs and explore how they sustain immunosuppressive phenotypes to provide a perspective for potential metabolic therapies.
Collapse
Affiliation(s)
- Ying Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
8
|
Kimawaha P, Thanan R, Jusakul A, Jamnongkan W, Silsirivanit A, Sa-Ngaimwibool P, Titapun A, Khuntikeo N, Sithithaworn P, Worasith C, Janthamala S, Lebrilla CB, Techasen A. Serum α2,6-sialylated glycoform of serotransferrin as a glycobiomarker for diagnosis and prediction of clinical severity in cholangiocarcinoma. Clin Chim Acta 2022; 536:142-154. [PMID: 36174722 DOI: 10.1016/j.cca.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Glycoprotein sialylation changes are associated with severe development of various cancers. We previously discovered the sialylation of serotransferrin (TF) in cholangiocarcinoma (CCA) using glycoproteomics approach. However, a simple and reliable method for validating sialylation of a specific glycobiomarker is urgently needed. METHODS We identified the altered glycosylation in CCA tissues by glycoproteomics approach using mass spectrometry. An enzyme-linked lectin assay (ELLA) was developed for determining the serum levels of sialylated TF in CCA, hepatocellular carcinoma (HCC) and healthy controls in training and validation cohorts. RESULTS The nine highly sialylated glycoforms of TF were markedly abundant in CCA tumor tissues than in control. Serum SNA-TF and MAL1-TF were significantly higher in CCA patients. Under receiver operating characteristic curve, serum SNA-TF concentrations significantly differentiated CCA from healthy control. Higher SNA-TF were significantly correlated with severe tumor stages and lymph node metastasis. The combined SNA-TF, MAL1-TF, and CA19-9 as a novel glycobiomarkers panel demonstrated the highest specificity (96.2%) for distinguishing CCA from HCC patients. In CCA patients with low CA19-9 levels, SNA-TF in combination with CA19-9 achieved in 97% diagnostic accuracy. CONCLUSIONS Sialylated serotransferrin glycoforms could be used as a novel glycobiomarker for diagnosis and prediction of clinical severity in CCA patients.
Collapse
Affiliation(s)
- Phongsaran Kimawaha
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wassana Jamnongkan
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prakasit Sa-Ngaimwibool
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanika Worasith
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutthiwan Janthamala
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
9
|
Brown ZJ, Hewitt DB, Pawlik TM. Biomarkers of intrahepatic cholangiocarcinoma: diagnosis and response to therapy. FRONT BIOSCI-LANDMRK 2022; 27:85. [PMID: 35345317 DOI: 10.31083/j.fbl2703085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer behind hepatocellular carcinoma (HCC) and carries a dismal prognosis. Improved genetic analysis has paved the way for a better understanding of the distinct somatic genomic landscapes of ICC. The use of next generation sequencing has paved the way for more personalized medicine through identifying unique mutations which may prove to be therapeutic targets. The ability to identify biomarkers specific to ICC will assist in establishing a diagnosis, monitoring response to therapy, as well as assist in identifying novel therapies and personalized medicine. Herein, we discuss potential biomarkers for ICC and how these markers can assist in diagnosis, monitor response to therapy, and potentially identify novel interventions for the treatment of ICC.
Collapse
Affiliation(s)
- Zachary J Brown
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - D Brock Hewitt
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Miao H, Ren Q, Li H, Zeng M, Chen D, Xu C, Chen Y, Wen Z. Comprehensive analysis of the autophagy-dependent ferroptosis-related gene FANCD2 in lung adenocarcinoma. BMC Cancer 2022; 22:225. [PMID: 35236309 PMCID: PMC8889748 DOI: 10.1186/s12885-022-09314-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The development of lung adenocarcinoma (LUAD) involves the interactions between cell proliferation and death. Autophagy-dependent ferroptosis, a distinctive cell death process, was implicated in a multitude of diseases, whereas no research revealing the relationship between autophagy-dependent ferroptosis and LUAD pathogenesis was reported. Thus, the primary objective was to explore the role and potential function of the autophagy-dependent ferroptosis-related genes in LUAD. METHODS Clinical information and transcriptome profiling of patients with LUAD were retrieved and downloaded from open-source databases. Autophagy-dependent ferroptosis-related genes were screened by published articles. The critical gene was identified as the intersection between the differentially expressed genes and prognosis-related genes. Patients were divided into high- and low-risk groups using the expression level of the critical gene. The validity of the key gene prognosis model was verified by survival analysis. The correlation between the clinical characteristics of LUAD and the expression level of the key gene was analyzed to explore the clinical significance and prognosis value. And the roles of the key gene in response to chemotherapy, immune microenvironment, and tumor mutation burden were predicted. The validation of key gene expression levels was further performed by quantitative real-time PCR and immunohistochemistry staining. RESULTS FANCD2, an essential autophagy-dependent ferroptosis-related gene by searching database, was confirmed as an independent prognostic factor for LUAD occurrence. The high expression level of FANCD2 was associated with an advantaged TNM stage, a less chemotherapy sensitivity, a low ImmuneScore, which indicated a deactivation status in an immune microenvironment, a high tumor mutation burden, and poor survival for LUAD patients. Pathway enrichment analysis showed that FANCD2 responded to oxidative stress and neutrophil-mediated immunity. Quantitative real-time PCR and immunohistochemistry staining showed that the expression level of FANCD2 is higher in LUAD patients than in normal tissue samples, which was in accordance with the database report. CONCLUSION FANCD2, an essential gene related to autophagy-dependent ferroptosis, could work as a biomarker, predicting the survival, chemotherapy sensitivity, tumor immunity, and mutation burden of LUAD. Researching autophagy-dependent ferroptosis and targeting the FANCD2 may offer a new perspective for treating and improving prognosis in LUAD.
Collapse
Affiliation(s)
- Huikai Miao
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong, Guangzhou, 510060, People's Republic of China
| | - Qiannan Ren
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hongmu Li
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong, Guangzhou, 510060, People's Republic of China
| | - Mingyue Zeng
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong, Guangzhou, 510060, People's Republic of China
| | - Dongni Chen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong, Guangzhou, 510060, People's Republic of China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Youfang Chen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong, Guangzhou, 510060, People's Republic of China
| | - Zhesheng Wen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
11
|
Bouras E, Karhunen V, Gill D, Huang J, Haycock PC, Gunter MJ, Johansson M, Brennan P, Key T, Lewis SJ, Martin RM, Murphy N, Platz EA, Travis R, Yarmolinsky J, Zuber V, Martin P, Katsoulis M, Freisling H, Nøst TH, Schulze MB, Dossus L, Hung RJ, Amos CI, Ahola-Olli A, Palaniswamy S, Männikkö M, Auvinen J, Herzig KH, Keinänen-Kiukaanniemi S, Lehtimäki T, Salomaa V, Raitakari O, Salmi M, Jalkanen S, Jarvelin MR, Dehghan A, Tsilidis KK. Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis. BMC Med 2022; 20:3. [PMID: 35012533 PMCID: PMC8750876 DOI: 10.1186/s12916-021-02193-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiological and experimental evidence has linked chronic inflammation to cancer aetiology. It is unclear whether associations for specific inflammatory biomarkers are causal or due to bias. In order to examine whether altered genetically predicted concentration of circulating cytokines are associated with cancer development, we performed a two-sample Mendelian randomisation (MR) analysis. METHODS Up to 31,112 individuals of European descent were included in genome-wide association study (GWAS) meta-analyses of 47 circulating cytokines. Single nucleotide polymorphisms (SNPs) robustly associated with the cytokines, located in or close to their coding gene (cis), were used as instrumental variables. Inverse-variance weighted MR was used as the primary analysis, and the MR assumptions were evaluated in sensitivity and colocalization analyses and a false discovery rate (FDR) correction for multiple comparisons was applied. Corresponding germline GWAS summary data for five cancer outcomes (breast, endometrial, lung, ovarian, and prostate), and their subtypes were selected from the largest cancer-specific GWASs available (cases ranging from 12,906 for endometrial to 133,384 for breast cancer). RESULTS There was evidence of inverse associations of macrophage migration inhibitory factor with breast cancer (OR per SD = 0.88, 95% CI 0.83 to 0.94), interleukin-1 receptor antagonist with endometrial cancer (0.86, 0.80 to 0.93), interleukin-18 with lung cancer (0.87, 0.81 to 0.93), and beta-chemokine-RANTES with ovarian cancer (0.70, 0.57 to 0.85) and positive associations of monokine induced by gamma interferon with endometrial cancer (3.73, 1.86 to 7.47) and cutaneous T-cell attracting chemokine with lung cancer (1.51, 1.22 to 1.87). These associations were similar in sensitivity analyses and supported in colocalization analyses. CONCLUSIONS Our study adds to current knowledge on the role of specific inflammatory biomarker pathways in cancer aetiology. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for cancer prevention.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
- Clinical Pharmacology and Therapeutics Section, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mattias Johansson
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Paul Brennan
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tim Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Michail Katsoulis
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, Arctic University of Norway, Tromsø, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nutehtal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | - Ari Ahola-Olli
- The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Saranya Palaniswamy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
12
|
Dilek O. Current Probes for Imaging Carbonylation in Cellular Systems and Their Relevance to Progression of Diseases. Technol Cancer Res Treat 2022; 21:15330338221137303. [PMID: 36345252 PMCID: PMC9647279 DOI: 10.1177/15330338221137303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress resulted from reactive oxygen or nitrogen species in biological
systems has a significant role in the diagnosis/progression of several human
diseases. Human diseases associated with oxidative stress include Alzheimer's
disease, chronic lung disease, chronic renal failure, cancer, diabetes, and
fibrosis. In oxidative stress conditions, carbonylation process can be described
as one of the most common modifications in biomolecules that takes place in the
presence of carbonyl (C = O) groups which are introduced into molecules by
direct metal-catalyzed oxidation of certain amino acids or indirectly by
reaction with the oxidation of lipids and sugars. At a molecular cellular level,
carbonylation can cause some defective biological consequences or chemical
transformations in cells. During this process, specifically, carbonylated
proteins can be accumulated in cells and trigger to develop some diseases in
human body. The role of the accumulation of carbonylated proteins in the
progression of several diseases has also been reported in the literature, such
as neurodegenerative diseases, diabetes, obesity, aging, and cancer. Early
detection of carbonylation process is, therefore, very critical to monitor these
diseases at an early stage. Finding a suitable biomarker or probe is very
challenging due to the need for multiple criteria: high fluorescence efficiency,
stability, toxicity, and permeability. If they are designed with a good
strategy, these probes are highly effective in cell biology applications and
they can be used as good diagnostic tools for monitoring oxidative
stress-induced carbonylation in relevant diseases. This review highlights the
design and use of recent fluorescent probes for visualization of carbonylation
in cellular systems and the relationship between oxidative stress and carbonyl
species for causing long-term disease complications.
Collapse
Affiliation(s)
- Ozlem Dilek
- University of the District of Columbia, College of Arts and Sciences, Washington, DC, USA
| |
Collapse
|
13
|
A Novel Ferroptosis-Related Gene Signature to Predict Prognosis in Patients with Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2021; 2021:5759927. [PMID: 34853622 PMCID: PMC8629675 DOI: 10.1155/2021/5759927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The clinical TNM staging system is currently used to evaluate the prognosis of head and neck squamous cell carcinoma (HNSCC). The 5-year survival rate for patients with HNSCC is less than 50%, which is attributed to the lack of reliable prognostic biomarkers. Ferroptosis-related genes (FRGs) regulate cancer initiation and progression. Therefore, we analyzed the correlation between FRGs and the clinical outcomes of patients with HNSCC. A typical prognostic model of FRGs for HNSCC was constructed using bioinformatics tools and data from public databases, including The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and GeneCards. The model was generated based on the following six FRGs: ATG5, PRDX6, OTUB1, FTH1, SOCS1, and MAP3K5. The accuracy of model prediction was analyzed systematically. The overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group. The AUC for 1-year, 3-year, and 5-year survival were 0.645, 0.721, and 0.737, respectively, in the training set (TCGA cohort) and 0.726, 0.620, and 0.584, respectively, in the validation set (GSE65858). The multivariate Cox regression analysis revealed that the risk score was an independent prognostic factor for HNSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that six FRGs were enriched in the ferroptosis pathway. A novel FRG prognostic signature model was established for HNSCC. The findings of this study reveal that FRGs are potential biomarkers for HNSCC.
Collapse
|
14
|
Reitz LK, Schroeder J, Longo GZ, Boaventura BCB, Di Pietro PF. Dietary Antioxidant Capacity Promotes a Protective Effect against Exacerbated Oxidative Stress in Women Undergoing Adjuvant Treatment for Breast Cancer in a Prospective Study. Nutrients 2021; 13:nu13124324. [PMID: 34959876 PMCID: PMC8707537 DOI: 10.3390/nu13124324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (Bca) is the most common type of cancer among women worldwide, and oxidative stress caused by adjuvant treatment may be decreased by antioxidant intake. The aim of this study is to investigate the associations between Dietary antioxidant Capacity (DaC) and oxidation and antioxidant biomarkers in women undergoing adjuvant treatment (AT) for Bca. This prospective study had a sample of 70 women (52.2 ± 10.7 y). DaC (mmol/g) was calculated using nutritional data obtained from a Food Frequency Questionnaire, and blood was collected to measure the oxidation and antioxidant biomarkers at baseline (T0), and after AT (T1). Carbonylated protein levels were inversely associated with DaC at T1 (p = 0.004); women showed an increased risk of having increment on lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS), and decrement on ferric reducing antioxidant power (FRAP) and reduced glutathione after AT, in response to lowered DaC (p < 0.05). Carbonylated proteins, TBARS and FRAP levels remained stable between the periods for women at the 3rd DaC tertile at T1, differentiating them from those at the 1st tertile, who showed negative changes in these biomarkers (p < 0.04). DaC may be beneficial for women undergoing AT for Bca, since it promoted a reduction in oxidative stress.
Collapse
Affiliation(s)
- Luiza Kuhnen Reitz
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (L.K.R.); (J.S.); (G.Z.L.)
| | - Jaqueline Schroeder
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (L.K.R.); (J.S.); (G.Z.L.)
| | - Giana Zarbato Longo
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (L.K.R.); (J.S.); (G.Z.L.)
| | | | - Patricia Faria Di Pietro
- Post Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (L.K.R.); (J.S.); (G.Z.L.)
- Correspondence: ; Tel.: +55-489-9960-4442
| |
Collapse
|
15
|
Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1098970. [PMID: 34630843 PMCID: PMC8494591 DOI: 10.1155/2021/1098970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent regulated necrosis characterized by the peroxidation damage of lipid molecular containing unsaturated fatty acid long chain on the cell membrane or organelle membrane after cellular deactivation restitution system, resulting in the cell membrane rupture. Ferroptosis is biochemically and morphologically distinct and disparate from other forms of regulated cell death. Recently, mounting studies have investigated the mechanism of ferroptosis, and numerous proteins play vital roles in regulating ferroptosis. With detailed studies, emerging evidence indicates that ferroptosis is found in multiple lung diseases, demonstrating that ferroptosis appears to be particularly important for lung diseases. The mounting interest in ferroptosis drugs specifically targeting the ferroptosis mechanism holds substantial therapeutic promise in lung diseases. The present review emphatically summarizes the functions and integrated molecular mechanisms of ferroptosis in various lung diseases, proposing that multiangle regulation of ferroptosis might be a promising strategy for the clinical treatment of lung diseases.
Collapse
|
16
|
Gangwar A, Paul S, Arya A, Ahmad Y, Bhargava K. Altitude acclimatization via hypoxia-mediated oxidative eustress involves interplay of protein nitrosylation and carbonylation: A redoxomics perspective. Life Sci 2021; 296:120021. [PMID: 34626604 DOI: 10.1016/j.lfs.2021.120021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
AIM Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation‑carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.
Collapse
Affiliation(s)
- Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Aditya Arya
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
17
|
Loilome W, Dokduang H, Suksawat M, Padthaisong S. Therapeutic challenges at the preclinical level for targeted drug development for Opisthorchis viverrini-associated cholangiocarcinoma. Expert Opin Investig Drugs 2021; 30:985-1006. [PMID: 34292795 DOI: 10.1080/13543784.2021.1955102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelium with the highest incidence found in Thailand. Some patients are considered suitable for adjuvant therapy and surgical resection is currently the curative treatment for CCA patients. Tumor recurrence is still a hurdle after treatment; hence, finding novel therapeutic strategies to combat CCA is necessary for improving outcome for patients. AREAS COVERED We discuss targeted therapies and other novel treatment approaches which include protein kinase inhibitors, natural products, amino acid transporter-based inhibitors, immunotherapy, and drug repurposing. We also examine the challenges of tumor heterogeneity, cancer stem cells (CSCs), the tumor microenvironment, exosomes, multiomics studies, and the potential of precision medicine. EXPERT OPINION Because CCA is difficult to diagnose at the early stage, the traditional treatment approaches are not effective for many patients and most tumors recur. Consequently, researchers are exploring multi-aspect molecular carcinogenesis to uncover molecular targets for further development of novel targeted drugs.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
18
|
Al-Musawi AK, Al-Rubae’i SHN, Mahdi MF. Role of Caspase-3, IL-1β and oxidative stress in Iraqi women with breast cancer. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 1853:012050. [DOI: 10.1088/1742-6596/1853/1/012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Breast Cancer is caused by malignant tissue cells and has become one of the world’s biggest medical problems. The goal of this research was to determine the serum concentration of markers of oxidative stress that play an important role in the multiple factors involved in breast cancer development, growth, and invasion. Serum of 90 women patients (45 breast cancer and 45 benign breast tumors) and 42 healthy individuals as control group were used in this study. Serum level of MDA, PC, 8-OHdG, IL-1β and Caspase-3 were measured by ELISA. Highly significantly increased levels (p<0.01) of MDA, PC, 8-OHdG, IL-1β and Caspase-3 were found in breast cancer and benign breast tumor when compared to healthy controls. The MDA and Caspase-3 level are considered strong parameters to diagnose and detection for breast cancer using the ROC curve. High lipid peroxidation is a significant risk factor for breast cancer and the activation of apoptosis and pro-inflammatory activity may be due to elevated levels of IL-1β & Caspase-3 in breast cancer cells. Nonetheless, lipid peroxidation and Caspase-3 are major factors in breast cancer growth and progression.
Collapse
|
19
|
Byrling J, Kristl T, Hu D, Pla I, Sanchez A, Sasor A, Andersson R, Marko-Varga G, Andersson B. Mass spectrometry-based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential prognostic marker. J Transl Med 2020; 18:343. [PMID: 32887625 PMCID: PMC7487897 DOI: 10.1186/s12967-020-02498-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. METHODS A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. RESULTS In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≥ 2 or ≤ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09-14.3; P = 0.037). CONCLUSION Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Theresa Kristl
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Dingyuan Hu
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Indira Pla
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Aniel Sanchez
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Agata Sasor
- Department of Clinical Sciences Lund, Pathology, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
20
|
Jiang M, Qiao M, Zhao C, Deng J, Li X, Zhou C. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res 2020; 9:1569-1584. [PMID: 32953528 PMCID: PMC7481593 DOI: 10.21037/tlcr-20-341] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ferroptosis is a novel form of non-apoptotic regulated cell death (RCD), with distinct characteristics and functions in physical conditions and multiple diseases such as cancers. Unlike apoptosis and autophagy, this new RCD is an iron-dependent cell death with features of lethal accumulation of reactive oxygen species (ROS) and over production of lipid peroxidation. Excessive iron from aberrant iron metabolisms or the maladjustment of the two main redox systems thiols and lipid peroxidation role as the major causes of ROS generation, and the redox-acrive ferrous (intracellular labile iron) is a crucial factor for the lipid peroxidation. Regulation of ferrroptosis also involves different pathways such as mevalonate pathway, P53 pathway and p62-Keap1-Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. Ferroptosis roles as a double-edged sword either suppressing or promoting tumor progression with the release of multiple signaling molecules in the tumor microenvironment. Emerging evidence suggests ferroptosis as a potential target for cancer therapy and ferroptosis inducers including small molecules and nanomaterials have been developed. The application of ferroptosis inducers also relates to overcoming drug resistance and preventing tumor metastasis, and may become a promising strategy combined with other anti-cancer therapies. Here, we summarize the ferroptosis characters from its underlying basis and role in cancer, followed by its possible applications in cancer therapies and challenges maintained.
Collapse
Affiliation(s)
- Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Chuanliang Zhao
- Department of Otolaryngology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Chaiprasert T, Armartmuntree N, Techasen A, Sakonsinsiri C, Pinlaor S, Ungarreevittaya P, Khuntikeo N, Namwat N, Thanan R. Roles of Zinc Finger Protein 423 in Proliferation and Invasion of Cholangiocarcinoma through Oxidative Stress. Biomolecules 2019; 9:biom9070263. [PMID: 31284679 PMCID: PMC6681239 DOI: 10.3390/biom9070263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Zinc finger protein 423 (ZNF423) is a transcriptional factor involved in the development and progression of cancers but has not yet been examined in cholangiocarcinoma (CCA), an oxidative stress-driven cancer of biliary epithelium. In this study, we hypothesized that oxidative stress mediated ZNF423 expression regulates its downstream genes resulting in CCA genesis. ZNF423 protein expression patterns and 8-oxodG (an oxidative stress marker) formation in CCA tissues were investigated using immunohistochemical analysis. The results showed that ZNF423 was overexpressed in CCA cells compared to normal bile duct cells adjacent of the tumor. Notably, ZNF423 expression was positively correlated with 8-oxodG formation. Moreover, ZNF423 expression in an immortalized cholangiocyte cell line (MMNK1) was increased by hydrogen peroxide-treatment, suggesting that oxidative stress induces ZNF423 expression. To investigate the roles of ZNF423 in CCA progression, ZNF423 mRNA was silenced using specific siRNA in CCA cell lines, KKU-100 and KKU-213. Silencing of ZNF423 significantly inhibits cell proliferation and invasion of both CCA cell lines. Taking all these results together, the present study denoted that ZNF423 is an oxidative stress-responsive gene with an oncogenic property contributing to the regulation of CCA genesis.
Collapse
Affiliation(s)
- Timpika Chaiprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napat Armartmuntree
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
22
|
Jung M, Mertens C, Tomat E, Brüne B. Iron as a Central Player and Promising Target in Cancer Progression. Int J Mol Sci 2019; 20:ijms20020273. [PMID: 30641920 PMCID: PMC6359419 DOI: 10.3390/ijms20020273] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Iron is an essential element for virtually all organisms. On the one hand, it facilitates cell proliferation and growth. On the other hand, iron may be detrimental due to its redox abilities, thereby contributing to free radical formation, which in turn may provoke oxidative stress and DNA damage. Iron also plays a crucial role in tumor progression and metastasis due to its major function in tumor cell survival and reprogramming of the tumor microenvironment. Therefore, pathways of iron acquisition, export, and storage are often perturbed in cancers, suggesting that targeting iron metabolic pathways might represent opportunities towards innovative approaches in cancer treatment. Recent evidence points to a crucial role of tumor-associated macrophages (TAMs) as a source of iron within the tumor microenvironment, implying that specifically targeting the TAM iron pool might add to the efficacy of tumor therapy. Here, we provide a brief summary of tumor cell iron metabolism and updated molecular mechanisms that regulate cellular and systemic iron homeostasis with regard to the development of cancer. Since iron adds to shaping major hallmarks of cancer, we emphasize innovative therapeutic strategies to address the iron pool of tumor cells or cells of the tumor microenvironment for the treatment of cancer.
Collapse
Affiliation(s)
- Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Christina Mertens
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany.
| |
Collapse
|
23
|
Fibroinflammatory Liver Injuries as Preneoplastic Condition in Cholangiopathies. Int J Mol Sci 2018; 19:ijms19123875. [PMID: 30518128 PMCID: PMC6321547 DOI: 10.3390/ijms19123875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 02/08/2023] Open
Abstract
The cholangipathies are a class of liver diseases that specifically affects the biliary tree. These pathologies may have different etiologies (genetic, autoimmune, viral, or toxic) but all of them are characterized by a stark inflammatory infiltrate, increasing overtime, accompanied by an excess of periportal fibrosis. The cellular types that mount the regenerative/reparative hepatic response to the damage belong to different lineages, including cholagiocytes, mesenchymal and inflammatory cells, which dynamically interact with each other, exchanging different signals acting in autocrine and paracrine fashion. Those messengers may be proinflammatory cytokines and profibrotic chemokines (IL-1, and 6; CXCL1, 10 and 12, or MCP-1), morphogens (Notch, Hedgehog, and WNT/β-catenin signal pathways) and finally growth factors (VEGF, PDGF, and TGFβ, among others). In this review we will focus on the main molecular mechanisms mediating the establishment of a fibroinflammatory liver response that, if perpetuated, can lead not only to organ dysfunction but also to neoplastic transformation. Primary Sclerosing Cholangitis and Congenital Hepatic Fibrosis/Caroli’s disease, two chronic cholangiopathies, known to be prodrome of cholangiocarcinoma, for which several murine models are also available, were also used to further dissect the mechanisms of fibroinflammation leading to tumor development.
Collapse
|
24
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
26
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
27
|
Promthet S, Songserm N, Woradet S, Pientong C, Ekalaksananan T, Wiangnon S, Ali A. Opisthorchiasis with proinflammatory cytokines (IL-1β and TNF-α) polymorphisms influence risk of intrahepatic cholangiocarcinoma in Thailand: a nested case-control study. BMC Cancer 2018; 18:846. [PMID: 30139338 PMCID: PMC6108094 DOI: 10.1186/s12885-018-4751-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 08/14/2018] [Indexed: 12/02/2022] Open
Abstract
Background Chronic inflammation and repeated infection with Opisthorchis viverrini (O. viverrini) induces intrahepatic cholangiocarcinoma (ICC). Inflammatory cytokines such as interleukin (IL) and tumor necrosis factor (TNF) are substances in the immune system that promote inflammation and causes disease to progress. Genes that help express proinflammatory cytokines can affect an individual’s susceptibility to disease, especially in cancer-related chronic inflammation. This study aimed to investigate risk factors for ICC with a focus on opisthorchiasis and polymorphisms of proinflammatory cytokines (IL-1β and TNF-α). Methods This study was a nested case-control study within a cohort study. 219 subjects who developed a primary ICC were identified and matched with two non-cancer controls from the same cohort based on sex and age at recruitment (±3 years). An O. viverrini-IgG antibody was assessed using enzyme linked immunosorbent assay. IL-1β and TNF-α polymorphisms were analyzed using a polymerase chain reaction with high resolution melting analysis. Associations between variables and ICC were assessed using conditional logistic regression. Results Subjects with a high infection intensity had higher risk of ICC than those who had a low level (OR = 2.1; 95% CI: 1.2–3.9). Subjects with all genotypes of TNF-α (GG, GA, AA) and high infection intensity were significantly related to an increased risk of ICC (p < 0.05). Conclusions Polymorphisms of IL-1β and TNF-α are not a risk of ICC, but an individual with O. viverrini infection has an effect on all genotypes of the TNF-α gene that might promote ICC. Primary prevention of ICC in high-risk areas is based on efforts to reduce O. viverrini infection.
Collapse
Affiliation(s)
- Supannee Promthet
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand.,ASEAN Cancer Epidemiology and Prevention Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Nopparat Songserm
- ASEAN Cancer Epidemiology and Prevention Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Community Health, Faculty of Public Health, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | - Somkiattiyos Woradet
- ASEAN Cancer Epidemiology and Prevention Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Public Health, Faculty of Health and Sports Science, Thaksin University, Phatthalung, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. .,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Surapon Wiangnon
- ASEAN Cancer Epidemiology and Prevention Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
28
|
Aryal B, Rao VA. Specific protein carbonylation in human breast cancer tissue compared to adjacent healthy epithelial tissue. PLoS One 2018; 13:e0194164. [PMID: 29596499 PMCID: PMC5875748 DOI: 10.1371/journal.pone.0194164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Protein carbonylation is an irreversible post-translational modification induced by severe oxidative stress. Reactive oxygen species (ROS) are constantly produced in cells and play important roles in both cancer progression and cancer suppression. ROS levels can be higher in tumor compared to surrounding healthy tissue but ROS-induced specific protein carbonylation and its unique role in cancer progression or suppression is poorly understood. In this study, we utilized previously validated ELISA and western blot methods to analyze the total and specific protein carbonylation in flash-frozen human breast cancer and matched adjacent healthy tissue to compare relative total, and specific protein carbonylation. Mass spectrometry, two-color western, and immunoprecipitation methods were used to identify and confirm the specifically carbonylated proteins in breast tumor tissue. Superoxide dismutase (SOD) activity was measured as an indicator of antioxidant activity, and LC3-II protein level was analyzed for autophagy by western blot. Findings were further confirmed using the immortalized MDA-MB-231 and MDA-MB-468 breast cancer and MCF-12A noncancerous human epithelial breast cell lines. Our results indicate that tumor tissue has greater total protein carbonylation, lower SOD1 and SOD2 protein levels, lower total SOD activity, and higher LC3-II levels compared to adjacent healthy tissue. We identified and confirmed three specific proteins of interest; filamin A, heat shock protein 90β (HSP90β), and bifunctional glutamate/proline-tRNA ligase (EPRS), that were selectively carbonylated in tumor tissue compared to matched adjacent healthy tissue. Correspondingly, compared to noncancerous MCF-12A epithelial cells, MDA-MB-231 cancer cells exhibited an increase in filamin A and EPRS protein carbonylation, decreased total SOD activity, and increased autophagy, but not increased HSP90β protein carbonylation. Identification of selectively carbonylated proteins and defining their roles in cancer progression may promote the development of targeted therapeutic approaches toward mitigating oxidative damage of these proteins.
Collapse
Affiliation(s)
- Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells. Redox Biol 2017; 15:394-404. [PMID: 29331741 PMCID: PMC5767902 DOI: 10.1016/j.redox.2017.12.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
The extracellular pH (pHe) is a key determinant of the cellular (micro)environment and needs to be maintained within strict boundaries to allow normal cell function. Here we used HEK293 cells to study the effects of pHe acidification (24 h), induced by mitochondrial inhibitors (rotenone, antimycin A) and/or extracellular HCl addition. Lowering pHe from 7.2 to 5.8 reduced cell viability by 70% and was paralleled by a decrease in cytosolic pH (pHc), hyperpolarization of the mitochondrial membrane potential (Δψ), increased levels of hydroethidine-oxidizing ROS and stimulation of protein carbonylation. Co-treatment with the antioxidant α-tocopherol, the mitochondrial permeability transition pore (mPTP) desensitizer cyclosporin A and Necrostatin-1, a combined inhibitor of Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and Indoleamine 2,3-dioxygenase (IDO), prevented acidification-induced cell death. In contrast, the caspase inhibitor zVAD.fmk and the ferroptosis inhibitor Ferrostatin-1 were ineffective. We conclude that extracellular acidification induces necroptotic cell death in HEK293 cells and that the latter involves intracellular acidification, mitochondrial functional impairment, increased ROS levels, mPTP opening and protein carbonylation. These findings suggest that acidosis of the extracellular environment (as observed in mitochondrial disorders, ischemia, acute inflammation and cancer) can induce cell death via a ROS- and mPTP opening-mediated pathogenic mechanism. Extracellular acidification induces mitochondrial dysfunction. Extracellular acidification increases intracellular ROS levels. Extracellular acidification stimulates protein carbonylation. Extracellular acidification induces mPTP opening- and ROS-dependent cell death. Acidosis-induced oxidative stress likely contributes to various pathologies.
Collapse
|
30
|
Benfeitas R, Uhlen M, Nielsen J, Mardinoglu A. New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Front Cell Dev Biol 2017; 5:65. [PMID: 28744456 PMCID: PMC5504267 DOI: 10.3389/fcell.2017.00065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
Collapse
Affiliation(s)
- Rui Benfeitas
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
31
|
Jamnongkan W, Thanan R, Techasen A, Namwat N, Loilome W, Intarawichian P, Titapun A, Yongvanit P. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol 2017; 39:1010428317717655. [DOI: 10.1177/1010428317717655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Labile iron pool is a cellular source of ions available for Fenton reactions resulting in oxidative stress. Living organisms avoid an excess of free irons by a tight control of iron homeostasis. We investigated the altered expression of iron regulatory proteins and iron discrimination in the development of liver fluke–associated cholangiocarcinoma. Additionally, the levels of labile iron pool and the functions of transferrin receptor-1 on cholangiocarcinoma development were also identified. Iron deposition was determined using the Prussian blue staining method in human cholangiocarcinoma tissues. We investigated the alteration of iron regulatory proteins including transferrin, transferrin receptor-1, ferritin, ferroportin, hepcidin, and divalent metal transporter-1 in cholangiocarcinoma tissues using immunohistochemistry. The clinicopathological data of cholangiocarcinoma patients and the expressions of proteins were analyzed. Moreover, the level of intracellular labile iron pool in cholangiocarcinoma cell lines was identified by the RhoNox-1 staining method. We further demonstrated transferrin receptor-1 functions on cell proliferation and migration upon small interfering RNA for human transferrin receptor 1 transfection. Results show that Iron was strongly stained in tumor tissues, whereas negative staining was observed in normal bile ducts of healthy donors. Interestingly, high iron accumulation was significantly correlated with poor prognosis of cholangiocarcinoma patients. The expressions of iron regulatory proteins in human cholangiocarcinoma tissues and normal liver from cadaveric donors revealed that transferrin receptor-1 expression was increased in the cancer cells of cholangiocarcinoma tissues when compared with the adjacent normal bile ducts and was significantly correlated with cholangiocarcinoma metastasis. Labile iron pool level and transferrin receptor-1 expression were significantly increased in KKU-214 and KKU-213 when compared with cholangiocyte cells (MMNK1). Additionally, the suppression of transferrin receptor-1 expression significantly decreased intracellular labile iron pool, cholangiocarcinoma migration, and cell proliferation when compared with control media and control small interfering RNA. In Conclusion, high expression of transferrin receptor-1 resulting in iron uptake contributes to increase in the labile iron pool which plays roles in cholangiocarcinoma progression with aggressive clinical outcomes.
Collapse
Affiliation(s)
- Wassana Jamnongkan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Piyapharom Intarawichian
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
32
|
Rahnemai-Azar AA, Weisbrod A, Dillhoff M, Schmidt C, Pawlik TM. Intrahepatic cholangiocarcinoma: Molecular markers for diagnosis and prognosis. Surg Oncol 2017; 26:125-137. [PMID: 28577718 DOI: 10.1016/j.suronc.2016.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/24/2016] [Accepted: 12/29/2016] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor with increasing incidence worldwide. The outcome of patients with iCCA is dismal owing to tumor's aggressiveness, late diagnosis and lack of effective treatment options. Detection of the tumor at early stages may make surgical resection, as only potential curative treatment, more feasible. Unfortunately, despite recent developments in imaging modalities and laboratory tests, the diagnosis of iCCA remains challenging and patients often present in advanced stages when surgery cannot be offered. Moreover, accurate assessment of disease burden is critical to optimize management strategy, including the use of adjuvant therapies and clinical trials. Identifying iCCA specific diagnostic and prognostic biomarkers has been a focus of interest among many investigators with a progressive increase in data on iCCA related to advances in "omics" technologies. We herein summarize iCCA biomarkers and define the molecular mechanisms underlying iCCA carcinogenesis, as well as highlight potential diagnostic and prognostic application of molecular biomarkers.
Collapse
Affiliation(s)
- Amir A Rahnemai-Azar
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Allison Weisbrod
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Mary Dillhoff
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Carl Schmidt
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
33
|
Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Oikawa S, Murata M. Nitrative and oxidative DNA damage in infection-related carcinogenesis in relation to cancer stem cells. Genes Environ 2017; 38:26. [PMID: 28050219 PMCID: PMC5203929 DOI: 10.1186/s41021-016-0055-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including bacterium Helicobacter pylori (H. pylori), viruses [hepatitis B virus (HBV), hepatitis C virus (HCV), human papillomavirus (HPV) and Epstein-Barr virus (EBV)] and parasites [Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)]. H. pylori, HBV/HCV, HPV, EBV, SH and OV are important risk factors for gastric cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, bladder cancer, and cholangiocarcinoma, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues, and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that nitrative and oxidative DNA damage in stem cells may play a key role in infection-related carcinogenesis via chronic inflammation.
Collapse
Affiliation(s)
- Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Ning Ma
- Faculty of Nursing, Suzuka University of Medical Science, Suzuka, Mie 513-8670 Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 Japan
| |
Collapse
|
34
|
Loilome W, Kadsanit S, Muisook K, Yongvanit P, Namwat N, Techasen A, Puapairoj A, Khuntikeo N, Phonjit P. Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma. Oncol Lett 2016; 13:639-646. [PMID: 28356940 PMCID: PMC5351183 DOI: 10.3892/ol.2016.5477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
The adaptive response of the genome protection mechanism occurs in cells when exposed to genotoxic stress due to the overproduction of free radicals via inflammation and infection. In such circumstances, cells attempt to maintain health via several genome protection mechanisms. However, evidence is increasing that this adaptive response may have deleterious effect; a reduction of antioxidant enzymes and/or imbalance in the DNA repair system generates microsatellite instability (MSI), which has procarcinogenic implications. Therefore, the present study hypothesized that MSI caused by imbalanced responses of antioxidant enzymes and/or DNA repair enzymes as a result of oxidative/nitrative stress arising from the inflammatory response is involved in liver fluke-associated cholangiocarcinogenesis. The present study investigated this hypothesis by identifying the expression patterns of antioxidant enzymes, including superoxide dismutase 2 (SOD2) and catalase (CAT), and DNA repair enzymes, including alkyladenine DNA glycosylase (AAG), apurinic endonuclease (APE) and DNA polymerase β (DNA pol β). In addition, the activities of the antioxidant enzymes, SOD2 and CAT, were examined in human cholangiocarcinoma (CCA) tissues using immunohistochemical staining. MSI was also analyzed in human CCA tissues. The resulting data demonstrated that the expression levels of the SOD2 and CAT enzymes decreased. The activities of SOD2 and CAT decreased significantly in the CCA tissues, compared with the hepatic tissue of cadaveric donors. In the DNA repairing enzymes, it was found that the expression levels of AAG and DNA pol β enzymes increased, whereas the expression of APE decreased. In addition, it was found that MSI-high was present in 69% of patients, whereas MSI-low was present in 31% of patients, with no patients classified as having microsatellite stability. In the patients, a MSI-high was correlated with poor prognosis, indicated by a shorter survival rate. These results indicated that the reduction of antioxidant enzymes and adaptive imbalance of base excision repair enzymes in human CCA caused MSI, and may be associated with the progression of cancer.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kadsanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanha Muisook
- Department of Forensics Science, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Medical Technology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pichai Phonjit
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
35
|
Lin ZY, Liang ZX, Zhuang PL, Chen JW, Cao Y, Yan LX, Yun JP, Xie D, Cai MY. Intrahepatic cholangiocarcinoma prognostic determination using pre-operative serum C-reactive protein levels. BMC Cancer 2016; 16:792. [PMID: 27733196 PMCID: PMC5059936 DOI: 10.1186/s12885-016-2827-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 09/30/2016] [Indexed: 02/08/2023] Open
Abstract
Background Serum C-reactive protein (CRP), an acute inflammatory response biomarker, has been recognized as an indicator of malignant disease progression. However, the prognostic significance of CRP levels collected before tumor removal in intrahepatic cholangiocarcinoma requires further investigation. Methods We sampled the CRP levels in 140 patients with intrahepatic cholangiocarcinoma who underwent hepatectomies with regional lymphadenectomies between 2006 and 2013. A retrospective analysis of the clinicopathological data was performed. We focused on the impact of serum CRP on the patients’ cancer-specific survival and recurrence-free survival rates. Results High levels of preoperative serum CRP were significantly associated with well-established clinicopathologic features, including gender, advanced tumor stage, and elevated carcinoembryonic antigen and carbohydrate antigen 19-9 levels (P < 0.05). Univariate analysis demonstrated a significant association between high levels of serum CRP and adverse cancer-specific survival (P = 0.001) and recurrence-free survival (P < 0.001). In patients with stage I/II intrahepatic cholangiocarcinoma, the serum CRP level was a prognostic indicator for cancer-specific survival. In patients with stage I/II or stage III/IV, the serum CRP level was a prognostic indicator for recurrence-free survival (P < 0.05). Additionally, multivariate analysis identified serum CRP level in intrahepatic cholangiocarcinoma as an independent prognostic factor (P < 0.05). Conclusions We confirmed a significant association of elevated pre-operative CRP levels with poor clinical outcomes for the tested patients with intrahepatic cholangiocarcinoma. Our results indicate that the serum CRP level may represent a useful factor for patient stratification in intrahepatic cholangiocarcinoma management.
Collapse
Affiliation(s)
- Zi-Ying Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, 510060, Guangzhou, China
| | - Zhen-Xing Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, 510060, Guangzhou, China
| | - Pei-Lin Zhuang
- Department of Prosthodontics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie-Wei Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, 510060, Guangzhou, China
| | - Yun Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, 510060, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangzhou, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, 510060, Guangzhou, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, 510060, Guangzhou, China
| | - Mu-Yan Cai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, 510060, Guangzhou, China.
| |
Collapse
|
36
|
Wei K, Yang J. Copper-induced oxidative damage to the prophenoloxidase-activating system in the freshwater crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2016; 52:221-229. [PMID: 27033468 DOI: 10.1016/j.fsi.2016.03.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Previous studies have demonstrated copper-induced proteins damage in gill and hepatopancreas of the freshwater crayfish Procambarus clarkii, but little information is available about its effects on key component of the innate defense in haemolymph. In the present study, we evaluated the relationship between oxidative carbonylation and prophenoloxidase-activating system (proPO-AS) activity, by exposing P. clarkii to sub-lethal concentrations (1/50, 1/12, 1/6 and 1/3 of the 96 h LC50) Cu(2+) up to 96 h. Six biomarkers of oxidative stress, i.e. reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), protein carbonyl (PC), malondialdehyde (MDA) and DNA-protein crosslinks (DPCs), and six indicators of immune status, i.e. total hemocyte counts (THCs), differential hemocyte counts (DHCs), hemocyanin (HC), prophenoloxidase (proPO), serine protease (SP) and phenoloxidase (PO), were determined in haemolymph. The results indicated that there was a significant increase (P < 0.05) in the levels of ROS, PC, MDA and DPCs accompanied by markedly decreased (P < 0.05) activities of proPO, SP, PO and HC in a dose and time dependent manner. The significant and positive correlations (P < 0.01) between ROS production and the formation of PC, MDA and DPCs were observed in crayfish at 96 h. There was a significant negative correlation (P < 0.01) between the levels of protein carbonyls and the activities of proPO and SP in hemocyte lysate supernatant and PO and HC in haemolymph. Carbonylated proteins may be recognized not merely as a specific signal in oxidative stress pathways but also as a "non-self" molecule in proPO-AS. In crayfish species, copper-catalyzed protein carbonylation may be one of the main mechanisms for immunity dysfunction in proPO-AS.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China.
| | - Junxian Yang
- School of Economics and Management, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
37
|
Yothaisong S, Namwat N, Yongvanit P, Khuntikeo N, Puapairoj A, Jutabha P, Anzai N, Tassaneeyakul W, Tangsucharit P, Loilome W. Increase in L-type amino acid transporter 1 expression during cholangiocarcinogenesis caused by liver fluke infection and its prognostic significance. Parasitol Int 2015; 66:471-478. [PMID: 26657242 DOI: 10.1016/j.parint.2015.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022]
Abstract
L-type amino acid transporter 1 (LAT1) is highly expressed in various human cancers, including cholangiocarcinoma (CCA), the most common cancer in Northeast Thailand. Chronic inflammation and oxidative stress induced by liver fluke, Opisthorchis viverrini, infection has been recognized as the major cause of CCA in this area. We show here that an increased expression of LAT1 and its co-functional protein CD98 are found during carcinogenesis induced by Ov in hamster CCA tissues. We also demonstrate that oxidative stress induced by H2O2 is time-dependent and dramatically activates LAT1 and CD98 expression in immortal cholangiocytes (MMNK1). In addition, H2O2 treatment increased LAT1 and CD98 expression, as well as an activated form of AKT and mTOR in MMNK1 and CCA cell lines (KKU-M055 and KKU-M213). We also show that suppression of PI3K/AKT pathway activity with a dual PI3K/mTOR inhibitor, BEZ235, causes a reduction in LAT1 and CD98 expression in KKU-M055 and KKU-M213 in parallel with a reduction of activated AKT and mTOR. Interestingly, high expression of LAT1 in human CCA tissues is a significant prognostic factor for shorter survival. Taken together, our data show that LAT1 expression is significantly associated with CCA progression and cholangiocarcinogenesis induced by oxidative stress. Moreover, the expression of LAT1 and CD98 in CCA is possibly regulated by the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Supak Yothaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Promsuk Jutabha
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Wichittra Tassaneeyakul
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panot Tangsucharit
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
38
|
Khenjanta C, Thanan R, Jusakul A, Techasen A, Jamnongkan W, Namwat N, Loilome W, Pairojkul C, Yongvanit P. Association of CYP39A1, RUNX2 and oxidized alpha-1 antitrypsin expression in relation to cholangiocarcinoma progression. Asian Pac J Cancer Prev 2015; 15:10187-92. [PMID: 25556446 DOI: 10.7314/apjcp.2014.15.23.10187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes are a large family of constitutive and inducible mono-oxygenase enzymes that play a central role in the oxidative metabolism of both xenobiotic and endogenous compounds. Several CYPs are involved in metabolism of oxysterols, which are cholesterol oxidation products whose expression may be dysregulated in inflammation-related diseases including cancer. This study focused on CYP39A1, which can metabolize 24-hydroxycholesterol (24-OH) that plays important roles in the inflammatory response and oxidative stress. We aimed to investigate the expression status of CYP39A1 and its transcription factor (RUNX2) in relation to clinical significance in cholangiocarcinoma (CCAs) and to determine whether 24-OH could induce oxidative stress in CCA cell lines. Immunohistochemistry showed that 70% and 30% of CCA patients had low and high expression of CYP39A1, respectively. Low expression of CYP39A1 demonstrated a significant correlation with metastasis. Our results also revealed that the expression of RUNX2 had a positive correlation with CYP39A1. Low expression of both CYP39A1 (70%) and RUNX2 (37%) was significantly related with poor prognosis of CCA patients. Interestingly, oxidized alpha-1 antitrypsin (ox-A1AT), an oxidative stress marker, was significantly increased in CCA tissues in which CYP39A1 and RUNX2 were down regulated. Additionally, immunocytochemistry showed that 24-OH could induce ox-A1AT in CCA cell lines. In conclusion, our study revealed putative roles of the CYP39A1 enzyme in prognostic determination of CCAs.
Collapse
Affiliation(s)
- Chakkaphan Khenjanta
- Departments of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Seeree P, Pearngam P, Kumkate S, Janvilisri T. An Omics Perspective on Molecular Biomarkers for Diagnosis, Prognosis, and Therapeutics of Cholangiocarcinoma. Int J Genomics 2015; 2015:179528. [PMID: 26421274 PMCID: PMC4572471 DOI: 10.1155/2015/179528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/09/2015] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy arising from the epithelial bile duct. The lack of early diagnostic biomarkers as well as therapeutic measures results in severe outcomes and poor prognosis. Thus, effective early diagnostic, prognostic, and therapeutic biomarkers are required to improve the prognosis and prolong survival rates in CCA patients. Recent advancement in omics technologies combined with the integrative experimental and clinical validations has provided an insight into the underlying mechanism of CCA initiation and progression as well as clues towards novel biomarkers. This work highlights the discovery and validation of molecular markers in CCA identified through omics approaches. The possible roles of these molecules in various cellular pathways, which render CCA carcinogenesis and progression, will also be discussed. This paper can serve as a reference point for further investigations to yield deeper understanding in the complex feature of this disease, potentially leading to better approaches for diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Pattaya Seeree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phorutai Pearngam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
40
|
Saichua P, Yakovleva A, Kamamia C, Jariwala AR, Sithithaworn J, Sripa B, Brindley PJ, Laha T, Mairiang E, Pairojkul C, Khuntikeo N, Mulvenna J, Sithithaworn P, Bethony JM. Levels of 8-OxodG Predict Hepatobiliary Pathology in Opisthorchis viverrini Endemic Settings in Thailand. PLoS Negl Trop Dis 2015; 9:e0003949. [PMID: 26230769 PMCID: PMC4521778 DOI: 10.1371/journal.pntd.0003949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/03/2015] [Indexed: 01/05/2023] Open
Abstract
Opisthorchis viverrini is distinct among helminth infections as it drives a chronic inflammatory response in the intrahepatic bile duct that progresses from advanced periductal fibrosis (APF) to cholangiocarcinoma (CCA). Extensive research shows that oxidative stress (OS) plays a critical role in the transition from chronic O. viverrini infection to CCA. OS also results in the excision of a modified DNA lesion (8-oxodG) into urine, the levels of which can be detected by immunoassay. Herein, we measured concentrations of urine 8-oxodG by immunoassay from the following four groups in the Khon Kaen Cancer Cohort study: (1) O. viverrini negative individuals, (2) O. viverrini positive individuals with no APF as determined by abdominal ultrasound, (3) O. viverrini positive individuals with APF as determined by abdominal ultrasound, and (4) O. viverrini induced cases of CCA. A logistic regression model was used to evaluate the utility of creatinine-adjusted urinary 8-oxodG among these groups, along with demographic, behavioral, and immunological risk factors. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive accuracy of urinary 8-oxodG for APF and CCA. Elevated concentrations of 8-oxodG in urine positively associated with APF and CCA in a strongly dose-dependent manner. Urinary 8-oxodG concentrations also accurately predicted whether an individual presented with APF or CCA compared to O. viverrini infected individuals without these pathologies. In conclusion, urinary 8-oxodG is a robust ‘candidate’ biomarker of the progression of APF and CCA from chronic opisthorchiasis, which is indicative of the critical role that OS plays in both of these advanced hepatobiliary pathologies. The findings also confirm our previous observations that severe liver pathology occurs early and asymptomatically in residents of O. viverrini endemic regions, where individuals are infected for years (often decades) with this food-borne pathogen. These findings also contribute to an expanding literature on 8-oxodG in an easily accessible bodily fluid (e.g., urine) as a biomarker in the multistage process of inflammation, fibrogenesis, and infection-induced cancer. Opisthorchis viverrini is a food-borne helminth infection that drives a strong inflammatory response in the bile duct that can result in bile duct fibrosis and bile duct cancer (intrahepatic cholangiocarcinoma). Extensive research shows that oxidative stress (OS) plays a critical role in chronic O. viverrini infection transitioning to cancer in the bile duct. OS also results in a modified DNA lesion, referred to as 8-oxodG, excreted in the urine, where it can be detected by an antibody-based test. We measured the concentrations of 8-oxodG in the urine of O. viverrini-infected individuals who had developed bile duct fibrosis or bile duct cancer and compared levels of this metabolite in urine to O. viverrini infected individuals who did not have bile duct fibrosis or cancer in Northeastern Thailand. We determined bile duct fibrosis by ultrasonography and bile duct cancer by immunohistochemistry on resected liver tissue. We then built a statistical model to quantify how well urinary 8-oxodG predicted bile duct fibrosis and bile duct cancer in O. viverrini-infected individuals. We found that individuals with elevated levels of 8-oxodG in urine had a greater probability of developing bile duct fibrosis or bile duct cancer from O. viverrini infection. This association occurred in a strongly dose-dependent manner: in other words, the O. viverrini-infected individuals who had the highest concentration of urinary 8-oxodG also had the highest risk of presenting with bile duct fibrosis or bile duct cancer. In summary, measuring levels of 8-oxodG in the urine offers a unique opportunity to develop a candidate biomarker for advanced O. viverrini induced hepatobiliary pathologies such as fibrosis and cancer. The findings also confirm our previous observations that severe liver pathology occurs early and asymptomatically in residents of O. viverrini endemic regions, where individuals are infected for years (often decades) with this food-borne neglected tropical diseases (NTD) pathogen.
Collapse
Affiliation(s)
- Prasert Saichua
- Biomedical Science Program, Faculty of Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Anna Yakovleva
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Christine Kamamia
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Amar R. Jariwala
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Jiraporn Sithithaworn
- Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Eimorn Mairiang
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jason Mulvenna
- Infections Disease Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paiboon Sithithaworn
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
41
|
Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis. Biochem Biophys Res Commun 2015; 464:182-8. [PMID: 26100205 DOI: 10.1016/j.bbrc.2015.06.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
Abstract
Oxidative stress is a cause of inflammation-related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H2O2) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H2O2-resistant cell line from an immortal cholangiocyte cell line (MMNK1) by chronic treatment with low-concentration H2O2 (25 μM). After 72 days of induction, H2O2-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H2O2-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H2O2). These findings suggest that H2O2-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes.
Collapse
|
42
|
Swartzlander MD, Barnes CA, Blakney AK, Kaar JL, Kyriakides TR, Bryant SJ. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 2015; 41:26-36. [PMID: 25522962 PMCID: PMC4629245 DOI: 10.1016/j.biomaterials.2014.11.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels with their highly tunable properties are promising implantable materials, but as with all non-biological materials, they elicit a foreign body response (FBR). Recent studies, however, have shown that incorporating the oligopeptide RGD into PEG hydrogels reduces the FBR. To better understand the mechanisms involved and the role of RGD in mediating the FBR, PEG, PEG-RGD and PEG-RDG hydrogels were investigated. After a 28-day subcutaneous implantation in mice, a thinner and less dense fibrous capsule formed around PEG-RGD hydrogels, while PEG and PEG-RDG hydrogels exhibited stronger, but similar FBRs. Protein adsorption to the hydrogels, which is considered the first step in the FBR, was also characterized. In vitro experiments confirmed that serum proteins adsorbed to PEG-based hydrogels and were necessary to promote macrophage adhesion to PEG and PEG-RDG, but not PEG-RGD hydrogels. Proteins adsorbed to the hydrogels in vivo were identified using liquid chromatography-tandem mass spectrometry. The majority (245) of the total proteins (≥300) that were identified was present on all hydrogels with many proteins being associated with wounding and acute inflammation. These findings suggest that the FBR to PEG hydrogels may be mediated by the presence of inflammatory-related proteins adsorbed to the surface, but that macrophages appear to sense the underlying chemistry, which for RGD improves the FBR.
Collapse
Affiliation(s)
- Mark D Swartzlander
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| | | | - Anna K Blakney
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Themis R Kyriakides
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Material Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
43
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
44
|
Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol 2014; 15:35. [PMID: 25230725 PMCID: PMC4177161 DOI: 10.1186/s12865-014-0035-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/29/2014] [Indexed: 12/24/2022] Open
Abstract
Background In vitro studies have shown that the active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can regulate differentiation of CD4+ T cells by inhibiting Th1 and Th17 cell differentiation and promoting Th2 and Treg cell differentiation. However, the serum concentration of 1,25(OH)2D3 is far below the effective concentration of 1,25(OH)2D3 found in in vitro studies, and it has been suggested that 1,25(OH)2D3 must be produced locally from the inactive precursor 25-hydroxyvitamin D3 (25(OH)D3) to affect ongoing immune responses in vivo. Although it has been reported that activated T cells express the 25(OH)D-1α-hydroxylase CYP27B1 that converts 25(OH)D3 to 1,25(OH)2D3, it is still controversial whether activated T cells have the capacity to produce sufficient amounts of 1,25(OH)2D3 to affect vitamin D-responsive genes. Furthermore, it is not known how the vitamin D-binding protein (DBP) found in high concentrations in serum affects T cell responses to 25(OH)D3. Results We found that activated T cells express CYP27B1 and have the capacity to produce sufficient 1,25(OH)2D3 to affect vitamin D-responsive genes when cultured with physiological concentrations of 25(OH)D3 in serum-free medium. However, if the medium was supplemented with serum or purified DBP, DBP strictly inhibited the production of 1,25(OH)2D3 and 25(OH)D3-induced T cell responses. In contrast, DBP did not inhibit the effect of exogenous 1,25(OH)2D3. Actin, arachidonic acid and albumin did not affect the sequestration of 25(OH)D3 by DBP, whereas carbonylation of DBP did. Conclusions Activated T cells express CYP27B1 and can convert 25(OH)D3 to 1,25(OH)2D3 in sufficiently high concentrations to affect vitamin D-responsive genes when cultured in serum-free medium. However, DBP sequesters 25(OH)D3 and inhibits the production of 1,25(OH)2D3 in T cells. To fully exploit the immune-regulatory potential of vitamin D, future studies of the mechanisms that enable the immune system to exploit 25(OH)D3 and convert it to 1,25(OH)2D3in vivo are required. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0035-2) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Rucksaken R, Pairojkul C, Pinlaor P, Khuntikeo N, Roytrakul S, Selmi C, Pinlaor S. Plasma autoantibodies against heat shock protein 70, enolase 1 and ribonuclease/angiogenin inhibitor 1 as potential biomarkers for cholangiocarcinoma. PLoS One 2014; 9:e103259. [PMID: 25058392 PMCID: PMC4109983 DOI: 10.1371/journal.pone.0103259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/30/2014] [Indexed: 12/29/2022] Open
Abstract
The diagnosis of cholangiocarcinoma (CCA) is often challenging, leading to poor prognosis. CCA arises via chronic inflammation which may be associated with autoantibodies production. This study aims to identify IgG antibodies directed at self-proteins and tumor-associated antigens. Proteins derived from immortalized cholangiocyte cell line (MMNK1) and CCA cell lines (M055, M214 and M139) were separated using 2-dimensional electrophoresis and incubated with pooled plasma of patients with CCA and non-neoplastic controls by immunoblotting. Twenty five immunoreactive spots against all cell lines-derived proteins were observed on stained gels and studied by LC-MS/MS. Among these, heat shock protein 70 (HSP70), enolase 1 (ENO1) and ribonuclease/angiogenin inhibitor 1 (RNH1) obtained the highest matching scores and were thus selected for further validation. Western blot revealed immunoreactivity against HSP70 and RNH1 in the majority of CCA cases and weakly in healthy individuals. Further, ELISA showed that plasma HSP70 autoantibody level in CCA was significantly capable to discriminate CCA from healthy individuals with an area under the receiver operating characteristic curve of 0.9158 (cut-off 0.2630, 93.55% sensitivity and 73.91% specificity). Plasma levels of IgG autoantibodies against HSP70 were correlated with progression from healthy individuals to cholangitis to CCA (r = 0.679, P<0.001). In addition, circulating ENO1 and RNH1 autoantibodies levels were also significantly higher in cholangitis and CCA compared to healthy controls (P<0.05). Moreover, the combinations of HSP70, ENO1 or RNH1 autoantibodies positivity rates improved specificity to over 78%. In conclusion, plasma IgG autoantibodies against HSP70, ENO1 and RNH1 may represent new diagnostic markers for CCA.
Collapse
Affiliation(s)
- Rucksak Rucksaken
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- BIOMETRA Department, University of Milan, Italy
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
46
|
Yongvanit P, Pinlaor S, Loilome W. Risk biomarkers for assessment and chemoprevention of liver fluke-associated cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:309-15. [DOI: 10.1002/jhbp.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine; Khon Kaen University; 123 Mitraparb Road Khon Kaen 40002 Thailand
- Liver Fluke and Cholangiocarcinoma Research Center; Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
- Liver Fluke and Cholangiocarcinoma Research Center; Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine; Khon Kaen University; 123 Mitraparb Road Khon Kaen 40002 Thailand
- Liver Fluke and Cholangiocarcinoma Research Center; Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
| |
Collapse
|
47
|
Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M, Kawanishi S. DNA damage in inflammation-related carcinogenesis and cancer stem cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:387014. [PMID: 24382987 PMCID: PMC3870134 DOI: 10.1155/2013/387014] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells and result in oxidative and nitrative DNA damage, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in the initiation and/or promotion of inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including parasites (Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)), viruses (hepatitis C virus (HCV), human papillomavirus (HPV), and Epstein-Barr virus (EBV)), and bacterium Helicobacter pylori (HP). SH, OV, HCV, HPV, EBV, and HP are important risk factors for bladder cancer, cholangiocarcinoma, hepatocellular carcinoma, cervical cancer, nasopharyngeal carcinoma, and gastric cancer, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that oxidative and nitrative DNA damage in stem cells may play a key role in inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| | - Ning Ma
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka 510-0293, Mie, Japan
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Olfat Hammam
- Departments of Pathology and Urology, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| |
Collapse
|
48
|
Thanan R, Pairojkul C, Pinlaor S, Khuntikeo N, Wongkham C, Sripa B, Ma N, Vaeteewoottacharn K, Furukawa A, Kobayashi H, Hiraku Y, Oikawa S, Kawanishi S, Yongvanit P, Murata M. Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis. Free Radic Biol Med 2013; 65:1464-1472. [PMID: 23917144 DOI: 10.1016/j.freeradbiomed.2013.07.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 07/06/2013] [Accepted: 07/18/2013] [Indexed: 01/21/2023]
Abstract
Nitrative and oxidative DNA damage plays an important role in inflammation-related carcinogenesis. Chronic inflammation such as parasite infection and primary sclerosing cholangitis can be an etiological factor of cholangiocarcinoma. Using a proteomic approach and double-fluorescent staining, we identified high expression and colocalization of albumin and cytokeratin-19 in liver fluke-associated cholangiocarcinoma tissues, compared with normal livers from cholangiocarcinoma patients and cadaveric donors, respectively. Albumin was detected not only in cells of hyperplastic bile ducts and cholangiocarcinoma, but also in liver stem/progenitor cell origin, such as canal of Hering, ductules, and ductular reactions, suggesting the involvement of stem/progenitor cells in cholangiocarcinoma development. To clarify the involvement of liver stem/progenitor cells in cholangiocarcinoma, we examined several stem/progenitor cell markers (CD133, CD44, OV6, and Oct3/4) in cholangiocarcinoma tissues analyzed by immunohistochemical staining, and measured 8-oxodG levels by using HPLC-ECD as an inflammation-related DNA lesion. In addition, a stem/progenitor cell factor Bmi1, 8-nitroguanine (formed during nitrative DNA damage), DNA damage response (DDR) proteins (phosphorylated ATM and γ-H2AX), and manganese-SOD (Mn-SOD) were analyzed by immunohistochemistry. Stem/progenitor cell markers (CD133, OV6, CD44, and Oct3/4) were positively stained in 56, 38, 47, and 56% of 34 cholangiocarcinoma cases, respectively. Quantitative analysis of 8-oxodG revealed significantly increased levels in CD133- and/or Oct3/4-positive tumor tissues compared to negative tumor tissues, as well as 8-nitroguanine formation detected by immunohistochemistry. In the cases of CD44- and/or OV6-positive tissue, no significant difference was observed. Cholangiocarcinoma patients with CD133- and/or Oct3/4-positive tumor tissues showed significantly lower expression of Mn-SOD and higher DDR protein, γ-H2AX. Moreover, CD133- and/or Oct3/4-positive cholangiocarcinoma patients had significant associations with tumor histology types, tumor stage, and poor prognoses. Our results suggest that CD133 and Oct3/4 in cholangiocarcinoma are associated with increased formation of DNA lesions and the DDR protein, which may be involved in genetic instability and lead to cholangiocarcinoma development with aggressive clinical features.
Collapse
Affiliation(s)
- Raynoo Thanan
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ning Ma
- Faculty of Health Science, Suzuka, Mie, 510-0293, Japan
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ayako Furukawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shosuke Kawanishi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
49
|
Dumitrascu T, Chirita D, Ionescu M, Popescu I. Resection for hilar cholangiocarcinoma: analysis of prognostic factors and the impact of systemic inflammation on long-term outcome. J Gastrointest Surg 2013; 17:913-924. [PMID: 23319395 DOI: 10.1007/s11605-013-2144-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Resection for hilar cholangiocarcinoma is the single hope for long-term survival. METHODS Ninety patients underwent curative intent surgery for hilar cholangiocarcinoma between 1996 and 2012. The potential prognostic factors were assessed by univariate (Kaplan-Meier curves and log-rank test) and multivariate analyses (Cox proportional hazards model). RESULTS The median overall and disease-free survivals were 26 and 17 months, respectively. The multivariate analysis identified R0 resection (HR = 0.03, 95 % CI 0-0.19, p < 0.001), caudate lobe invasion (HR = 6.33, 95 % CI 1.31-30.46, p = 0.021), adjuvant gemcitabine-based chemotherapy (HR = 0.38, 95 % CI 0.15-0.94, p = 0.037), and the neutrophil-to-lymphocyte ratio (HR = 0.78, 95 % CI 0.62-0.98, p = 0.036) as independent prognostic factors for disease-free survival. The independent prognostic factors for overall survival were R0 resection (HR = 0.03, 95 % CI 0-0.22, p < 0.001), caudate lobe invasion (HR = 11.75, 95 % CI 1.65-83.33, p = 0.014), and adjuvant gemcitabine-based chemotherapy (HR = 0.19, 95 % CI 0.06-0.56, p = 0.003). CONCLUSIONS The negative resection margin represents the most important prognostic factor. Adjuvant gemcitabine-based chemotherapy appears to benefit survival. The neutrophil-to-lymphocyte ratio may potentially be used to stratify patients for future clinical trials.
Collapse
Affiliation(s)
- Traian Dumitrascu
- Center of General Surgery and Liver Transplant, Fundeni Clinical Institute, Bucharest, Romania.
| | | | | | | |
Collapse
|
50
|
Jamnongkan W, Techasen A, Thanan R, Duenngai K, Sithithaworn P, Mairiang E, Loilome W, Namwat N, Pairojkul C, Yongvanit P. Oxidized alpha-1 antitrypsin as a predictive risk marker of opisthorchiasis-associated cholangiocarcinoma. Tumour Biol 2012. [PMID: 23188705 DOI: 10.1007/s13277-012-0597-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The oxidized alpha-1 antitrypsin (ox-A1AT) is one modified form of A1AT, generated via oxidation at its active site by free radicals released from inflammatory cells which subsequently are unable to inhibit protease enzymes. The presence of ox-A1AT in human serum has been used as oxidative stress indicator in many diseases. As oxidative/nitrative damage is one major contributor in opisthorchiasis-driven cholangiocarcinogenesis, we determined A1AT and ox-A1AT expression in human cholangiocarcinoma (CCA) tissue using immunohistochemical staining and measured serum ox-A1AT levels by ELISA. A1AT and ox-A1AT were found to be expressed in the tumor of CCA patients. The group with high expression has a significant poor prognosis. Serum levels of ox-A1AT were also significantly higher in groups of patients with heavy Opisthorchis viverrini infection, advanced periductal fibrosis (APF) and CCA when compared with healthy controls (P < 0.001). Odds ratio (OR) analysis implicated high ox-A1AT levels as a risk predictor for APF and CCA (P < 0.001; OR = 140.5 and 22.0, respectively). In conclusion, as APF may lead to hepatobiliary diseases and an increased risk of CCA development, our results identified ox-A1AT as a potential risk indicator for opisthorchiasis-associated CCA. This marker could now be explored for screening of subjects living in endemic areas where the prevalence of opisthorchiasis still remains high.
Collapse
Affiliation(s)
- Wassana Jamnongkan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|