1
|
Li XC, Zhu XY, Wang YY, Tong SL, Chen ZL, Lu ZY, Zhang JH, Song LL, Wang XH, Zhang C, Sun YH, Zhong CY, Su LH, Wang LX, Huang XY. Canagliflozin alleviates pulmonary hypertension by activating PPARγ and inhibiting its S225 phosphorylation. Acta Pharmacol Sin 2024; 45:1861-1878. [PMID: 38719955 PMCID: PMC11335861 DOI: 10.1038/s41401-024-01286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/07/2024] [Indexed: 08/22/2024]
Abstract
Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.
Collapse
Affiliation(s)
- Xiu-Chun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xia-Yan Zhu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Yang-Yue Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | | | - Zhi-Li Chen
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Zi-Yi Lu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | | | - Lan-Lan Song
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xing-Hong Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Chi Zhang
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Han Sun
- Wenzhou Medical University, Wenzhou, 325000, China
| | | | - Li-Huang Su
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Liang-Xing Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China
| | - Xiao-Ying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Vázquez-González D, Corona JC. Pioglitazone enhances brain mitochondrial biogenesis and phase II detoxification capacity in neonatal rats with 6-OHDA-induced unilateral striatal lesions. Front Neurosci 2023; 17:1186520. [PMID: 37575308 PMCID: PMC10416244 DOI: 10.3389/fnins.2023.1186520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
The psychostimulant methylphenidate (MPH) is the first-line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), but has numerous adverse side effects. The PPARγ receptor agonist pioglitazone (PIO) is known to improve mitochondrial bioenergetics and antioxidant capacity, both of which may be deficient in ADHD, suggesting utility as an adjunct therapy. Here, we assessed the effects of PIO on ADHD-like symptoms, mitochondrial biogenesis and antioxidant pathways in multiple brain regions of neonate rats with unilateral striatal lesions induced by 6-hydroxydopamine (6-OHDA) as an experimental ADHD model. Unilateral striatal injection of 6-OHDA reduced ipsilateral dopaminergic innervation by 33% and increased locomotor activity. This locomotor hyperactivity was not altered by PIO treatment for 14 days. However, PIO increased the expression of proteins contributing to mitochondrial biogenesis in the striatum, hippocampus, cerebellum and prefrontal cortex of 6-OHDA-lesioned rats. In addition, PIO treatment enhanced the expression of the phase II transcription factor Nrf2 in the striatum, prefrontal cortex and cerebellum. In contrast, no change in the antioxidant enzyme catalase was observed in any of the brain regions analyzed. Thus, PIO may improve mitochondrial biogenesis and phase 2 detoxification in the ADHD brain. Further studies are required to determine if different dose regimens can exert more comprehensive therapeutic effects against ADHD neuropathology and behavior.
Collapse
Affiliation(s)
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
3
|
Han JM, Song HY, Jung JH, Lim S, Seo HS, Kim WS, Lim ST, Byun EB. Deinococcus radiodurans-derived membrane vesicles protect HaCaT cells against H 2O 2-induced oxidative stress via modulation of MAPK and Nrf2/ARE pathways. Biol Proced Online 2023; 25:17. [PMID: 37328878 DOI: 10.1186/s12575-023-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Deinococcus radiodurans is a robust bacterium that can withstand harsh environments that cause oxidative stress to macromolecules due to its cellular structure and physiological functions. Cells release extracellular vesicles for intercellular communication and the transfer of biological information; their payload reflects the status of the source cells. Yet, the biological role and mechanism of Deinococcus radiodurans-derived extracellular vesicles remain unclear. AIM This study investigated the protective effects of membrane vesicles derived from D. radiodurans (R1-MVs) against H2O2-induced oxidative stress in HaCaT cells. RESULTS R1-MVs were identified as 322 nm spherical molecules. Pretreatment with R1-MVs inhibited H2O2-mediated apoptosis in HaCaT cells by suppressing the loss of mitochondrial membrane potential and reactive oxygen species (ROS) production. R1-MVs increased the superoxide dismutase (SOD) and catalase (CAT) activities, restored glutathione (GSH) homeostasis, and reduced malondialdehyde (MDA) production in H2O2-exposed HaCaT cells. Moreover, the protective effect of R1-MVs against H2O2-induced oxidative stress in HaCaT cells was dependent on the downregulation of mitogen-activated protein kinase (MAPK) phosphorylation and the upregulation of the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Furthermore, the weaker protective capabilities of R1-MVs derived from ΔDR2577 mutant than that of the wild-type R1-MVs confirmed our inferences and indicated that SlpA protein plays a crucial role in R1-MVs against H2O2-induced oxidative stress. CONCLUSION Taken together, R1-MVs exert significant protective effects against H2O2-induced oxidative stress in keratinocytes and have the potential to be applied in radiation-induced oxidative stress models.
Collapse
Affiliation(s)
- Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Sangyong Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Ho Seong Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea.
| |
Collapse
|
4
|
Zhang LL, Tang RJ, Yang YJ. The underlying pathological mechanism of ferroptosis in the development of cardiovascular disease. Front Cardiovasc Med 2022; 9:964034. [PMID: 36003910 PMCID: PMC9393259 DOI: 10.3389/fcvm.2022.964034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been attracting the attention of academic society for decades. Numerous researchers contributed to figuring out the core mechanisms underlying CVDs. Among those, pathological decompensated cellular loss posed by cell death in different kinds, namely necrosis, apoptosis and necroptosis, was widely regarded to accelerate the pathological development of most heart diseases and deteriorate cardiac function. Recently, apart from programmed cell death revealed previously, ferroptosis, a brand-new cellular death identified by its ferrous-iron-dependent manner, has been demonstrated to govern the occurrence and development of different cardiovascular disorders in many types of research as well. Therefore, clarifying the regulatory function of ferroptosis is conducive to finding out strategies for cardio-protection in different conditions and improving the prognosis of CVDs. Here, molecular mechanisms concerned are summarized systematically and categorized to depict the regulatory network of ferroptosis and point out potential therapeutic targets for diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Jie Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yue-Jin Yang,
| |
Collapse
|
5
|
Lee Y, Lim JW, Kim H. α‑lipoic acid inhibits cerulein/resistin‑induced expression of interleukin‑6 by activating peroxisome proliferator‑activated receptor‑γ in pancreatic acinar cells. Mol Med Rep 2022; 26:264. [PMID: 35730599 PMCID: PMC9260878 DOI: 10.3892/mmr.2022.12780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Abstract
Cerulein‑induced pancreatitis resembles human acute pancreatitis in terms of pathological events, such as enzymatic activation and inflammatory cell infiltration in the pancreas. Cerulein is a cholecystokinin analog that increases levels of reactive oxygen species (ROS) and interleukin‑6 (IL‑6) expression level in pancreatic acinar cells. Serum levels of resistin, which is secreted from adipocytes, are reportedly higher in patients with acute pancreatitis than in healthy individuals. Previously, it was shown that the adipokine resistin can aggravate the cerulein‑induced increase in ROS levels and IL‑6 expression level in pancreatic acinar cells. Peroxisome proliferator‑activated receptor‑gamma (PPAR‑γ) is a key regulator of the transcription and expression of antioxidant enzymes, including heme oxygenase 1 (HO‑1) and catalase. α‑lipoic acid, a naturally occurring dithiol antioxidant, can prevent cerulein‑induced pancreatic damage in rats. In the present study, it was aimed to investigate whether α‑lipoic acid can attenuate the cerulein/resistin‑induced increase in IL‑6 expression and ROS levels via PPAR‑γ activation in pancreatic acinar AR42J cells. The anti‑inflammatory mechanism of α‑lipoic acid was determined using reverse transcription‑quantitative PCR, western blot analysis, enzyme‑linked immunosorbent assay, immunofluorescence staining and fluorometry. Treatment with cerulein and resistin increased ROS levels and IL‑6 expression level, which were inhibited by α‑lipoic acid in pancreatic acinar cells. α‑lipoic acid increased the nuclear translocation and expression level of PPAR‑γ and the expression levels of its target genes: HO‑1 and catalase. The PPAR‑γ antagonist GW9662 and HO‑1 inhibitor zinc protoporphyrin reversed the inhibitory effect of α‑lipoic acid on cerulein/resistin‑induced increase in ROS and IL‑6 levels. In conclusion, α‑lipoic acid inhibits the cerulein/resistin‑induced increase in ROS production and IL‑6 expression levels by activating PPAR‑γ and inducing the expression of HO‑1 and catalase in pancreatic acinar cells.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Cholecystokinin Octapeptide Promotes ANP Secretion through Activation of NOX4-PGC-1 α-PPAR α/PPAR γ Signaling in Isolated Beating Rat Atria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5905374. [PMID: 35770043 PMCID: PMC9236793 DOI: 10.1155/2022/5905374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Atrial natriuretic peptide (ANP), a canonical cardiac hormone, is mainly secreted from atrial myocytes and is involved in the regulation of body fluid, blood pressure homeostasis, and antioxidants. Cholecystokinin (CCK) is also found in cardiomyocytes as a novel cardiac hormone and induces multiple cardiovascular regulations. However, the direct role of CCK on the atrial mechanical dynamics and ANP secretion is unclear. The current study was to investigate the effect of CCK octapeptide (CCK-8) on the regulation of atrial dynamics and ANP secretion. Experiments were performed in isolated perfused beating rat atria. ANP was measured using radioimmunoassay. The levels of hydrogen peroxide (H2O2) and arachidonic acid (AA) were determined using ELISA Kits. The levels of relative proteins and mRNA were detected by Western blot and RT-qPCR. The results showed that sulfated CCK-8 (CCK-8s) rather than desulfated CCK-8 increased the levels of phosphorylated cytosolic phospholipase A2 and AA release through activation of CCK receptors. This led to the upregulation of NADPH oxidase 4 (NOX4) expression levels and H2O2 production and played a negative inotropic effect on atrial mechanical dynamics via activation of ATP-sensitive potassium channels and large-conductance calcium-activated potassium channels. In addition, CCK-8s-induced NOX4 subsequently upregulated peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) expression levels through activation of p38 mitogen-activated protein kinase as well as the serine/threonine kinase signaling, ultimately promoting the secretion of ANP via activation of PPARα and PPARγ. In the presence of the ANP receptor inhibitor, the CCK-8-induced increase of AA release, H2O2 production, and the upregulation of NOX4 and CAT expressions was augmented but the SOD expression induced by CCK-8s was repealed. These findings indicate that CCK-8s promotes the secretion of ANP through activation of NOX4-PGC-1α-PPARα/PPARγ signaling, in which ANP is involved in resistance for NOX4 expression and ROS production and regulation of SOD expression.
Collapse
|
7
|
Abdel-Rahman ON, Abdel-Baky ES. Hematological and renoprotective effects of folic acid and lentil extract in diclofenac sodium exposed rats. BRAZ J BIOL 2021; 83:e247360. [PMID: 34817022 DOI: 10.1590/1519-6984.247360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Excessive intake of non-steroidal anti-inflammatory drugs such as, diclofenac sodium (DS) may lead to toxicity in the rats. In this work, we aimed to examine the protective impact of lentil extract (LE) and folic acid (FA) on the hematological markers, the kidney tissue oxidative stress and the renal function against diclofenac sodium (DS) in male albino rats. The rats (120-150 g) were divided into four equal groups randomly, the first group kept as the untreated control. The second group was administrated with DS (11.6 mg/kg b.wt. orally once/day). The third group was received DS+FA (11.6 mg/kg b.wt.+76.9 microgram/kg b.wt.) orally once/day. The fourth group was treated with DS+LE (11.6 mg/kg b.wt.+500 mg/kg b.wt.) orally once/day. After four weeks, the results revealed that DS produced a significant decrease in the values of red blood cells (RBCs), hemoglobin concentration (Hb), hematocrit (HCT) and white blood cells (WBCs). On the other hand, there was a significant increase in the platelets count. Also, DS induced a renal deterioration; this was evidenced by the significant increase in the serum levels of urea, creatinine, uric acid, Na, Ca, Mg as well as the nitric oxide (NO) level in the kidney tissue. Also, there were a significant reduction in the serum levels of potassium (K) and reduced glutathione (GSH) in the kidney homogenates. Moreover, the findings in the rats treated by DS+LE or DS+FA showed a potential protection on the hematological markers, oxidative stress in the kidney tissue and the renal function disturbed by DS. LE and FA could play a potent role for the prevention the adverse hematological, the kidney tissue oxidative stress and the renal dysfunction caused by DS via their anti-oxidative and bioactive phytochemicals.
Collapse
Affiliation(s)
- Omnia N Abdel-Rahman
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Enas S Abdel-Baky
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Hwang JS, Kim E, Lee HG, Lee WJ, Won JP, Hur J, Fujii J, Seo HG. Peroxisome proliferator-activated receptor δ rescues xCT-deficient cells from ferroptosis by targeting peroxisomes. Biomed Pharmacother 2021; 143:112223. [PMID: 34649350 DOI: 10.1016/j.biopha.2021.112223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is a recently recognized process of cell death characterized by accumulation of iron-dependent lipid peroxides. Herein, we demonstrate that peroxisome proliferator-activated receptor δ (PPARδ) inhibits ferroptosis of mouse embryonic fibroblasts (MEFs) derived from cysteine/glutamate transporter (xCT)-knockout mice. Activation of PPARδ by the specific ligand GW501516 led to a dose-dependent decrease in ferroptotic cell death triggered by xCT deficiency, along with decreased levels of intracellular iron accumulation and lipid peroxidation. These effects of GW501516 were abolished by PPARδ-targeting small interfering RNA (siRNA) and the PPARδ inhibitor GSK0660, indicating that PPARδ inhibits xCT deficiency-induced ferroptosis. In addition, GW501516-activated PPARδ time- and dose-dependently upregulated catalase expression at both the mRNA and protein levels. This PPARδ-mediated upregulation of catalase was markedly attenuated in cells treated with PPARδ-targeting siRNA and GSK0660, indicating that expression of catalase is dependent on PPARδ. Consistently, the effects of GW501516 on ferroptosis of xCT-deficient MEFs were counteracted in the presence of 3-amino-1,2,4-triazole, a specific inhibitor of catalase, suggesting that catalase is essential for the effect of PPARδ on ferroptosis triggered by xCT deficiency. GW501516-activated PPARδ stabilized peroxisomes through catalase upregulation by targeting peroxisomal hydrogen peroxide-mediated lysosomal rupture, which led to ferroptosis of xCT-deficient MEFs. Collectively, these results demonstrate that PPARδ modulates ferroptotic signals in xCT-deficient MEFs by regulating catalase expression.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Won Jin Lee
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Pil Won
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Riess ML, Elorbany R, Weihrauch D, Stowe DF, Camara AK. PPARγ-Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells 2020; 9:cells9010252. [PMID: 31968546 PMCID: PMC7017211 DOI: 10.3390/cells9010252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of anti-diabetic thiazolidinediones (TZDs) on contributing to heart failure and cardiac ischemia/reperfusion (IR) injury is controversial. In this study we investigated the effect of select TZDs on myocardial and mitochondrial function in Brown Norway rat isolated hearts. In a first set of experiments, the TZD rosiglitazone was given acutely before global myocardial IR, and pre- and post-IR function and infarct size were assessed. In a second set of experiments, different concentrations of rosiglitazone and pioglitazone were administered in the presence or absence of the specific PPARγ antagonist GW9662, and their effects on the mitochondrial redox state were measured by online NADH and FAD autofluorescence. The administration of rosiglitazone did not significantly affect myocardial function except for transiently increasing coronary flow, but it increased IR injury compared to the control hearts. Both TZDs resulted in dose-dependent, reversible increases in mitochondrial oxidation which was not attenuated by GW9662. Taken together, these data suggest that TZDs cause excessive mitochondrial uncoupling by a PPARγ-independent mechanism. Acute rosiglitazone administration before IR was associated with enhanced cardiac injury. If translated clinically, susceptible patients on PPARγ agonists may experience enhanced myocardial IR injury by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-(615)-936-0277; Fax: +1-(615)-343-3916
| | - Reem Elorbany
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
| | - David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.W.); (D.F.S.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Tseng V, Sutliff RL, Hart CM. Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:874-897. [PMID: 30582337 PMCID: PMC6751396 DOI: 10.1089/ars.2018.7695] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Peroxisome proliferator-activated receptor-gamma (PPARγ) maintains pulmonary vascular health through coordination of antioxidant defense systems, inflammation, and cellular metabolism. Insufficient PPARγ contributes to pulmonary hypertension (PH) pathogenesis, whereas therapeutic restoration of PPARγ activity attenuates PH in preclinical models. Recent Advances: Numerous studies in the past decade have elucidated the complex mechanisms by which PPARγ in the pulmonary vasculature and right ventricle (RV) protects against PH. The scope of PPARγ-interconnected pathways continues to expand and includes induction of antioxidant genes, transrepression of inflammatory signaling, regulation of mitochondrial biogenesis and bioenergetic integrity, control of cell cycle and proliferation, and regulation of vascular tone through interactions with nitric oxide and endogenous vasoactive molecules. Furthermore, PPARγ interacts with an extensive regulatory network of transcription factors and microRNAs leading to broad impact on cell signaling. Critical Issues: Abundant evidence suggests that targeting PPARγ exerts diverse salutary effects in PH and represents a novel and potentially translatable therapeutic strategy. However, progress has been slowed by an incomplete understanding of how specific PPARγ pathways are critically disrupted across PH disease subtypes and lack of optimal pharmacological ligands. Future Directions: Recent studies indicate that ligand-induced post-translational modifications of the PPARγ receptor differentially induce therapeutic benefits versus adverse side effects of PPARγ receptor activation. Strategies to selectively target PPARγ activity in diseased cells of pulmonary circulation and RV, coupled with development of ligands designed to specifically regulate post-translational PPARγ modifications, may unlock the full therapeutic potential of this versatile master transcriptional and metabolic regulator in PH.
Collapse
Affiliation(s)
- Victor Tseng
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
11
|
Ribeiro NQ, Santos APN, Emídio ECP, Costa MC, Freitas GJC, Carmo PHF, Silva MF, de Brito CB, de Souza DG, Paixão TA, Santos DA. Pioglitazone as an adjuvant of amphotericin B for the treatment of cryptococcosis. Int J Antimicrob Agents 2019; 54:301-308. [PMID: 31279153 DOI: 10.1016/j.ijantimicag.2019.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023]
Abstract
Approximately 180,000 people worldwide die from cryptococcosis each year, probably due to the ineffectiveness and toxicity of drugs currently available to treat the disease. Amphotericin B (AMB) is effective for killing the fungus, but has serious adverse effects linked to excessive production of reactive oxygen species which compromise renal function. Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ agonist widely repositioned as an adjuvant of various drugs that have toxic effects due to its antioxidant and anti-inflammatory effects. This study evaluated PIO in combination with AMB for the treatment of cryptococcosis. PIO was found to reduce serum creatinine and glutamic-oxalacetic transaminase levels in mice treated with PIO+AMB. In vitro, PIO was able to control harmful oxidative bursts induced by AMB without compromising the antifungal effect. In vivo, PIO+AMB increased the survival rate compared with AMB alone, and improved the morbidity of the animals. PIO+AMB was more efficient than AMB alone for inhibiting fungal transmigration from the lungs to the brain, and killing yeasts that reached the central nervous system, avoiding the establishment of meningoencephalitis. In a phagocytosis assay, PIO did not influence the engulfment and fungicidal activity of macrophages induced by AMB, but reduced the oxidative bursts after the reduction of fungal burden, pointing to control of the pathogen without leading to excessive stress which can be damaging to the host. In conclusion, PIO+AMB was found to ameliorate cryptococcosis in a murine model, indicating that it is a promising therapeutic adjuvant for combating and controlling this fungal infection.
Collapse
Affiliation(s)
- Noelly Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Philip Nonato Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elúzia Castro Peres Emídio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo José Cotta Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferreira Silva
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Bernardo de Brito
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele Glória de Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Newsholme P, Keane KN, Carlessi R, Cruzat V. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Am J Physiol Cell Physiol 2019; 317:C420-C433. [PMID: 31216193 DOI: 10.1152/ajpcell.00141.2019] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now accepted that nutrient abundance in the blood, especially glucose, leads to the generation of reactive oxygen species (ROS), ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensatory response from antioxidant mechanisms, the cell, or indeed the tissue, becomes overwhelmed by oxidative stress, leading to the activation of intracellular stress-associated pathways. Activation of the same or similar pathways also appears to play a role in mediating insulin resistance, impaired insulin secretion, and late diabetic complications. The ability of antioxidants to protect against the oxidative stress induced by hyperglycemia and elevated free fatty acid (FFA) levels in vitro suggests a causative role of oxidative stress in mediating the latter clinical conditions. In this review, we describe common biochemical processes associated with oxidative stress driven by hyperglycemia and/or elevated FFA and the resulting clinical outcomes: β-cell dysfunction and peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Philip Newsholme
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Kevin N Keane
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
de Moura Freitas C, Nascimento LCPD, Braz GRF, Andrade-Silva SC, Lima-Junior NC, de Araujo Silva T, Fernandes MP, Ferreira DJS, Lagranha CJ. Mitochondrial impairment following neonatal overfeeding: A comparison between normal and ischemic-reperfused hearts. J Cell Biochem 2019; 120:7341-7352. [PMID: 30368910 DOI: 10.1002/jcb.28009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Overweight and obesity are established factors underpin several metabolic impairments, including the cardiovascular. Although the diversity of factors involved in overweight/obesity-induced cardiovascular diseases, mitochondria has been highlighted due to its role in cardiac metabolism. As obesity can be originated in early postnatal life, the current study evaluates the effects of neonatal overfeeding on the cardiac mitochondrial bioenergetics and oxidative balance in rats that underwent an ischemia-reperfusion insult. Seventy-two hours after delivery, Wistar rat litters were randomly assigned into the control (C; nine pups per mother) and the Overfed (OF; three pups per mother) groups throughout the lactation period. At weaning, male offspring were fed with laboratory chow ad libitum until sacrifice at 30 and 60 days of life. Mitochondrial heart bioenergetics and oxidative balance showed to be deeply affected by neonatal overfeeding at both ages. Interestingly, after ischemia-reperfusion insult I/R (Langendorff or mineral oil incubation), most parameters evaluated in OF animals were not influenced by additional ischemic-reperfusion injury. Our findings demonstrated that suckling overfeeding deregulates cardiac mitochondrial alike to ischemia-reperfusion insult by disengaging electrical mitochondrial coupling and potentiate oxidative stress, wherein the neonatal overfeeding shows to be so detrimental as I/R. Our findings support the concept that nutritional insults in the critical development periods increase the risk for cardiovascular disease and mitochondria impairments throughout life while oxidative damage change between molecular targets.
Collapse
Affiliation(s)
- Cristiane de Moura Freitas
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Luciana Caroline Paulino do Nascimento
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Glauber Rudá Feitoza Braz
- Laboratory of Biochemistry and Exercise Biochemistry, Neuropsychiatry and Behavioral Science Graduate Program, CAV-Federal University of Pernambuco, Recife, Brazil
| | - Severina Cassia Andrade-Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nelson C Lima-Junior
- Department of Physical Education and Sports Science, Laboratory of Biochemistry and Exercise Biochemistry, CAV- Federal University of Pernambuco, Brazil
| | - Tercya de Araujo Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Neuropsychiatry and Behavioral Science Graduate Program, CAV-Federal University of Pernambuco, Recife, Brazil
| | - Mariana Pinheiro Fernandes
- Department of Physical Education and Sports Science, Laboratory of Biochemistry and Exercise Biochemistry, CAV- Federal University of Pernambuco, Brazil
| | | | - Claudia Jacques Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Biochemistry and Physiology Graduate Program, CAV-Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Laboratory of Biochemistry and Exercise Biochemistry, Neuropsychiatry and Behavioral Science Graduate Program, CAV-Federal University of Pernambuco, Recife, Brazil.,Department of Physical Education and Sports Science, Laboratory of Biochemistry and Exercise Biochemistry, CAV- Federal University of Pernambuco, Brazil
| |
Collapse
|
14
|
Paciello F, Fetoni AR, Rolesi R, Wright MB, Grassi C, Troiani D, Paludetti G. Pioglitazone Represents an Effective Therapeutic Target in Preventing Oxidative/Inflammatory Cochlear Damage Induced by Noise Exposure. Front Pharmacol 2018; 9:1103. [PMID: 30349478 PMCID: PMC6187064 DOI: 10.3389/fphar.2018.01103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Recent progress in hearing loss research has provided strong evidence for the imbalance of cellular redox status and inflammation as common predominant mechanisms of damage affecting the organ of Corti including noise induced hearing loss. The discovery of a protective molecule acting on both mechanisms is challenging. The thiazolidinediones, a class of antidiabetic drugs including pioglitazone and rosiglitazone, have demonstrated diverse pleiotrophic effects in many tissues where they exhibit anti-inflammatory, anti-proliferative, tissue protective effects and regulators of redox balance acting as agonist of peroxisome proliferator-activated receptors (PPARs). They are members of the family of ligand regulated nuclear hormone receptors that are also expressed in several cochlear cell types, including the outer hair cells. In this study, we investigated the protective capacity of pioglitazone in a model of noise-induced hearing loss in Wistar rats and the molecular mechanisms underlying this protective effects. Specifically, we employed a formulation of pioglitazone in a biocompatible thermogel providing rapid, uniform and sustained inner ear drug delivery via transtympanic injection. Following noise exposure (120 dB, 10 kHz, 1 h), different time schedules of treatment were employed: we explored the efficacy of pioglitazone given immediately (1 h) or at delayed time points (24 and 48 h) after noise exposure and the time course and extent of hearing recovery were assessed. We found that pioglitazone was able to protect auditory function at the mid-high frequencies and to limit cell death in the cochlear basal/middle turn, damaged by noise exposure. Immunofluorescence and western blot analysis provided evidence that pioglitazone mediates both anti-inflammatory and anti-oxidant effects by decreasing NF-κB and IL-1β expression in the cochlea and opposing the oxidative damage induced by noise insult. These results suggest that intratympanic pioglitazone can be considered a valid therapeutic strategy for attenuating noise-induced hearing loss and cochlear damage, reducing inflammatory signaling and restoring cochlear redox balance.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Catalase and nonalcoholic fatty liver disease. Pflugers Arch 2018; 470:1721-1737. [PMID: 30120555 DOI: 10.1007/s00424-018-2195-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Obesity and insulin resistance are considered the main causes of nonalcoholic fatty liver disease (NAFLD), and oxidative stress accelerates the progression of NAFLD. Free fatty acids, which are elevated in the liver by obesity or insulin resistance, lead to incomplete oxidation in the mitochondria, peroxisomes, and microsomes, leading to the production of reactive oxygen species (ROS). Among the ROS generated, H2O2 is mainly produced in peroxisomes and decomposed by catalase. However, when the H2O2 concentration increases because of decreased expression or activity of catalase, it migrates to cytosol and other organelles, causing cell injury and participating in the Fenton reaction, resulting in serious oxidative stress. To date, numerous studies have been shown to inhibit the pathogenesis of NAFLD, but treatment for this disease mainly depends on weight loss and exercise. Various molecules such as vitamin E, metformin, liraglutide, and resveratrol have been proposed as therapeutic agents, but further verification of the dose setting, clinical application, and side effects is needed. Reducing oxidative stress may be a fundamental method for improving not only the progression of NAFLD but also obesity and insulin resistance. However, the relationship between NAFLD progression and antioxidants, particularly catalase, which is most commonly expressed in the liver, remains unclear. Therefore, this review summarizes the role of catalase, focusing on its potential therapeutic effects in NAFLD progression.
Collapse
|
16
|
Oxidative stress in osteoarthritis and antioxidant effect of polysaccharide from angelica sinensis. Int J Biol Macromol 2018; 115:281-286. [DOI: 10.1016/j.ijbiomac.2018.04.083] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/25/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
|
17
|
Abushouk AI, El-Husseny MWA, Bahbah EI, Elmaraezy A, Ali AA, Ashraf A, Abdel-Daim MM. Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 2017; 95:692-700. [PMID: 28886529 DOI: 10.1016/j.biopha.2017.08.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a common clinical syndrome that affects more than 23 million individuals worldwide. Despite the marked advances in its management, the mortality rates in HF patients have remained unacceptably high. Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription regulators, involved in the regulation of fatty acid and glucose metabolism. PPAR agonists are currently used for the treatment of type II diabetes mellitus and hyperlipidemia; however, their role as therapeutic agents for HF remains under investigation. Preclinical studies have shown that pharmacological modulation of PPARs can upregulate the expression of fatty acid oxidation genes in cardiomyocytes. Moreover, PPAR agonists were proven able to improve ventricular contractility and reduce cardiac remodelling in animal models through their anti-inflammatory, anti-oxidant, anti-fibrotic, and anti-apoptotic activities. Whether these effects can be replicated in humans is yet to be proven. This article reviews the interactions of PPARs with the pathophysiological mechanisms of HF and how the pharmacological modulation of these receptors can be of benefit for HF patients.
Collapse
Affiliation(s)
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aya Ashraf Ali
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Asmaa Ashraf
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
18
|
Therapeutic Targeting of Cellular Stress to Prevent Cardiovascular Disease: A Review of the Evidence. Am J Cardiovasc Drugs 2017; 17:83-95. [PMID: 27778192 DOI: 10.1007/s40256-016-0199-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of effective drugs targeting the major risk factors of cardiovascular disease (CVD) has reduced morbidity and mortality. Cumulative relative risk of CVD events can be reduced by 75 % with a combination of aspirin, a β-adrenoceptor antagonist (β-blocker), an HMG-CoA reductase inhibitor (statin), and an angiotensin-converting enzyme inhibitor. The principal pharmacodynamics of these drugs cannot explain the entirety of their cardioprotective action, as other drugs with similar pharmacologic targets have not been associated with favorable clinical effects. This raises the possibility that the cardioprotective drugs have a unique pleiotropic activity that contributes to their clinical efficacy. Recent data suggest that reducing cellular stress such as oxidative, inflammatory, and endoplasmic reticulum stress, might be a common denominator of the drugs with proven efficacy in reducing CVD risk. In this communication, the evidence in favor of this hypothesis is discussed, and ongoing trials with therapeutic agents targeting cellular stresses are reviewed.
Collapse
|
19
|
Hassan SA, Sabry DA, Hussein MA. Protective Effect of Cranberry Extracts against Oxidative Stress and DNA Damage Induced by Diclofenac Sodium in Kidney of Male Albino Rate. Chin Med 2017. [DOI: 10.4236/cm.2017.84009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Weeks KL, Bernardo BC, Ooi JYY, Patterson NL, McMullen JR. The IGF1-PI3K-Akt Signaling Pathway in Mediating Exercise-Induced Cardiac Hypertrophy and Protection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:187-210. [PMID: 29098623 DOI: 10.1007/978-981-10-4304-8_12] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regular physical activity or exercise training can lead to heart enlargement known as cardiac hypertrophy. Cardiac hypertrophy is broadly defined as an increase in heart mass. In adults, cardiac hypertrophy is often considered a poor prognostic sign because it often progresses to heart failure. Heart enlargement in a setting of cardiac disease is referred to as pathological cardiac hypertrophy and is typically characterized by cell death and depressed cardiac function. By contrast, physiological cardiac hypertrophy, as occurs in response to chronic exercise training (i.e. the 'athlete's heart'), is associated with normal or enhanced cardiac function. The following chapter describes the morphologically distinct types of heart growth, and the key role of the insulin-like growth factor 1 (IGF1) - phosphoinositide 3-kinase (PI3K)-Akt signaling pathway in regulating exercise-induced physiological cardiac hypertrophy and cardiac protection. Finally we summarize therapeutic approaches that target the IGF1-PI3K-Akt signaling pathway which are showing promise in preclinical models of heart disease.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia.
| | - Bianca C Bernardo
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Jenny Y Y Ooi
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Natalie L Patterson
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia
| | - Julie R McMullen
- Baker Heart & Diabetes Institute, P.O. Box 6492, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
21
|
Fernández-Solà J, Planavila Porta A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Sci 2016; 17:E1651. [PMID: 27690014 PMCID: PMC5085684 DOI: 10.3390/ijms17101651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
High-dose alcohol misuse induces multiple noxious cardiac effects, including myocyte hypertrophy and necrosis, interstitial fibrosis, decreased ventricular contraction and ventricle enlargement. These effects produce diastolic and systolic ventricular dysfunction leading to congestive heart failure, arrhythmias and an increased death rate. There are multiple, dose-dependent, synchronic and synergistic mechanisms of alcohol-induced cardiac damage. Ethanol alters membrane permeability and composition, interferes with receptors and intracellular transients, induces oxidative, metabolic and energy damage, decreases protein synthesis, excitation-contraction coupling and increases cell apoptosis. In addition, ethanol decreases myocyte protective and repair mechanisms and their regeneration. Although there are diverse different strategies to directly target alcohol-induced heart damage, they are partially effective, and can only be used as support medication in a multidisciplinary approach. Alcohol abstinence is the preferred goal, but control drinking is useful in alcohol-addicted subjects not able to abstain. Correction of nutrition, ionic and vitamin deficiencies and control of alcohol-related systemic organ damage are compulsory. Recently, several growth factors (myostatin, IGF-1, leptin, ghrelin, miRNA, and ROCK inhibitors) and new cardiomyokines such as FGF21 have been described to regulate cardiac plasticity and decrease cardiac damage, improving cardiac repair mechanisms, and they are promising agents in this field. New potential therapeutic targets aim to control oxidative damage, myocyte hypertrophy, interstitial fibrosis and persistent apoptosis In addition, stem-cell therapy may improve myocyte regeneration. However, these strategies are not yet approved for clinical use.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Department of Internal Medicine, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain.
| | - Ana Planavila Porta
- Departament of Biochemistry and Molecular Biomedicine, Faculty of Biology, Avda Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
22
|
Winterberg PD, Jiang R, Maxwell JT, Wang B, Wagner MB. Myocardial dysfunction occurs prior to changes in ventricular geometry in mice with chronic kidney disease (CKD). Physiol Rep 2016; 4:4/5/e12732. [PMID: 26997631 PMCID: PMC4823595 DOI: 10.14814/phy2.12732] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Uremic cardiomyopathy is responsible for high morbidity and mortality rates among patients with chronic kidney disease (CKD), but the underlying mechanisms contributing to this complex phenotype are incompletely understood. Myocardial deformation analyses (ventricular strain) of patients with mild CKD have recently been reported to predict adverse clinical outcome. We aimed to determine if early myocardial dysfunction in a mouse model of CKD could be detected using ventricular strain analyses. CKD was induced in 5-week-old male 129X1/SvJ mice through partial nephrectomy (5/6Nx) with age-matched mice undergoing bilateral sham surgeries serving as controls. Serial transthoracic echocardiography was performed over 16 weeks following induction of CKD. Invasive hemodynamic measurements were performed at 8 weeks. Gene expression and histology was performed on hearts at 8 and 16 weeks. CKD mice developed decreased longitudinal strain (-25 ± 4.2% vs. -29 ± 2.3%; P = 0.01) and diastolic dysfunction (E/A ratio 1.2 ± 0.15 vs. 1.9 ± 0.18; P < 0.001) compared to controls as early as 2 weeks following 5/6Nx. In contrast, ventricular hypertrophy was not apparent until 4 weeks. Hearts from CKD mice developed progressive fibrosis at 8 and 16 weeks with gene signatures suggestive of evolving heart failure with elevated expression of natriuretic peptides. Uremic cardiomyopathy in this model is characterized by early myocardial dysfunction which preceded observable changes in ventricular geometry. The model ultimately resulted in myocardial fibrosis and increased expression of natriuretic peptides suggestive of progressive heart failure.
Collapse
Affiliation(s)
- Pamela D Winterberg
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia
| | - Rong Jiang
- Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Josh T Maxwell
- Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia Wallace H Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia
| | - Bo Wang
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Mary B Wagner
- Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
23
|
Werion A, Joris V, Hepp M, Papasokrati L, Marique L, de Ville de Goyet C, Van Regemorter V, Mourad M, Lengelé B, Daumerie C, Marbaix E, Brichard S, Many MC, Craps J. Pioglitazone, a PPARγ Agonist, Upregulates the Expression of Caveolin-1 and Catalase, Essential for Thyroid Cell Homeostasis: A Clue to the Pathogenesis of Hashimoto's Thyroiditis. Thyroid 2016; 26:1320-31. [PMID: 27324467 DOI: 10.1089/thy.2015.0625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates the expression of multiple target genes involved in several metabolic pathways as well as in inflammation. The expression and cell localization of caveolin-1 (Cav-1), thyroperoxidase (TPO), and dual oxidase (DUOX), involved in extracellular iodination, is modulated by Th1 cytokines in human normal thyroid cells and in Hashimoto's thyroiditis (HT). OBJECTIVES The objectives of this study were (i) to analyze the PPARγ protein and mRNA expression at the follicular level in HT versus controls in correlation with the one of Cav-1; (ii) to study the effects of Th1 cytokines on PPARγ and catalase expression in human thyrocyte primary cultures; and (iii) to study the effects of pioglitazone, a PPARγ agonist, on thyroxisome components (Cav-1, TPO, DUOX) and on catalase, involved in antioxidant defense. RESULTS Although the global expression of PPARγ in the whole gland of patients with HT was not modified compared with controls, there was great heterogeneity among glands and among follicles within the same thyroid. Besides normal (type 1) follicles, there were around inflammatory zones, hyperactive (type 2) follicles with high PPARγ and Cav-1 expression, and inactive (type 3) follicles which were unable to form thyroxine and did not express PPARγ or Cav-1. In human thyrocytes in primary culture, Th1 cytokines decreased PPARγ and catalase expression; pioglitazone increased Cav-1, TPO, and catalase expression. CONCLUSION PPARγ may play a central role in normal thyroid physiology by upregulating Cav-1, essential for the organization of the thyroxisome and extracellular iodination. By upregulating catalase, PPARγ may also contribute to cell homeostasis. The inhibitory effect of Th1 cytokines on PPARγ expression may be considered as a new pathogenetic mechanism for HT, and the use of PPARγ agonists could open a new therapeutic approach.
Collapse
Affiliation(s)
- Alexis Werion
- 1 Pôles de Morphologie, Université Catholique de Louvain , Brussels, Belgium
| | - Virginie Joris
- 2 de Pharmacologie et Thérapeutique, et, Université Catholique de Louvain , Brussels, Belgium
| | - Michael Hepp
- 1 Pôles de Morphologie, Université Catholique de Louvain , Brussels, Belgium
| | - Lida Papasokrati
- 1 Pôles de Morphologie, Université Catholique de Louvain , Brussels, Belgium
| | - Lancelot Marique
- 1 Pôles de Morphologie, Université Catholique de Louvain , Brussels, Belgium
| | | | | | - Michel Mourad
- 3 de Chirurgie, et, Université Catholique de Louvain , Brussels, Belgium
| | - Benoit Lengelé
- 1 Pôles de Morphologie, Université Catholique de Louvain , Brussels, Belgium
| | - Chantal Daumerie
- 4 Départements d'Endocrinologie, Université Catholique de Louvain , Brussels, Belgium
| | - Etienne Marbaix
- 5 d'Anatomo-pathologie, Secteur des Sciences de la Santé, Faculté de Médecine, Université Catholique de Louvain , Brussels, Belgium
| | - Sonia Brichard
- 4 Départements d'Endocrinologie, Université Catholique de Louvain , Brussels, Belgium
- 6 d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain , Brussels, Belgium
| | | | - Julie Craps
- 1 Pôles de Morphologie, Université Catholique de Louvain , Brussels, Belgium
| |
Collapse
|
24
|
Butterick TA, Hocum Stone L, Duffy C, Holley C, Cabrera JA, Crampton M, Ward HB, Kelly RF, McFalls EO. Pioglitazone increases PGC1-α signaling within chronically ischemic myocardium. Basic Res Cardiol 2016; 111:37. [PMID: 27138931 DOI: 10.1007/s00395-016-0555-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR)-γ drug pioglitazone (PIO) has been shown to protect tissue against oxidant stress. In a swine model of chronic myocardial ischemia, we tested whether PIO increases PGC1-α signaling and the expression of mitochondrial antioxidant peptides. Eighteen pigs underwent a thoracotomy with placement of a fixed constrictor around the LAD artery. At 8 weeks, diet was supplemented with either PIO (3 mg/kg) or placebo for 4 weeks. Regional myocardial function and blood flow were determined at the time of the terminal study. PGC1-α expression was quantified from nuclear membranes by gels and respiration, oxidant stress markers and proteomics by iTRAQ were determined from isolated mitochondria. In the chronically ischemic LAD region, wall thickening from the PIO and control groups was 42 ± 6 and 45 ± 5 %, respectively (NS) with no intergroup differences in basal blood flow (0.72 ± 0.04 versus 0.74 ± 0.04 ml/min g, respectively; NS). In the PIO group, the expression of nuclear bound PGC1-α was higher (11.3 ± 2.6 versus 4.4 ± 1.4 AU; P < 0.05) and the content of mitochondrial antioxidant peptides including superoxide dismutase 2, aldose reductase, glutathione S-transferase and thioredoxin reductase were greater than controls. Although isolated mitochondria from the PIO group showed lower state 3 respiration (102 ± 13 versus 161 ± 22 nmol/min mg; P < 0.05), no differences in oxidant stress were noted by protein carbonyl (1.7 ± 0.7 versus 1.1 ± 0.1 nmol/mg). Chronic pioglitazone does not reduce regional myocardial blood flow or function in a swine model of chronic myocardial ischemia, but may have an important role in increasing expression of antioxidant proteins through PGC1-α signaling.
Collapse
Affiliation(s)
- Tammy A Butterick
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA.,Cardiology and Cardiothoracic Surgery Sections, Department of Nutrition, VA Medical Center, Minneapolis, USA.,Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, 55108, USA
| | - Laura Hocum Stone
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Cayla Duffy
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA.,Cardiology and Cardiothoracic Surgery Sections, Department of Nutrition, VA Medical Center, Minneapolis, USA
| | - Christopher Holley
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Jesús A Cabrera
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Melanie Crampton
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Herbert B Ward
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Rosemary F Kelly
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Edward O McFalls
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA. .,Department of Surgery, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
25
|
Barlaka E, Galatou E, Mellidis K, Ravingerova T, Lazou A. Role of Pleiotropic Properties of Peroxisome Proliferator-Activated Receptors in the Heart: Focus on the Nonmetabolic Effects in Cardiac Protection. Cardiovasc Ther 2016; 34:37-48. [DOI: 10.1111/1755-5922.12166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eleftheria Barlaka
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Eleftheria Galatou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Kyriakos Mellidis
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Tanya Ravingerova
- Institute for Heart Research; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Antigone Lazou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
26
|
Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med 2015; 87:84-97. [PMID: 26117330 DOI: 10.1016/j.freeradbiomed.2015.06.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
Abstract
Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy.
Collapse
Affiliation(s)
- Christophe Glorieux
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Marcel Zamocky
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Juan Marcelo Sandoval
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Julien Verrax
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Pedro Buc Calderon
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile.
| |
Collapse
|
27
|
Palomba L, Silvestri C, Imperatore R, Morello G, Piscitelli F, Martella A, Cristino L, Di Marzo V. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons. J Biol Chem 2015; 290:13669-77. [PMID: 25869131 DOI: 10.1074/jbc.m115.646885] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 01/15/2023] Open
Abstract
The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.
Collapse
Affiliation(s)
- Letizia Palomba
- From the Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino 61029, Italy and Endocannabinoid Research Group
| | - Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Roberta Imperatore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Giovanna Morello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Andrea Martella
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli 80078, Italy
| |
Collapse
|
28
|
Zhang WL, Yan WJ, Sun B, Zou ZP. Synergistic effects of atorvastatin and rosiglitazone on endothelium protection in rats with dyslipidemia. Lipids Health Dis 2014; 13:168. [PMID: 25361814 PMCID: PMC4232672 DOI: 10.1186/1476-511x-13-168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 01/13/2023] Open
Abstract
Background Endothelial dysfunction is implicated in the initiation and progression of atherosclerosis. Whether atorvastatin combined with rosiglitazone has synergistic effects on endothelial function improvement in the setting of dyslipidemia is unknown. Methods Dyslipidemia rat model was produced with high-fat and high-cholesterol diet administration. Thereafter, atorvastatin, rosiglitazone or atorvastatin combined with rosiglitazone were prescribed for 2 weeks. At baseline, 6 weeks of dyslipidemia model production, and 2 weeks of medical intervention, fasting blood was drawn for parameters of interest evaluation. At the end, myocardium was used for 15-deoxy-delta-12,14-PGJ2 (15-d-PGJ2) assessment. Results Initially, there was no significant difference of parameters between sham and dyslipidemia groups. With 6 weeks’ high-fat and high-cholesterol diet administration, as compared to sham group, serum levels of triglyceride (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) were significantly increased. Additionally, nitric oxide (NO) production was reduced and serum levels of malondialdehyde (MDA), C-reactive protein (CRP) and asymmetric dimethylarginine (ADMA) were profoundly elevated in dyslipidemia group. After 2 weeks’ medical intervention, lipid profile was slightly improved in atorvastatin and combined groups as compared to control group. Nevertheless, in comparison to control group, NO production was profoundly increased and serum levels of MDA, CRP and ADMA were significantly decreased with atorvastatin or rosiglitazone therapy. 15-d-PGJ2 expression of myocardium was also significantly elevated with atorvastatin or rosiglitazone treatment. Notably, these effects were further enhanced with combined therapy, suggesting that atorvastatin and rosiglitazone had synergistic effects on endothelial protection, and inflammation and oxidation amelioration. Conclusion Atorvastatin and rosiglitazone therapy had synergistic effects on endothelium protection as well as amelioration of oxidative stress and inflammatory reaction in rats with dyslipidemia.
Collapse
Affiliation(s)
| | | | | | - Zhi-Peng Zou
- Department of Cardiology, Hospital of Economic and Technological Development Zone, Yantai, Shandong Province 264001, China.
| |
Collapse
|
29
|
Salcher S, Hagenbuchner J, Geiger K, Seiter MA, Rainer J, Kofler R, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol Cancer 2014; 13:224. [PMID: 25261981 PMCID: PMC4197242 DOI: 10.1186/1476-4598-13-224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
Background FOXO transcription factors control cellular levels of reactive oxygen species (ROS) which critically contribute to cell survival and cell death in neuroblastoma. In the present study we investigated the regulation of C10orf10/DEPP by the transcription factor FOXO3. As a physiological function of C10orf10/DEPP has not been described so far we analyzed its effects on cellular ROS detoxification and death sensitization in human neuroblastoma cells. Methods The effect of DEPP on cellular ROS was measured by catalase activity assay and live cell fluorescence microscopy using the ROS-sensitive dye reduced MitoTracker Red CM-H2XROS. The cellular localization of DEPP was determined by confocal microscopy of EYFP-tagged DEPP, fluorescent peroxisomal- and mitochondrial probes and co-immunoprecipitation of the PEX7 receptor. Results We report for the first time that DEPP regulates ROS detoxification and localizes to peroxisomes and mitochondria in neuroblastoma cells. FOXO3-mediated apoptosis involves a biphasic ROS accumulation. Knockdown of DEPP prevented the primary and secondary ROS wave during FOXO3 activation and attenuated FOXO3- and H2O2-induced apoptosis. Conditional overexpression of DEPP elevates cellular ROS levels and sensitizes to H2O2 and etoposide-induced cell death. In neuronal cells, cellular ROS are mainly detoxified in peroxisomes by the enzyme CAT/catalase. As DEPP contains a peroxisomal-targeting-signal-type-2 (PTS2) sequence at its N-terminus that allows binding to the PEX7 receptor and import into peroxisomes, we analyzed the effect of DEPP on cellular detoxification by measuring enzyme activity of catalase. Catalase activity was reduced in DEPP-overexpressing cells and significantly increased in DEPP-knockdown cells. DEPP directly interacts with the PEX7 receptor and localizes to the peroxisomal compartment. In parallel, the expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARG), a critical regulator of catalase enzyme activity, was strongly upregulated in DEPP-knockdown cells. Conclusion The combined data indicate that in neuroblastoma DEPP localizes to peroxisomes and mitochondria and impairs cellular ROS detoxification, which sensitizes tumor cells to ROS-induced cell death. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-224) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
30
|
Yang T, Li X, Zhu W, Chen C, Sun Z, Tan Z, Kang J. Alteration of antioxidant enzymes and associated genes induced by grape seed extracts in the primary muscle cells of goats in vitro. PLoS One 2014; 9:e107670. [PMID: 25238394 PMCID: PMC4169554 DOI: 10.1371/journal.pone.0107670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants.
Collapse
Affiliation(s)
- Tan Yang
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| | - Xiaomin Li
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Wang Zhu
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Cheng Chen
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Molecular Nutrition, Southwest University, Chongqing, P. R. China
- * E-mail: (ZS); (ZT)
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P.R. China
- * E-mail: (ZS); (ZT)
| | - Jinghe Kang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P.R. China
| |
Collapse
|
31
|
Peroxisome Proliferator Activator Receptor (PPAR)- γ Ligand, but Not PPAR- α , Ameliorates Cyclophosphamide-Induced Oxidative Stress and Inflammation in Rat Liver. PPAR Res 2014; 2014:626319. [PMID: 24803924 PMCID: PMC3996363 DOI: 10.1155/2014/626319] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatoprotective potential of peroxisome proliferator activator receptor (PPAR)-α and -γ agonists, fenofibrate (FEN), and pioglitazone (PIO), respectively, against cyclophosphamide (CP)-induced toxicity has been investigated in rat. FEN and PIO (150 and 10 mg/kg/day, resp.) were given orally for 4 weeks. In separate groups, CP (150 mg/kg, i.p.) was injected as a single dose 5 days before the end of experiment, with or without either PPAR agonist. CP induced hepatotoxicity, as it caused histopathological alterations, with increased serum alanine and aspartate transaminases, total bilirubin, albumin, alkaline phosphatase and lactate dehydrogenase. CP caused hepatic oxidative stress, indicated by decrease in tissue reduced glutathione, with increase in malondialdehyde and nitric oxide levels. CP also caused decrease in hepatic antioxidant enzyme levels, including catalase, superoxide dismutase, glutathione peroxidase, and glutathione S-transferase. Furthermore, CP increased serum and hepatic levels of the inflammatory marker tumor necrosis factor (TNF)-α, evaluated using ELISA. Preadministration of PIO, but not FEN, prior to CP challenge improved hepatic function and histology, and significantly reversed oxidative and inflammatory parameters. In conclusion, activation of PPAR-γ, but not PPAR-α, conferred protection against CP-induced hepatotoxicity, via activation of antioxidant and anti-inflammatory mechanisms, and may serve as supplement during CP chemotherapy.
Collapse
|
32
|
Kodydková J, Vávrová L, Kocík M, Žák A. Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol (Praha) 2014; 60:153-67. [PMID: 25152049 DOI: 10.14712/fb2014060040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Catalase (CAT) is a well-studied enzyme that plays an important role in protecting cells against the toxic effects of hydrogen peroxide. In human, it has been implicated in different physiological and pathological conditions. This review summarizes the information available on the function and role of CAT polymorphisms in pathogenesis of various pathophysiological states as well as on the regulation of CAT gene expression. Numerous studies have described the CAT polymorphisms and their link with various diseases. Changes in the CAT levels were reported in many different diseases and polymorphisms in the CAT gene were shown to be associated with different pathophysiological states, e.g. hypertension, diabetes mellitus, insulin resistance, dyslipidaemia, asthma, bone metabolism or vitiligo. Regulation of the CAT gene expression plays an important role in the levels of CAT. The catalase gene expression is regulated by various mechanisms involving e.g. peroxisome proliferator-activated receptor γ (PPARγ), tumour necrosis factor α (TNF-α), p53 protein and hypermethylation of CpG islands in the catalase promoter. Transcription of the CAT gene is mainly influenced by the -262 C/T and -844 A/G polymorphisms. A common polymorphism -262 C/T in the promoter region has been found to be associated with altered CAT activities. Apart from genetic factors, the activities of CAT may be affected by age, seasonal variations, physical activity, or a number of chemical compounds. Future investigations are necessary to elucidate the role of CAT in pathogenesis of oxidative stress-related diseases.
Collapse
Affiliation(s)
- J Kodydková
- 4th Department of Internal Medicine - Department of Gastroenterology and Hepatology of the First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - L Vávrová
- 4th Department of Internal Medicine - Department of Gastroenterology and Hepatology of the First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - M Kocík
- 4th Department of Internal Medicine - Department of Gastroenterology and Hepatology of the First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - A Žák
- 4th Department of Internal Medicine - Department of Gastroenterology and Hepatology of the First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| |
Collapse
|
33
|
Kim T, Yang Q. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J Cardiol 2013; 5:164-174. [PMID: 23802046 PMCID: PMC3691497 DOI: 10.4330/wjc.v5.i6.164] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/06/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023] Open
Abstract
Peroxisome-proliferator-activated receptors (PPARs) comprise three subtypes (PPARα, δ and γ) to form a nuclear receptor superfamily. PPARs act as key transcriptional regulators of lipid metabolism, mitochondrial biogenesis, and anti-oxidant defense. While their roles in regulating lipid metabolism have been well established, the role of PPARs in regulating redox activity remains incompletely understood. Since redox activity is an integral part of oxidative metabolism, it is not surprising that changes in PPAR signaling in a specific cell or tissue will lead to alteration of redox state. The effects of PPAR signaling are directly related to PPAR expression, protein activities and PPAR interactions with their coregulators. The three subtypes of PPARs regulate cellular lipid and energy metabolism in most tissues in the body with overlapping and preferential effects on different metabolic steps depending on a specific tissue. Adding to the complexity, specific ligands of each PPAR subtype may also display different potencies and specificities of their role on regulating the redox pathways. Moreover, the intensity and extension of redox regulation by each PPAR subtype are varied depending on different tissues and cell types. Both beneficial and adverse effects of PPAR ligands against cardiovascular disorders have been extensively studied by many groups. The purpose of the review is to summarize the effects of each PPAR on regulating redox and the underlying mechanisms, as well as to discuss the implications in the cardiovascular system.
Collapse
|