1
|
Grabowska K, Grabowski M, Burek M, Meybohm P, Przybyła M, Barski JJ, Małecki A, Nowacka-Chmielewska M. Exercise Training Alters the Hippocampal Expression of Blood-Brain Barrier Components and Behavior of Western Diet-Fed Female Rats. Mol Neurobiol 2025:10.1007/s12035-025-04873-x. [PMID: 40164886 DOI: 10.1007/s12035-025-04873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Overeating highly palatable foods typical of a Western diet (WD) has been linked to cognitive impairments in animal models and humans. Exercise training was proposed as an important behavioral intervention with beneficial effects, including improving peripheral insulin sensitivity, improving central functions such as learning and memory, and restoring a dysregulated blood-brain barrier (BBB). The purpose of the present study was to characterize the effect of exercise training in rats fed with the WD with special emphasis on BBB. Adult female Long Evans rats were subjected to 12 weeks of WD feeding (WD group), or simultaneous WD feeding and wheel-running training (WD/EX group), or were fed a WD for 6 weeks without training and then subjected to diet and training for an additional 6 weeks (WD_WD/EX group). A sedentary (untrained) group of lean rats was fed a standard rodent chow (CTR group). In all experimental groups, we measured behavioral and physiological parameters, and the hippocampal levels of proteins structurally and functionally related to BBB, including proinflammatory cytokines and products of elevated lipid peroxidation. Exercise training in combination with a WD decreased locomotor and exploratory activities and induced short-term memory impairments. The behavioral changes were accompanied by reduced levels of occludin, claudin-5, and ZO-1 proteins in the hippocampus, suggesting changes in the integrity and increased permeability of BBB. In the WD_WD/EX rats, we found increased hippocampal levels of malondialdehyde (MDA) and neurotrophins (Bdnf, Vegfa) suggesting that increased energy expenditure by obese rats stimulates endogenous protective processes. The training introduced after 6 weeks of WD feeding in rats showing an obese phenotype may suggest that the sequence and moment of presumably protective intervention (exercise training) could alleviate or, on the contrary, exacerbate the level of stress and its consequences.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Małgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jarosław J Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
2
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 PMCID: PMC11649572 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Weber CM, Moiz B, Clyne AM. Brain microvascular endothelial cell metabolism and its ties to barrier function. VITAMINS AND HORMONES 2024; 126:25-75. [PMID: 39029976 PMCID: PMC11756814 DOI: 10.1016/bs.vh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Brain microvascular endothelial cells, which lie at the interface between blood and brain, are critical to brain energetics. These cells must precisely balance metabolizing nutrients for their own demands with transporting nutrients into the brain to sustain parenchymal cells. It is essential to understand this integrated metabolism and transport so that we can develop better diagnostics and therapeutics for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, and traumatic brain injury. In this chapter, we first describe brain microvascular endothelial cell metabolism and how these cells regulate both blood flow and nutrient transport. We then explain the impact of brain microvascular endothelial cell metabolism on the integrity of the blood-brain barrier, as well as how metabolites produced by the endothelial cells impact other brain cells. We detail some ways that cell metabolism is typically measured experimentally and modeled computationally. Finally, we describe changes in brain microvascular endothelial cell metabolism in aging and neurodegenerative diseases. At the end of the chapter, we highlight areas for future research in brain microvascular endothelial cell metabolism. The goal of this chapter is to underscore the importance of nutrient metabolism and transport at the brain endothelium for cerebral health and neurovascular disease treatment.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States.
| |
Collapse
|
5
|
Dong T, Li H. Neurological risks arising from the bioaccumulation of heavy metal contaminants: A focus on mercury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2692-2705. [PMID: 38240341 DOI: 10.1002/tox.24119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 04/17/2024]
Abstract
This study investigated the concentrations of heavy metals in the water sources of the upstream region of the Huangpu River, the Yangtze River Estuary, and various areas in Shanghai, as well as the heavy metal concentrations in the blood of Shanghai residents. It aimed to analyze the heavy metal elements absorbed by the human body and the resulting pathological effects. The results revealed that surface water primarily contains five heavy metals: copper (Cu), lead (Pb), zinc (Zn), arsenic (As), and mercury (Hg), while water sediments primarily contain seven heavy metals: Cu, cadmium (Cd), Pb, chromium (Cr), Zn, As, and Hg. The main heavy metals present in the human body are Pb, Hg, As, and Cd. By reviewing previous articles, it was found that heavy metal concentrations in human blood are higher than those in surface water, suggesting uncertainties in the heavy metal content of surface water and its tendency to settle at the bottom. Furthermore, a comparison of heavy metal content in sediments revealed that Hg is the most readily absorbed heavy metal by the human body and is also a toxic environmental pollutant. Within the cell, Hg is highly toxic to mitochondria and may cause oxidative stress and neurodegenerative disease. This study concludes that water sediments serve as the major source of pollution in the human body and pose significant health risks, thereby necessitating the implementation of effective preventive measures.
Collapse
Affiliation(s)
- Tianyu Dong
- Municipal Environmental Engineering College, Qingdao University of Technology, Qingdao, China
- Shanghai WLSA Academy, Shanghai, China
| | - Hanxuan Li
- Municipal Environmental Engineering College, Qingdao University of Technology, Qingdao, China
- Shanghai WLSA Academy, Shanghai, China
| |
Collapse
|
6
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Gao Y, Wang H, Fu G, Feng Y, Wu W, Yang H, Zhang Y, Wang S. DNA methylation analysis reveals the effect of arsenic on gestational diabetes mellitus. Genomics 2023; 115:110674. [PMID: 37392895 DOI: 10.1016/j.ygeno.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Arsenic (As) exposure is one of the risk factors for gestational diabetes mellitus (GDM). This study aimed to explore the effect of As-exposure on DNA methylation in GDM and to establish a risk assessment model of GDM in As exposed pregnant women. METHOD We collected elbow vein blood of pregnant women before delivery to measure As concentration and DNA methylation data. Then compared the DNA methylation data and established a nomogram. RESULT We identified a total of 10 key differentially methylated CpGs (DMCs) and found 6 corresponding genes. Functions were enriched in Hippo signaling pathway, cell tight junction, prophetic acid metabolism, ketone body metabolic process, and antigen processing and presentation. A nomogram was established that can predict GDM risks (c-index = 0.595, s:p = 0.973). CONCLUSION We found 6 genes associated with GDM with high As exposure. The prediction of the nomograms has been proven to be effective.
Collapse
Affiliation(s)
- Ying Gao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China; Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hu Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Gan Fu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Hailan Yang
- Department of Obstetrics, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yawei Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
8
|
Archie SR, Sifat AE, Zhang Y, Villalba H, Sharma S, Nozohouri S, Abbruscato TJ. Maternal e-cigarette use can disrupt postnatal blood-brain barrier (BBB) integrity and deteriorates motor, learning and memory function: influence of sex and age. Fluids Barriers CNS 2023; 20:17. [PMID: 36899432 PMCID: PMC9999561 DOI: 10.1186/s12987-023-00416-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS), also commonly known as electronic cigarettes (e-cigs) are considered in most cases as a safer alternative to tobacco smoking and therefore have become extremely popular among all age groups and sex. It is estimated that up to 15% of pregnant women are now using e-cigs in the US which keeps increasing at an alarming rate. Harmful effects of tobacco smoking during pregnancy are well documented for both pregnancy and postnatal health, however limited preclinical and clinical studies exist to evaluate the long-term effects of prenatal e-cig exposure on postnatal health. Therefore, the aim of our study is to evaluate the effect of maternal e-cig use on postnatal blood-brain barrier (BBB) integrity and behavioral outcomes of mice of varying age and sex. In this study, pregnant CD1 mice (E5) were exposed to e-Cig vapor (2.4% nicotine) until postnatal day (PD) 7. Weight of the offspring was measured at PD0, PD7, PD15, PD30, PD45, PD60 and PD90. The expression of structural elements of the BBB, tight junction proteins (ZO-1, claudin-5, occludin), astrocytes (GFAP), pericytes (PDGFRβ) and the basement membrane (laminin α1, laminin α4), neuron specific marker (NeuN), water channel protein (AQP4) and glucose transporter (GLUT1) were analyzed in both male and female offspring using western blot and immunofluorescence. Estrous cycle was recorded by vaginal cytology method. Long-term motor and cognitive functions were evaluated using open field test (OFT), novel object recognition test (NORT) and morris water maze test (MWMT) at adolescence (PD 40-45) and adult (PD 90-95) age. In our study, significantly reduced expression of tight junction proteins and astrocyte marker were observed in male and female offspring until PD 90 (P < 0.05). Additionally, prenatally e-cig exposed adolescent and adult offspring showed impaired locomotor, learning, and memory function compared to control offspring (P < 0.05). Our findings suggest that prenatal e-cig exposure induces long-term neurovascular changes of neonates by disrupting postnatal BBB integrity and worsening behavioral outcomes.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
9
|
Zhang J, Fan W, Neng L, Chen B, Wang Y, Zuo B, Lu W. Adenosine improves LPS-induced ROS expression and increasing in monolayer permeability of endothelial cell via acting on A2AR. Microvasc Res 2022; 143:104403. [PMID: 35753505 DOI: 10.1016/j.mvr.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
Blood-labyrinth barrier (BLB) disruption plays a crucial role in the development of otitis media. The aims of our study was to explore the role and action mechanism of adenosine in LPS-induced endothelial cells (ECs) damage, which are one of the major principal cell type for blood-labyrinth barrier (BLB), and so as to assess the potential of adenosine to be used in the treatment of BLB disruption in animal experiment. In our study, ECs were treated with LPS to mimic BLB damage in vitro. Our data showed that adenosine at dosage of 1, 10, and 20 μM had no influence on the cell viability of ECs. LPS treatment obviously suppressed the expression of Occludin and Zonula occludens-1 (ZO-1) in ECs, which was partly recused by adenosine treatment. Meantime, LPS-induced increasing in reactive oxygen species (ROS) production and ECs permeability also was rescued by adenosine treatment. However, inhibition the A2A receptor (A2AR) could attenuate the influence of adenosine on LPS-treated ECs, indicating that adenosine alleviated LPS-induced BLB damage by activating A2AR. Moreover, the inhibition of adenosine to LPS-induced inactivation of AMPK/AKT signaling pathway was partly recused by A2AR suppression. In addition, Compound C (an AMPK inhibitor) decreased the expression of Occludin and ZO-1 in ECs following LPS combined with adenosine treatment. In conclusion, adenosine alleviates LPS-induced BLB damage via AMPK/AKT pathway through activation of A2AR. This work suggests that adenosine may be a candidate drug for the treatment of BLB dysfunction-related diseases.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Wenya Fan
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Lingling Neng
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Bei Chen
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yanting Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No 16, Jiangsu Road, Qingdao, Shandong, China
| | - Bin Zuo
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Wei Lu
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
10
|
Zhu N, Wei M, Yuan L, He X, Chen C, Ji A, Zhang G. Claudin-5 relieves cognitive decline in Alzheimer's disease mice through suppression of inhibitory GABAergic neurotransmission. Aging (Albany NY) 2022; 14:3554-3568. [PMID: 35471411 PMCID: PMC9085235 DOI: 10.18632/aging.204029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer’s disease (AD) is characterized by progressive cognitive decline, which is considered as the most common form of dementia in the elderly. Recently, it is suggested that impaired cerebrovascular function may precede the onset of AD. Claudin-5, which is the most enriched tight junction protein, has been reported to prevent the passage of damaging material at the blood-brain barrier. However, whether claudin-5 impacts AD has no direct evidence. We found a decrease level of claudin-5 in the hippocampus of AD and elder mice. And intravenous injection of claudin-5 improved learning and memory ability in these mice, while knockout of the protein led to impaired learning and memory and long-term potentiation in adult control mice. Furthermore, the effects of claudin-5 are mediated by suppressing inhibitory GABAergic neurotransmission. Our results suggest benefit effects of claudin-5 on learning and memory, which may provide a new treatment strategy for AD.
Collapse
Affiliation(s)
- Ning Zhu
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China.,Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Meidan Wei
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Linguang Yuan
- College of Basic Medicine, Changsha Medical University, Changsha 410219, China
| | - Xiaodan He
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Chunli Chen
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Aimin Ji
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528244, China
| | - Guozeng Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng 475004, China
| |
Collapse
|
11
|
Meuren LM, Prestes EB, Papa MP, de Carvalho LRP, Mustafá YM, da Costa LS, Da Poian AT, Bozza MT, Arruda LB. Infection of Endothelial Cells by Dengue Virus Induces ROS Production by Different Sources Affecting Virus Replication, Cellular Activation, Death and Vascular Permeability. Front Immunol 2022; 13:810376. [PMID: 35185902 PMCID: PMC8847576 DOI: 10.3389/fimmu.2022.810376] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 01/20/2023] Open
Abstract
Exacerbated inflammatory response and altered vascular function are hallmarks of dengue disease. Reactive oxygen species (ROS) production has been associated to endothelial barrier disturbance and microvascular alteration in distinct pathological conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV) infection, but its impact for endothelial cell physiology had not been fully investigated. Our group had previously demonstrated that infection of human brain microvascular endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and production of proinflammatory cytokines, which culminate in cell death and endothelial permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase (NOX) activation for ROS generation in HBMEC infected by DENV and investigated whether altered cellular physiology could be a consequence of virus-induced oxidative stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity and altered membrane potential, indicating functional mitochondrial alteration, what might be related to mtROS production. Indeed, mtROS was detected at later time points after infection. Specific inhibition of mtROS diminished virus replication, cell death, and endothelial permeability, but did not affect cytokine production. On the other hand, inhibition of NOX-associated ROS production decreased virus replication and cell death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and CCL5. These results demonstrated that DENV replication in endothelial cells induces ROS production by different pathways, which impacts biological functions that might be relevant for dengue pathogenesis. Those data also indicate oxidative stress events as relevant therapeutical targets to avoid vascular permeability, inflammation, and neuroinvasion during DENV infection.
Collapse
Affiliation(s)
- Lana Monteiro Meuren
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Beatriz Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Premazzi Papa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | | | - Yasmin Mucunã Mustafá
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Silva da Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Torres Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Barros Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Liu L, Wang N, Kalionis B, Xia S, He Q. HMGB1 plays an important role in pyroptosis induced blood brain barrier breakdown in diabetes-associated cognitive decline. J Neuroimmunol 2022; 362:577763. [PMID: 34844084 DOI: 10.1016/j.jneuroim.2021.577763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus increases the risk of dementia, and evidence suggests hyperglycemia is a key contributor to neurodegeneration. However, our understanding of diabetes-associated cognitive decline, an important complication of diabetes mellitus, is lacking and the underlying mechanism is unclear. Blood brain barrier (BBB) breakdown is a possible cause of dementia in diabetes mellitus and Alzheimer's disease. Accumulating evidence shows BBB dysfunction caused by hyperglycemia contributes to cognitive decline. A specific type of inflammatory programmed cell death, called pyroptosis, has potential as a therapeutic target for BBB-associated diseases. Potential inducers of pyroptosis include inflammasomes such as NLRP3, whose activation relies on damage-associated molecular patterns. High mobility group box 1 (HMGB1) is a highly conserved, ubiquitous protein found in most cell types, and acts as a damage-associated molecular pattern when released from the nucleus. We propose that HMGB1 influences vascular inflammation by activating the NLRP3 inflammasome and thereby initiating pyroptosis in vascular cells. Moreover, HMGB1 plays a pivotal role in the pathogenesis of diabetes mellitus and diabetic complications. Here, we review the role of HMGB1 in BBB dysfunction induced by hyperglycemia and propose that HMGB1 is a promising therapeutic target for countering diabetes-associated cognitive decline.
Collapse
Affiliation(s)
- Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Neng Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Australia; University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Australia
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China.
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China; Hunan University of Medicine, Huaihua, PR China.
| |
Collapse
|
13
|
Ameri N, Nobahar M, Ghorbani R, Bazghalee M, Sotodeh-Asl N, Babamohamadi H. Effect of reminiscence on cognitive impairment and depression in haemodialysis patients. J Ren Care 2021; 47:208-216. [PMID: 33423401 DOI: 10.1111/jorc.12359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cognitive impairment and depression are common problems in haemodialysis patients. AIM The present study was carried out to determine the impact of reminiscence on cognitive impairment and depression in haemodialysis patients. DESIGN This clinical trial (2016) was conducted with a pretest-posttest design on the haemodialysis patients of hospitals in Shahrud, Iran. PARTICIPANTS AND MEASUREMENTS Block random sampling was used to investigate the patients' cognitive status and Beck's Depression Scale were administered among 75 patients divided into intervention (given 12 sessions of Stinson's group reminiscence), control (group discussions), and sham (without any intervention) groups before, immediately and 30 days after the intervention. RESULTS Immediately and 30 days after the intervention, the cognitive score was significantly higher in the reminiscence group than the control (p < 0.001) and sham (p < 0.001) groups. Immediately after the intervention, the depression score was significantly lower in the reminiscence group than the control (p = 0.011) and sham (p < 0.001) groups. Also, immediately and 30 days after the intervention, the depression score was significantly lower in the reminiscence group than the control (p = 0.031) and sham (p < 0.001) groups. CONCLUSIONS The findings showed that reminiscence increased the cognitive health score and improved depression in haemodialysis patients. Therefore, reminiscence protocols can be utilized as an independent routine nursing care measure for improving cognitive status and depression in haemodialysis patients.
Collapse
Affiliation(s)
- Neda Ameri
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Monir Nobahar
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Nursing, Faculty of Nursing and Midwifery, Semnan University of Medical Sciences, Semnan, Iran
| | - Raheb Ghorbani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Bazghalee
- Department of Nursing, Faculty of Nursing and Midwifery, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nemath Sotodeh-Asl
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Nursing, Faculty of Nursing and Midwifery, Semnan University of Medical Sciences, Semnan, Iran
| | - Hassan Babamohamadi
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Nursing, Faculty of Nursing and Midwifery, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Koh YQ, Ng DQ, Ng CC, Boey A, Wei M, Sze SK, Ho HK, Acharya M, Limoli CL, Chan A. Extracellular Vesicle Proteome of Breast Cancer Patients with and Without Cognitive Impairment Following Anthracycline-based Chemotherapy: An Exploratory Study. Biomark Insights 2021; 16:11772719211018204. [PMID: 34103887 PMCID: PMC8150437 DOI: 10.1177/11772719211018204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment due to cancer and its therapy is a major concern among cancer patients and survivors. Extracellular vesicle (EVs) composition altered by cancer and chemotherapy may affect neurological processes such as neuroplasticity, potentially impacting the cognitive abilities of cancer patients and survivors. We investigated the EV proteome of breast cancer patients with and without cognitive impairment following anthracycline-based chemotherapy from longitudinally collected plasma. EVs were cup-shaped and positive for Flotillin-1 and TSG-101. We identified 517 differentially expressed EV proteins between the cognitive impaired and non-impaired groups during and post-chemotherapy. The observed decreased expression of p2X purinoceptor, cofilin-1, ADAM 10, and dynamin-1 in the plasma EVs of the cognitive impaired group may suggest alterations in the mechanisms underlying synaptic plasticity. The reduced expression of tight junction proteins among cognitive-impaired patients may imply weakening of the blood-brain barrier. These EV protein signatures may serve as a fingerprint that underscores the mechanisms underlying cognitive impairment in cancer patients and survivors.
Collapse
Affiliation(s)
- Yong Qin Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Ding Quan Ng
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA
| | - Chiu Chin Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Adrian Boey
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Meng Wei
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Munjal Acharya
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Alexandre Chan
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.,Department of Oncology Pharmacy, National Cancer Centre Singapore, Singapore
| |
Collapse
|
15
|
Ramelteon Ameliorates LPS-Induced Hyperpermeability of the Blood-Brain Barrier (BBB) by Activating Nrf2. Inflammation 2021; 44:1750-1761. [PMID: 33876343 DOI: 10.1007/s10753-021-01451-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The blood-brain barrier (BBB) is important for protecting the brain tissue by selectively exchanging substances between the blood and brain. The integrity of the BBB can be damaged by multiple factors, including oxidative stress and inflammation. Ramelteon is an oral hypnotic drug, and in the present study, we investigated its protective effect on BBB damage, as well as the underlying mechanism. LPS was used to induce BBB damage on mice and stimulate injury on endothelial cells. Evans blue staining assay was used to measure the brain permeability. The expressions of ZO-1 and Occludin were evaluated using immunostaining and Western blot in the brain tissue and endothelial cells, respectively. qRT-PCR and ELISA were used to detect the production of IL-1β and MCP-1 in the brain vessels. TBA assay was utilized to examine the concentration of MDA in the brain tissue and endothelial cells. The expression of Nrf2 in the nucleus and NQO1 were determined using Western blot assay. The endothelial permeability of the monolayer was examined using the FITC-dextran permeation assay. Firstly, the increased brain permeability and downregulated expression of tight junction proteins in the brain tissue induced by LPS were significantly reversed by treatment with Ramelteon, accompanied by the decrease in the production of IL-1β and MCP-1 in the vessels in mice. Also, the Nrf2 signaling was activated and oxidative stress in the brain vessels was alleviated by treatment with Ramelteon. Secondly, LPS-induced increase in endothelial monolayer permeability and decrease in tight junction protein expression in bEnd.3 brain endothelial cells were significantly reversed by Ramelteon, accompanied by activated Nrf2 signaling and alleviated oxidative stress. Lastly, the protective effects of Ramelteon against LPS-induced reduction of ZO-1 and Occludin, and the increase in endothelial monolayer permeability were dramatically abolished by silencing Nrf2. Ramelteon might ameliorate LPS-induced hyperpermeability of the BBB by activating the Nrf2 signaling pathway.
Collapse
|
16
|
CdSe/ZnS Core-Shell-Type Quantum Dot Nanoparticles Disrupt the Cellular Homeostasis in Cellular Blood-Brain Barrier Models. Int J Mol Sci 2021; 22:ijms22031068. [PMID: 33499077 PMCID: PMC7866238 DOI: 10.3390/ijms22031068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).
Collapse
|
17
|
Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother 2020; 132:110887. [PMID: 33254429 DOI: 10.1016/j.biopha.2020.110887] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with multiple predisposing factors and complicated pathogenesis. Aβ peptide is one of the most important pathogenic factors in the etiology of AD. Accumulating evidence indicates that the imbalance of Aβ production and Aβ clearance in the brain of AD patients leads to Aβ deposition and neurotoxic Aβ oligomer formation. Melatonin shows a potent neuroprotective effect and can prevent or slow down the progression of AD, supporting the view that melatonin is a potential therapeutic molecule for AD. Melatonin modulates the regulatory network of secretase expression and affects the function of secretase, thereby inhibiting amyloidogenic APP processing and Aβ production. Additionally, melatonin ameliorates Aβ-induced neurotoxicity and probably promotes Aβ clearance through glymphatic-lymphatic drainage, BBB transportation and degradation pathways. In this review, we summarize and discuss the role of melatonin against Aβ-dependent AD pathogenesis. We explore the potential cellular and molecular mechanisms of melatonin on Aβ production and assembly, Aβ clearance, Aβ neurotoxicity and circadian cycle disruption. We summarize multiple clinical trials of melatonin treatment in AD patients, showing that melatonin has a promising effect on improving sleep quality and cognitive function. This review aims to stimulate further research on melatonin as a potential therapeutic agent for AD.
Collapse
|
18
|
Guo Y, Zhang Q, Chen H, Jiang Y, Gong P. Overexpression of calcitonin gene-related peptide protects mouse cerebral microvascular endothelial cells from high-glucose-induced damage via ERK/HIF-1/VEGF signaling. J Physiol Sci 2019; 69:939-952. [PMID: 31487015 PMCID: PMC10716975 DOI: 10.1007/s12576-019-00708-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/28/2019] [Indexed: 02/05/2023]
Abstract
In the diabetic brain, hyperglycemia damages the cerebrovasculature and impairs neurovascular crosstalk. Calcitonin gene-related peptide (CGRP) is an important neuropeptide that is active in the vascular system. In this study, we aimed to investigate whether CGRP is involved in the high-glucose-induced damage in mouse cerebral microvascular endothelial (b.END3) cells and the possible mechanism in vitro. The overexpression of CGRP by lentiviral transduction inhibited cell apoptosis but not proliferation. In contrast to the promoting of angiogenesis and migration under normal glucose, CGRP inhibited hyperglycemia-induced tube formation but had no effect on migration. Calcitonin gene-related peptide partly reduced the increased level of intracellular reactive oxygen species (ROS) and altered nitric oxide synthase mRNA expression. Furthermore, CGRP suppressed the increased HIF-1α/VEGF-A expression and the phosphorylation of ERK1/2 in hyperglycemia. The ERK inhibitor U0126 showed similar inhibition of cell apoptosis, tube formation and HIF-1α/VEGF expression as that exhibited by lenti-CGRP. These findings demonstrate the protective role of CGRP overexpression against high-glucose-induced cerebrovascular changes in b.END3 cells, possibly through the inhibition of ERK/HIF-1/VEGF signaling.
Collapse
Affiliation(s)
- Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
High HbA 1c level is correlated with blood-brain barrier disruption in syphilis patients. Neurol Sci 2019; 41:83-90. [PMID: 31440863 DOI: 10.1007/s10072-019-04031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Diabetes mellitus (DM) and neurosyphilis (NS) may both damage the blood-brain barrier (BBB). It seems that non-neurosyphilis (non-NS) patients with high HbA1c levels are likely to develop into NS. However, the correlation of HbA1c level with BBB disruption in syphilis (non-NS) patients is unclear. In this study, we used dynamic contrast-enhanced (DCE) MRI to quantify regional BBB permeability in syphilis (non-NS) patients and detected several molecular biomarkers of cerebrospinal fluid (CSF). We found that BBB permeability values in the hippocampus, white matter, and cortex inferior temporal gyrus were correlated with albumin quotient (Qalb), CSF concentrations of interleukin IL-6 and IL-10. Moreover, BBB breakdown in white matter was correlated with CSF concentrations of sICAM-1 and sVCAM-1. In conclusion, our data suggest that BBB integrity may be liable to be disrupted in syphilis (non-NS) patients, patients with high HbA1c levels, as well as syphilis (non-NS) patients with high HbA1c levels, and it is particularly important to control blood glucose in these patients.
Collapse
|
20
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
22
|
Minchenko DO, Tsymbal DO, Yavorovsky OP, Solokha NV, Minchenko OH. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles. Endocr Regul 2017; 51:84-95. [PMID: 28609285 DOI: 10.1515/enr-2017-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. METHODS Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. RESULTS Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. CONCLUSIONS The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.
Collapse
|
23
|
Ma SC, Li Q, Peng JY, Zhouwen JL, Diao JF, Niu JX, Wang X, Guan XD, Jia W, Jiang WG. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci Ther 2017; 23:947-960. [PMID: 28961379 DOI: 10.1111/cns.12764] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS To investigate the roles of Claudin-5 (CLDN5) in regulating the permeability of the blood-brain barrier (BBB) during lung cancer brain metastasis. RESULTS By silencing and overexpressing the CLDN5 gene in human brain vascular endothelial (hCMEC/D3) cells, we demonstrated the attenuation of cell migration ability and CLDN5's significant positive role in cell proliferation in CLDN5-overexpressing hCMEC/D3 cells and observed the opposite result in the CLDN5 knockdown group. The reinforced CLDN5 expression reduced the paracellular permeability of hCMEC/D3 cells and decreased the invasion of lung adenocarcinoma A549 cells. Overall, 1685 genes were found to be differentially expressed between the CLDN5-overexpressing cells and the control cells using the Affymetrix Human Transcriptome Array 2.0 (HTA 2.0), and the function of these genes was determined by Gene Ontology and pathway analyses. The possible biological functions of the 1685 genes include cell proliferation, adhesion molecules, and the Jak-STAT, PI3K-Akt, Wnt, and Notch signaling pathways. The identified sets of mRNAs that were specific to CLDN5-overexpressing hCMEC/D3 cells were verified by a qRT-PCR experiment. CONCLUSION CLDN5 regulates the permeability of BBB by regulating the proliferation, migration, and permeability of hCMEC/D3 cells, especially through the cell adhesion molecule signaling pathway, to enhance the function of the tight junctions, which was involved in reducing the formation of lung cancer brain metastasis.
Collapse
Affiliation(s)
- Shun-Chang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Qi Li
- Core Laboratory for Clinical Medical Research, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Jia-Yi Peng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Long Zhouwen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jin-Fu Diao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xing Niu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu-Dong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Guo Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
24
|
Liu WC, Wang X, Zhang X, Chen X, Jin X. Melatonin Supplementation, a Strategy to Prevent Neurological Diseases through Maintaining Integrity of Blood Brain Barrier in Old People. Front Aging Neurosci 2017; 9:165. [PMID: 28596733 PMCID: PMC5442221 DOI: 10.3389/fnagi.2017.00165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
Blood brain barrier (BBB) plays a crucial role in maintaining homeostasis of microenvironment that is essential to neural function of the central nervous system (CNS). When facing various extrinsic or intrinsic stimuli, BBB is damaged which is an early event in pathogenesis of a variety of neurological diseases in old patients including acute and chronic cerebral ischemia, Alzheimer’s disease and etc. Treatments that could maintain the integrity of BBB may prevent neurological diseases following various stimuli. Old people often face a common stress of sepsis, during which lipopolysaccharide (LPS) is released into circulation and the integrity of BBB is damaged. Of note, there is a significant decrease of melatonin level in old people and animal. Melatonin has been shown to preserves BBB integrity and permeability via a variety of pathways: inhibition of matrix metalloproteinase-9 (MMP-9), inhibition of NADPH oxidase-2, and impact on silent information regulator 1 (SIRT1) and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. More important, a recent study showed that melatonin supplementation alleviates LPS-induced BBB damage in old mice through activating AMP-activated protein kinase (AMPK) and inhibiting gp91phox, suggesting that melatonin supplementation may help prevent neurological diseases through maintaining the integrity of BBB in old people.
Collapse
Affiliation(s)
- Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's HospitalTaiyuan, China
| | - Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xi Chen
- Department of Core Facility, the People's Hospital of Baoan ShenzhenShenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| |
Collapse
|
25
|
Yang G, Qian C, Wang N, Lin C, Wang Y, Wang G, Piao X. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway. Cell Mol Neurobiol 2017; 37:619-633. [PMID: 27380043 PMCID: PMC11482156 DOI: 10.1007/s10571-016-0398-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chen Qian
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Chenyu Lin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Guangyun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Xinxin Piao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
26
|
Wang X, Xue GX, Liu WC, Shu H, Wang M, Sun Y, Liu X, Sun YE, Liu CF, Liu J, Liu W, Jin X. Melatonin alleviates lipopolysaccharide-compromised integrity of blood-brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 2017; 16:414-421. [PMID: 28156052 PMCID: PMC5334533 DOI: 10.1111/acel.12572] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 11/26/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction is considered to be an early event in the pathogenesis of a variety of neurological diseases in old patients, and this could occur in old people even when facing common stress. However, the mechanism remains to be defined. In this study, we tested the hypothesis that decreased melatonin levels may account for the BBB disruption in old mice challenged with lipopolysaccharide (LPS), which mimicked the common stress of sepsis. Mice (24–28 months of age) received melatonin (10 mg kg−1 day−1, intraperitoneally, i.p.) or saline for one week before exposing to LPS (1 mg kg−1, i.p.). Evan's blue dye (EB) and immunoglobulin G (IgG) leakage were used to assess BBB permeability. Immunostaining and Western blot were used to detect protein expression and distribution. Our results showed that LPS significantly increased BBB permeability in old mice accompanied by the degradation of tight junction proteins occludin and claudin‐5, suppressed AMP‐activated protein kinase (AMPK) activation, and elevated gp91phox protein expression. Interestingly, administration of melatonin for one week significantly decreased LPS‐induced BBB disruption, AMPK suppression, and gp91phox upregualtion. Moreover, activation of AMPK with metformin significantly inhibited LPS‐induced gp91phox upregualtion in endothelial cells. Taken together, our findings demonstrate that melatonin alleviates LPS‐induced BBB disruption through activating AMPK and inhibiting gp91phox upregulation in old mice.
Collapse
Affiliation(s)
- Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Gai-Xiu Xue
- Suzhou Municipal Hospital; Suzhou 215002 China
| | - Wen-Cao Liu
- Department of Emergency; Shanxi Provincial People's Hospital; Taiyuan 030001 China
| | - Hui Shu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Mengwei Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Xiaojing Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Yi Eve Sun
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
- Department of Psychiatry and Biobehavioral Sciences; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
- Department of Neurology; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University; Suzhou 215004 China
| | - Jie Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Wenlan Liu
- The Central Laboratory; Shenzhen Second People's Hospital; the First Affiliated Hospital of Shenzhen University; Shenzhen 518035 China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| |
Collapse
|
27
|
Lv JM, Guo XM, Chen B, Lei Q, Pan YJ, Yang Q. The Noncompetitive AMPAR Antagonist Perampanel Abrogates Brain Endothelial Cell Permeability in Response to Ischemia: Involvement of Claudin-5. Cell Mol Neurobiol 2016; 36:745-53. [PMID: 26306919 PMCID: PMC11482450 DOI: 10.1007/s10571-015-0257-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The blood-brain barrier (BBB) is formed by brain endothelial cells, and decreased BBB integrity contributes to vasogenic cerebral edema and increased mortality after stroke. In the present study, we investigated the protective effect of perampanel, an orally active noncompetitive AMPA receptor antagonist, on BBB permeability in an in vitro ischemia model in murine brain endothelial cells (mBECs). The results showed that perampanel significantly attenuated oxygen glucose deprivation (OGD)-induced loss of cell viability, release of lactate dehydrogenase, and apoptotic cell death in a dose-dependent manner. Perampanel treatment did not alter the expression and surface distribution of various glutamate receptors. Furthermore, the results of calcium imaging showed that perampanel had no effect on OGD-induced increase in intracellular Ca(2+) concentrations. Treatment with perampanel markedly reduced the paracellular permeability of mBECs after OGD in different time points, as measured by transepithelial electrical resistance assay. In addition, the expression of claudin-5 at protein level, but not at mRNA level, was increased by perampanel treatment after OGD. Knockdown of claudin-5 partially prevented perampanel-induced protection in cell viability and BBB integrity in OGD-injured mBECs. These data show that the noncompetitive AMPA receptor antagonist perampanel affords protection against ischemic stroke through caludin-5 mediated regulation of BBB permeability.
Collapse
Affiliation(s)
- Jian-Meng Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xiao-Min Guo
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Bo Chen
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qi Lei
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Ya-Juan Pan
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
28
|
Hu M, Liu B. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:325-32. [PMID: 27382348 PMCID: PMC4930900 DOI: 10.4196/kjpp.2016.20.4.325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 07/08/2015] [Accepted: 01/03/2016] [Indexed: 01/11/2023]
Abstract
Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.
Collapse
Affiliation(s)
- Min Hu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Bo Liu
- Deapartment of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
29
|
A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis. Mol Immunol 2016; 72:19-27. [DOI: 10.1016/j.molimm.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/09/2016] [Accepted: 02/12/2016] [Indexed: 01/24/2023]
|
30
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Inositol-Requiring Enzyme 1-Dependent Activation of AMPK Promotes Brucella abortus Intracellular Growth. J Bacteriol 2016; 198:986-93. [PMID: 26755628 DOI: 10.1128/jb.00868-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is well conserved during evolution. AMPK activation inhibits production of reactive oxygen species (ROS) in cells via suppression of NADPH oxidase. However, the role of AMPK during the process of Brucella infection remains unknown. Our data demonstrate that B. abortus infection induces AMPK activation in HeLa cells in a time-dependent manner. The known AMPK kinases LKB1, CAMKKβ, and TAK1 are not required for the activation of AMPK by B. abortus infection. Instead, this activation is dependent on the RNase activity of inositol-requiring enzyme 1 (IRE1). Moreover, we also found that B. abortus infection-induced IRE1-dependent activation of AMPK promotes B. abortus intracellular growth with peritoneal macrophages via suppression of NADPH-derived ROS production. IMPORTANCE Previous studies showed that B. abortus infection does not promote any oxidative burst regulated by NADPH oxidase. However, the underlying mechanism remains elusive. We report for the first time that AMPK activation caused by B. abortus infection plays important role in NADPH oxidase-derived ROS production.
Collapse
|
32
|
Park SH, Shin MJ, Kim DW, Park J, Choi SY, Kang YH. Blockade of monocyte-endothelial trafficking by transduced Tat-superoxide dismutase protein. Int J Mol Med 2015; 37:387-97. [PMID: 26707483 PMCID: PMC4716792 DOI: 10.3892/ijmm.2015.2444] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
It has previously been suggested that reactive oxygen species (ROS) are involved in the pathogenesis of chronic inflammatory diseases, which entails the initial activation of pro-inflammatory cytokines to facilitate leukocyte transmigration. The present study investigated whether intracellular superoxide dismutase (SOD) suppressed monocyte endothelial trafficking and transmigration. Human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes were activated by the cytokine tumor necrosis factor-α (TNF-α) in the absence and presence of cell-permeable transactivator of transcription (Tat)-SOD protein. External stimulation with SOD was conducted using endothelial cells and monocytes. Purified cell-permeable Tat-SOD, but not non-targeted SOD, at 1-3 µM was transduced into endothelial cells in a time‑ and dose-dependent manner. Non-toxic Tat-SOD at ≤0.5 µM, but not 1 µM SOD, blocked the monocyte-endothelium interactions by inhibiting the TNF-α-induced stimulation of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs and integrin β1 in THP-1 cells. Endothelial VCAM-1 induction by TNF-α was responsible for superoxide anion production being quenched by N-acetyl-cysteine and Tat-SOD. SOD treatment markedly inhibited superoxide anion production induced by TNF-α, but no inhibition of endothelial transmigration was noted. Tat-SOD prevented transendothelial monocyte migration by firmly localizing occludin-1, platelet/endothelial cell adhesion molecule‑1 (PECAM-1) and vascular endothelial‑cadherin present in paracellular junctions and inhibiting endothelial induction and activation of matrix-degrading membrane type-1 (MT-1) matrix metalloproteinase (MMP), MMP-2 and MMP-9. By contrast, treatment with 1 µM SOD did not have such effects. Furthermore, transduced Tat-SOD hindered nuclear transactivation of nuclear factor-κB (NF-κB), modulating the induction of paracellular junction proteins and matrix‑degrading MMP in TNF-α‑stimulated HUVECs. Transduced Tat-SOD, but not external SOD, impeded cytokine-induced endothelial adhesion and the transmigration of monocytes. Thus, we suggest that transduced Tat-SOD qualifies as an atheroprotective agent against oxidation-driven and inflammation-associated atherosclerosis.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 200-702, Republic of Korea
| | - Min Jae Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200-702, Republic of Korea
| | - Dae Won Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200-702, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200-702, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200-702, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 200-702, Republic of Korea
| |
Collapse
|
33
|
de Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C, Bernardi C, Nardin P, Gonçalves CA, Achaval M. Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 2015; 1618:75-82. [PMID: 26032744 DOI: 10.1016/j.brainres.2015.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) progressively affects cognitive domains, increases blood-brain barrier (BBB) permeability and promotes neurovascular impairment in specific brain areas. Physical exercise, on the other hand, has beneficial effects on brain functions, improving learning and memory. This study investigated the effects of treadmill training on cognitive and motor behavior, and on the expression of proteins related to BBB integrity, such as claudin-5 and aquaporin-4 (AQP4) in the hippocampus and striatum in diabetic rats. For this study, 60 Wistar rats were divided into four groups (n=15 per group): non-trained control (NTC), trained control (TC), non-trained diabetic (NTD), trained diabetic (TD). After diabetic induction of 30 days by streptozotocin injection, the exercise groups were submitted to 5 weeks of running training. After that, all groups were assessed in a novel object-recognition task (NOR) and the rotarod test. Additionally, claudin-5 and AQP4 levels were measured using biochemical assays. The results showed that exercise enhanced NOR task performance and rotarod ability in the TC and TD animals. Diabetes produced a decrease in claudin-5 expression in the hippocampus and striatum and reduced AQP4 in the hippocampus. Exercise preserved the claudin-5 content in the striatum of TD rats, but not in the hippocampus. The reduction of AQP4 levels produced by diabetes was not reversed by exercise. We conclude that exercise improves short-term memory retention, enhances motor performance in diabetic rats and affects important structural components of the striatal BBB. The results obtained could enhance the knowledge regarding the neurochemical benefits of exercise in diabetes.
Collapse
Affiliation(s)
- Priscylla Nunes de Senna
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Brambilla Bagatini
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiani Saur
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Zanotto
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caren Bernardi
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
34
|
NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention. Healthcare (Basel) 2015; 3:233-51. [PMID: 27417759 PMCID: PMC4939544 DOI: 10.3390/healthcare3020233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.
Collapse
|
35
|
Yu HY, Cai YB, Liu Z. Activation of AMPK improves lipopolysaccharide-induced dysfunction of the blood–brain barrier in mice. Brain Inj 2015; 29:777-84. [DOI: 10.3109/02699052.2015.1004746] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Yu-Bing Cai
- Department of Otorhinolaryngology, The People’s Hospital of Xishui, Huang-Gang, Hubei, PR China, and
| | - Zhan Liu
- Department of Neurology,
- Department of Gastroenterology, People’s Hospital of Hunan Province, Hunan Normal University, Changsha, Hunan, PR China
| |
Collapse
|
36
|
Xiang RL, Mei M, Cong X, Li J, Zhang Y, Ding C, Wu LL, Yu GY. Claudin-4 is required for AMPK-modulated paracellular permeability in submandibular gland cells. J Mol Cell Biol 2014; 6:486-97. [PMID: 25503106 DOI: 10.1093/jmcb/mju048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tight junction plays an important role in mediating paracellular permeability in epithelia. We previously found that activation of AMP-activated protein kinase (AMPK) increased saliva secretion by modulating paracellular permeability in submandibular glands. However, the molecular mechanisms underlying AMPK-modulated paracellular permeability are unknown. In this study, we found that AICAR, an AMPK agonist, increased saliva secretion in the isolated rat submandibular glands, decreased transepithelial electrical resistance (TER), and increased 4 kDa FITC-dextran flux in cultured SMG-C6 cells. AICAR also induced redistribution of tight junction protein claudin-4, but not claudin-1, claudin-3, occludin, or ZO-1, from the cytoplasm to the membrane. Moreover, knockdown of claudin-4 by shRNA suppressed while claudin-4 re-expression restored the TER and 4 kDa FITC-dextran flux responses to AICAR. Additionally, AICAR increased ERK1/2 phosphorylation, and inhibition of ERK1/2 by U0126, an ERK1/2 kinase inhibitor, or by siRNA decreased AICAR-induced TER responses. AICAR induced the serine S199 phosphorylation of claudin-4 and enhanced the interaction of claudin-4 and occludin. Furthermore, pretreatment with U0126 significantly suppressed AMPK-modulated phosphorylation, redistribution, and interaction with occludin of claudin-4. Taken together, these results indicated that claudin-4 played a crucial role in AMPK-modulated paracellular permeability and ERK1/2 was required in AMPK-modulated tight junction barrier function in submandibular gland.
Collapse
Affiliation(s)
- Ruo-Lan Xiang
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Mei Mei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xin Cong
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Jing Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yan Zhang
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Li-Ling Wu
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
37
|
Activation of AMPK attenuates lipopolysaccharide-impaired integrity and function of blood–brain barrier in human brain microvascular endothelial cells. Exp Mol Pathol 2014; 97:386-92. [DOI: 10.1016/j.yexmp.2014.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 12/27/2022]
|
38
|
Huang JY, Li LT, Wang H, Liu SS, Lu YM, Liao MH, Tao RR, Hong LJ, Fukunaga K, Chen Z, Wilcox CS, Lai EY, Han F. In vivo two-photon fluorescence microscopy reveals disturbed cerebral capillary blood flow and increased susceptibility to ischemic insults in diabetic mice. CNS Neurosci Ther 2014; 20:816-22. [PMID: 24712523 DOI: 10.1111/cns.12268] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/16/2014] [Accepted: 03/16/2014] [Indexed: 01/13/2023] Open
Abstract
AIMS Diabetes mellitus increases the risk of stroke, but the mechanisms are unclear. The present study tested the hypothesis that diabetes mellitus disturbs the brain microcirculation and increases the susceptibility to cerebral damage in a middle cerebral artery occlusion (MCAO) model of ischemia. METHODS Diabetes was induced by streptozocin in mice expressing green fluorescent protein in endothelial cells (Tie2-GFP mice). Four weeks later, they were subjected to transient (20 min) MCAO. In vivo blood flow was measured by two-photon laser-scanning microscopy (TPLSM) in cerebral arteries, veins, and capillaries. RESULTS There was a significant decrease in red blood cell (RBC) velocity in capillaries in diabetic mice as assessed by TPLSM, yet the regional cerebral blood flow, as assessed by laser Doppler flowmetry, was maintained. Brain capillary flow developed turbulence after MCAO only in diabetic mice. These mice sustained increased neurological deficits after MCAO which were accompanied by an exaggerated degradation of tight junction proteins and blunted CaMKII phosphorylation in cerebral tissues indicating disruption of the blood-brain barrier and disturbed cognitive potential. CONCLUSION Diabetic mice are more susceptible to disturbances of cerebral capillary blood flow which may predispose them to neurovascular defects following ischemia.
Collapse
Affiliation(s)
- Ji-Yun Huang
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoon N, Dang TQ, Chasiotis H, Kelly SP, Sweeney G. Altered transendothelial transport of hormones as a contributor to diabetes. Diabetes Metab J 2014; 38:92-9. [PMID: 24851202 PMCID: PMC4021306 DOI: 10.4093/dmj.2014.38.2.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The vascular endothelium is a dynamic structure responsible for the separation and regulated movement of biological material between circulation and interstitial fluid. Hormones and nutrients can move across the endothelium either via a transcellular or paracellular route. Transcellular endothelial transport is well understood and broadly acknowledged to play an important role in the normal and abnormal physiology of endothelial function. However, less is known about the role of the paracellular route. Although the concept of endothelial dysfunction in diabetes is now widely accepted, we suggest that alterations in paracellular transport should be studied in greater detail and incorporated into this model. In this review we provide an overview of endothelial paracellular permeability and discuss its potential importance in contributing to the development of diabetes and associated complications. Accordingly, we also contend that if better understood, altered endothelial paracellular permeability could be considered as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Nanyoung Yoon
- Department of Biology, York University, Toronto, ON, Canada
| | - Thanh Q. Dang
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Scott P. Kelly
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
40
|
Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain. Redox Biol 2014; 2:447-56. [PMID: 24624334 PMCID: PMC3949098 DOI: 10.1016/j.redox.2013.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological disorders associated with diabetes. Thioredoxin mimeitics peptides (TXM) lower apoptosis in the brain of ZDF rat. TxM peptides prevent TXNIP/TBP-2 expression in the brain of ZDF rat. TxM peptides could become beneficial for preventing diabetes associated neurological disorders.
Collapse
|
41
|
Jia W, Lu R, Martin TA, Jiang WG. The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Mol Med Rep 2013; 9:779-85. [PMID: 24366267 DOI: 10.3892/mmr.2013.1875] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/19/2013] [Indexed: 11/05/2022] Open
Abstract
Metastatic brain tumours are frequently observed in patients with lung, breast and malignant melanoma and a severe complication of metastatic cancers. With improved primary cancer treatments, including surgery, radiation therapy and chemotherapy, patients are now living longer following initial treatment, compared with previous treatments. Brain metastasis (BM) remains a significant clinical issue. Since BM represents a major therapeutic challenge, it is vital that the mechanisms of interaction between tumour cells and the blood‑brain barrier (BBB), as well as the method by which tumour cells establish metastatic tumours in the brain, are understood. A key step in BM is the interaction and penetration of the BBB by cancer cells. The BBB consists of endothelial cells, pericytes, astrocytes and a number of molecular structures between these cells. The BBB relies on the tight junctions (TJs) that are present between the endothelial cells of the brain capillaries to provide a closed environment for the brain. TJs comprise a number of proteins, including occludin, claudins and junctional adhesion molecules (JAMs). Among them, claudins are the key integral proteins that regulate BBB permeability. It has previously been shown that claudin‑5, not only regulates paracellular ionic selectivity, but also plays a role in the regulation of tumour cell motility, suggesting that TJs and claudin‑5 contribute to the control of BM. This study reviews the role of claudin‑5 in the regulation of BBB permeability during the brain metastatic process.
Collapse
Affiliation(s)
- Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Runchun Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Tracey A Martin
- Cardiff University‑Capital Medical University Joint Centre for Biomedical Research, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff University‑Capital Medical University Joint Centre for Biomedical Research, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
42
|
Su Y, Qadri SM, Hossain M, Wu L, Liu L. Uncoupling of eNOS contributes to redox-sensitive leukocyte recruitment and microvascular leakage elicited by methylglyoxal. Biochem Pharmacol 2013; 86:1762-74. [PMID: 24144633 DOI: 10.1016/j.bcp.2013.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
Elevated levels of the glycolysis metabolite methylglyoxal (MG) have been implicated in impaired leukocyte-endothelial interactions and vascular complications in diabetes, putative mechanisms of which remain elusive. Uncoupling of endothelial nitric oxide synthase (eNOS) was shown to be involved in endothelial dysfunction in diabetes. Whether MG contributes to these effects has not been elucidated. By using intravital microscopy in vivo, we demonstrate that MG-triggered reduction in leukocyte rolling velocity and increases in rolling flux, adhesion, emigration and microvascular permeability were significantly abated by scavenging reactive oxygen species (ROS). In murine cremaster muscle, MG treatment reduced tetrahydrobiopterin (BH4)/total biopterin ratio, increased arginase expression and stimulated ROS and superoxide production. The latter was significantly blunted by ROS scavengers Tempol (300μM) or MnTBAP (300μM), by BH4 supplementation (100μM) or by NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 20μM). In these tissues and cultured murine and human primary endothelial cells, MG increased eNOS monomerization and decreased BH4/total biopterin ratio, effects that were significantly mitigated by supplementation of BH4 or its precursor sepiapterin but not by L-NAME or tetrahydroneopterin, indicative of MG-triggered eNOS uncoupling. MG treatment further decreased the expression of guanosine triphosphate cyclohydrolase I in murine primary endothelial cells. MG-induced leukocyte recruitment was significantly attenuated by supplementation of BH4 or sepiapterin or suppression of superoxide by L-NAME confirming the role of eNOS uncoupling in MG-elicited leukocyte recruitment. Together, our study uncovers eNOS uncoupling as a pivotal mechanism in MG-induced oxidative stress, microvascular hyperpermeability and leukocyte recruitment in vivo.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
43
|
Takata F, Dohgu S, Matsumoto J, Machida T, Kaneshima S, Matsuo M, Sakaguchi S, Takeshige Y, Yamauchi A, Kataoka Y. Metformin induces up-regulation of blood-brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells. Biochem Biophys Res Commun 2013; 433:586-90. [PMID: 23523792 DOI: 10.1016/j.bbrc.2013.03.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/11/2022]
Abstract
Blood-brain barrier (BBB) disruption occurs frequently in CNS diseases and injuries. Few drugs have been developed as therapeutic candidates for facilitating BBB functions. Here, we examined whether metformin up-regulates BBB functions using rat brain microvascular endothelial cells (RBECs). Metformin, concentration- and time-dependently increased transendothelial electrical resistance of RBEC monolayers, and decreased RBEC permeability to sodium fluorescein and Evans blue albumin. These effects of metformin were blocked by compound C, an inhibitor of AMP-activated protein kinase (AMPK). AMPK stimulation with an AMPK activator, AICAR, enhanced BBB functions. These findings indicate that metformin induces up-regulation of BBB functions via AMPK activation.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Roe ND, Ren J. Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 2013; 304:H828-39. [PMID: 23316062 PMCID: PMC3602775 DOI: 10.1152/ajpheart.00752.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/20/2012] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum (ER) stress elicits oxidative stress and intracellular Ca(2+) derangement via activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). This study was designed to examine the role of CaMKII in ER stress-induced cardiac dysfunction and apoptosis as well as the effect of antioxidant catalase. Wild-type FVB and transgenic mice with cardiac-specific overexpression of catalase were challenged with the ER stress inducer tunicamycin (3 mg/kg ip for 48 h). Presence of ER stress was verified using the ER stress protein markers immunoglobulin binding protein (BiP) and C/EBP homologous protein (CHOP), the effect of which was unaffected by catalase overexpression. Echocardiographic assessment revealed that tunicamycin elicited cardiac remodeling (enlarged end-systolic diameter without affecting diastolic and ventricular wall thickness), depressed fractional shortening, ejection fraction, and cardiomyocyte contractile capacity, intracellular Ca(2+) mishandling, accumulation of reactive oxygen species (superoxide production and NADPH oxidase p47phox level), CaMKII oxidation, and apoptosis (evidenced by Bax, Bcl-2/Bax ratio, and TUNEL staining), the effects of which were obliterated by catalase. Interestingly, tunicamycin-induced cardiomyocyte mechanical anomalies and cell death were ablated by the CaMKII inhibitor KN93, in a manner reminiscent of catalase. These data favored a permissive role of oxidative stress and CaMKII activation in ER stress-induced cardiac dysfunction and cell death. Our data further revealed the therapeutic potential of antioxidant or CaMKII inhibition in cardiac pathological conditions associated with ER stress. This research shows for the first time that contractile dysfunction caused by ER stress is a result of the oxidative activation of the CaMKII pathway.
Collapse
Affiliation(s)
- Nathan D Roe
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, School of Pharmacy, Laramie, WY 82071, USA
| | | |
Collapse
|