1
|
Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev 2025; 105:1609-1694. [PMID: 40111763 DOI: 10.1152/physrev.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Many countries face an unprecedented challenge in aging demographics. This has led to an exponential growth in research on aging, which, coupled to a massive financial influx of funding in the private and public sectors, has resulted in seminal insights into the underpinnings of this biological process. However, critical validation in humans has been hampered by the limited translatability of results obtained in model organisms, additionally confined by the need for extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that would allow monitoring in shorter time frames. In the future, molecular parameters might hold great promise in this regard. In contrast, biomarkers centered on function, resilience, and frailty are available at the present time, with proven predictive value for morbidity and mortality. In this review, the current knowledge of molecular and physiological aspects of human aging, potential antiaging strategies, and the basis, evidence, and potential application of physiological biomarkers in human aging are discussed.
Collapse
|
2
|
Mizunoe Y, Kumagai M, Fukai H, Hachiya K, Otani Y, Nozaki Y, Tezuka K, Kobayashi M, Haeno H, Saeki K, Murayama Y, Shimano H, Higami Y. Caloric restriction alters NCOA2 splicing to regulate lipid metabolism in subcutaneous white adipose tissue. Biochem Biophys Res Commun 2025; 765:151871. [PMID: 40267838 DOI: 10.1016/j.bbrc.2025.151871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Caloric restriction (CR) promotes longevity and metabolic health by modulating gene expression and cellular processes. However, the role of alternative mRNA splicing in CR-induced metabolic adaptation remains underexplored. In this study, we analyzed RNA sequencing data from the subcutaneous white adipose tissue of CR mice. We identified 6058 differentially expressed genes, with significant upregulation of lipid metabolism pathway genes, such as Elovl6, Fasn, and Srebp1c. We also detected 400 CR-associated alternative splicing events, with the skipped exon and retained intron events predominantly affecting lipid biosynthesis and energy metabolism. Among these events, Ncoa2, a nuclear receptor coactivator involved in lipid metabolism, exhibited increased exon 13 inclusion under CR, favoring the expression of the full-length isoform. Functional assays revealed that full-length NCOA2 enhanced PPARγ-mediated transcriptional activation, while the truncated Δ-NCOA2 isoform exhibited altered coactivator activity. Δ-NCOA2 was found to lack an LXXL motif critical for nuclear receptor interactions, potentially modifying its function. Taken together, these findings indicate that CR-induced alternative splicing fine-tunes metabolic and transcriptional networks, thereby contributing to lipid homeostasis and energy adaptation. Our study highlights a novel regulatory layer by which CR modulates metabolism through coordinated transcriptional and splicing alterations, offering new insights into the molecular mechanisms underlying the beneficial effects of CR on aging and metabolic health. Further investigations are warranted to determine the tissue-specificity of the CR-induced splicing changes and their potential implications for metabolic disorders and lifespan extension.
Collapse
Affiliation(s)
- Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Mitsuki Kumagai
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Hiroto Fukai
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Kazuki Hachiya
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Yuina Otani
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Kyo Tezuka
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan; Institute for Human Life Science, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Hiroshi Haeno
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| | - Koichi Saeki
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Division of Cell Fate Regulation, Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
3
|
Bisaha K, Bagatto S, Harden R, Depp R, Olson R, Liu Q, Andronowski JM, Londraville RL. Bone dynamics in zebrafish on low- and high-frequency diets. Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111070. [PMID: 39756646 PMCID: PMC11871991 DOI: 10.1016/j.cbpb.2025.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Zebrafish (Danio rerio) were fed high and low-frequency diets over 40 days to assess the effect of diet on bone parameters. Fish fed 3×/day (High) were significantly greater in total weight and length vs. fish fed 2×/week (Low; <0.01). The High group had significantly higher vertebral bone density (p = 0.0009) and lower bone volume (p = 0.04) compared to the Low group. Scales from the Low group also had higher density of resorption lacunae in their scales (p = 0.02). We interpret these data to hypothesize that higher leptin titers associated with reduced calorie intake is generally catabolic to bone in zebrafish.
Collapse
Affiliation(s)
- Kathryn Bisaha
- University of Akron, Department of Biology, Akron, OH, USA
| | - Simon Bagatto
- University of Akron, Department of Biology, Akron, OH, USA
| | - Rebekah Harden
- University of Akron, Department of Biology, Akron, OH, USA
| | - Randi Depp
- University of Akron, Department of Biology, Akron, OH, USA
| | - Rachel Olson
- University of Akron, Department of Biology, Akron, OH, USA
| | - Qin Liu
- University of Akron, Department of Biology, Akron, OH, USA
| | - Janna M Andronowski
- Clinical Anatomy, Faculty of Medicine, Memorial University, Newfoundland, Canada
| | | |
Collapse
|
4
|
Cui Z, Dong Y, Sholl J, Lu J, Raubenheimer D. The Rhesus Macaque as an Animal Model for Human Nutrition: An Ecological-Evolutionary Perspective. Annu Rev Anim Biosci 2025; 13:441-464. [PMID: 39556489 DOI: 10.1146/annurev-animal-111523-102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nutrition is a complex and contested area in biomedicine, which requires diverse evidence sources. Nonhuman primate models are considered an important biomedical research tool because of their biological similarities to humans, but they are typically used with little explicit consideration of their ecology and evolution. Using the rhesus macaque (RM), we consider the potential of nutritional ecology for enriching the use of primates as models for human nutrition. We introduce some relevant aspects of RM evolutionary and social ecology and discuss two examples where they have been used in biomedical research: obesity and aging. We next consider how insights from nutritional ecology can help inform and direct the use of RM as a biomedical model. We conclude by illustrating how conceptual tools might inform the use of RM as a model for human nutrition and extracting insights from RM that might be relevant to broader theoretical considerations around animal model systems.
Collapse
Affiliation(s)
- Zhenwei Cui
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Yunlong Dong
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Jonathan Sholl
- ImmunoConcept Lab, Université de Bordeaux, Collège Sciences de la Santé, CNRS UMR 5164, Bordeaux, France
| | - Jiqi Lu
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
| | - David Raubenheimer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia;
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Xiao X, Hu M, Gao L, Yuan H, Chong B, Liu Y, Zhang R, Gong Y, Du D, Zhang Y, Yang H, Liu X, Zhang Y, Zhang H, Xu H, Zhao Y, Meng W, Xie D, Lei P, Qi S, Peng Y, Tan T, Yu Y, Hu H, Dong B, Dai L. Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut. Signal Transduct Target Ther 2025; 10:8. [PMID: 39774148 PMCID: PMC11707242 DOI: 10.1038/s41392-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.
Collapse
Affiliation(s)
- Xina Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Gao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Yuan
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Baochen Chong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenbo Meng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Dan Xie
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
6
|
Vilas-Boas EA, Kowaltowski AJ. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus. Free Radic Biol Med 2024; 219:195-214. [PMID: 38677486 DOI: 10.1016/j.freeradbiomed.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria congregate central reactions in energy metabolism, many of which involve electron transfer. As such, they are expected to both respond to changes in nutrient supply and demand and also provide signals that integrate energy metabolism intracellularly. In this review, we discuss how mitochondrial bioenergetics and reactive oxygen species production is impacted by dietary interventions that change nutrient availability and impact on aging, such as calorie restriction. We also discuss how dietary interventions alter mitochondrial Ca2+ transport, regulating both mitochondrial and cytosolic processes modulated by this ion. Overall, a plethora of literature data support the idea that mitochondrial oxidants and calcium transport act as integrating signals coordinating the response to changes in nutritional supply and demand in cells, tissues, and animals.
Collapse
Affiliation(s)
- Eloisa A Vilas-Boas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
7
|
Klinaki E, Ogrodnik M. In the land of not-unhappiness: On the state-of-the-art of targeting aging and age-related diseases by biomedical research. Mech Ageing Dev 2024; 219:111929. [PMID: 38561164 DOI: 10.1016/j.mad.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.
Collapse
Affiliation(s)
- Eirini Klinaki
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
8
|
Nemeth C, Banik NL, Haque A. Disruption of Neuromuscular Junction Following Spinal Cord Injury and Motor Neuron Diseases. Int J Mol Sci 2024; 25:3520. [PMID: 38542497 PMCID: PMC10970763 DOI: 10.3390/ijms25063520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 02/01/2025] Open
Abstract
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by motor neurons below the injury site, has been found to remain intact. This highlights the importance of studying the NMJ in rodent models of various nervous system disorders, such as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). The NMJ is also involved in myasthenic disorders, such as myasthenia gravis (MG), and is vulnerable to neurotoxin damage. Thus, it is important to analyze the integrity of the NMJ in rodent models during the early stages of the disease, as this may allow for a better understanding of the condition and potential treatment options. The spinal cord also plays a crucial role in the functioning of the NMJ, as the junction relays information from the spinal cord to the muscle fibers, and the integrity of the NMJ could be disrupted by SCI. Therefore, it is vital to study SCI and muscle function when studying NMJ disorders. This review discusses the formation and function of the NMJ after SCI and potential interventions that may reverse or improve NMJ dysfunction, such as exercise, nutrition, and trophic factors.
Collapse
Affiliation(s)
- Colin Nemeth
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
9
|
Yakovleva E, Danilova I, Maximova I, Shabaev A, Dmitrieva A, Belov A, Klyukina A, Perfilieva K, Bonch-Osmolovskaya E, Markov A. Salt concentration in substrate modulates the composition of bacterial and yeast microbiomes of Drosophila melanogaster. MICROBIOME RESEARCH REPORTS 2024; 3:19. [PMID: 38846022 PMCID: PMC11153085 DOI: 10.20517/mrr.2023.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 06/09/2024]
Abstract
Aim: Microbiomes influence the physiology and behavior of multicellular organisms and contribute to their adaptation to changing environmental conditions. However, yeast and bacterial microbiota have usually been studied separately; therefore, the interaction between bacterial and yeast communities in the gut of Drosophila melanogaster (D. melanogaster) is often overlooked. In this study, we investigate the correlation between bacterial and yeast communities in the gut of D. melanogaster. Methods: We studied the shifts in the joint microbiome of Drosophila melanogaster, encompassing both yeasts and bacteria, during adaptation to substrate with varying salt concentrations (0%, 2%, 4%, and 7%) using plating for both yeasts and bacteria and NGS-sequencing of variable 16S rRNA gene regions for bacteria. Results: The microbiome of flies and their substrates was gradually altered at moderate NaCl concentrations (2% and 4% compared with the 0% control) and completely transformed at high salt concentrations (7%). The relative abundance of Acetobacter, potentially beneficial to D. melanogaster, decreased as NaCl concentration increased, whereas the relative abundance of the more halotolerant lactobacilli first increased, peaking at 4% NaCl, and then declined dramatically at 7%. At this salinity level, potentially pathogenic bacteria of the genera Leuconostoc and Providencia were dominant. The yeast microbiome of D. melanogaster also undergoes significant changes with an increase in salt concentration in the substrate. The total yeast abundance undergoes nonlinear changes: it is lowest at 0% salt concentration and highest at 2%-4%. At a 7% concentration, the yeast abundance in flies and their substrate is lower than at 2%-4% but significantly higher than at 0%. Conclusions: The abundance and diversity of bacteria that are potentially beneficial to the flies decreased, while the proportion of potential pathogens, Leuconostoc and Providencia, increased with an increase in salt concentration in the substrate. In samples with a relatively high abundance and/or diversity of yeasts, the corresponding indicators for bacteria were often lowered, and vice versa. This may be due to the greater halotolerance of yeasts compared to bacteria and may also indicate antagonism between these groups of microorganisms.
Collapse
Affiliation(s)
- Ekaterina Yakovleva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Danilova
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Maximova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Shabaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia Dmitrieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Belov
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandra Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Ksenia Perfilieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta Bonch-Osmolovskaya
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Alexander Markov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Borisyak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
10
|
Gozalo AS, Elkins WR. A Review of the Effects of Some Extrinsic Factors on Mice Used in Research. Comp Med 2023; 73:413-431. [PMID: 38217072 PMCID: PMC10752364 DOI: 10.30802/aalas-cm-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Animals have been used in research for over 2,000 y. From very crude experiments conducted by ancient scholars, animal research, as a science, was refined over hundreds of years to what we know it as today. However, the housing conditions of animals used for research did not improve significantly until less than 100 years ago when guidelines for housing research animals were first published. In addition, it was not until relatively recently that some extrinsic factors were recognized as a research variable, even when animals were housed under recommended guidelines. For example, temperature, humidity, light, noise, vibration, diet, water, caging, bedding, etc., can all potentially affect research using mice, contributing the inability of others to reproduce published findings. Consequently, these external factors should be carefully considered in the design, planning, and execution of animal experiments. In addition, as recommended by others, the housing and husbandry conditions of the animals should be described in detail in publications resulting from animal research to improve study reproducibility. Here, we briefly review some common, and less common, external factors that affect research in one of the most popular animal models, the mouse.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Mitchell SE, Togo J, Green CL, Derous D, Hambly C, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XX. Impact of Long-Term Graded Calorie Restriction on Survival and Body Mass Dynamics in Male C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2023; 78:1953-1963. [PMID: 37354128 PMCID: PMC10613020 DOI: 10.1093/gerona/glad152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 06/26/2023] Open
Abstract
Calorie restriction (CR) typically promotes a reduction in body mass, which correlates with increased lifespan. We evaluated the overall changes in survival, body mass dynamics, and body composition following long-term graded CR (580 days/19 months) in male C57BL/6J mice. Control mice (0% restriction) were fed ad libitum in the dark phase only (12-hour ad libitum [12AL]). CR groups were restricted by 10%-40% of their baseline food intake (10CR, 20CR, 30CR, and 40CR). Body mass was recorded daily, and body composition was measured at 8 time points. At 728 days/24 months, all surviving mice were culled. A gradation in survival rate over the CR groups was found. The pattern of body mass loss differed over the graded CR groups. Whereas the lower CR groups rapidly resumed an energy balance with no significant loss of fat or fat-free mass, changes in the 30 and 40CR groups were attributed to higher fat-free mass loss and protection of fat mass. Day-to-day changes in body mass were less variable under CR than for the 12AL group. There was no indication that body mass was influenced by external factors. Partial autocorrelation analysis examined the relationship between daily changes in body masses. A negative correlation between mass on Day 0 and Day +1 declined with age in the 12AL but not the CR groups. A reduction in the correlation with age suggested body mass homeostasis is a marker of aging that declines at the end of life and is protected by CR.
Collapse
Affiliation(s)
| | - Jacques Togo
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Cara L Green
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
- China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
12
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 608] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
13
|
Nobari H, Azarian S, Saedmocheshi S, Valdés-Badilla P, García Calvo T. Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon 2023; 9:e19636. [PMID: 37809566 PMCID: PMC10558889 DOI: 10.1016/j.heliyon.2023.e19636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives This study was a narrative review of the importance of circadian rhythm (CR), describes the underlying mechanisms of CR in sports performance, emphasizes the reciprocal link between CR, endocrine homeostasis and sex differences, and the unique role of the circadian clock in immune system function and coordination. Method As a narrative review study, a comprehensive search was conducted in PubMed, Scopus, and Web of Science (core collection) databases using the keywords "circadian rhythm", "sports performance", "hormonal regulation", "immune system", and "injury prevention". Inclusion criteria were studies published in English and peer-reviewed journals until July 2023. Studies that examined the role of CR in sports performance, hormonal status, immune system function, and injury prevention in athletes were selected for review. Results CR is followed by almost all physiological and biochemical activities in the human body. In humans, the superchiasmatic nucleus controls many daily biorhythms under solar time, including the sleep-wake cycle. A body of literature indicates that the peak performance of essential indicators of sports performance is primarily in the afternoon hours, and the evening of actions occurs roughly at the peak of core body temperature. Recent studies have demonstrated that the time of day that exercise is performed affects the achievement of good physical performance. This review also shows various biomarkers of cellular damage in weariness and the underlying mechanisms of diurnal fluctuations. According to the clock, CR can be synchronized with photonic and non-photonic stimuli (i.e., temperature, physical activity, and food intake), and feeding patterns and diet changes can affect CR and redox markers. It also emphasizes the reciprocal links between CR and endocrine homeostasis, the specific role of the circadian clock in coordinating immune system function, and the relationship between circadian clocks and sex differences. Conclusion The interaction between insufficient sleep and time of day on performance has been established in this study because it is crucial to balance training, recovery, and sleep duration to attain optimal sports performance.
Collapse
Affiliation(s)
- Hadi Nobari
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Somayeh Azarian
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Pablo Valdés-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca, 3530000, Chile
- Sports Coach Career, School of Education, Universidad Viña del Mar, Viña del Mar, 2520000, Chile
| | - Tomás García Calvo
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
14
|
Wang L, Derous D, Huang X, Mitchell S, Douglas A, Lusseau D, Wang Y, Speakman J. The Effects of Graded Levels of Calorie Restriction: XIX. Impact of Graded Calorie Restriction on Protein Expression in the Liver. J Gerontol A Biol Sci Med Sci 2023; 78:1125-1134. [PMID: 36757838 PMCID: PMC10329235 DOI: 10.1093/gerona/glad017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 02/10/2023] Open
Abstract
Calorie restriction (CR) extends life span by modulating the mechanisms involved in aging. We quantified the hepatic proteome of male C57BL/6 mice exposed to graded levels of CR (0%-40% CR) for 3 months, and evaluated which signaling pathways were most affected. The metabolic pathways most significantly stimulated by the increase in CR, included the glycolysis/gluconeogenesis pathway, the pentose phosphate pathway, the fatty acid degradation pathway, the valine, leucine, and isoleucine degradation pathway, and the lysine degradation pathway. The metabolism of xenobiotics by cytochrome P450 pathway was activated and feminized by increased CR, while production in major urinary proteins (Mups) was strongly reduced, consistent with a reduced investment in reproduction as predicted by the disposable soma hypothesis. However, we found no evidence of increased somatic protection, and none of the 4 main pathways implied to be linked to the impact of CR on life span (insulin/insulin-like growth factor [IGF-1], nuclear factor-κB [NF-κB], mammalian Target of Rapamycin [mTOR], and sirtuins) as well as pathways in cancer, were significantly changed at the protein level in relation to the increase in CR level. This was despite previous work at the transcriptome level in the same individuals indicating such changes. On the other hand, we found Aldh2, Aldh3a2, and Aldh9a1 in carnitine biosynthesis and Acsl5 in carnitine shuttle system were up-regulated by increased CR, which are consistent with our previous work on metabolome of the same individuals. Overall, the patterns of protein expression were more consistent with a "clean cupboards" than a "disposable soma" interpretation.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- CAS Centre for Excellence in Animal Evolution and Genetics (CCEAEG), Kunming, China
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
15
|
Abstract
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| |
Collapse
|
16
|
Furrer R, Handschin C. Drugs, clocks and exercise in ageing: hype and hope, fact and fiction. J Physiol 2023; 601:2057-2068. [PMID: 36114675 PMCID: PMC7617581 DOI: 10.1113/jp282887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 04/13/2025] Open
Abstract
Ageing is a biological process that is linked to a functional decline, ultimately resulting in death. Large interindividual differences exist in terms of life- and healthspan, representing life expectancy and the number of years spent in the absence of major diseases, respectively. The genetic and molecular mechanisms that are involved in the regulation of the ageing process, and those that render age the main risk factor for many diseases are still poorly understood. Nevertheless, a growing number of compounds have been put forward to affect this process. However, for scientists and laypeople alike, it is difficult to separate fact from fiction, and hype from hope. In this review, we discuss the currently pursued pharmacological anti-ageing approaches. These are compared to non-pharmacological interventions, some of which confer powerful effects on health and well-being, in particular an active lifestyle and exercise. Moreover, functional parameters and biological clocks as well as other molecular marks are compared in terms of predictive power of morbidity and mortality. Then, conceptual aspects and roadblocks in the development of anti-ageing drugs are outlined. Finally, an overview on current and future strategies to mitigate age-related pathologies and the extension of life- and healthspan is provided.
Collapse
|
17
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
18
|
The Role of Ketone Bodies in Various Animal Models of Kidney Disease. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The kidney is a vital organ that carries out significant metabolic functions in our body. Due to the complexity of its role, the kidney is also susceptible to many disease conditions, such as acute kidney injury (AKI) and chronic kidney disease (CKD). Despite the prevalence and our increased understanding of the pathophysiology of both AKI and CKD as well as the transition of AKI to CKD, no well-established therapeutics have been applied clinically to these conditions, rendering an urgent need for a novel potential therapeutic target to be developed. In this article, we reviewed the function of ketone bodies in some common kidney conditions, such as drug-induced nephrotoxicity, ischemia and reperfusion injury, fibrosis development, diabetic kidney disease, kidney aging, hypertension, and CKD progression. All the selected studies reviewed were performed in animal models by primarily utilizing rodents, which also provide invaluable sources for future clinical applications. Ketone bodies have shown significant renal protective properties via attenuation of oxidative stress, increased expression of anti-inflammatory proteins, gene regulation, and a reduction of apoptosis of renal cells. A physiological level of ketone bodies could be achieved by fasting, a ketogenic diet, and an exogenous ketone supplement. Finally, the limitations of the long-term ketogenic diet were also discussed.
Collapse
|
19
|
Chowdhury SG, Misra S, Karmakar P. Understanding the Impact of Obesity on Ageing in the Radiance of DNA Metabolism. J Nutr Health Aging 2023; 27:314-328. [PMID: 37248755 DOI: 10.1007/s12603-023-1912-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 05/31/2023]
Abstract
Ageing is a multi-factorial phenomenon which is considered as a major risk factor for the development of neurodegeneration, osteoporosis, cardiovascular disease, dementia, cancer, and other chronic diseases. Phenotypically, ageing is related with a combination of molecular, cellular, and physiological levels like genomic and epi-genomic alterations, loss of proteostasis, deregulation of cellular and subcellular function and mitochondrial dysfunction. Though, no single molecular mechanism accounts for the functional decline of different organ systems in older humans but accumulation of DNA damage or mutations is a dominant theory which contributes largely to the development of ageing and age-related diseases. However, mechanistic, and hierarchical order of these features of ageing has not been clarified yet. Scientific community now focus on the effect of obesity on accelerated ageing process. Obesity is a complex chronic disease that affects multiple organs and tissues. It can not only lead to various health conditions such as diabetes, cancer, and cardiovascular disease but also can decrease life expectancy which shows similar phenotype of ageing. Higher loads of DNA damage were also observed in the genome of obese people. Thus, inability of DNA damage repair may contribute to both ageing and obesity apart from cancer predisposition. The present review emphasizes on the involvement of molecular phenomenon of DNA metabolism in development of obesity and how it accelerates ageing in mammals.
Collapse
Affiliation(s)
- S G Chowdhury
- Parimal Karmakar, Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.
| | | | | |
Collapse
|
20
|
Brenner C. A Science-Based Review of the World's Best-Selling Book on Aging. Arch Gerontol Geriatr 2023; 104:104825. [PMID: 39070609 PMCID: PMC9669175 DOI: 10.1016/j.archger.2022.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Charles Brenner
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
21
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
22
|
Verma AK, Singh P, Al-Saeed FA, Ahmed AE, Kumar S, Kumar A, Dev K, Dohare R. Unravelling the role of telomere shortening with ageing and their potential association with diabetes, cancer, and related lifestyle factors. Tissue Cell 2022; 79:101925. [DOI: 10.1016/j.tice.2022.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022]
|
23
|
Xie K, Fuchs H, Scifo E, Liu D, Aziz A, Aguilar-Pimentel JA, Amarie OV, Becker L, da Silva-Buttkus P, Calzada-Wack J, Cho YL, Deng Y, Edwards AC, Garrett L, Georgopoulou C, Gerlini R, Hölter SM, Klein-Rodewald T, Kramer M, Leuchtenberger S, Lountzi D, Mayer-Kuckuk P, Nover LL, Oestereicher MA, Overkott C, Pearson BL, Rathkolb B, Rozman J, Russ J, Schaaf K, Spielmann N, Sanz-Moreno A, Stoeger C, Treise I, Bano D, Busch DH, Graw J, Klingenspor M, Klopstock T, Mock BA, Salomoni P, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Gailus-Durner V, Breteler MMB, Hrabě de Angelis M, Ehninger D. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat Commun 2022; 13:6830. [PMID: 36369285 PMCID: PMC9652467 DOI: 10.1038/s41467-022-34515-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - A Cole Edwards
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Christina Georgopoulou
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | | | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dimitra Lountzi
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Phillip Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lena L Nover
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Manuela A Oestereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Clemens Overkott
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Brandon L Pearson
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Mailman School of Public Health, Columbia University, 630W. 168th St., New York, NY, 10032, USA
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jenny Russ
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University Munich, 80336, Munich, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Paolo Salomoni
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Marco Weiergräber
- Research Group Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, 53175, Bonn, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.
| |
Collapse
|
24
|
Olmo-Fontánez AM, Turner J. Tuberculosis in an Aging World. Pathogens 2022; 11:pathogens11101101. [PMID: 36297158 PMCID: PMC9611089 DOI: 10.3390/pathogens11101101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to its being an infectious disease, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb). Approximately one-fourth of the world’s population is infected with latent M.tb, and TB is considered a global threat killing over 4000 people every day. The risk of TB susceptibility and mortality is significantly increased in individuals aged 65 and older, confirming that the elderly represent one of the largest reservoirs for M.tb infection. The elderly population faces many challenges that increase their risk of developing respiratory diseases, including TB. The challenges the elderly face in this regard include the following: decreased lung function, immuno-senescence, inflammaging, adverse drug effects, low tolerance to anti-TB drugs, lack of suitable diagnoses/interventions, and age-associated comorbidities. In order to find new therapeutic strategies to maintain lung homeostasis and resistance to respiratory infections as we age, it is necessary to understand the molecular and cellular mechanisms behind natural lung aging. This review focuses primarily on why the elderly are more susceptible to TB disease and death, with a focus on pulmonary function and comorbidities.
Collapse
Affiliation(s)
- Angélica M. Olmo-Fontánez
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Joanne Turner
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence:
| |
Collapse
|
25
|
Reynés B, Palou M, Palou A, Serra F. The intake of β-sitosterol partially counteracts metformin beneficial effects in diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Orenduff MC, Coleman MF, Glenny EM, Huffman KM, Rezeli ET, Bareja A, Pieper CF, Kraus VB, Hursting SD. Differential effects of calorie restriction and rapamycin on age-related molecular and functional changes in skeletal muscle. Exp Gerontol 2022; 165:111841. [PMID: 35623538 PMCID: PMC9982835 DOI: 10.1016/j.exger.2022.111841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Aging is a multifactorial process associated with progressive degradation of physiological integrity and function. One of the greatest factors contributing to the deleterious effects of aging is the decline of functional ability due to loss of muscle mass, strength, and function, a condition termed sarcopenia. Calorie restriction (CR) has consistently been shown to extend lifespan and delay the onset and progression of various age-related diseases, including sarcopenia. Additional anti-aging interventions that are receiving scientific attention are CR mimetics. Of these pharmacological compounds, rapamycin has shown similar CR-related longevity benefits without the need for diet restrictions. To investigate the potential role of rapamycin as an anti-sarcopenic alternative to CR, we conducted a study in male and female C57BL/6 J mice to assess the effects of rapamycin on age-related gene expression changes in skeletal muscle associated with loss of muscle mass, strength, and function, relative to control. We hypothesize that the effects of rapamycin will closely align with CR with respect to physical function and molecular indices associated with muscle quality. Our results indicate CR and rapamycin provide partial protection against age-related decline in muscle, while engaging uniquely different molecular pathways in skeletal muscle. Our preclinical findings of the therapeutic potential of rapamycin or a CR regimen on geroprotective benefits in muscle should be extended to translational studies towards the development of effective strategies for the prevention and management of sarcopenia.
Collapse
Affiliation(s)
- Melissa C Orenduff
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Elaine M Glenny
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Division of Rheumatology, Duke University School of Medicine, Durham, NC, USA
| | - Erika T Rezeli
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Division of Rheumatology, Duke University School of Medicine, Durham, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA; University of North Carolina Nutrition Research Institute in Kannapolis, NC, USA
| |
Collapse
|
27
|
Marcon F, Meschini R, Iorio E, Palleschi S, De Luca G, Siniscalchi E, Conti L, Chirico M, Pisanu ME, De Battistis F, Rossi B, Minoprio A, Giuliani A, Karran P, Bignami M. Young transgenic hMTH1 mice are protected against dietary fat-induced metabolic stress-implications for enhanced longevity. Aging Cell 2022; 21:e13605. [PMID: 35670027 PMCID: PMC9282835 DOI: 10.1111/acel.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
hMTH1 protects against mutation during oxidative stress. It degrades 8‐oxodGTP to exclude potentially mutagenic oxidized guanine from DNA. hMTH1 expression is linked to ageing. Its downregulation in cultured cells accelerates RAS‐induced senescence, and its overexpression in hMTH1‐Tg mice extends lifespan. In this study, we analysed the effects of a brief (5 weeks) high‐fat diet challenge (HFD) in young (2 months old) and adult (7 months old) wild‐type (WT) and hMTH1‐Tg mice. We report that at 2 months, hMTH1 overexpression ameliorated HFD‐induced weight gain, changes in liver metabolism related to mitochondrial dysfunction and oxidative stress. It prevented DNA damage as quantified by a comet assay. At 7 months old, these HFD‐induced effects were less severe and hMTH1‐Tg and WT mice responded similarly. hMTH1 overexpression conferred lifelong protection against micronucleus induction, however. Since the canonical activity of hMTH1 is mutation prevention, we conclude that hMTH1 protects young mice against HFD by reducing genome instability during the early period of rapid growth and maximal gene expression. hMTH1 protection is redundant in the largely non‐growing, differentiated tissues of adult mice. In hMTH1‐Tg mice, expression of a less heavily mutated genome throughout life provides a plausible explanation for their extended longevity.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Meschini
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Simonetta Palleschi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ester Siniscalchi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Luigi Conti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Barbara Rossi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Minoprio
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
28
|
Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nat Commun 2022; 13:2025. [PMID: 35440545 PMCID: PMC9018781 DOI: 10.1038/s41467-022-29714-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Preserving skeletal muscle function is essential to maintain life quality at high age. Calorie restriction (CR) potently extends health and lifespan, but is largely unachievable in humans, making “CR mimetics” of great interest. CR targets nutrient-sensing pathways centering on mTORC1. The mTORC1 inhibitor, rapamycin, is considered a potential CR mimetic and is proven to counteract age-related muscle loss. Therefore, we tested whether rapamycin acts via similar mechanisms as CR to slow muscle aging. Here we show that long-term CR and rapamycin unexpectedly display distinct gene expression profiles in geriatric mouse skeletal muscle, despite both benefiting aging muscles. Furthermore, CR improves muscle integrity in mice with nutrient-insensitive, sustained muscle mTORC1 activity and rapamycin provides additive benefits to CR in naturally aging mouse muscles. We conclude that rapamycin and CR exert distinct, compounding effects in aging skeletal muscle, thus opening the possibility of parallel interventions to counteract muscle aging. The anti-aging intervention calorie restriction (CR) is thought to act via the nutrient-sensing multiprotein complex mTORC1. Here the authors show that the mTORC1-inhibitor rapamycin and CR use largely distinct mechanisms to slow mouse muscle aging.
Collapse
|
29
|
Gyanwali B, Lim ZX, Soh J, Lim C, Guan SP, Goh J, Maier AB, Kennedy BK. Alpha-Ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol Metab 2022; 33:136-146. [PMID: 34952764 DOI: 10.1016/j.tem.2021.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Alpha-ketoglutarate (AKG) is an intermediate in the Krebs cycle involved in various metabolic and cellular pathways. As an antioxidant, AKG interferes in nitrogen and ammonia balance, and affects epigenetic and immune regulation. These pleiotropic functions of AKG suggest it may also extend human healthspan. Recent studies in worms and mice support this concept. A few studies published in the 1980s and 1990s in humans suggested the potential benefits of AKG in muscle growth, wound healing, and in promoting faster recovery after surgery. So far there are no recently published studies demonstrating the role of AKG in treating aging and age-related diseases; hence, further clinical studies are required to better understand the role of AKG in humans. This review will discuss the regulatory role of AKG in aging, as well as its potential therapeutic use in humans to treat age-related diseases.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zi Xiang Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Clarissa Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shou Ping Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore.
| |
Collapse
|
30
|
Khaidakov M, Troshina V, Menglet D, Yusef Yusef, Plotkin A. The Annoying Flaws of Gerontological Research. Drug Metab Rev 2022; 54:95-100. [PMID: 35084271 DOI: 10.1080/03602532.2022.2035393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gerontological research has accelerated dramatically in the last few decades. However, despite increased public interest, federal funding, an army of researchers, and many notable discoveries and high-impact publications, the goal of achieving even a modest extension of human lifespan seems to be as far away as ever or, at best, remains within the realm of lifestyle and diet optimization efforts. Humanity has already benefited from a lifespan revolution in the first half of 20th Century, which was brought about by improved sanitation and hygiene, clean water, and our successful war on infectious diseases. Thanks to all these developments, in which gerontologists played no part, our expected lifespan increased by about 40% and our primary causes of death decidedly shifted from extrinsic to intrinsic causality. The next step is not that simple as it implies tackling intrinsic mechanisms of aging, and the lack of working human-specific antiaging solutions likely stems from flawed research strategies.
Collapse
Affiliation(s)
| | - Valeria Troshina
- Institute of Applied Medical Research, Dubna, Russian Federation
| | - Dmitry Menglet
- Institute of Applied Medical Research, Dubna, Russian Federation
| | - Yusef Yusef
- Research Institute of Eye Diseases, Moscow, Russian Federation
| | | |
Collapse
|
31
|
Rubio-Tomás T, Rueda-Robles A, Plaza-Díaz J, Álvarez-Mercado AI. Nutrition and cellular senescence in obesity-related disorders. J Nutr Biochem 2022; 99:108861. [PMID: 34517097 DOI: 10.1016/j.jnutbio.2021.108861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/29/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Adequate nutrition is vital for immune homeostasis. However, the incidence of obesity is increasing worldwide due to the adoption of the Western diet and a sedentary lifestyle. Obesity is associated with chronic inflammation which alters the function of adipose tissue, liver, pancreas, and the nervous system. Inflammation is related to cellular senescence, distinguished by irreversible cell cycle arrest. Senescent cells secrete the senescence-associated secretory phenotype (SASP) which contains pro-inflammatory factors. Targeting processes in senescence might have a salutary approach to obesity. The present review highlights the impact of an unhealthy diet on tissues affected by obesity, and the mechanisms that promote the consequent inflammation and senescence.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; School of Medicine, University of Crete, Herakleion, Crete, Greece
| | - Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Julio Plaza-Díaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON Canada; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada Spain.
| |
Collapse
|
32
|
Tesic V, Ciric J, Jovanovic Macura I, Zogovic N, Milanovic D, Kanazir S, Perovic M. Corticosterone and Glucocorticoid Receptor in the Cortex of Rats during Aging-The Effects of Long-Term Food Restriction. Nutrients 2021; 13:nu13124526. [PMID: 34960078 PMCID: PMC8703853 DOI: 10.3390/nu13124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11β-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Irena Jovanovic Macura
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Nevena Zogovic
- Department of Neurophysiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia;
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
- Correspondence:
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| |
Collapse
|
33
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
34
|
Yan LJ, Allen DC. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021; 11:1575. [PMID: 34827573 PMCID: PMC8615899 DOI: 10.3390/biom11111575] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cadmium is a nonessential metal that has heavily polluted the environment due to human activities. It can be absorbed into the human body via the gastrointestinal tract, respiratory tract, and the skin, and can cause chronic damage to the kidneys. The main site where cadmium accumulates and causes damage within the nephrons is the proximal tubule. This accumulation can induce dysfunction of the mitochondrial electron transport chain, leading to electron leakage and production of reactive oxygen species (ROS). Cadmium may also impair the function of NADPH oxidase, resulting in another source of ROS. These ROS together can cause oxidative damage to DNA, proteins, and lipids, triggering epithelial cell death and a decline in kidney function. In this article, we also reviewed evidence that the antioxidant power of plant extracts, herbal medicines, and pharmacological agents could ameliorate cadmium-induced kidney injury. Finally, a model of cadmium-induced kidney injury, centering on the notion that oxidative damage is a unifying mechanism of cadmium renal toxicity, is also presented. Given that cadmium exposure is inevitable, further studies using animal models are warranted for a detailed understanding of the mechanism underlying cadmium induced ROS production, and for the identification of more therapeutic targets.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | | |
Collapse
|
35
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
36
|
Mizunoe Y, Kobayashi M, Saito H, Goto A, Migitaka R, Miura K, Okita N, Sudo Y, Tagawa R, Yoshida M, Umemori A, Nakagawa Y, Shimano H, Higami Y. Prolonged caloric restriction ameliorates age-related atrophy in slow and fast muscle fibers of rat soleus muscle. Exp Gerontol 2021; 154:111519. [PMID: 34416335 DOI: 10.1016/j.exger.2021.111519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Aging causes loss of skeletal muscle mass and function, which is called sarcopenia. While sarcopenia impairs the quality of life of older adults and is a major factor in long-term hospitalization, its detailed pathogenic mechanism and preventive measures remain to be identified. Caloric restriction (CR) suppresses age-related physiological and pathological changes in many species and prolongs the average and healthy life expectancy. It has recently been reported that CR suppresses the onset of sarcopenia; however, few studies have analyzed the effects of long-term CR on age-related skeletal muscle atrophy. Thus, we investigated the aging and CR effects on soleus (SOL) muscles of 9-, 24-, and 29-month-old ad libitum-fed rats (9AL, 24AL, and 29AL, respectively) and of 29-month-old CR (29CR) rats. The total muscle cross sectional area (mCSA) of the entire SOL muscle significantly decreased in the 29AL rats, but not in the 24AL rats, compared with the 9AL rats. SOL muscle of the 29AL rats exhibited marked muscle fiber atrophy and increases in the number of muscle fibers with a central nucleus, in fibrosis, and in adipocyte infiltration. Additionally, although the decrease in the single muscle fiber cross-sectional area (fCSA) and the muscle fibers' number occurred in both slow-type and fast-type muscle fibers, the degree of atrophy was more remarkable in the fast-type fibers. However, CR suppressed the muscle fiber atrophy observed in the 29AL rats' SOL muscle by preserving the mCSA and the number of muscle fibers that declined with aging, and by decreasing the number of muscle fibers with a central nucleus, fibrosis and denervated muscle fibers. Overall, these results revealed that advanced aging separately reduces the number and fCSA of each muscle fiber type, but long-term CR can ameliorate this age-related sarcopenic muscle atrophy.
Collapse
Affiliation(s)
- Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiroki Saito
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Akifumi Goto
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ryota Migitaka
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kumi Miura
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-onoda, Yamaguchi, Japan
| | - Yuka Sudo
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miki Yoshida
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ai Umemori
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology & Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
37
|
Abstract
Aging has provided fruitful challenges for evolutionary theory, and evolutionary theory has deepened our understanding of aging. A great deal of genetic and molecular data now exists concerning mortality regulation and there is a growing body of knowledge concerning the life histories of diverse species. Assimilating all relevant data into a framework for the evolution of aging promises to significantly advance the field. We propose extensions of some key concepts to provide greater precision when applying these concepts to age-structured contexts. Secondary or byproduct effects of mutations are proposed as an important factor affecting survival patterns, including effects that may operate in small populations subject to genetic drift, widening the possibilities for mutation accumulation and pleiotropy. Molecular and genetic studies have indicated a diverse array of mechanisms that can modify aging and mortality rates, while transcriptome data indicate a high level of tissue and species specificity for genes affected by aging. The diversity of mechanisms and gene effects that can contribute to the pattern of aging in different organisms may mirror the complex evolutionary processes behind aging.
Collapse
Affiliation(s)
- Stewart Frankel
- Biology Department, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
38
|
Yanai S, Endo S. Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype. Front Aging Neurosci 2021; 13:697621. [PMID: 34408644 PMCID: PMC8365336 DOI: 10.3389/fnagi.2021.697621] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Aging is characterized generally by progressive and overall physiological decline of functions and is observed in all animals. A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about the detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging. To better understand age-related changes across the life-span, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Spatial memory and physical activities, including locomotor activity, gait velocity, and grip strength progressively declined with increasing age, although at different rates; anxiety-like behaviors increased with aging. Estimated age-related patterns showed that these functional alterations across ages are non-linear, and the patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age. Importantly, functional aging of male C57BL/6J mouse starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mouse might be better determined on the basis of its functional capabilities.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
39
|
The Neuromuscular Junction: Roles in Aging and Neuromuscular Disease. Int J Mol Sci 2021; 22:ijms22158058. [PMID: 34360831 PMCID: PMC8347593 DOI: 10.3390/ijms22158058] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the motor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to the muscle, as data show that these conditions incur denervation-like findings, such as fragmented NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue. Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease modifier and a potential therapeutic target in neuromuscular injury and disease.
Collapse
|
40
|
Tokarz J, Möller G, Artati A, Huber S, Zeigerer A, Blaauw B, Adamski J, Dyar KA. Common Muscle Metabolic Signatures Highlight Arginine and Lysine Metabolism as Potential Therapeutic Targets to Combat Unhealthy Aging. Int J Mol Sci 2021; 22:ijms22157958. [PMID: 34360722 PMCID: PMC8348621 DOI: 10.3390/ijms22157958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Biological aging research is expected to reveal modifiable molecular mechanisms that can be harnessed to slow or possibly reverse unhealthy trajectories. However, there is first an urgent need to define consensus molecular markers of healthy and unhealthy aging. Established aging hallmarks are all linked to metabolism, and a ‘rewired’ metabolic circuitry has been shown to accelerate or delay biological aging. To identify metabolic signatures distinguishing healthy from unhealthy aging trajectories, we performed nontargeted metabolomics on skeletal muscles from 2-month-old and 21-month-old mice, and after dietary and lifestyle interventions known to impact biological aging. We hypothesized that common metabolic signatures would highlight specific pathways and processes promoting healthy aging, while revealing the molecular underpinnings of unhealthy aging. Here, we report 50 metabolites that commonly distinguished aging trajectories in all cohorts, including 18 commonly reduced under unhealthy aging and 32 increased. We stratified these metabolites according to known relationships with various aging hallmarks and found the greatest associations with oxidative stress and nutrient sensing. Collectively, our data suggest interventions aimed at maintaining skeletal muscle arginine and lysine may be useful therapeutic strategies to minimize biological aging and maintain skeletal muscle health, function, and regenerative capacity in old age.
Collapse
Affiliation(s)
- Janina Tokarz
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Gabriele Möller
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anna Artati
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.); (S.H.)
| | - Simone Huber
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.); (S.H.)
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy;
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Kenneth Allen Dyar
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Correspondence:
| |
Collapse
|
41
|
Zimmerman B, Kundu P, Rooney WD, Raber J. The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review. Molecules 2021; 26:3406. [PMID: 34199898 PMCID: PMC8200075 DOI: 10.3390/molecules26113406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
| | - William D. Rooney
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
42
|
Yan LJ. NADH/NAD + Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021; 11:biom11050730. [PMID: 34068842 PMCID: PMC8153586 DOI: 10.3390/biom11050730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD+ redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD+ levels are overviewed. This is followed by discussion of the consequences of NADH/NAD+ redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD+ metabolism so that novel strategies to restore NADH/NAD+ redox balance in the diabetic kidney could be designed to combat DKD.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
43
|
Bibyk MJ, Campbell MJ, Hummon AB. Mass spectrometric investigations of caloric restriction mimetics. Proteomics 2021; 21:e2000121. [PMID: 33460282 PMCID: PMC8262777 DOI: 10.1002/pmic.202000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022]
Abstract
Caloric restriction (CR) is an innovative therapy used in tumor tissue and tumor model studies to promote cell death and decrease cell viability. Caloric restriction mimetics (CRMs) are a class of drugs that induce CR and starvation conditions within a cell. When used simultaneously with other chemotherapy agents, the effects are synergistic and effective at promoting tumor cell death. In this review, we discuss CRMs and their potential as cancer therapeutics. Firstly, we establish an overview of CR and its impacts on healthy and tumor cells. CR and CRM drugs have shown to decrease age-related diseases and can act as an anti-cancer agent. As it can be challenging for an individual to diligently stick to a diet that would induce CR, CRMs are even more desirable. Then, we discuss the drug class by highlighting three CRMs: resveratrol, (-)-hydroxycitric acid, and rapamycin. These CRMs are commonly known for their dietary effects, but the underlying mechanisms that drive cellular metabolic and proteomic changes show promise as a cancer therapeutic. Lastly, we highlight the use of mass spectrometry and proteomic techniques on experiments utilizing CRM drugs to understand the cellular pathways impacted by this drug class, leading to a better understanding of the anti-cancer properties and potentials of CRM.
Collapse
Affiliation(s)
- Michael J. Bibyk
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Melanie J. Campbell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
Bayliak MM, Mosiichuk NM, Sorochynska OM, Kuzniak OV, Sishchuk LO, Hrushchenko AO, Semchuk AO, Pryimak TV, Vasylyk YV, Gospodaryov DV, Storey KB, Garaschuk O, Lushchak VI. Middle aged turn point in parameters of oxidative stress and glucose catabolism in mouse cerebellum during lifespan: minor effects of every-other-day fasting. Biogerontology 2021; 22:315-328. [PMID: 33786674 DOI: 10.1007/s10522-021-09918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
The cerebellum is considered to develop aging markers more slowly than other parts of the brain. Intensification of free radical processes and compromised bioenergetics, critical hallmarks of normal brain aging, may be slowed down by caloric restriction. This study aimed to evaluate the intensity of oxidative stress and the enzymatic potential to utilize glucose via glycolysis or the pentose phosphate pathway (PPP) in the cerebellum of mice under ad libitum versus every-other-day fasting (EODF) feeding regimens. Levels of lipid peroxides, activities of antioxidant and key glycolytic and PPP enzymes were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice. The cerebellum showed the most dramatic increase in lipid peroxide levels, antioxidant capacity and PPP key enzyme activities and the sharpest decline in the activities of key glycolytic enzymes under transition from young to middle age but these changes slowed when transiting from middle to old age. A decrease in the activity of the key glycolytic enzyme phosphofructokinase was accompanied by a concomitant increase in the activities of hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), which may suggest that during normal cerebellar aging glucose metabolism shifts from glycolysis to the pentose phosphate pathway. The data indicate that intensification of free radical processes in the cerebellum occurred by middle age and that activation of the PPP together with increased antioxidant capacity can help to resist these changes into old age. However, the EODF regime did not significantly modulate or alleviate any of the metabolic processes studied in this analysis of the aging cerebellum.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Lesia O Sishchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Anastasiia O Hrushchenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Alina O Semchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Taras V Pryimak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074, Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
45
|
Dal Magro BM, Stone V, Klein CP, Maurmann RM, Saccomori AB, Dos Santos BG, August PM, Rodrigues KS, Conrado L, de Sousa FAB, Dreimeier D, Mello F, Matté C. Developmental programming: intrauterine caloric restriction promotes upregulation of mitochondrial sirtuin with mild effects on oxidative parameters in the ovaries and testes of offspring. Reprod Fertil Dev 2021; 32:763-773. [PMID: 32389177 DOI: 10.1071/rd19384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
According to the developmental origins of health and disease (DOHaD) hypothesis, changes in the maternal environment are known to reprogram the metabolic response of offspring. Known for its redox modulation, caloric restriction extends the lifespan of some species, which contributes to diminished cellular damage. Little is known about the effects of gestational caloric restriction, in terms of antioxidant parameters and molecular mechanisms of action, on the reproductive organs of offspring. This study assessed the effects of moderate (20%) caloric restriction on redox status parameters, molecular expression of sirtuin (SIRT) 1 and SIRT3 and histopathological markers in the ovaries and testes of adult rats that were subjected to gestational caloric restriction. Although enzyme activity was increased, ovaries from female pups contained high levels of oxidants, whereas testes from male pups had decreased antioxidant enzyme defences, as evidenced by diminished glyoxalase I activity and reduced glutathione content. Expression of SIRT3, a deacetylase enzyme related to cellular bioenergetics, was increased in both ovaries and testes. Previous studies have suggested that, in ovaries, diminished antioxidant metabolism can lead to premature ovarian failure. Unfortunately, there is little information regarding the redox profile in the testis. This study is the first to assess the redox network in both ovaries and testes, suggesting that, although intrauterine caloric restriction improves molecular mechanisms, it has a negative effect on the antioxidant network and redox status of reproductive organs of young adult rats.
Collapse
Affiliation(s)
- B M Dal Magro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - V Stone
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - C P Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - R M Maurmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - A B Saccomori
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - B G Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - P M August
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - K S Rodrigues
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - L Conrado
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil
| | - F A B de Sousa
- Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Agronomia, Porto Alegre, RS, 90650-001, Brazil
| | - D Dreimeier
- Setor de Anatomia Patológica Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Agronomia, Porto Alegre, RS, 90650-001, Brazil
| | - F Mello
- Centro de Reprodução e Experimentação Animal, Universidade Federal do Rio Grande do Sul, Campus do Vale, Prédio 43.300, Agronomia, RS, 91509-900, Brazil
| | - C Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil; and Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Prédio Anexo, Floresta, Porto Alegre, RS, 90035-003, Brazil; and Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, R. Sarmento Leite, n° 500, Farroupilha, Porto Alegre, RS, 90050-170, Brazil; and Corresponding author.
| |
Collapse
|
46
|
Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules 2021; 11:biom11020262. [PMID: 33578998 PMCID: PMC7916805 DOI: 10.3390/biom11020262] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1β and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and β-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Salus Infirmorum, Universidad de Cadiz, 11005 Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Gloria Baena-Nieto
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Department of Endocrinology, Jerez Hospital, Jerez de la Frontera, 11407 Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| | - Angel del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| |
Collapse
|
47
|
Negroni MA, Feldmeyer B, Foitzik S. Experimental increase in fecundity causes upregulation of fecundity and body maintenance genes in the fat body of ant queens. Biol Lett 2021; 17:20200909. [PMID: 33592155 PMCID: PMC8086957 DOI: 10.1098/rsbl.2020.0909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
In most organisms, fecundity and longevity are negatively associated and the molecular regulation of these two life-history traits is highly interconnected. In addition, nutrient intake often has opposing effects on lifespan and reproduction. In contrast to solitary insects, the main reproductive individual of social hymenopterans, the queen, is also the most long-lived. During development, queen larvae are well-nourished, but we are only beginning to understand the impact of nutrition on the queens' adult life and the molecular regulation and connectivity of fecundity and longevity. Here, we used two experimental manipulations to alter queen fecundity in the ant Temnothorax rugatulus and investigated associated changes in fat body gene expression. Egg removal triggered a fecundity increase, leading to expression changes in genes with functions in fecundity such as oogenesis and body maintenance. Dietary restriction lowered the egg production of queens and altered the expression of genes linked to autophagy, Toll signalling, cellular homeostasis and immunity. Our study reveals that an experimental increase in fecundity causes the co-activation of reproduction and body maintenance mechanisms, shedding light on the molecular regulation of the link between longevity and fecundity in social insects.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Biozentrum, Hanns Dieter Hüsch Weg 15, D-55128 Mainz, Germany
| | - Barbara Feldmeyer
- Molecular Ecology Group, Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14–16, D-60325 Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Biozentrum, Hanns Dieter Hüsch Weg 15, D-55128 Mainz, Germany
| |
Collapse
|
48
|
Vaiserman A, Koliada A, Lushchak O, Castillo MJ. Repurposing drugs to fight aging: The difficult path from bench to bedside. Med Res Rev 2020; 41:1676-1700. [PMID: 33314257 DOI: 10.1002/med.21773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The steady rise in life expectancy occurred across all developed countries during the last century. This demographic trend is, however, not accompanied by the same healthspan extension. This is since aging is the main risk factor for all age-associated pathological conditions. Therefore, slowing the rate of aging is suggested to be more efficient in preventing or delaying age-related diseases than treat them one by one, which is the common approach in a current pharmacological disease-oriented paradigm. To date, a variety of medications designed to treat particular pathological conditions have been shown to exhibit pro-longevity effects in different experimental models. Among them, there are many commonly used prescription and over-the-counter pharmaceuticals such as metformin, rapamycin, aspirin, statins, melatonin, vitamin antioxidants, etc. All of them are being increasingly investigated in preclinical and clinical trials with the aim of determine whether they have potential for extension of human healthspan. The results from these trials are frequently inconclusive and fall short of initial expectations, suggesting that innovative research ideas and additional translational steps are required to overcome obstacles for implementation of such approaches in clinical practice. In this review, recent advances and challenges in the field of repurposing widely used conventional pharmaceuticals to target the aging process are summarized and discussed.
Collapse
Affiliation(s)
| | | | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Manuel J Castillo
- Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
49
|
|
50
|
The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat Commun 2020; 11:4510. [PMID: 32908143 PMCID: PMC7481251 DOI: 10.1038/s41467-020-18140-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.
Collapse
|