1
|
Shin EH, Le Q, Barboza R, Morin A, Singh SM, Castellani CA. Mitochondrial transplantation: Triumphs, challenges, and impacts on nuclear genome remodelling. Mitochondrion 2025:102042. [PMID: 40254118 DOI: 10.1016/j.mito.2025.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Mitochondria are membrane-bound organelles of eukaryotic cells that play crucial roles in cell functioning and homeostasis, including ATP generation for cellular energy. Mitochondrial function is associated with several complex diseases and disorders, including cardiovascular, cardiometabolic, neurodegenerative diseases and some cancers. The risk for these diseases and disorders is often associated with mitochondrial dysfunction, particularly the quantitative and qualitative features of the mitochondrial genome. Emerging results implicate mito-nuclear crosstalk as the mechanism by which mtDNA variation affects complex disease outcomes. Experimental approaches are emerging for the targeting of mitochondria as a potential therapeutic for several of these diseases, particularly in the form of mitochondrial transplantation. Current approaches to mitochondrial transplantation generally involve isolating healthy mitochondria from donor cells and introducing them to diseased recipients towards amelioration of mitochondrial dysfunction. Using such a protocol, several reports have shown recovery of mitochondrial function and improved disease outcomes post-mitochondrial transplantation, highlighting its potential as a therapeutic method for several complex, severe and debilitating diseases. Additionally, the mitochondrial genome can be modified prior to transplantation to target disease-associated site-specific mutations and to reduce the ratio of mutant-to-WT alleles. These promising results may underlie the potential impact of mitochondrial transplantation on mito-nuclear genome interactions in the setting of the disease. Further, we recommend that mitochondrial transplantation experimentation include an assessment of potential impacts on remodelling of the nuclear genome, particularly the nuclear epigenome and transcriptome. Herein, we review these and other triumphs and challenges of mitochondrial transplantation as a potential novel therapeutic for mitochondria-associated diseases.
Collapse
Affiliation(s)
- Elly H Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Rachel Barboza
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Amanda Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada; McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Mallick S, Shormi AS, Jahan H, Alam MS, Begum RA, Sarker RH, Muid KA. Yeast cells experience chronological life span extension under prolonged glucose starvation. Heliyon 2025; 11:e42898. [PMID: 40070955 PMCID: PMC11894305 DOI: 10.1016/j.heliyon.2025.e42898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Budding yeast, Saccharomyces cerevisiae, is an ideal model organism for genetic research due to its similarity in life cycle and cellular structure to higher eukaryotes as well as its ease of cultivation and manipulation in the laboratory. Yeast cells benefit from being cultured in calorie-restricted media, which can be achieved by reducing glucose concentration from 2 % to 0.5 %. Cell metabolism depends on glucose and therefore, affects the physiology of the cell. This study aimed to investigate the effects of long-term glucose starvation on the lifespan of yeast cells by culturing in both standard and glucose-starved conditions. In this investigation yeast cells (BY4743 strain) were cultured in glucose-restricted YPD media (0.5 percent dextrose) to assess lifespan, growth-proliferation, autophagy, apoptosis, mtDNA abundance. The findings revealed that prolonged glucose restriction significantly extended chronological lifespan in yeast (p < 0.05). In order to decipher how starved yeast live chronologically longer, we tested mitochondrial association and found that calorie deprivation lowered the rate of mtDNA spontaneous mutation and increased mtDNA abundance which is a suggestive sign of mitobiogenesis. Furthermore, cells cultured on glucose-restricted media led to more autophagosome formation but less cell death. These results suggested that glucose restriction can enhance lifespan by improving overall cellular conditions. These findings may serve as a foundation for future research in aging, cancer and diabetes.
Collapse
Affiliation(s)
- Setu Mallick
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Atia Shanjida Shormi
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hawa Jahan
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Shamimul Alam
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rowshan Ara Begum
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Khandaker Ashfaqul Muid
- Genetics and Molecular Biology branch, Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Gabillard-Lefort C, Thibault T, Lenaers G, Wiesner RJ, Mialet-Perez J, Baris OR. Heart of the matter: mitochondrial dynamics and genome alterations in cardiac aging. Mech Ageing Dev 2025; 224:112044. [PMID: 40023199 DOI: 10.1016/j.mad.2025.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Cardiac pathological aging is a serious health issue, with cardiovascular diseases still being a leading cause of deaths worldwide. Therefore, there is an urgent need to identify culprit factors involved in this process. In the last decades, mitochondria, which are crucial for cardiac function, have emerged as major contributors. Mitochondria are organelles involved in a plethora of metabolic pathways and cell processes ranging from ATP production to calcium homeostasis or regulation of apoptotic pathways. This review provides a general overview of the pathomechanisms involving mitochondria during cardiac aging, with a focus on the role of mitochondrial dynamics and mitochondrial DNA (mtDNA). These mechanisms involve imbalanced mitochondrial fusion and fission, loss of mtDNA integrity leading to tissue mosaic of mitochondrial deficiency, as well as mtDNA release in the cytoplasm, promoting inflammation via the NLRP3, cGAS/STING and TLR9 pathways. Potential links between mtDNA, mitochondrial damage and the accumulation of senescent cells in the heart are also discussed. A better understanding of how these factors impact on heart function and accelerate its pathological aging should lead to the development of new therapies to promote healthy aging and restore age-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Claudie Gabillard-Lefort
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Théophile Thibault
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France; Department of Neurology, University Hospital of Angers, Angers, France
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Systems Physiology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jeanne Mialet-Perez
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Olivier R Baris
- University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| |
Collapse
|
4
|
Dousset L, Mahfouf W, Younes H, Fatrouni H, Faucheux C, Muzotte E, Khalife F, Rossignol R, Moisan F, Cario M, Claverol S, Favot-Laforge L, Nieminen AI, Vainio S, Ali N, Rezvani HR. Energy metabolism rewiring following acute UVB irradiation is largely dependent on nuclear DNA damage. Free Radic Biol Med 2025; 227:459-471. [PMID: 39667588 DOI: 10.1016/j.freeradbiomed.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Solar ultraviolet B (UVB) radiation-induced DNA damage is a well-known initiator of skin carcinomas. The UVB-induced DNA damage response (DDR) involves series of signaling cascades that are activated to maintain cell integrity. Among the different biological processes, little is known about the role of energy metabolism in the DDR. We sought to determine whether UVB-induced nuclear and/or mitochondrial cyclobutane pyrimidine dimers (CPDs) alter cellular energy metabolism. To gain insight into this question, we took advantage of keratinocytes expressing nuclear or mitochondrial CPD photolyase. Applying a quantitative proteomic approach and targeted metabolomics, we observed biphasic alterations in multiple metabolic pathways and in the abundance of various metabolites, largely influenced by the presence of genomic CPDs. The heightened oxygen consumption rate post-irradiation, along with mitochondrial structural rearrangements, was found to be dependent on both mitochondrial and nuclear CPDs. Understanding the influence of nuclear and mitochondrial DNA damage on keratinocyte responses to UVB irradiation deepens current knowledge regarding skin cancer prevention, initiation, and therapy.
Collapse
Affiliation(s)
- Léa Dousset
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Dermatology Department, Hôpital Saint-André, Bordeaux, France
| | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hadi Younes
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hala Fatrouni
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Elodie Muzotte
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Ferial Khalife
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Rodrigue Rossignol
- Univ. Bordeaux, Inserm, MRGM, U1211, Bordeaux, France; CELLOMET, Centre de Génomique Fonctionnelle de Bordeaux, Univ. Bordeaux, Bordeaux, France
| | - François Moisan
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Muriel Cario
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | | | | | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00014, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Nsrein Ali
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Hamid-Reza Rezvani
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
5
|
Pedklang N, Navasumrit P, Chompoobut C, Promvijit J, Hunsonti P, Ruchirawat M. Effects of particulate air pollution on BPDE-DNA adducts, telomere length, and mitochondrial DNA copy number in human exhaled breath condensate and BEAS-2B cells. Int J Hyg Environ Health 2025; 263:114488. [PMID: 39561502 DOI: 10.1016/j.ijheh.2024.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Traffic-related particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) have been linked to respiratory diseases and cancer risk in humans. Genomic damage, including benzo[a]pyrene diolepoxide (BPDE)-DNA adducts as well as alterations in telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN) are associated with respiratory diseases. This study aimed to investigate the association between exposure to traffic-related particulate pollutants and genomic damage in exhaled breath condensate (EBC) in human subjects and a bronchial epithelial cell line (BEAS-2B). Among the 60 healthy recruited subjects, residents living in high-traffic-congested areas were exposed to higher concentrations of PM2.5 (1.66-fold, p < 0.01), UFPs (1.79-fold, p < 0.01), PM2.5-PAHs (1.50-fold, p < 0.01), and UFPs-PAHs (1.35-fold, p < 0.05), than those in low-traffic-congested areas. In line with increased exposure to particulate air pollution, the high-traffic-exposed group had significantly increased BPDE-DNA adducts (1.40-fold, p < 0.05), TL shortening (1.24-fold, p < 0.05), and lower mtDNA-CN (1.38-fold, p < 0.05) in EBC. The observations in the human study linking exposure to PM2.5, UFPs, PM2.5-PAHs, and UFPs-PAHs with the aforementioned biological effects were confirmed by an in vitro cell-based study, in which BEAS-2B cells were treated with diesel exhaust particulate matter (DEP) containing fine and ultrafine PM and PAHs. Increased BPDE-DNA adducts levels, shortened TL, and decreased mtDNA-CN were also found in treated BEAS-2B cells. The shortened TL and decreased mtDNA-CN were in part mediated by decreased transcript levels of hTERT, and SIRT1, which are involved in telomerase activity and mitochondrial biogenesis, respectively. These results suggest that exposure to traffic-related particulate pollutants can cause genomic instability in respiratory cells, which may increase the health risk of respiratory diseases and the development of cancer.
Collapse
Affiliation(s)
- Naruporn Pedklang
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| | - Chalida Chompoobut
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Jeerawan Promvijit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Potchanee Hunsonti
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| |
Collapse
|
6
|
Latoszek M, Baginska-Drabiuk K, Sledziewska-Gojska E, Kaniak-Golik A. PCNA and Rnh1 independently participate in the protection of mitochondrial genome against UV-induced mutagenesis in yeast cells. Sci Rep 2024; 14:31017. [PMID: 39730600 DOI: 10.1038/s41598-024-82104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria. We show that, contrary to expectations, yeast PCNA is mitochondrially localized and, upon genotoxic stress, ubiquitinated PCNA can be detected in purified mitochondria. Moreover, the substitution K164R in PCNA leads to an increase of UV-induced point mutations in mtDNA. This UV-dependent effect is highly enhanced in cells in which the Mec1/Rad53/Dun1 checkpoint-dependent deoxynucleotide triphosphate (dNTP) increase in response to DNA damage is blocked and RNase H1 is lacking, suggesting that PCNA plays a role in a replication damage bypass pathway dealing with lesions in multiple ribonucleotides embedded in mtDNA. In addition, our analysis indicates that K164R in PCNA restricts mostly the anti-mutagenic Polη activity on UV-damaged mtDNA, whereas the inhibitory effect on Polζ's activity is only partial. We also show for the first time that in conditions of dNTP depletion yeast Rnh1 neutralizes deleterious effects of ribonucleotides for mtDNA replication, thereby preventing the enhanced instability of rho+ mitochondrial genomes.
Collapse
Affiliation(s)
- Martyna Latoszek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Baginska-Drabiuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Aneta Kaniak-Golik
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
8
|
Faria R, Vivès E, Boisguérin P, Descamps S, Sousa Â, Costa D. Upgrading Mitochondria-Targeting Peptide-Based Nanocomplexes for Zebrafish In Vivo Compatibility Assays. Pharmaceutics 2024; 16:961. [PMID: 39065658 PMCID: PMC11281276 DOI: 10.3390/pharmaceutics16070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The lack of effective delivery systems has slowed the development of mitochondrial gene therapy. Delivery systems based on cell-penetrating peptides (CPPs) like the WRAP (tryptophan and arginine-rich peptide) family conjugated with a mitochondrial targeting sequence (MTS) have emerged as adequate carriers to mediate gene expression into the mitochondria. In this work, we performed the PEGylation of WRAP/pDNA nanocomplexes and compared them with previously analyzed nanocomplexes such as (KH)9/pDNA and CpMTP/pDNA. All nanocomplexes exhibited nearly homogeneous sizes between 100 and 350 nm in different environments. The developed complexes were biocompatible and hemocompatible to both human astrocytes and lung smooth muscle cells, ensuring in vivo safety. The nanocomplexes displayed mitochondria targeting ability, as through transfection they preferentially accumulate into the mitochondria of astrocytes and muscle cells to the detriment of cytosol and lysosomes. Moreover, the transfection of these cells with MTS-CPP/pDNA complexes produced significant levels of mitochondrial protein ND1, highlighting their efficient role as gene delivery carriers toward mitochondria. The positive obtained data pave the way for in vivo research. Using confocal microscopy, the cellular internalization capacity of these nanocomplexes in the zebrafish embryo model was assessed. The peptide-based nanocomplexes were easily internalized into zebrafish embryos, do not cause harmful or toxic effects, and do not affect zebrafish's normal development and growth. These promising results indicate that MTS-CPP complexes are stable nanosystems capable of internalizing in vivo models and do not present associated toxicity. This work, even at an early stage, offers good prospects for continued in vivo zebrafish research to evaluate the performance of nanocomplexes for mitochondrial gene therapy.
Collapse
Affiliation(s)
- Rúben Faria
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| | - Eric Vivès
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Prisca Boisguérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.V.); (P.B.)
| | - Simon Descamps
- CRBM-CNRS, Cell Biology Research of Montpellier, UMR5237, 34293 Montpellier, France
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (R.F.); (Â.S.)
| |
Collapse
|
9
|
Masanta S, Wiesyk A, Panja C, Pilch S, Ciesla J, Sipko M, De A, Enkhbaatar T, Maslanka R, Skoneczna A, Kucharczyk R. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 2024; 73:103201. [PMID: 38795545 PMCID: PMC11140801 DOI: 10.1016/j.redox.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.
Collapse
Affiliation(s)
- Suchismita Masanta
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Aneta Wiesyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Jaroslaw Ciesla
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Marta Sipko
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Abhipsita De
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland.
| |
Collapse
|
10
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
11
|
Hasan A, Khamjan N, Lohani M, Mir SS. Targeted Inhibition of Hsp90 in Combination with Metformin Modulates Programmed Cell Death Pathways in A549 Lung Cancer Cells. Appl Biochem Biotechnol 2023; 195:7338-7378. [PMID: 37000353 DOI: 10.1007/s12010-023-04424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
The pathophysiology of lung cancer is dependent on the dysregulation in the apoptotic and autophagic pathways. The intricate link between apoptosis and autophagy through shared signaling pathways complicates our understanding of how lung cancer pathophysiology is regulated. As drug resistance is the primary reason behind treatment failure, it is crucial to understand how cancer cells may respond to different therapies and integrate crosstalk between apoptosis and autophagy in response to them, leading to cell death or survival. Thus, in this study, we have tried to evaluate the crosstalk between autophagy and apoptosis in A549 lung cancer cell line that could be modulated by employing a combination therapy of metformin (6 mM), an anti-diabetic drug, with gedunin (12 µM), an Hsp90 inhibitor, to provide insights into the development of new cancer therapeutics. Our results demonstrated that metformin and gedunin were cytotoxic to A549 lung cancer cells. Combination of metformin and gedunin generated ROS and promoted MMP loss and DNA damage. The combination further increased the expression of AMPKα1 and promoted the nuclear localization of AMPKα1/α2. The expression of Hsp90 was downregulated, further decreasing the expression of its clients, EGFR, PIK3CA, AKT1, and AKT3. Inhibition of the EGFR/PI3K/AKT pathway upregulated TP53 and inhibited autophagy. The combination was promoting nuclear localization of p53; however, some cytoplasmic signals were also detected. Further increase in the expression of caspase 9 and caspase 3 was observed. Thus, we concluded that the combination of metformin and gedunin upregulates apoptosis by inhibiting the EGFR/PI3K/AKT pathway and autophagy in A549 lung cancer cells.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India
- Current Address: Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nizar Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mohtashim Lohani
- Medical Research Center, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
- Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India.
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
12
|
Gilea AI, Magistrati M, Notaroberto I, Tiso N, Dallabona C, Baruffini E. The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders. IUBMB Life 2023; 75:983-1002. [PMID: 37470284 DOI: 10.1002/iub.2770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.
Collapse
Affiliation(s)
- Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Longan ER, Fay JC. Experimental evolution of Saccharomyces uvarum at high temperature yields elevation of maximal growth temperature and loss of the mitochondrial genome. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000831. [PMID: 37334198 PMCID: PMC10276265 DOI: 10.17912/micropub.biology.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
An organism's upper thermal tolerance is a major driver of its ecology and is a complex, polygenic trait. Given the wide variance in this critical phenotype across the tree of life, it is quite striking that this trait has not proven very evolutionarily labile in experimental evolution studies of microbes. In stark contrast to recent studies, William Henry Dallinger in the 1880s reported increasing the upper thermal limit of microbes he experimentally evolved by >40°C using a very gradual temperature ramping strategy. Using a selection scheme inspired by Dallinger, we sought to increase the upper thermal limit of Saccharomyces uvarum . This species has a maximum growth temperature of 34-35°C, considerably lower than S. cerevisiae . After 136 passages on solid plates at progressively higher temperatures, we recovered a clone that can grow at 36°C, a gain of ~1.5°C. Additionally, the evolved clone lost its mitochondrial genome and cannot respire. In contrast, an induced rho 0 derivative of the ancestor shows a decrease in thermotolerance. Also, incubation of the ancestor at 34°C for 5 days increased the frequency of petite mutants drastically compared to 22°C, supporting the notion that mutation pressure rather than selection drove loss of mtDNA in the evolved clone. These results demonstrate that S. uvarum 's upper thermal limit can be elevated slightly via experimental evolution and corroborate past observations in S. cerevisiae that high temperature selection schemes can inadvertently lead to production of the potentially undesirable respiratory incompetent phenotype in yeasts.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
14
|
Phan HTL, Lee H, Kim K. Trends and prospects in mitochondrial genome editing. Exp Mol Med 2023:10.1038/s12276-023-00973-7. [PMID: 37121968 DOI: 10.1038/s12276-023-00973-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 05/02/2023] Open
Abstract
Mitochondria are of fundamental importance in programmed cell death, cellular metabolism, and intracellular calcium concentration modulation, and inheritable mitochondrial disorders via mitochondrial DNA (mtDNA) mutation cause several diseases in various organs and systems. Nevertheless, mtDNA editing, which plays an essential role in the treatment of mitochondrial disorders, still faces several challenges. Recently, programmable editing tools for mtDNA base editing, such as cytosine base editors derived from DddA (DdCBEs), transcription activator-like effector (TALE)-linked deaminase (TALED), and zinc finger deaminase (ZFD), have emerged with considerable potential for correcting pathogenic mtDNA variants. In this review, we depict recent advances in the field, including structural biology and repair mechanisms, and discuss the prospects of using base editing tools on mtDNA to broaden insight into their medical applicability for treating mitochondrial diseases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyunji Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 28116, Cheongju, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Sharma A, Anand SK, Singh N, Dwivedi UN, Kakkar P. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res 2023; 428:113614. [PMID: 37127064 DOI: 10.1016/j.yexcr.2023.113614] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Cells are programmed to favorably respond towards the nutrient availability by adapting their metabolism to meet energy demands. AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine energy-sensing kinase. It gets activated upon a decrease in the cellular energy status as reflected by an increased AMP/ATP ratio, ADP, and also during the conditions of glucose starvation without change in the adenine nucelotide ratio. AMPK functions as a centralized regulator of metabolism, acting at cellular and physiological levels to circumvent the metabolic stress by restoring energy balance. This review intricately highlights the integrated signaling pathways by which AMPK gets activated allosterically or by multiple non-canonical upstream kinases. AMPK activates the ATP generating processes (e.g., fatty acid oxidation) and inhibits the ATP consuming processes that are non-critical for survival (e.g., cell proliferation, protein and triglyceride synthesis). An integrated signaling network with AMPK as the central effector regulates all the aspects of enhanced stress resistance, qualified cellular housekeeping, and energy metabolic homeostasis. Importantly, the AMPK mediated amelioration of cellular stress and inflammatory responses are mediated by stimulation of transcription factors such as Nrf2, SIRT1, FoxO and inhibition of NF-κB serving as main downstream effectors. Moreover, many lines of evidence have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling to fine-tune the metabolic pathways in response to different cellular signals. This review also highlights the critical involvement of AMPK in promoting mitochondrial health, and homeostasis, including mitophagy. Loss of AMPK or ULK1 activity leads to aberrant accumulation of autophagy-related proteins and defective mitophagy thus, connecting cellular energy sensing to autophagy and mitophagy.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Department of Biochemistry, University of Lucknow, Lucknow, 226007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| | - Sumit Kr Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Pathology, LSU Health, 1501 Kings Hwy, Shreveport, LA, 71103, USA.
| | - Neha Singh
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | | | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Nagar S, Mehta R, Kaur P, Liliah RT, Vancura A. Tolerance to replication stress requires Dun1p kinase and activation of the electron transport chain. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119382. [PMID: 36283478 PMCID: PMC10329874 DOI: 10.1016/j.bbamcr.2022.119382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
One of the key outcomes of activation of DNA replication checkpoint (DRC) or DNA damage checkpoint (DDC) is the increased synthesis of the deoxyribonucleoside triphosphates (dNTPs), which is a prerequisite for normal progression through the S phase and for effective DNA repair. We have recently shown that DDC increases aerobic metabolism and activates the electron transport chain (ETC) to elevate ATP production and dNTP synthesis by repressing transcription of histone genes, leading to globally altered chromatin architecture and increased transcription of genes encoding enzymes of tricarboxylic acid (TCA) cycle and the ETC. The aim of this study was to determine whether DRC activates ETC. We show here that DRC activates ETC by a checkpoint kinase Dun1p-dependent mechanism. DRC induces transcription of RNR1-4 genes and elevates mtDNA copy number. Inactivation of RRM3 or SGS1, two DNA helicases important for DNA replication, activates DRC but does not render cells dependent on ETC. However, fitness of rrm3Δ and sgs1Δ cells requires Dun1p. The slow growth of rrm3Δdun1Δ and sgs1Δdun1Δ cells can be suppressed by introducing sml1Δ mutation, indicating that the slow growth is due to low levels of dNTPs. Interestingly, inactivation of ETC in dun1Δ cells results in a synthetic growth defect that can be suppressed by sml1Δ mutation, suggesting that ETC is important for dNTP synthesis in the absence of Dun1p function. Together, our results reveal an unexpected connection between ETC, replication stress, and Dun1p kinase.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Roshini T Liliah
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
17
|
Alexandrou AT, Duan Y, Xu S, Tepper C, Fan M, Tang J, Berg J, Basheer W, Valicenti T, Wilson PF, Coleman MA, Vaughan AT, Fu L, Grdina DJ, Murley J, Wang A, Woloschak G, Li JJ. PERIOD 2 regulates low-dose radioprotection via PER2/pGSK3β/β-catenin/Per2 loop. iScience 2022; 25:105546. [PMID: 36465103 PMCID: PMC9708791 DOI: 10.1016/j.isci.2022.105546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
During evolution, humans are acclimatized to the stresses of natural radiation and circadian rhythmicity. Radiosensitivity of mammalian cells varies in the circadian period and adaptive radioprotection can be induced by pre-exposure to low-level radiation (LDR). It is unclear, however, if clock proteins participate in signaling LDR radioprotection. Herein, we demonstrate that radiosensitivity is increased in mice with the deficient Period 2 gene (Per2def) due to impaired DNA repair and mitochondrial function in progenitor bone marrow hematopoietic stem cells and monocytes. Per2 induction and radioprotection are also identified in LDR-treated Per2wt mouse cells and in human skin (HK18) and breast (MCF-10A) epithelial cells. LDR-boosted PER2 interacts with pGSK3β(S9) which activates β-catenin and the LEF/TCF mediated gene transcription including Per2 and genes involved in DNA repair and mitochondrial functions. This study demonstrates that PER2 plays an active role in LDR adaptive radioprotection via PER2/pGSK3β/β-catenin/Per2 loop, a potential target for protecting normal cells from radiation injury.
Collapse
Affiliation(s)
- Aris T. Alexandrou
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
- Department of Natural and Quantitative Sciences, Holy Cross College, Notre Dame, IN 46556, USA
| | - Yixin Duan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Shanxiu Xu
- Department of Surgery, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Clifford Tepper
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Ming Fan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Jason Tang
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Jonathan Berg
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Wassim Basheer
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Tyler Valicenti
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Paul F. Wilson
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Matthew A. Coleman
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Andrew T. Vaughan
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| | - Loning Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David J. Grdina
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jefferey Murley
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Gayle Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60637, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
- NCI-designated Comprehensive Cancer Center, University of California at Davis, 4501 X Street, Sacramento, CA 95817, USA
| |
Collapse
|
18
|
Qian J, Zheng M, Wang L, Song Y, Yan J, Hsu YF. Arabidopsis mitochondrial single-stranded DNA-binding proteins SSB1 and SSB2 are essential regulators of mtDNA replication and homologous recombination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1952-1965. [PMID: 35925893 DOI: 10.1111/jipb.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Faithful DNA replication is one of the most essential processes in almost all living organisms. However, the proteins responsible for organellar DNA replication are still largely unknown in plants. Here, we show that the two mitochondrion-targeted single-stranded DNA-binding (SSB) proteins SSB1 and SSB2 directly interact with each other and act as key factors for mitochondrial DNA (mtDNA) maintenance, as their single or double loss-of-function mutants exhibit severe germination delay and growth retardation. The mtDNA levels in mutants lacking SSB1 and/or SSB2 function were two- to four-fold higher than in the wild-type (WT), revealing a negative role for SSB1/2 in regulating mtDNA replication. Genetic analysis indicated that SSB1 functions upstream of mitochondrial DNA POLYMERASE IA (POLIA) or POLIB in mtDNA replication, as mutation in either gene restored the high mtDNA copy number of the ssb1-1 mutant back to WT levels. In addition, SSB1 and SSB2 also participate in mitochondrial genome maintenance by influencing mtDNA homologous recombination (HR). Additional genetic analysis suggested that SSB1 functions upstream of ORGANELLAR SINGLE-STRANDED DNA-BINDING PROTEIN1 (OSB1) during mtDNA replication, while SSB1 may act downstream of OSB1 and MUTS HOMOLOG1 for mtDNA HR. Overall, our results yield new insights into the roles of the plant mitochondrion-targeted SSB proteins and OSB1 in maintaining mtDNA stability via affecting DNA replication and DNA HR.
Collapse
Affiliation(s)
- Jie Qian
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Wang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
19
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
20
|
The Usefulness of Autoradiography for DNA Repair Proteins Activity Detection in the Cytoplasm towards Radiolabeled Oligonucleotides Containing 5′,8-Cyclo-2′-deoxyAdenosine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Autoradiography of 32P-radiolabeled oligonucleotides is one of the most precise detection methods of DNA repair processes. In this study, autoradiography allowed assessing the activity of proteins in the cytoplasm involved in DNA repair. The cytoplasm is the site of protein biosynthesis but is also a target cellular compartment of synthetic therapeutic oligonucleotide (STO) delivery. The DNA-based drugs may be impaired by radiation-induced lesions, such as clustered DNA lesions (CDL) and/or 5′,8-cyclo-2′-deoxypurines (cdPu). CDL and cdPu may appear in the sequence of STO after irradiation and subsequently impair DNA repair, as shown in previous studies. Hence, the interesting questions are (1) is it safe to combine STO treatment with radiotherapy; (2) are repair proteins active in the cytoplasm; and (3) is their activity different in the cytoplasm than in the nucleus? This unique study examined whether the proteins involved in the DNA repair are affected by the CDL while they are still present in the cytoplasm of xrs5, BJ, and XPC cells. Double-stranded oligonucleotides with bi-stranded CDL were used (containing AP site in one strand and a (5′S) or (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA) in the other strand located 1 or 4 bp in both directions). The results have shown that the proteins involved in the repair were active in the cytoplasm, but less than in the nucleus. The general trends aligned for cytoplasm and nucleus—lesions located in the 5′-end direction inhibited the course of DNA repair. The combination of STO with radiotherapy should be applied carefully, as unrepaired lesions within STO may impair their therapeutic efficiency.
Collapse
|
21
|
Kaminska J, Soczewka P, Rzepnikowska W, Zoladek T. Yeast as a Model to Find New Drugs and Drug Targets for VPS13-Dependent Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23095106. [PMID: 35563497 PMCID: PMC9104724 DOI: 10.3390/ijms23095106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-acanthocytosis. The pathogenesis of these diseases is poorly understood, and no effective treatment is available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could be studied in model organisms, including yeast, where one VPS13 gene is present. In this review, we summarize advancements obtained using yeast. In recent studies, vps13Δ and vps13-I2749 yeast mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating calcineurin activity. In addition, vps13Δ suppression was achieved by using calcineurin inhibitors. The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1, CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing an increase in the intracellular iron content. Moreover, among the identified chemical suppressors were copper ionophores, which require a functional iron uptake system for activity, and flavonoids, which bind iron. These findings point at areas for further investigation in a higher eukaryotic model of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for these diseases.
Collapse
Affiliation(s)
- Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Piotr Soczewka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
- Correspondence:
| |
Collapse
|
22
|
Abstract
Significance: Aging is a natural process that affects most living organisms, resulting in increased mortality. As the world population ages, the prevalence of age-associated diseases, and their associated health care costs, has increased sharply. A better understanding of the molecular mechanisms that lead to cellular dysfunction may provide important targets for interventions to prevent or treat these diseases. Recent Advances: Although the mitochondrial theory of aging had been proposed more than 40 years ago, recent new data have given stronger support for a central role for mitochondrial dysfunction in several pathways that are deregulated during normal aging and age-associated disease. Critical Issues: Several of the experimental evidence linking mitochondrial alterations to age-associated loss of function are correlative and mechanistic insights are still elusive. Here, we review how mitochondrial dysfunction may be involved in many of the known hallmarks of aging, and how these pathways interact in an intricate net of molecular relationships. Future Directions: As it has become clear that mitochondrial dysfunction plays causative roles in normal aging and age-associated diseases, it is necessary to better define the molecular interactions and the temporal and causal relationship between these changes and the relevant phenotypes seen during the aging process. Antioxid. Redox Signal. 36, 824-843.
Collapse
Affiliation(s)
- Caio M P F Batalha
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Medicina, Universidade de Campinas, Campinas, Brazil
| | - Nadja C Souza-Pinto
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Zhu J, Huang Q, Liu S, Peng X, Xue J, Feng T, Huang W, Chen Z, Lai K, Ji Y, Wang M, Yuan R. Construction of a Novel LncRNA Signature Related to Genomic Instability to Predict the Prognosis and Immune Activity of Patients With Hepatocellular Carcinoma. Front Immunol 2022; 13:856186. [PMID: 35479067 PMCID: PMC9037030 DOI: 10.3389/fimmu.2022.856186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Genomic instability (GI) plays a crucial role in the development of various cancers including hepatocellular carcinoma. Hence, it is meaningful for us to use long non-coding RNAs related to genomic instability to construct a prognostic signature for patients with HCC. Methods Combining the lncRNA expression profiles and somatic mutation profiles in The Cancer Genome Atlas database, we identified GI-related lncRNAs (GILncRNAs) and obtained the prognosis-related GILncRNAs through univariate regression analysis. These lncRNAs obtained risk coefficients through multivariate regression analysis for constructing GI-associated lncRNA signature (GILncSig). ROC curves were used to evaluate signature performance. The International Cancer Genomics Consortium (ICGC) cohort, and in vitro experiments were used for signature external validation. Immunotherapy efficacy, tumor microenvironments, the half-maximal inhibitory concentration (IC50), and immune infiltration were compared between the high- and low-risk groups with TIDE, ESTIMATE, pRRophetic, and ssGSEA program. Results Five GILncRNAs were used to construct a GILncSig. It was confirmed that the GILncSig has good prognostic evaluation performance for patients with HCC by drawing a time-dependent ROC curve. Patients were divided into high- and low-risk groups according to the GILncSig risk score. The prognosis of the low-risk group was significantly better than that of the high-risk group. Independent prognostic analysis showed that the GILncSig could independently predict the prognosis of patients with HCC. In addition, the GILncSig was correlated with the mutation rate of the HCC genome, indicating that it has the potential to measure the degree of genome instability. In GILncSig, LUCAT1 with the highest risk factor was further validated as a risk factor for HCC in vitro. The ESTIMATE analysis showed a significant difference in stromal scores and ESTIMATE scores between the two groups. Multiple immune checkpoints had higher expression levels in the high-risk group. The ssGSEA results showed higher levels of tumor-antagonizing immune cells in the low-risk group compared with the high-risk group. Finally, the GILncSig score was associated with chemotherapeutic drug sensitivity and immunotherapy efficacy of patients with HCC. Conclusion Our research indicates that GILncSig can be used for prognostic evaluation of patients with HCC and provide new insights for clinical decision-making and potential therapeutic strategies.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Huang
- Department of General Practice, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ju Xue
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tangbin Feng
- Department of Surgery, II, Duchang County Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Wulang Huang
- Department of General Surgery, Affiliated Hospital of Jinggangshan University, Jian, China
| | - Zhimeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kuiyuan Lai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yufei Ji
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Miaomiao Wang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Fonseca PLC, De-Paula RB, Araújo DS, Tomé LMR, Mendes-Pereira T, Rodrigues WFC, Del-Bem LE, Aguiar ERGR, Góes-Neto A. Global Characterization of Fungal Mitogenomes: New Insights on Genomic Diversity and Dynamism of Coding Genes and Accessory Elements. Front Microbiol 2021; 12:787283. [PMID: 34925295 PMCID: PMC8672057 DOI: 10.3389/fmicb.2021.787283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
Fungi comprise a great diversity of species with distinct ecological functions and lifestyles. Similar to other eukaryotes, fungi rely on interactions with prokaryotes and one of the most important symbiotic events was the acquisition of mitochondria. Mitochondria are organelles found in eukaryotic cells whose main function is to generate energy through aerobic respiration. Mitogenomes (mtDNAs) are double-stranded circular or linear DNA from mitochondria that may contain core genes and accessory elements that can be replicated, transcribed, and independently translated from the nuclear genome. Despite their importance, investigative studies on the diversity of fungal mitogenomes are scarce. Herein, we have evaluated 788 curated fungal mitogenomes available at NCBI database to assess discrepancies and similarities among them and to better understand the mechanisms involved in fungal mtDNAs variability. From a total of 12 fungal phyla, four do not have any representative with available mitogenomes, which highlights the underrepresentation of some groups in the current available data. We selected representative and non-redundant mitogenomes based on the threshold of 90% similarity, eliminating 81 mtDNAs. Comparative analyses revealed considerable size variability of mtDNAs with a difference of up to 260 kb in length. Furthermore, variation in mitogenome length and genomic composition are generally related to the number and length of accessory elements (introns, HEGs, and uORFs). We identified an overall average of 8.0 (0–39) introns, 8.0 (0–100) HEGs, and 8.2 (0–102) uORFs per genome, with high variation among phyla. Even though the length of the core protein-coding genes is considerably conserved, approximately 36.3% of the mitogenomes evaluated have at least one of the 14 core coding genes absent. Also, our results revealed that there is not even a single gene shared among all mitogenomes. Other unusual genes in mitogenomes were also detected in many mitogenomes, such as dpo and rpo, and displayed diverse evolutionary histories. Altogether, the results presented in this study suggest that fungal mitogenomes are diverse, contain accessory elements and are absent of a conserved gene that can be used for the taxonomic classification of the Kingdom Fungi.
Collapse
Affiliation(s)
- Paula L C Fonseca
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ruth B De-Paula
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Daniel S Araújo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thairine Mendes-Pereira
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luiz-Eduardo Del-Bem
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Liu S, Chong W. Roles of LncRNAs in Regulating Mitochondrial Dysfunction in Septic Cardiomyopathy. Front Immunol 2021; 12:802085. [PMID: 34899764 PMCID: PMC8652231 DOI: 10.3389/fimmu.2021.802085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023] Open
Abstract
Sepsis is an abnormal systemic inflammatory response of the host immune system to infection and can lead to fatal multiorgan dysfunction syndrome. Epidemiological studies have shown that approximately 10-70% of sepsis cases can lead to septic cardiomyopathy. Since the pathogenesis of septic cardiomyopathy is not clear, it is difficult for medical doctors to treat the disease. Therefore, finding effective interventions to prevent and reduce myocardial damage in septic cardiomyopathy is clinically significant. Epigenetics is the study of stable genetic phenotype inheritance that does not involve changing gene sequences. Epigenetic inheritance is affected by both gene and environmental regulation. Epigenetic studies focus on the modification and influence of chromatin structure, mainly including chromatin remodelling, DNA methylation, histone modification and noncoding RNA (ncRNA)-related mechanisms. Recently, long ncRNA (lncRNA)-related mechanisms have been the focus of epigenetic studies. LncRNAs are expected to become important targets to prevent, diagnose and treat human diseases. As the energy metabolism centre of cells, mitochondria are important targets in septic cardiomyopathy. Intervention measures to prevent and treat mitochondrial damage are of great significance for improving the prognosis of septic cardiomyopathy. LncRNAs play important roles in life activities. Recently, studies have focused on the involvement of lncRNAs in regulating mitochondrial dysfunction. However, few studies have revealed the involvement of lncRNAs in regulating mitochondrial dysfunction in septic cardiomyopathy. In this article, we briefly review recent research in this area.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Ali SS, Amoako-Attah I, Shao J, Kumi-Asare E, Meinhardt LW, Bailey BA. Mitochondrial Genomics of Six Cacao Pathogens From the Basidiomycete Family Marasmiaceae. Front Microbiol 2021; 12:752094. [PMID: 34777305 PMCID: PMC8581569 DOI: 10.3389/fmicb.2021.752094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
Thread blight disease has recently been described as an emerging disease on cacao (Theobroma cacao) in Ghana. In Ghana, thread blight disease is caused by multiple species of the Marasmiaceae family: Marasmius tenuissimus, M. crinis-equi, M. palmivorus, and Marasmiellus scandens. Interestingly, two additional members of the Marasmiaceae; Moniliophthora roreri (frosty pod rot) and Moniliophthora perniciosa (witches’ broom disease), are major pathogens of cacao in the Western hemisphere. It is important to accurately characterize the genetic relationships among these economically important species in support of their disease management. We used data from Illumina NGS-based genome sequencing efforts to study the mitochondrial genomes (mitogenomes) of the four cacao thread blight associated pathogens from Ghana and compared them with published mitogenomes of Mon. roreri and Mon. perniciosa. There is a remarkable interspecies variation in mitogenome size within the six cacao-associated Marasmiaceae species, ranging from 43,121 to 109,103 bp. The differences in genome lengths are primarily due to the number and lengths of introns, differences in intergenic space, and differences in the size and numbers of unidentified ORFs (uORF). Among seven M. tenuissimus mitogenomes sequenced, there is variation in size and sequence pointing to divergent evolution patterns within the species. The intronic regions show a high degree of sequence variation compared to the conserved sequences of the 14 core genes. The intronic ORFs identified, regardless of species, encode GIY-YIG or LAGLIDADG domain-containing homing endonuclease genes. Phylogenetic relationships using the 14 core proteins largely mimic the phylogenetic relationships observed in gene order patterns, grouping M. tenuissimus with M. crinis-equi, and M. palmivorus with Mon. roreri and Mon. perniciosa, leaving Mar. scandens as an outlier. The results from this study provide evidence of independent expansion/contraction events and sequence diversification in each species and establish a foundation for further exploration of the evolutionary trajectory of the fungi in Marasmiaceae family.
Collapse
Affiliation(s)
- Shahin S Ali
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville Agricultural Research Center-West, Beltsville, MD, United States.,Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | | | - Jonathan Shao
- U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville, MD, United States
| | | | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville Agricultural Research Center-West, Beltsville, MD, United States
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, U. S. Department of Agriculture (USDA)/Agricultural Research Service (ARS), Beltsville Agricultural Research Center-West, Beltsville, MD, United States
| |
Collapse
|
27
|
Putative role of uncoupling proteins in mitochondria-nucleus communications and DNA damage response. J Biosci 2021. [DOI: 10.1007/s12038-021-00224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Araújo LBNDE, Cal BBF, Nunes BM, Cruz LODA, Silva CRDA, Castro TCDE, Leitão ÁC, Pádula MDE, Albarello N, Dantas FJS. Nuclear and mitochondrial genome instability induced by fractions of ethanolic extract from Hovenia dulcis Thunberg in Saccharomyces cerevisiae strains. AN ACAD BRAS CIENC 2021; 93:e20191436. [PMID: 34378640 DOI: 10.1590/0001-3765202120191436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Hovenia dulcis is a plant commonly used as a pharmaceutical supplement, having displayed important pharmacological properties such antigiardic, antineoplastic and hepatoprotective. The purpose of this work was investigate the cytotoxic, genotoxic and mutagenic potential from fractions of Hovenia dulcis ethanolic extract on Saccharomyces cerevisiae strains FF18733 (wild type) and CD138 (ogg1). Ethanolic extract from Hovenia dulcis leaves was fractioned using organic solvents according to increasing polarity: Hexane (1:1), dichlorometane (1:1), ethyl acetate (1:1) and butanol (1:1). Three experimental assays were performed, such as (i) inactivation of cultures; (ii) mutagenesis (canavanine resistance system) and (iii) loss of mitochondrial function (petites colonies). The findings shown a decrease in cell viability in FF18733 and CD138 strains; all fractions of the extract were mutagenic in CD138 strain; only ethyl acetate and butanol fractions increased the rate of petites colonies for CD138 strains. Ethyl acetate and n-butanol fractions induces mutagenicity, at the evaluated concentrations, in mitochondrial and genomic DNA in CD138 strain, mediated by oxidative lesions. In conclusion, it is possible to infer that the lesions caused by the extract fractions could be mediated by reactive oxygen species and might reach multiple molecular targets to cause cellular damage.
Collapse
Affiliation(s)
- Luana B N DE Araújo
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Boulevard 28 de Setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Bruna B F Cal
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Boulevard 28 de Setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Breno M Nunes
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Boulevard 28 de Setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Leticia O DA Cruz
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Boulevard 28 de Setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Claudia R DA Silva
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Boulevard 28 de Setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Tatiana C DE Castro
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Biotecnologia de Plantas, Núcleo de Biotecnologia Vegetal, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Álvaro C Leitão
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biofísica Carlos Chagas Filho, Laboratório de Radiobiologia Molecular, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Marcelo DE Pádula
- Universidade Federal do Rio de Janeiro (UFRJ), Laboratório de Microbiologia e Avaliação Genotóxica, Departamento de Análises Clínicas e Toxicológicas, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Norma Albarello
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Biotecnologia de Plantas, Núcleo de Biotecnologia Vegetal, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Flavio J S Dantas
- Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Radio e Fotobiologia, Departamento de Biofísica e Biometria, Boulevard 28 de Setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Topoisomerase II deficiency leads to a postreplicative structural shift in all Saccharomyces cerevisiae chromosomes. Sci Rep 2021; 11:14940. [PMID: 34294749 PMCID: PMC8298500 DOI: 10.1038/s41598-021-93875-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.
Collapse
|
30
|
Apurinic/Apyrimidinic Endonuclease 2 (APE2): An ancillary enzyme for contextual base excision repair mechanisms to preserve genome stability. Biochimie 2021; 190:70-90. [PMID: 34302888 DOI: 10.1016/j.biochi.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The genome of living organisms frequently undergoes various types of modifications which are recognized and repaired by the relevant repair mechanisms. These repair pathways are increasingly being deciphered to understand the mechanisms. Base excision repair (BER) is indispensable to maintain genome stability. One of the enigmatic repair proteins of BER, Apurinic/Apyrimidinic Endonuclease 2 (APE2), like APE1, is truly multifunctional and demonstrates the independent and non-redundant function in maintaining the genome integrity. APE2 is involved in ATR-Chk1 mediated DNA damage response. It also resolves topoisomerase1 mediated cleavage complex intermediate which is formed while repairing misincorporated ribonucleotides in the absence of functional RNase H2 mediated excision repair pathway. BER participates in the demethylation pathway and the role of Arabidopsis thaliana APE2 is demonstrated in this process. Moreover, APE2 is synthetically lethal to BRCA1, BRCA2, and RNase H2, and its homolog, APE1 fails to complement the function. Hence, the role of APE2 is not just an alternate to the repair mechanisms but has implications in diverse functional pathways related to the maintenance of genome integrity. This review analyses genomic features of APE2 and delineates its enzyme function as error-prone as well as efficient and accurate repair protein based on the studies on mammalian or its homolog proteins from model systems such as Arabidopsis thaliana, Schizosaccharomyces pombe, Trypanosoma curzi, Xenopus laevis, Danio rerio, Mus musculus, and Homo sapiens.
Collapse
|
31
|
Cal M, Matyjaszczyk I, Filik K, Ogórek R, Ko Y, Ułaszewski S. Mitochondrial Function Are Disturbed in the Presence of the Anticancer Drug, 3-Bromopyruvate. Int J Mol Sci 2021; 22:ijms22126640. [PMID: 34205737 PMCID: PMC8235118 DOI: 10.3390/ijms22126640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
3-bromopuryvate (3-BP) is a compound with unique antitumor activity. It has a selective action against tumor cells that exhibit the Warburg effect. It has been proven that the action of 3-BP is pleiotropic: it acts on proteins, glycolytic enzymes, reduces the amount of ATP, induces the formation of ROS (reactive oxygen species), and induces nuclear DNA damage. Mitochondria are important organelles for the proper functioning of the cell. The production of cellular energy (ATP), the proper functioning of the respiratory chain, or participation in the production of amino acids are one of the many functions of mitochondria. Here, for the first time, we show on the yeast model that 3-BP acts in the eukaryotic cell also by influence on mitochondria and that agents inhibiting mitochondrial function can potentially be used in cancer therapy with 3-BP. We show that cells with functional mitochondria are more resistant to 3-BP than rho0 cells. Using an MTT assay (a colorimetric assay for assessing cell metabolic activity), we demonstrated that 3-BP decreased mitochondrial activity in yeast in a dose-dependent manner. 3-BP induces mitochondrial-dependent ROS generation which results in ∆sod2, ∆por1, or ∆gpx1 mutant sensitivity to 3-BP. Probably due to ROS mtDNA lesions rise during 3-BP treatment. Our findings may have a significant impact on the therapy with 3-BP.
Collapse
Affiliation(s)
- Magdalena Cal
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
- Correspondence: ; Tel.: +48-71-375-6269
| | - Irwin Matyjaszczyk
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
| | - Karolina Filik
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
| | - Young Ko
- KoDiscovery, LLC, Baltimore, MD 21202, USA;
| | - Stanisław Ułaszewski
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
| |
Collapse
|
32
|
Aksan A, Farrag K, Aksan S, Schroeder O, Stein J. Flipside of the Coin: Iron Deficiency and Colorectal Cancer. Front Immunol 2021; 12:635899. [PMID: 33777027 PMCID: PMC7991591 DOI: 10.3389/fimmu.2021.635899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency, with or without anemia, is the most frequent hematological manifestation in individuals with cancer, and is especially common in patients with colorectal cancer. Iron is a vital micronutrient that plays an essential role in many biological functions, in the context of which it has been found to be intimately linked to cancer biology. To date, however, whereas a large number of studies have comprehensively investigated and reviewed the effects of excess iron on cancer initiation and progression, potential interrelations of iron deficiency with cancer have been largely neglected and are not well-defined. Emerging evidence indicates that reduced iron intake and low systemic iron levels are associated with the pathogenesis of colorectal cancer, suggesting that optimal iron intake must be carefully balanced to avoid both iron deficiency and iron excess. Since iron is vital in the maintenance of immunological functions, insufficient iron availability may enhance oncogenicity by impairing immunosurveillance for neoplastic changes and potentially altering the tumor immune microenvironment. Data from clinical studies support these concepts, showing that iron deficiency is associated with inferior outcomes and reduced response to therapy in patients with colorectal cancer. Here, we elucidate cancer-related effects of iron deficiency, examine preclinical and clinical evidence of its role in tumorigenesis, cancer progression and treatment response. and highlight the importance of adequate iron supplementation to limit these outcomes.
Collapse
Affiliation(s)
- Aysegül Aksan
- Institute of Nutritional Science, Justus-Liebig University, Giessen, Germany.,Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany
| | - Karima Farrag
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Sami Aksan
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Oliver Schroeder
- Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| | - Jürgen Stein
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Interdisziplinäres Crohn Colitis Centrum, Rhein-Main, Frankfurt, Germany.,DGD Kliniken Sachsenhausen, Frankfurt, Germany
| |
Collapse
|
33
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
34
|
Kulik T, Van Diepeningen AD, Hausner G. Editorial: The Significance of Mitogenomics in Mycology. Front Microbiol 2021; 11:628579. [PMID: 33488569 PMCID: PMC7817700 DOI: 10.3389/fmicb.2020.628579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne D Van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
35
|
Liu H, Wang J, Wang D, Kong M, Ning C, Zhang X, Xiao J, Zhang X, Liu J, Zhao X. Cybrid Model Supports Mitochondrial Genetic Effect on Pig Litter Size. Front Genet 2020; 11:579382. [PMID: 33384712 PMCID: PMC7770168 DOI: 10.3389/fgene.2020.579382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
In pigs, mitochondrial DNA (mtDNA) polymorphism and the correlation to reproductive performance across breeds and individuals have been largely reported, however, experimental proof has never been provided. In this study, we analyzed 807 sows for correlation of total number born (TNB) and mitotype, which presented the maximum of 1.73 piglets for mtDNA contribution. Cybrid models representing different mitotypes were generated for identification of the mtDNA effect. Results indicated significant differences on cellular and molecular characteristics among cybrids, including energy metabolic traits, mtDNA copy numbers and transcriptions, mRNA and protein expressions on mitochondrial biogenesis genes and reproduction-related genes. Referring to mitotypes, the cybrids with prolific mitotypes presented significantly higher oxygen consumption rate (OCR) productions, mtDNA transcriptions and copy numbers than those with common mitotypes, while both mRNA and protein expressions of PPARA, TFAM, ER1, ER2, and ESRRG in prolific cybrids were significantly higher than those with common mitotypes. Cybrid models reflected the mtDNA effect on pig litter size, suggesting the potential application of mtDNA polymorphism in pig selection and breeding practices.
Collapse
Affiliation(s)
- Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Minghua Kong
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xing Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Xin Zhang
- Wenshang Professor Workstation of China Agricultural University, Jining, China.,Jining Animal Husbandry Station, Jining, China
| | - Jianfeng Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| |
Collapse
|
36
|
Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biol 2020; 38:101808. [PMID: 33264701 PMCID: PMC7708942 DOI: 10.1016/j.redox.2020.101808] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Ultraviolet B radiation (UVB) is an environmental complete carcinogen, which induces and promotes keratinocyte carcinomas, the most common human malignancies. UVB induces the formation of cyclobutane pyrimidine dimers (CPDs). Repairing CPDs through nucleotide excision repair is slow and error-prone in placental mammals. In addition to the mutagenic and malignancy-inducing effects, UVB also elicits poorly understood complex metabolic changes in keratinocytes, possibly through CPDs. To determine the effects of CPDs, CPD-photolyase was overexpressed in keratinocytes using an N1-methyl pseudouridine-containing in vitro-transcribed mRNA. CPD-photolyase, which is normally not present in placental mammals, can efficiently and rapidly repair CPDs to block signaling pathways elicited by CPDs. Keratinocytes surviving UVB irradiation turn hypermetabolic. We show that CPD-evoked mitochondrial reactive oxygen species production, followed by the activation of several energy sensor enzymes, including sirtuins, AMPK, mTORC1, mTORC2, p53, and ATM, is responsible for the compensatory metabolic adaptations in keratinocytes surviving UVB irradiation. Compensatory metabolic changes consist of enhanced glycolytic flux, Szent-Györgyi-Krebs cycle, and terminal oxidation. Furthermore, mitochondrial fusion, mitochondrial biogenesis, and lipophagy characterize compensatory hypermetabolism in UVB-exposed keratinocytes. These properties not only support the survival of keratinocytes, but also contribute to UVB-induced differentiation of keratinocytes. Our results indicate that CPD-dependent signaling acutely maintains skin integrity by supporting cellular energy metabolism.
Collapse
|
37
|
K JCB, Kapoor BS, Mandal K, Ghosh S, Mokhamatam RB, Manna SK, Mukhopadhyay SS. Loss of Mitochondrial Localization of Human FANCG Causes Defective FANCJ Helicase. Mol Cell Biol 2020; 40:e00306-20. [PMID: 32989015 PMCID: PMC7652403 DOI: 10.1128/mcb.00306-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a unique DNA damage repair pathway. To date, 22 genes have been identified that are associated with the FA pathway. A defect in any of those genes causes genomic instability, and the patients bearing the mutation become susceptible to cancer. In our earlier work, we identified that Fanconi anemia protein G (FANCG) protects the mitochondria from oxidative stress. In this report, we have identified eight patients having a mutation (C.65G>C), which converts arginine at position 22 to proline (p.Arg22Pro) in the N terminus of FANCG. The mutant protein, hFANCGR22P, is able to repair the DNA and able to retain the monoubiquitination of FANCD2 in the FANCGR22P/FGR22P cell. However, it lost mitochondrial localization and failed to protect mitochondria from oxidative stress. Mitochondrial instability in the FANCGR22P cell causes the transcriptional downregulation of mitochondrial iron-sulfur cluster biogenesis protein frataxin (FXN) and the resulting iron deficiency of FA protein FANCJ, an iron-sulfur-containing helicase involved in DNA repair.
Collapse
Affiliation(s)
- Jagadeesh Chandra Bose K
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Bishwajit Singh Kapoor
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Kamal Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Shubhrima Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | | | - Sunil K Manna
- Center for DNA Finger Printing and Diagnostics, Hyderabad, India
| | - Sudit S Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| |
Collapse
|
38
|
Marco Antônio Salgado Martins T, de Figueiredo Peloso E, Costa-Silva HM, Rajão MA, Van Houten B, Machado CR, Ramos Gadelha F. Mitochondrial behavior during nuclear and mitochondrial DNA repair in Trypanosoma cruzi epimastigotes. Exp Parasitol 2020; 219:108016. [PMID: 33035543 DOI: 10.1016/j.exppara.2020.108016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Different genotoxic agents can lead to DNA single- and double-strand breaks, base modification and oxidation. As most living organisms, Trypanosoma cruzi is subjected to oxidative stress during its life cycle; thus, DNA repair is essential for parasite survival and establishment of infection. The mitochondrion plays important roles beyond the production of ATP. For example, it is a source of signaling molecules, such as the superoxide anion and H2O2. Since T. cruzi has only one mitochondrion, the integrity of this organelle is pivotal for parasite viability. H2O2 and methyl methanesulfonate cause DNA lesions in T. cruzi that are repaired by different DNA repair pathways. Herein, we evaluate mitochondrial involvement during the repair of nuclear and mitochondrial DNA in T. cruzi epimastigotes incubated with these two genotoxic agents under conditions that induce repairable DNA damage. Overall, in both treatments, an increase in oxygen consumption rates and in mitochondrial H2O2 release was observed, as well as maintenance of ATP levels compared to control. Interestingly, these changes coincided with DNA repair kinetics, suggesting the importance of the mitochondrion for this energy-consuming process.
Collapse
Affiliation(s)
| | | | | | - Matheus Andrade Rajão
- Departamento de Bioquímica e Imunologia, ICB - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Bennet Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, United States
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
39
|
Wang X, Hart JE, Liu Q, Wu S, Nan H, Laden F. Association of particulate matter air pollution with leukocyte mitochondrial DNA copy number. ENVIRONMENT INTERNATIONAL 2020; 141:105761. [PMID: 32388147 PMCID: PMC7419671 DOI: 10.1016/j.envint.2020.105761] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) has been associated with mitochondrial damage and dysfunction caused by excessive oxidative stress, but the associations between long-term PM exposure and leukocyte mitochondrial DNA copy number (mtDNAcn), a biomarker of mitochondrial dysfunction due to oxidative stress, are less studied. OBJECTIVES To investigate the associations between short-, intermediate- and long-term exposure (1-, 3- and 12-months) to different size fractions of PM (PM2.5, PM2.5-10 and PM10) and leukocyte mtDNAcn in a cross-sectional study. METHODS The associations between each of the PM exposure metrics with z scores of log-transformed mtDNAcn were examined using generalized linear regression models in 2758 female participants from the Nurses' Health Study (NHS). Monthly exposures to PM were estimated from spatio-temporal prediction models matched to each participants' address history. Potential effect modification by selected covariates was examined using multiplicative interaction terms and subgroup analyses. RESULTS In single-size fraction models, increases in all size fractions of PM were associated with decreases in mtDNAcn, although only models with longer averages of PM2.5 reached statistical significance. For example, an interquartile range (IQR) increase in 12-month average ambient PM2.5 (5.5 μg/m3) was associated with a 0.07 [95% confidence interval (95% CI): -0.13, -0.01; p-value = 0.02] decrease in mtDNAcn z score in both basic- and multivariable-adjusted models. Associations for PM2.5 were stronger after controlling for PM2.5-10 in two size-fraction models. CONCLUSIONS Our study suggests that long-term exposure to ambient PM2.5 is associated with decreased mtDNAcn in healthy women.
Collapse
Affiliation(s)
- Xinmei Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, China.
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
40
|
Soczewka P, Flis K, Tribouillard-Tanvier D, di Rago JP, Santos CN, Menezes R, Kaminska J, Zoladek T. Flavonoids as Potential Drugs for VPS13-Dependent Rare Neurodegenerative Diseases. Genes (Basel) 2020; 11:E828. [PMID: 32708255 PMCID: PMC7397310 DOI: 10.3390/genes11070828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/30/2022] Open
Abstract
Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
- Institut National de la Santé et de la Recherche Médicale INSERM, 33077 Bordeaux, France
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
| | - Cláudia N. Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| |
Collapse
|
41
|
Chen CW, Tsao N, Zhang W, Chang ZF. NME3 Regulates Mitochondria to Reduce ROS-Mediated Genome Instability. Int J Mol Sci 2020; 21:ijms21145048. [PMID: 32708927 PMCID: PMC7404397 DOI: 10.3390/ijms21145048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
NME3 is a member of the nucleoside diphosphate kinase (NDPK) family that binds to the mitochondrial outer membrane to stimulate mitochondrial fusion. In this study, we showed that NME3 knockdown delayed DNA repair without reducing the cellular levels of nucleotide triphosphates. Further analyses revealed that NME3 knockdown increased fragmentation of mitochondria, which in turn led to mitochondrial oxidative stress-mediated DNA single-strand breaks (SSBs) in nuclear DNA. Re-expression of wild-type NME3 or inhibition of mitochondrial fission markedly reduced SSBs and facilitated DNA repair in NME3 knockdown cells, while expression of N-terminal deleted mutant defective in mitochondrial binding had no rescue effect. We further showed that disruption of mitochondrial fusion by knockdown of NME4 or MFN1 also caused mitochondrial oxidative stress-mediated genome instability. In conclusion, the contribution of NME3 to redox-regulated genome stability lies in its function in mitochondrial fusion.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
| | - Ning Tsao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau 999078, China;
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88590); Fax: +886-2-2826-0919
| |
Collapse
|
42
|
Morphology of Mitochondria in Syncytial Annelid Female Germ-Line Cyst Visualized by Serial Block-Face SEM. Int J Cell Biol 2020; 2020:7483467. [PMID: 32395131 PMCID: PMC7199535 DOI: 10.1155/2020/7483467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondria change their morphology and distribution depending on the metabolism and functional state of a cell. Here, we analyzed the mitochondria and selected structures in female germ-line cysts in a representative of clitellate annelids – the white worm Enchytraeus albidus in which each germ cell has one cytoplasmic bridge that connects it to a common cytoplasmic mass. Using serial block-face scanning electron microscopy (SBEM), we prepared three-dimensional ultrastructural reconstructions of the entire selected compartments of a cyst at the advanced stage of oogenesis, i.e. the nurse cell, cytophore, and cytoplasmic bridges of all 16 cells (15 nurse cells and oocyte). We revealed extensive mitochondrial networks in the nurse cells, cytophore and mitochondria that pass through the cytoplasmic bridges, which indicates that a mitochondrial network can extend throughout the entire cyst. The dynamic hyperfusion state was suggested for such mitochondrial aggregations. We measured the mitochondria distribution and revealed their polarized distribution in the nurse cells and more abundant accumulation within the cytophore compared to the nurse cell. A close association of mitochondrial networks with dispersed nuage material, which seems to be the structural equivalent of a Balbiani body, not described in clitellate annelids so far, was also revealed.
Collapse
|
43
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
44
|
Nadalutti CA, Stefanick DF, Zhao ML, Horton JK, Prasad R, Brooks AM, Griffith JD, Wilson SH. Mitochondrial dysfunction and DNA damage accompany enhanced levels of formaldehyde in cultured primary human fibroblasts. Sci Rep 2020; 10:5575. [PMID: 32221313 PMCID: PMC7101401 DOI: 10.1038/s41598-020-61477-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Formaldehyde (FA) is a simple biological aldehyde that is produced inside cells by several processes such as demethylation of DNA and proteins, amino acid metabolism, lipid peroxidation and one carbon metabolism (1-C). Although accumulation of excess FA in cells is known to be cytotoxic, it is unknown if an increase in FA level might be associated with mitochondrial dysfunction. We choose to use primary human fibroblasts cells in culture (foreskin, FSK) as a physiological model to gain insight into whether an increase in the level of FA might affect cellular physiology, especially with regard to the mitochondrial compartment. FSK cells were exposed to increasing concentrations of FA, and different cellular parameters were studied. Elevation in intracellular FA level was achieved and was found to be cytotoxic by virtue of both apoptosis and necrosis and was accompanied by both G2/M arrest and reduction in the time spent in S phase. A gene expression assessment by microarray analysis revealed FA affected FSK cells by altering expression of many genes including genes involved in mitochondrial function and electron transport. We were surprised to observe increased DNA double-strand breaks (DSBs) in mitochondria after exposure to FA, as revealed by accumulation of γH2A.X and 53BP1 at mitochondrial DNA foci. This was associated with mitochondrial structural rearrangements, loss of mitochondrial membrane potential and activation of mitophagy. Collectively, these results indicate that an increase in the cellular level of FA can trigger mitochondrial DNA double-strand breaks and dysfunction.
Collapse
Affiliation(s)
- Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Ashley M Brooks
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
45
|
Dujon B. Mitochondrial genetics revisited. Yeast 2020; 37:191-205. [DOI: 10.1002/yea.3445] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bernard Dujon
- Department Genomes and GeneticsInstitut Pasteur Paris France
| |
Collapse
|
46
|
Karapetyan NH, Ananyan GV, Dalyan YB. pH-dependent complex formation of Zn-meso-tetra(4- N-hydroxyethylpyridyl) porphyrin with cancer DNA. J Biomol Struct Dyn 2020; 39:650-655. [PMID: 31941415 DOI: 10.1080/07391102.2020.1715837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The complex formation between the synthetic water-soluble Zn-meso-tetra(4-N-hydroxyethylpyridyl) porphyrin (ZnTOEPyP4) and cancer DNA in comparison to healthy DNA was investigated using the UV/VIS spectrophotometry method in phosphate-buffered saline at different pHs. The increasing of DNA/porphyrin ratio leads to hypochromicity and red shift in the Soret band, which indicate the complexation of the ZnTOEPyP4 with DNA. The results show that the binding constant (Kb) and the exclusion parameter (n) of ZnTOEPyP4 with DNA strongly depend upon the pH. The Kbof ZnTOEPyP4 with cancer DNA is higher than with normal DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nelli H Karapetyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| | - Gayane V Ananyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| | - Yeva B Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
47
|
Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: Epigenetics and environment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:668-682. [PMID: 31335990 PMCID: PMC6941438 DOI: 10.1002/em.22319] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 05/22/2023]
Abstract
Maintenance of the mitochondrial genome is essential for proper cellular function. For this purpose, mitochondrial DNA (mtDNA) needs to be faithfully replicated, transcribed, translated, and repaired in the face of constant onslaught from endogenous and environmental agents. Although only 13 polypeptides are encoded within mtDNA, the mitochondrial proteome comprises over 1500 proteins that are encoded by nuclear genes and translocated to the mitochondria for the purpose of maintaining mitochondrial function. Regulation of mtDNA and mitochondrial proteins by epigenetic changes and post-translational modifications facilitate crosstalk between the nucleus and the mitochondria and ultimately lead to the maintenance of cellular health and homeostasis. DNA methyl transferases have been identified in the mitochondria implicating that methylation occurs within this organelle; however, the extent to which mtDNA is methylated has been debated for many years. Mechanisms of demethylation within this organelle have also been postulated, but the exact mechanisms and their outcomes is still an active area of research. Mitochondrial dysfunction in the form of altered gene expression and ATP production, resulting from epigenetic changes, can lead to various conditions including aging-related neurodegenerative disorders, altered metabolism, changes in circadian rhythm, and cancer. Here, we provide an overview of the epigenetic regulation of mtDNA via methylation, long and short noncoding RNAs, and post-translational modifications of nucleoid proteins (as mitochondria lack histones). We also highlight the influence of xenobiotics such as airborne environmental pollutants, contamination from heavy metals, and therapeutic drugs on mtDNA methylation. Environ. Mol. Mutagen., 60:668-682, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
|
48
|
Identifying Pig Mitochondrial TSS: Structure and Functional Features. Mitochondrion 2019; 49:19-24. [PMID: 31279875 DOI: 10.1016/j.mito.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/12/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022]
Abstract
The transcription start sites (TSSs) of porcine mitochondrial genome were firstly identified in this study, including heavy-strand promoter 1 and 2 (HSP1 and HSP2) harbored at nt 903 and nt 1369 in H strand, respectively, and light-strand promoter (LSP) located at nt 166 in L strand. HSP1 structure and expression features were investigated by analyzing mtDNA copy number, expression of 11 nucleoplasmic genes, mtDNA methylation levels, and gene expression levels of methyl-modifying enzymes, DNMT1 and TETs. The mtDNA copy number presented large differences among 15 organs/tissues, and the largest disparity, nearly 17 times, was found between pancreas (~1890 relative copy numbers) and spleen (~110 relative copy numbers, P < .01). The expression levels of HSP1 strand in these organs/tissues presented similar trends with mtDNA copy number (P < .05), and all of 11 nucleoplasmic genes (POLG, POLRMT, TERT, TFAM, TFB1M, TFB2M, NRF-1, PPARα, ESRRA, SP1 and TUFM) detected in this study displayed significantly higher expression values in pancreas than those in spleen (P < .05). Besides, bisulfite sequencing showed that all cytosine residues in the detected region (D-loop) existed methylation with different levels, and the methylation level in spleen was significantly higher than that in pancreas (P < .05). Unlike nuclear DNA, the tested region contained four types of methylation mode (CA, CC, CT, and CG). In addition, the expression of TET1 in pancreas was significantly higher than that in spleen (P < .05). Collectively, our findings indicated that mtDNA TSSs had correlation to mtDNA copy number, expression of nucleoplasmic gene, and mtDNA methylation level.
Collapse
|
49
|
Lin L, Xu H, Bishawi M, Feng F, Samy K, Truskey G, Barbas AS, Kirk AD, Brennan TV. Circulating mitochondria in organ donors promote allograft rejection. Am J Transplant 2019; 19:1917-1929. [PMID: 30761731 PMCID: PMC6591073 DOI: 10.1111/ajt.15309] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 01/25/2023]
Abstract
The innate immune system is a critical regulator of the adaptive immune responses that lead to allograft rejection. It is increasingly recognized that endogenous molecules released from tissue injury and cell death are potent activators of innate immunity. Mitochondria, ancestrally related to bacteria, possess an array of endogenous innate immune-activating molecules. We have recently demonstrated that extracellular mitochondria are abundant in the circulation of deceased organ donors and that their presence correlates with early allograft dysfunction. Here we demonstrate the ability of mitochondria to activate endothelial cells (ECs), the initial barrier between a solid organ allograft and its host. We find that mitochondria exposure leads to the upregulation of EC adhesion molecules and their production of inflammatory cytokines and chemokines. Additionally, mitochondrial exposure causes dendritic cells to upregulate costimulatory molecules. Infusion of isolated mitochondria into heart donors leads to significant increase in allograft rejection in a murine heterotopic heart transplantation model. Finally, co-incubation of human peripheral blood mononuclear cells with mitochondria-treated ECs results in increased numbers of effector (IFN-γ+ , TNF-α+ ) CD8+ T cells. These data indicate that circulating extracellular mitochondria in deceased organ donors may directly activate allograft ECs and promote graft rejection in transplant recipients.
Collapse
Affiliation(s)
- Liwen Lin
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - He Xu
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Muath Bishawi
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina,Biomedical Engineering, Duke University Medical Center, Durham, North Carolina
| | - FeiFei Feng
- Department of Toxicology, Zhengzhou University, Zhengzhou, China
| | - Kannan Samy
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - George Truskey
- Biomedical Engineering, Duke University Medical Center, Durham, North Carolina
| | - Andrew S Barbas
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Allan D Kirk
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina,Immunology, Duke University Medical Center, Durham, North Carolina
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
50
|
Lin CS, Huang YY, Pan SC, Cheng CT, Liu CC, Shih CH, Ho HL, Yeh YC, Chou TY, Lee MY, Wei YH. Involvement of increased p53 expression in the decrease of mitochondrial DNA copy number and increase of SUV max of FDG-PET scan in esophageal squamous cell carcinoma. Mitochondrion 2019; 47:54-63. [PMID: 31071450 DOI: 10.1016/j.mito.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 03/27/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
We appraised Warburg effect through analysis of mitochondrial DNA (mtDNA) copy number and maximum standard uptake value (SUVmax) of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scan and their alterations in esophageal squamous cell carcinoma (ESCC). Later T-status and longer longitudinal tumor length were associated with lower mtDNAESCC copy number (p < .05) but higher SUVmax-ESCC (p < .05), respectively. Lower mtDNAESCC copy number correlated with higher SUVmax-ESCC, reciprocally (p < .05). ESCCs expressing mutant p53 protein had lower mtDNAESCC copy number (p = .056) but higher SUVmax-ESCC (p = .046). We conclude that mutant p53 protein may be involved in the Warburg effect of ESCC.
Collapse
Affiliation(s)
- Chen-Sung Lin
- Center for General Education, Kainan University, Taoyuan City, Taiwan; School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan; Division of Thoracic Surgery, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Yu-Yi Huang
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Nuclear Medicine, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| | - Chih-Tao Cheng
- Division of Psychiatry, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Chia-Chuan Liu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Chih-Hsun Shih
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Thoracic Surgery, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Chen Yeh
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ying Chou
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Yuan Lee
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pathology, Koo-Foundation Sun Yat-sen Cancer Center, Taipei, Taiwan.
| | - Yau-Huei Wei
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan.
| |
Collapse
|