1
|
Cao Y, Hu L, Chen R, Chen Y, Liu H, Wei J. Unfolded protein response-activated NLRP3 inflammasome contributes to pyroptotic and apoptotic podocyte injury in diabetic kidney disease via the CHOP-TXNIP axis. Cell Signal 2025; 130:111702. [PMID: 40020889 DOI: 10.1016/j.cellsig.2025.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage renal disease worldwide. Podocyte injury and death is a key event in DKD progression. Emerging evidence has indicated that crosstalk between unfolded protein response (UPR) and NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an essential role in DKD progression. However, the involvement of these pathways in podocyte injury and death during DKD remains unclear. RESULTS Here, we found that inositol-requiring enzyme 1 (IRE1) and protein kinase RNA-like ER kinase (PERK) branches of the UPR, NLRP3 inflammasome, and apoptosis were activated in podocytes under DKD and high glucose (HG) conditions. In vitro, inducing ER stress by thapsigargin, and IRE1 or PERK overexpression upon HG treatment stimulated NLRP3 inflammasome-mediated pyroptosis and apoptosis, whereas inhibiting IRE1 or PERK suppressed them. Importantly, we discovered that the newly identified NLRP3-binding partner, thioredoxin-interacting protein (TXNIP), upon activation by the transcription factor (TF) PERK/CCAAT-enhancer-binding protein homologous protein (CHOP), served as a link between IRE1 or PERK branches with NLRP3 inflammasome-mediated pyroptosis and apoptosis. TXNIP expression was promoted in podocytes from DKD patients and db/db mice, as well as in HG-exposed conditionally immortalized human podocyte (HPC). In HG-exposed HPC, IRE1 or PERK overexpression upregulated TXNIP expression, while IRE1 or PERK inhibition downregulated it. TXNIP or CHOP silencing both inhibited HG-upregulated TXNIP, further blocking NLRP3 inflammasome-mediated pyroptosis and apoptosis. Furthermore, NLRP3 overexpression aggravated HG-induced pyroptosis and apoptosis, whereas additional TXNIP silencing reversed them without affecting IRE1 or PERK branches. CONCLUSION In conclusion, our results suggested that UPR/NLRP3 inflammasome-mediated pyroptosis/apoptosis pathway was involved in diabetic podocyte injury, and that targeting the CHOP-TXNIP axis may serve as a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Yun Cao
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China; Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Langtao Hu
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Ruike Chen
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Yao Chen
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiali Wei
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou, Hainan, China.
| |
Collapse
|
2
|
Li C, Fang Y, Chen YM. Beyond Redox Regulation: Novel Roles of TXNIP in the Pathogenesis and Therapeutic Targeting of Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:615-625. [PMID: 39814099 PMCID: PMC11959421 DOI: 10.1016/j.ajpath.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Cellular stress, such as oxidative and endoplasmic reticulum (ER) stresses, contributes to the development of various kidney diseases. Oxidative stress is prompted by reactive oxygen species accumulation and delicately mitigated by glutathione and thioredoxin (Trx) antioxidant systems. Initially identified as a Trx-binding partner, Trx-interacting protein (TXNIP) is significantly up-regulated and activated by oxidative and ER stresses. The function of TXNIP is closely linked to its subcellular localizations. Under normal physiological conditions, TXNIP primarily localizes to the nucleus. When exposed to reactive oxygen species or ER stress, TXNIP relocates to mitochondria and binds to mitochondrial Trx2, which releases Trx-tethered apoptosis signal-regulating kinase 1 and activates apoptosis signal-regulating kinase 1-mediated apoptosis. Oxidative and ER stresses are also closely associated with autophagy. TXNIP can promote or inhibit autophagy depending on context. Although recent studies have highlighted the indispensable role of TXNIP in the etiology and progression of kidney disease, TXNIP-targeted therapy is still missing. This review focuses on the following: i) oxidative and ER stresses; ii) regulation and function of TXNIP during cellular stress; iii) TXNIP in stress-regulated autophagy; iv) TXNIP in kidney diseases (nephrotic syndrome, diabetic nephropathy and chronic kidney disease, acute kidney injury, and kidney aging); and v) novel treatment agents targeting TXNIP in kidney disease. Current advances in chemical compounds and RNA-based therapy suppressing TXNIP are also reviewed.
Collapse
Affiliation(s)
- Chuang Li
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yili Fang
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
3
|
Li M, Liu T, Zhang Y, Yang M, Li Z, He J, Li J. Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus). Neuroscience 2025; 568:139-153. [PMID: 39824341 DOI: 10.1016/j.neuroscience.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O2 and 5 % CO2). Subsequently, we performed transcriptome analysis on Gansu zokor brains incubated with ACSF containing 10 mM fructose and determined the contents of fructose, lactate, ATP, and UA. Whole brain RNA and proteins were extracted to detect the transcriptional levels of Glut5, Khk, Aldoc, and Cs and the translational levels of GLUT5, CS, NRF2, and c-FOS. The results showed that Gansu zokor brains exhibit higher levels of GLUT5 protein and Khk mRNA levels than SD rats to facilitate fructose uptake and metabolism, resulting in increased fructose, ATP, and lactate content in the brain during fructose incubation. Stable UA levels during fructose metabolism reduce the risk of oxidative stress and neuroinflammation, and activation of the Nrf2 pathway increases downstream antioxidant capacity, thereby reducing brain damage. Persistent fEPSP signaling suggests that fructose supports excitatory synaptic transmission in the CA1 region of the hippocampus of the Gansu zokor but leads to hippocampal dysfunction in SD rats. The unique insights about fructose metabolism in the brain of Gansu zokor obtained in our study will be useful for further studies on the evolution of subterranean rodents.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Tianyi Liu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yingying Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Maohong Yang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Zhuohang Li
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China.
| | - Jingang Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
4
|
Zhuang Y, Zhu L, Fu C, Ni H. miR-504-3p-HNF1B signaling axis aggravates podocyte injury in diabetic kidney disease. J Mol Histol 2025; 56:89. [PMID: 39954129 DOI: 10.1007/s10735-025-10369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Recently, microRNAs (miRNAs) have been found to mediate the development of diabetic kidney disease (DKD) by regulating podocyte injury. The aim of this study was to investigate the influence of miR-504-3p on high glucose (HG)-treated mouse renal podocytes (MPC5) and its potential regulatory mechanisms. First, a DKD cell model was established. Next, RT-qPCR was performed to measure miR-504-3p and HNF1 Homeobox B (HNF1B) expression levels. Additionally, the proliferation and apoptosis of MPC5 cells were assessed using CCK-8 assay and Flow cytometry, respectively. The protein expression levels of cell fibrotic markers, podocyte injury marker, epithelial-mesenchymal transition (EMT) markers and HNF1B were measured by Western Blotting. ROS, MDA, SOD and GSH kits were used to assess oxidative stress levels. Furthermore, the interplay between miR-504-3p and HNF1B was confirmed by luciferase reporter experiments. The miR-504-3p expression was significantly upregulated in GEO database (GSE161884) and in HG-induced MPC5 cells. The results revealed that HG treatment decreased MPC5 cell proliferation, promoted cell apoptosis and fibrosis, and ultimately led to podocyte injury. However, miR-504-3p knockdown could reverse these phenotypes and reduce podocyte injury. Moreover, online database screening combined with dual luciferase reporter assay confirmed HNF1B as a specific target of miR-504-3p. Finally, overexpression of HNF1B mitigated the proliferation inhibition and apoptosis promotion induced by oxidative stress and inhibited EMT-mediated cell fibrosis, thereby counteracting the effects of miR-504-3p on podocyte injury under HG treatment. In summary, our data indicate that miR-504-3p regulates HG-induced podocyte injury by sponging HNF1B, providing a new direction for the treatment of DKD.
Collapse
Affiliation(s)
- Yibo Zhuang
- Department of Pediatrics, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213000, People's Republic of China
| | - Lingtao Zhu
- Department of Pediatrics, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213000, People's Republic of China
| | - Chenlu Fu
- Department of Pediatrics, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213000, People's Republic of China
| | - Huiping Ni
- Department of Pediatrics, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213000, People's Republic of China.
| |
Collapse
|
5
|
Qiu M, Huang Y, Zhou X, Yu J, Li J, Wang W, Zippi M, Fiorino S, Hong W. Hyperlipidemia exacerbates acute pancreatitis via interactions between P38MAPK and oxidative stress. Cell Signal 2025; 125:111504. [PMID: 39505288 DOI: 10.1016/j.cellsig.2024.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The mechanisms involved in the hyperlipidemia-associated acute pancreatitis (HLAP) is not yet fully understood. AIMS To investigate the role of P38MAPK (mitogen-activated protein kinases) and oxidative stress in the pathogenesis of HLAP. METHODS In AP (acute pancreatitis) patients, the GEO database retrieved gene expression profiles of cytokines, MAPK14, nuclear factor kappa B subunit 1 (NF-κB 1) and superoxide dismutase 2 (SOD 2). GeneMANIA has been used for the prediction of potential interaction mechanisms. Validation was carried out using an experimental AP model and a bi-directional Mendelian randomization (MR) analysis. RESULTS Compared to mild AP, patients with severe AP had higher gene expression of MAPK14, NF-κB1, SOD2, IL-1β and IL-6R. GeneMANIA revealed 77.6 % physical interactions among MAPK14, NF-κB1, SOD2, IL-1β and IL-6R. Our results indicated that HLAP group had a more severe pancreatic injury, a stronger inflammatory response with higher serum levels of TNF-α, IL-6 and IL-1β in comparison with the AP group, which were significantly mitigated in HLAP-Pi group. Furthermore, SB 203580 inhibited increasing levels of malondialdehyde (MDA) in serum and of inducible nitric oxide synthase (iNOS), P38MAPK, p-P38MAPK and NF-κB p65 in pancreatic tissue as well as decreasing serum values of SOD and GSH-PX in HLAP group. MR analysis suggested that MAPK14 levels were negatively associated with the SOD levels, by using the inverse variance weighted (IVW) method (b = -0.193: se = 0.225; P = 1.03e-17). Reverse MR analysis indicated that SOD was negatively associated with the MAPK14 levels in the IVW analysis (b = -0.163: se = 0.020; P = 1.38e-15). CONCLUSION Interactions between P38MAPK and oxidative stress may play an important role in the pathogenesis of HLAP.
Collapse
Affiliation(s)
- Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Yining Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Xiaoying Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Junyu Yu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Jianmin Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Sirio Fiorino
- Medicine Department, Internal Medicine Unit, Budrio Hospital Azienda USL, 40054 Bologna, Budrio, Italy.
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Wang WR, Yang YZ, Xing Y, Zhou ZA, Jiang QY, Huang LY, Kong LD, Zhang DM. The trans-differentiation promotion of parietal epithelial cells by magnesium isoglycyrrhizinate to improve podocyte injury induced by high fructose consumption. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156242. [PMID: 39566408 DOI: 10.1016/j.phymed.2024.156242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Podocytes have limited proliferative capacity, which leads to irreversible glomerular injury in diverse kidney diseases. Magnesium isoglycyrrhizinate (MgIG), a hepatoprotective agent in clinic, has been reported to improve glomerular podocyte injury. However, the underlying mechanism of MgIG in ameliorating podocyte injury remains unclear. PURPOSE Glomerular parietal epithelial cells (PECs) are recognized as podocyte progenitors and play a pivotal role in the recovery following glomerular injury. This work aims to investigate the protective mechanisms of MgIG in mitigating glomerular injury by promoting PEC trans-differentiation. STUDY DESIGN A rat model of progressive glomerular podocyte injury, and in vitro models using the primary podocytes and primary PECs, were established to further explore the pharmacological mechanism of MgIG. METHODS Four-week-old male Sprague-Dawley (SD) rats were fed a 10 % fructose solution for 3, 6, 9 and 12 weeks to induce glomerular injury. The effects of MgIG on the progressive changes in podocytes and PECs, and the correlation between PEC density and podocyte loss, were analyzed. The mechanism of MgIG in triggering PEC trans-differentiation was investigated, by examining adenosine secretion in injured podocytes, as well as the expression of cluster of differentiation 44 (CD44), nephrin, adenosine receptor A2B (ARA2B) and glucocorticoid receptor (GR) in PECs both in vivo and in vitro. RESULTS Rats fed a high fructose diet exhibited progressive changes in glomerular PECs, including increased cell density and a preference for trans-differentiation. A positive correlation was observed between PEC density and podocyte loss. Co-culture experiments demonstrated that extracellular adenosine accumulation from injured podocytes induced by high fructose exposure promoted PEC trans-differentiation via ARA2B. MgIG significantly improved podocyte injury and exhibited effects similar to dexamethasone on nephrin upregulation and CD44 inhibition. Moreover, the effect of MgIG on PEC ARA2B activation was more effective than that of dexamethasone. The co-expression of paired box 2 (PAX2)+-Nephrin+ in glomeruli indicated that MgIG induced PEC trans-differentiation and podocyte regeneration in model rats. Accordingly, podocyte loss and increased urine albumin-to-creatinine ratio (UACR) were also alleviated. Moreover, MgIG, which acts as a GR agonist to activate GR, reversed the upregulation of CD44 and decreased ARA2B induced by tumor necrosis factor-α (TNF-α) in primary PECs. The siRNA interference experiment manifested that MgIG exhibited a more pronounced enhancement of GR upregulation, in contrast to ARA2B activation, to promote PEC trans-differentiation. CONCLUSION This work reports for the first time that PECs respond to the accumulation of extracellular adenosine from injured podocytes via activating ARA2B and focuses on the role of adenosine and adenosine receptors in the trans-differentiation of PECs. Furthermore, this study provides the first evidence that MgIG may promote podocyte regeneration by enhancing PEC trans-differentiation through GR activation, providing a research basis for investigating the glucocorticoid-like activity of MgIG in ameliorating glomerular podocyte injury.
Collapse
Affiliation(s)
- Wan-Ru Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Ying-Zhi Yang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Yu Xing
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Zi-Ang Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Qiao-Yun Jiang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Lu-Yi Huang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Ling-Dong Kong
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Dong-Mei Zhang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
7
|
Wang P, Yang J, Dai S, Gao P, Qi Y, Zhao X, Liu J, Wang Y, Gao Y. miRNA-193a-mediated WT1 suppression triggers podocyte injury through activation of the EZH2/β-catenin/NLRP3 pathway in children with diabetic nephropathy. Exp Cell Res 2024; 442:114238. [PMID: 39251057 DOI: 10.1016/j.yexcr.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Diabetic nephropathy (DN), an eminent etiology of renal disease in patients with diabetes, involves intricate molecular mechanisms. Recent investigations have elucidated microRNA-193a (miR-193a) as a pivotal modulator in DN, although its precise function in podocyte impairment remains obscure. The present study investigated the role of miR-193a in podocyte injury via the WT1/EZH2/β-catenin/NLRP3 pathway. This study employed a comprehensive experimental approach involving both in vitro and in vivo analyses. We utilized human podocyte cell lines and renal biopsy samples from pediatric patients with DN. The miR-193a expression levels in podocytes and glomeruli were quantified via qRT‒PCR. Western blotting and immunofluorescence were used to assess the expression of WT1, EZH2, β-catenin, and NLRP3 inflammasome components. Additionally, the study used luciferase reporter assays to confirm the interaction between miR-193a and WT1. The impact of miR-193a manipulation was observed by overexpressing WT1 and inhibiting miR-193a in podocytes, followed by analysis of downstream pathway activation and inflammatory markers. We found upregulated miR-193a in podocytes and glomeruli, which directly targeted and suppressed WT1, a crucial podocyte transcription factor. WT1 suppression, in turn, activated the EZH2/β-catenin/NLRP3 pathway, leading to inflammasome assembly and proinflammatory cytokine production. Overexpression of WT1 or inhibition of miR-193a attenuated these effects, protecting podocytes from injury. This study identified a novel mechanism by which miR-193a-mediated WT1 suppression triggers podocyte injury in DN via the EZH2/β-catenin/NLRP3 pathway. Targeting this pathway or inhibiting miR-193a may be potential therapeutic strategies for DN.
Collapse
Affiliation(s)
- Peng Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Jing Yang
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Shasha Dai
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Pinli Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Ying Qi
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Xiaowei Zhao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Juan Liu
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yingying Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yang Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China.
| |
Collapse
|
8
|
Zhang J, Nie C, Zhang Y, Yang L, Du X, Liu L, Chen Y, Yang Q, Zhu X, Li Q. Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomed Pharmacother 2024; 177:117112. [PMID: 39018869 DOI: 10.1016/j.biopha.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Chunxia Nie
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yang Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xinke Du
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; State key laboratory for quality ensurance and sustainable use ofdao-di herbs, Beijing 100700, China.
| |
Collapse
|
9
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Xu J, Liu J, Li Q, Li G, Zhang G, Mi Y, Zhao T, Mu D, Wang D, Zeng K, Hou Y. Pterostilbene participates in TLR4- mediated inflammatory response and autophagy-dependent Aβ 1-42 endocytosis in Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155011. [PMID: 37562093 DOI: 10.1016/j.phymed.2023.155011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, remains untreatable. One of the factors that contributes to its progression is microglia-mediated inflammation. Pterostilbene, a compound isolated from Chinese dragon's blood, can reduce inflammation caused by overactive microglia. However, its effects on AD transgenic animals and the possible underlying mechanism remain unknown. METHODS We evaluated the effect of pterostilbene on learning and memory difficulties in transgenic APP/PS1 mice. We used immunofluorescence to detect microglial activation and Aβ aggregation. We explored the cellular mechanism of pterostilbene by establishing LPS- stimulated BV2 cells and oAβ1-42- exposed HEK 293T cells that overexpress TLR4 and/or MD2 via lentivirus. We applied flow cytometry and immunoprecipitation to examine how pterostilbene regulates TLR4 signaling. RESULTS Pterostilbene enhanced the learning and memory abilities of APP/PS1 mice and reduced microglial activation and Aβ aggregation in their hippocampus. Pterostilbene alleviated oAβ1-42-induced inflammation, which required the involvement of MD2. Pterostilbene disrupted the binding between TLR4 and MD2, which may further prevent TLR4 dimerization and subsequent inflammatory response. Moreover, pterostilbene restored the impaired endocytosis of oAβ1-42 through an autophagy-dependent mechanism. CONCLUSION This is the first demonstration that pterostilbene can potentially treat AD by blocking the interaction of TLR4 and MD2, thereby suppressing TLR4-mediated inflammation.
Collapse
Affiliation(s)
- Jikai Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Qing Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Guoxun Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Guijie Zhang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
12
|
Li Y, Lu Y, Nian M, Sheng Q, Zhang C, Han C, Dou X, Ding Y. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Nat Med 2023; 21:643-657. [PMID: 37777315 DOI: 10.1016/s1875-5364(23)60443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 10/02/2023]
Abstract
Liver fibrosis is a pathological condition characterized by replacement of normal liver tissue with scar tissue, and also the leading cause of liver-related death worldwide. During the treatment of liver fibrosis, in addition to antiviral therapy or removal of inducers, there remains a lack of specific and effective treatment strategies. For thousands of years, Chinese herbal medicines (CHMs) have been widely used to treat liver fibrosis in clinical setting. CHMs are effective for liver fibrosis, though its mechanisms of action are unclear. In recent years, many studies have attempted to determine the possible mechanisms of action of CHMs in treating liver fibrosis. There have been substantial improvements in the experimental investigation of CHMs which have greatly promoted the understanding of anti-liver fibrosis mechanisms. In this review, the role of CHMs in the treatment of liver fibrosis is described, based on studies over the past decade, which has addressed the various mechanisms and signaling pathways that mediate therapeutic efficacy. Among them, inhibition of stellate cell activation is identified as the most common mechanism. This article provides insights into the research direction of CHMs, in order to expand its clinical application range and improve its effectiveness.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yunrui Lu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Mozuo Nian
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
13
|
Alhelf M, Rashed L, Doss RW, Mohamed SM, Abd Elazeem NA. Long noncoding RNA (taurine upregulated gene 1) and micro RNA-377: emerging players in the development of metabolic syndrome among psoriasis patients. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:68. [DOI: 10.1186/s43088-023-00404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
Abstract
Background
Psoriasis (PsO) is an immune-mediated dermatosis and systemic inflammatory condition that can affect the skin, joints, and other organs and tissues with a range of comorbidities. The activation of proinflammatory cytokines is the primary cause of the development of skin lesions in PsO. Patients with PsO have a higher risk of developing cardiovascular metabolic comorbidities; among these is the metabolic syndrome (MetS). Particularly, MetS is characterized by abdominal obesity, hypertension, hyperglycemia, and hyperlipidemia, has been linked to PsO. The connection between PsO and MetS is believed to be caused by PsO generating systemic inflammation, which then results in elevated inflammatory adipokines, endothelial dysfunction, and insulin resistance. Micro RNA-377 and long noncoding RNA taurine upregulated 1 (TUG1) are both involved in the control of a variety of inflammatory disorders in humans and can be employed as biomarkers for the diagnosis and prognosis of psoriasis. The aim of the present study is to establish a panel of biomarkers for the early diagnosis of MetS incidence in psoriasis and thereby, reducing its lethal consequences.
Results
In this study, 120 patients: 40 psoriatic patients, 40 psoriatic patients with metabolic syndrome, and 40 healthy subjects were conducted. Expressions of Long noncoding RNA Taurine Upregulated Gene-1 (TUG1), miRNA-377 and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) were assessed in tissue lesion by real-time PCR. ELISA technique was carried out for the detection of serum levels of plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor β (TGFβ). Moreover, miRNA-377 expression was significantly elevated with the simultaneous down-regulation of both TUG-1 and PPAR-γ in PsO-MetS group when compared to those of PsO and control groups. Furthermore, PAI-1 and TGFβ levels were higher in PsO-MetS than PsO.
Conclusions
The dysregulated levels of TUG-1, miRNA-377, PPAR-γ, PAI-1, and TGFβ, biomarkers may provide information about their potential role in the emergence of MetS in psoriasis patients.
Collapse
|
14
|
Ashimi MHBN, Taib WRW, Ismail I, Mutalib NSA, Rahim SM. The regulatory role of miRNA towards expressed genes in the pathogenesis of gout: A review. HUMAN GENE 2023; 36:201163. [DOI: 10.1016/j.humgen.2023.201163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Tian H, Zheng X, Wang H. Isorhapontigenin ameliorates high glucose-induced podocyte and vascular endothelial cell injuries via mitigating oxidative stress and autophagy through the AMPK/Nrf2 pathway. Int Urol Nephrol 2023; 55:423-436. [PMID: 35960477 DOI: 10.1007/s11255-022-03325-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus and a primary reason for end-stage renal disease (ESRD). Isorhapontigenin (ISO), a natural derivative of stilbene, has significant anti-inflammatory and antioxidant effects. Nevertheless, its impact on DN remains elusive. METHODS Human vascular endothelial cells (HUVECs) and podocytes were damaged by high glucose (HG). Cell viability and apoptosis were testified by the cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The mRNA profiles of antioxidant factors HO-1, NQO1, and Prx1 were monitored by real-time quantitative polymerase chain reaction (RT-qPCR). Western blotting (WB) was implemented to verify the expression of apoptosis-related proteins (Bax, Bad, and Bcl-XL), antioxidant factors (HO-1, NQO1, and Prx1), autophagy-related proteins (Beclin-1, ATG5, p62), podocalyxin (podocin, nephrin, and synaptopodin) and the AMPK/Nrf2 pathway. The levels of oxidative stress-related markers MDA, SOD and CAT were assessed with the corresponding kits. Compound C (CC), an inhibitor of AMPK, was deployed to probe the effects of modulating the AMPK/Nrf2 pathway on ISO in oxidative stress and autophagy in HUVECs and podocytes. Streptozotocin (STZ) was injected intraperitoneally into mice to establish an animal model of diabetes mellitus and to clarify the impact of ISO on the renal parameters such as serum creatinine, urea nitrogen and urinary protein in diabetic mice. RESULTS ISO notably facilitated cell proliferation, impeded apoptosis, elevated the expression of antioxidant-related factors, alleviated HG-induced oxidative stress and activated autophagy in HUVECs and podocytes. ISO activated the AMPK/Nrf2 pathway. Attenuating AMPK diminished the protective effect of ISO on HUVECs and podocytes, curbed cell proliferation, intensified apoptosis and oxidative stress, and dampened autophagy. In-vivo experiments also displayed that ISO reduced histopathological damage, lowered serum creatinine, urea nitrogen and urinary ACR levels, and eased kidney damage in DN mice. CONCLUSION ISO attenuates HG-induced oxidative stress and activates autophagy by motivating the AMPK/Nrf2 pathway, exerting a protective effect on HUVECs and podocytes and reducing renal injury in DN mice.
Collapse
Affiliation(s)
- Hao Tian
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China.
| | - Xiang Zheng
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China
| | - Hui Wang
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China
| |
Collapse
|
16
|
Zhou P, Ma YY, Zhao XN, Hua F. Phytochemicals as potential target on thioredoxin-interacting protein (TXNIP) for the treatment of cardiovascular diseases. Inflammopharmacology 2023; 31:207-220. [PMID: 36609715 DOI: 10.1007/s10787-022-01130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Cardiovascular diseases (CVDs) are currently the major cause of death and morbidity on a global scale. Thioredoxin-interacting protein (TXNIP) is a marker related to metabolism, oxidation, and inflammation induced in CVDs. The overexpression of TXNIP is closely related to the occurrence and development of CVDs. Hence, TXNIP inhibition is critical for reducing the overactivation of its downstream signaling pathway and, as a result, myocardial cell damage. Due to the chemical variety of dietary phytochemicals, they have garnered increased interest for CVDs prevention and therapy. Phytochemicals are a source of medicinal compounds for a variety of conditions, which aids in the development of effective and safe TXNIP-targeting medications. The objective of this article is to find and virtual screen novel safe, effective, and economically viable TXNIP inhibitors from flavonoids, phenols, and alkaloids derived from foods and plants. The results of the docking study revealed that silibinin, rutin, luteolin, baicalin, procyanidin B2, hesperetin, icariin, and tilianin in flavonoids, polydatin, resveratrol, and salidroside in phenols, and neferine in alkaloids had the highest Vina scores, indicating that these compounds are the active chemicals on TXNIP. In particular, silibinin can be utilized as a lead chemical in the process of structural alteration. These dietary phytochemicals may aid in the discovery of lead compounds for the development of innovative TXNIP agents for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fang Hua
- School of Pharmacy, Anhui Xinhua University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
17
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
18
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
19
|
Li Y, Zhang H, Tu F, Cao J, Hou X, Chen Y, Yan J. Effects of resveratrol and its derivative pterostilbene on hepatic injury and immunological stress of weaned piglets challenged with lipopolysaccharide. J Anim Sci 2022; 100:skac339. [PMID: 36242589 PMCID: PMC9733527 DOI: 10.1093/jas/skac339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The present study was to investigate the protective effects of resveratrol (RSV) and its 3,5-dimethylether derivative pterostilbene (PT) against liver injury and immunological stress of weaned piglets upon lipopolysaccharide (LPS) challenge. Seventy-two weaned piglets were divided into the following groups: control group, LPS-challenged group, and LPS-challenged groups pretreated with either RSV or PT for 14 d (n = 6 pens, three pigs per pen). At the end of the feeding trial, piglets were intraperitoneally injected with either LPS or an equivalent amount of sterile saline. After 6 h of sterile saline or LPS injection, plasma and liver samples were collected. LPS stimulation caused massive apoptosis, activated inflammatory responses, and incited severe oxidative stress in the piglet livers while also promoting the nuclear translocation of nuclear factor kappa B (NF-κB) p65 (P < 0.001) and the protein expression of Nod-like receptor pyrin domain containing 3 (NLRP3; P = 0.001) and cleaved caspase 1 (P < 0.001). PT was more effective than RSV in alleviating LPS-induced hepatic damage by decreasing the apoptotic rate of liver cells (P = 0.045), inhibiting the transcriptional expression of interleukin 1 beta (P < 0.001) and interleukin 6 (P = 0.008), and reducing myeloperoxidase activity (P = 0.010). The LPS-induced increase in hepatic lipid peroxidation accumulation was also reversed by PT (P = 0.024). Importantly, inhibiting protein phosphatase 2A (PP2A) activity in a hepatocellular model largely blocked the ability of PT to prevent tumor necrosis factor alpha-induced increases in NF-κB p65 protein phosphorylation (P = 0.043) and its nuclear translocation (P = 0.029). In summary, PT is a promising agent that may alleviate liver injury and immunological stress of weaned piglets via the PP2A/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng Tu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Jing Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiang Hou
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Yanan Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
20
|
Xu X, Ma C, Wu H, Ma Y, Liu Z, Zhong P, Jin C, Ning W, Wu X, Zhang Y, Han J, Wang J. Fructose Induces Pulmonary Fibrotic Phenotype Through Promoting Epithelial-Mesenchymal Transition Mediated by ROS-Activated Latent TGF-β1. Front Nutr 2022; 9:850689. [PMID: 35711535 PMCID: PMC9197188 DOI: 10.3389/fnut.2022.850689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Fructose is a commonly used food additive and has many adverse effects on human health, but it is unclear whether fructose impacts pulmonary fibrosis. TGF-β1, a potent fibrotic inducer, is produced as latent complexes by various cells, including alveolar epithelial cells, macrophages, and fibroblasts, and must be activated by many factors such as reactive oxygen species (ROS). This study explored the impact of fructose on pulmonary fibrotic phenotype and epithelial-mesenchymal transition (EMT) using lung epithelial cells (A549 or BEAS-2B) and the underlying mechanisms. Fructose promoted the cell viability of lung epithelial cells, while N-Acetyl-l-cysteine (NAC) inhibited such. Co-treatment of fructose and latent TGF-β1 could induce the fibrosis phenotype and the epithelial-mesenchymal transition (EMT)-related protein expression, increasing lung epithelial cell migration and invasion. Mechanism analysis shows that fructose dose-dependently promoted the production of total and mitochondrial ROS in A549 cells, while NAC eliminated this promotion. Notably, post-administration with NAC or SB431542 (a potent TGF-β type I receptor inhibitor) inhibited fibrosis phenotype and EMT process of lung epithelial cells co-treated with fructose and latent TGF-β1. Finally, the fibrosis phenotype and EMT-related protein expression of lung epithelial cells were mediated by the ROS-activated latent TGF-β1/Smad3 signal. This study revealed that high fructose promoted the fibrotic phenotype of human lung epithelial cells by up-regulating oxidative stress, which enabled the latent form of TGF-β1 into activated TGF-β1, which provides help and reference for the diet adjustment of healthy people and patients with fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chuang Ma
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Hang Wu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yuanqiao Ma
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Peijie Zhong
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenjuan Ning
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiao Wu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Jichang Han
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
21
|
High fructose diet: A risk factor for immune system dysregulation. Hum Immunol 2022; 83:538-546. [DOI: 10.1016/j.humimm.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/05/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
|
22
|
Wu WY, Wang ZX, Li TS, Ding XQ, Liu ZH, Yang J, Fang L, Kong LD. SSBP1 drives high fructose-induced glomerular podocyte ferroptosis via activating DNA-PK/p53 pathway. Redox Biol 2022; 52:102303. [PMID: 35390676 PMCID: PMC8990215 DOI: 10.1016/j.redox.2022.102303] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023] Open
Abstract
High fructose consumption is a significant risking factor for glomerular podocyte injury. However, the causes of high fructose-induced glomerular podocyte injury are still unclear. In this study, we reported a novel mechanism by which high fructose induced ferroptosis, a newly form of programmed cell death, in glomerular podocyte injury. We performed quantitative proteomic analysis in glomeruli of high fructose-fed rats to identify key regulating proteins involved in glomerular injury, and found that mitochondrial single-strand DNA-binding protein 1 (SSBP1) was markedly upregulated. Depletion of SSBP1 could alleviate high fructose-induced ferroptotic cell death in podocytes. Subsequently, we found that SSBP1 positively regulated a transcription factor p53 by interacting with DNA-dependent protein kinase (DNA-PK) and p53 to drive ferroptosis in high fructose-induced podocyte injury. Mechanically, SSBP1 activated DNA-PK to induce p53 phosphorylation at serine 15 (S15) to promote the nuclear accumulation of p53, and thereby inhibited expression of ferroptosis regulator solute carrier family 7 member 11 (SLC7A11) in high fructose-exposed podocytes. Natural antioxidant pterostilebene was showed to downregulate SSBP1 and then inhibit DNA-PK/p53 pathway in its alleviation of high fructose-induced glomerular podocyte ferroptosis and injury. This study identified SSBP1 as a novel intervention target against high fructose-induced podocyte ferroptosis and suggested that the suppression of SSBP1 by pterostilbene may be a potential therapy for the treatment of podocyte ferroptosis in glomerular injury.
Collapse
Affiliation(s)
- Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Tu-Shuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiao-Qin Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School, Nanjing University, Nanjing, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
23
|
Ma C, Xiang J, Huang G, Zhao Y, Wang X, Wu H, Jiang K, Liang Z, Kang L, Yang G, Yang S. Pterostilbene Alleviates Cholestasis by Promoting SIRT1 Activity in Hepatocytes and Macrophages. Front Pharmacol 2021; 12:785403. [PMID: 34899349 PMCID: PMC8656168 DOI: 10.3389/fphar.2021.785403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background and purpose: FXR is a promising target for the treatment of human cholestatic liver disease (CLD). SIRT1 is a deacetylase which promotes FXR activity through deacetylating FXR. Pterostilbene (PTE) is an activator of SIRT1. However, the role of PTE in cholestasis has so far not been investigated. We examined whether PTE treatment alleviate liver injury in DDC or ANIT-induced experimental cholestasis, and explored the underlying mechanisms. Experimental approach: Mice with DDC- or ANIT-induced cholestasis were treated with different dose of PTE. Primary hepatocytes and bone marrow derived macrophages were used in vitro to assess the molecular mechanism by which PTE may improve CLD. Identical doses of UDCA or PTE were administered to DDC- or ANIT-induced cholestasis mice. Key results: PTE intervention attenuated DDC or ANIT-induced cholestasis. PTE inhibited macrophage infiltration and activation in mouse liver through the SIRT1-p53 signaling pathway, and it improved hepatic bile metabolism through the SIRT1-FXR signaling pathway. Compare with UDCA, the same doses of PTE was more effective in improving cholestatic liver injury caused by DDC or ANIT. Conclusion and implications: SIRT1 activation in macrophages may be an effective CLD treatment avenue. Using CLD models, we thus identified PTE as a novel clinical candidate compound for the treatment of CLD.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Guixiao Huang
- The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yaxi Zhao
- Department of Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Han Wu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kewei Jiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shu Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Chen L, Tang YL, Liu ZH, Pan Y, Jiao RQ, Kong LD. Atractylodin inhibits fructose-induced human podocyte hypermotility via anti-oxidant to down-regulate TRPC6/p-CaMK4 signaling. Eur J Pharmacol 2021; 913:174616. [PMID: 34780752 DOI: 10.1016/j.ejphar.2021.174616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023]
Abstract
High fructose has been reported to drive glomerular podocyte oxidative stress and then induce podocyte foot process effacement in vivo, which could be partly regarded as podocyte hypermotility in vitro. Atractylodin possesses anti-oxidative effect. The aim of this study was to explore whether atractylodin prevented against fructose-induced podocyte hypermotility via anti-oxidative property. In fructose-exposed conditionally immortalized human podocytes, we found that atractylodin inhibited podocyte hypermotility, and up-regulated slit diaphragm proteins podocin and nephrin, and cytoskeleton protein CD2-associated protein (CD2AP), α-Actinin-4 and synaptopodin expression, which were consistent with its anti-oxidative activity evidenced by up-regulation of catalase (CAT) and superoxide dismutase (SOD) 1 expression, and reduction of reactive oxygen species (ROS) production. Atractylodin also significantly suppressed expression of transient receptor potential channels 6 (TRPC6) and phosphorylated Ca2+/calmodulin-dependent protein kinase IV (CaMK4) in cultured podocytes with fructose exposure. Additionally, in fructose-exposed podocytes, CaMK4 siRNA up-regulated synaptopodin and reduced podocyte hypermotility, whereas, silencing of TRPC6 by siRNA decreased p-CaMK4 expression, inhibited podocyte hypermotility, showing TRPC6/p-CaMK4 signaling activation in podocyte hypermotility under fructose condition. Just like atractylodin, antioxidant N-acetyl-L-cysteine (NAC) could inhibit TRPC6/p-CaMK4 signaling activation to reduce fructose-induced podocytes hypermotility. These results first demonstrated that the anti-oxidative property of atractylodin may contribute to the suppression of podocyte hypermotility via inhibiting TRPC6/p-CaMK4 signaling and restoring synaptopodin expression abnormality.
Collapse
Affiliation(s)
- Li Chen
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ya-Li Tang
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhi-Hong Liu
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Pan
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Rui-Qing Jiao
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- Institute of Chinese Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
25
|
Chen L, Yang J, Zhao SJ, Li TS, Jiao RQ, Kong LD. Atractylodis rhizoma water extract attenuates fructose-induced glomerular injury in rats through anti-oxidation to inhibit TRPC6/p-CaMK4 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153643. [PMID: 34325092 DOI: 10.1016/j.phymed.2021.153643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation. PURPOSE Based the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100 mL/d) for 16 weeks. ARE at 720 and 1090 mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in rat kidney cortex were detected, respectively. In rat glomeruli, redox-related factors forkhead box O3 (FoxO3), SOD2 and catalase (CAT), podocyte slit diaphragm proteins podocin and nephrin, cytoskeleton proteins CD2-associated protein (CD2AP) and α-Actinin-4, as well as TRPC6, p-CaMK4 and synaptopodin protein levels were analyzed by Western Blotting. SOD2 and CAT mRNA levels were detected by qRT-PCR. RESULTS 36 components were identified in ARE. Among them, network pharmacology analysis indicated that ARE might inhibit kidney oxidative stress. Accordingly, ARE up-regulated nuclear FoxO3 expression, and then increased SOD2 and CAT at mRNA and protein levels in glomeruli of fructose-fed rats. It reduced H2O2 and MDA levels, and increased SOD activity in renal cortex of fructose-fed rats. Subsequently, ARE down-regulated TRPC6 and p-CaMK4, and up-regulated synaptopodin in glomeruli of fructose-fed rats. Furthermore, ARE increased podocin and nephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model. CONCLUSIONS These results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Si-Jie Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tu-Shuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
26
|
Non-coding RNAs: The key regulators in NLRP3 inflammasome-mediated inflammatory diseases. Int Immunopharmacol 2021; 100:108105. [PMID: 34481143 DOI: 10.1016/j.intimp.2021.108105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Inflammasomes are multiprotein complexes responding to various microbes and endogenous danger signals, contributing to initiating the innate protective response of inflammatory diseases. NLRP3 inflammasome is a crucial regulator of pro-inflammatory cytokines (IL-1β and IL-18) production through activating caspase-1. Non-coding RNAs (ncRNAs) are a class of RNA transcripts lacking the ability to encode peptides or proteins. Its dysregulation leads to the development and progression of inflammation in diseases. Recently, accumulating evidence has indicated that NLRP3 inflammasome activation could be modulated by ncRNAs (lncRNAs, miRNAs, and circRNAs) in a variety of inflammatory diseases. This review focuses on the substantial role and function of ncRNAs in the NLRP3 inflammasome activation, providing novel insight for the future therapeutic approach of inflammatory diseases.
Collapse
|
27
|
Das B, Sarkar C, Rawat VS, Kalita D, Deka S, Agnihotri A. Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules 2021; 26:4996. [PMID: 34443594 PMCID: PMC8399941 DOI: 10.3390/molecules26164996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding oligomerization domain NOD-like receptors (NLRs) are conserved cytosolic pattern recognition receptors (PRRs) that track the intracellular milieu for the existence of infection, disease-causing microbes, as well as metabolic distresses. The NLRP3 inflammasome agglomerates are consequent to sensing a wide spectrum of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Certain members of the NLR family have been documented to lump into multimolecular conglomerates called inflammasomes, which are inherently linked to stimulation of the cysteine protease caspase-1. Following activation, caspase-1 severs the proinflammatory cytokines interleukin (IL)-1β and IL-18 to their biologically active forms, with consequent commencement of caspase-1-associated pyroptosis. This type of cell death by pyroptosis epitomizes a leading pathway of inflammation. Accumulating scientific documentation has recorded overstimulation of NLRP3 (NOD-like receptor protein 3) inflammasome involvement in a wide array of inflammatory conditions. IL-1β is an archetypic inflammatory cytokine implicated in multiple types of inflammatory maladies. Approaches to impede IL-1β's actions are possible, and their therapeutic effects have been clinically demonstrated; nevertheless, such strategies are associated with certain constraints. For instance, treatments that focus on systemically negating IL-1β (i.e., anakinra, rilonacept, and canakinumab) have been reported to result in an escalated peril of infections. Therefore, given the therapeutic promise of an NLRP3 inhibitor, the concerted escalated venture of the scientific sorority in the advancement of small molecules focusing on direct NLRP3 inflammasome inhibition is quite predictable.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Chayna Sarkar
- Department of Clinical Pharmacology & Therapeutics, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Mawdiangdiang, Shillong 793018, Meghalaya, India;
| | - Vikram Singh Rawat
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Sangeeta Deka
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Akash Agnihotri
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| |
Collapse
|
28
|
Rogacka D. Insulin resistance in glomerular podocytes: Potential mechanisms of induction. Arch Biochem Biophys 2021; 710:109005. [PMID: 34371008 DOI: 10.1016/j.abb.2021.109005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
Glomerular podocytes are a target for the actions of insulin. Accumulating evidence indicates that exposure to nutrient overload induces insulin resistance in these cells, manifested by abolition of the stimulatory effect of insulin on glucose uptake. Numerous recent studies have investigated potential mechanisms of the induction of insulin resistance in podocytes. High glucose concentrations stimulated reactive oxygen species production through NADPH oxidase activation, decreased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and reduced deacetylase sirtuin 1 (SIRT1) protein levels and activity. Calcium signaling involving transient receptor potential cation channel C, member 6 (TRPC6) also was demonstrated to play an essential role in the regulation of insulin-dependent signaling and glucose uptake in podocytes. Furthermore, podocytes exposed to diabetic environment, with elevated insulin levels become insulin resistant as a result of degradation of insulin receptor (IR), resulting in attenuation of insulin signaling responsiveness. Also elevated levels of palmitic acid appear to be an important factor and contributor to podocytes insulin resistance. This review summarizes cellular and molecular alterations that contribute to the development of insulin resistance in glomerular podocytes.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
29
|
Zhang M, Hu G, Shao N, Qin Y, Chen Q, Wang Y, Zhou P, Cai B. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer's disease: flavonoids and phenols. Inflammopharmacology 2021; 29:1317-1329. [PMID: 34350508 DOI: 10.1007/s10787-021-00861-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid plaques and tangles that have become the fifth leading cause of death worldwide. Previous studies have found that thioredoxin interacting protein (TXNIP) expression was increased during the development of AD neurons. TXNIP separates from the TXNIP-thioredoxin complex, and the TXNIP-NLRP3 complex assembles ASC and pro-caspase-1 to form the NLRP3 inflammasome, which triggers AD inflammation and apoptosis. CB-dock was used to explore whether 21 natural flavonoids and phenols target TXNIP based on references. Docking results showed that rutin, puerarin, baicalin, luteolin and quercetin are the most potent TXNIP inhibitors, and among them, rutin as the most effective flavonoid. And rosmarinic acid is the most potent TXNIP inhibitor of phenols. These phytochemicals could be helpful to find the lead compounds in designing and developing novel agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guanhua Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nan Shao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yunpeng Qin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qian Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|
30
|
Chen MY, Ye XJ, He XH, Ouyang DY. The Signaling Pathways Regulating NLRP3 Inflammasome Activation. Inflammation 2021; 44:1229-1245. [PMID: 34009550 DOI: 10.1007/s10753-021-01439-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/30/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome is a multi-molecular complex that acts as a molecular platform to mediate caspase-1 activation, leading to IL-1β/IL-18 maturation and release in cells stimulated by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). This inflammasome plays an important role in the innate immunity as its activation can further promote the occurrence of inflammation, enhance the ability of host to remove pathogens, and thus facilitate the repair of injured tissues. But if the inflammasome activation is dysregulated, it will cause the development of various inflammatory diseases and metabolic disorders. Therefore, under normal conditions, the activation of inflammasome is tightly regulated by various positive and negative signaling pathways to respond to the stimuli without damaging the host itself while maintaining homeostasis. In this review, we summarize recent advances in the major signaling pathways (including TLRs, MAPK, mTOR, autophagy, PKA, AMPK, and IFNR) that regulate NLRP3 inflammasome activation, providing a brief view of the molecular network that regulates this inflammasome as a theoretical basis for therapeutic intervention of NLRP3 dysregulation-related diseases.
Collapse
Affiliation(s)
- Ming-Ye Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xun-Jia Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
31
|
Zhou J, Yang J, Wang YM, Ding H, Li TS, Liu ZH, Chen L, Jiao RQ, Zhang DM, Kong LD. IL-6/STAT3 signaling activation exacerbates high fructose-induced podocyte hypertrophy by ketohexokinase-A-mediated tristetraprolin down-regulation. Cell Signal 2021; 86:110082. [PMID: 34252535 DOI: 10.1016/j.cellsig.2021.110082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Glomerular hypertrophy is a crucial factor of severe podocyte damage and proteinuria. Our previous study showed that high fructose induced podocyte injury. The current study aimed to explore a novel molecular mechanism underlying podocyte hypertrophy induced by high fructose. Here we demonstrated for the first time that high fructose significantly initiated the hypertrophy in rat glomeruli and differentiated human podocytes (HPCs). Consistently, it induced inflammatory response with the down-regulation of anti-inflammatory factor zinc-finger protein tristetraprolin (TTP) and the activation of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling in these animal and cell models. Subsequently, high-expression of microRNA-92a-3p (miR-92a-3p) and its target protein cyclin-dependent kinase inhibitor p57 (P57) down-regulation, representing abnormal proliferation and apoptosis, were observed in vivo and in vitro. Moreover, high fructose increased ketohexokinase-A (KHK-A) expression in rat glomeruli and differentiated HPCs. Exogenous IL-6 stimulation up-regulated IL-6/STAT3 signaling and miR-92a-3p, reduced P57 expression and promoted podocyte proliferation, apoptosis and hypertrophy in vitro. The data from anti-inflammatory agent maslinic acid treatment or TTP siRNA transfection showed that high fructose may decrease TTP to activate IL-6/STAT3 signaling in podocyte overproliferation and apoptosis, causing podocyte hypertrophy. Whereas, KHK-A siRNA transfection remarkably restored high fructose-induced TTP down-regulation, IL-6/STAT3 signaling activation, podocyte overproliferation, apoptosis and hypertrophy in differentiated HPCs. Taken together, these results suggested that high fructose possibly increased KHK-A expression to down-regulate TTP, subsequently activated IL-6/STAT3 signaling to interfere with podocyte proliferation and apoptosis by up-regulating miR-92a-3p to suppress P57 expression, causing podocyte hypertrophy. Therefore, the inactivation of IL-6/STAT3 to relieve podocyte hypertrophy mediated by inhibiting KHK-A to increase TTP may be a novel strategy for high fructose diet-associated podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yu-Meng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Hong Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Tu-Shuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Zhi-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
32
|
Galozzi P, Bindoli S, Luisetto R, Sfriso P, Ramonda R, Scanu A, Oliviero F. Regulation of crystal induced inflammation: current understandings and clinical implications. Expert Rev Clin Immunol 2021; 17:773-787. [PMID: 34053376 DOI: 10.1080/1744666x.2021.1937129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Accumulation of abnormal crystals in the body, derived from endogenous or exogenous materials can drive a wide spectrum of inflammatory disease states. It is well established that intra-articular deposition of monosodium urate (MSU) and calcium pyrophoshate (CPP) crystals contributes to joint destruction through pro-inflammatory processes.Areas covered: This review will focus on current understanding and recent novelty about the mechanisms and the clinical implications of the inflammation induced by MSU and CPP crystals.Expert opinion: Advances in molecular biology reveal that at the base of the inflammatory cascade, stimulated by MSU or CPP crystals, there are many complex cellular mechanisms mainly involving the NLRP3 inflammasome, the hallmark of autoinflammatory syndromes. The extensive studies carried out through in vitro and in vivo models along with a better clinical definition of the disease has led to an optimized use of existing drugs and the introduction of novel therapeutic strategies. In particular, the identification of IL-1 as the most important target in gout and pseudogout has made it possible to expand the pharmacological indications of anti-IL-1 biological drugs, opening new therapeutic perspectives for patients.
Collapse
Affiliation(s)
- Paola Galozzi
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padova, Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Anna Scanu
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Caserta S, Ghezzi P. Release of redox enzymes and micro-RNAs in extracellular vesicles, during infection and inflammation. Free Radic Biol Med 2021; 169:248-257. [PMID: 33862160 DOI: 10.1016/j.freeradbiomed.2021.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Many studies reported that redox enzymes, particularly thioredoxin and peroxiredoxin, can be released by cells and act as soluble mediators in immunity. Recently, it became clear that peroxiredoxins can be secreted via the exosome-release route, yet it remains unclear how this exactly happens and why. This review will first introduce briefly the possible redox states of protein cysteines and the role of redox enzymes in their regulation. We will then discuss the studies on the extracellular forms of some of these enzymes, their association with exosomes/extracellular vesicles and with exosome micro-RNAs (miRNAs)/mRNAs involved in oxidative processes, relevant in infection and inflammation.
Collapse
Affiliation(s)
- Stefano Caserta
- Department of Biomedical Sciences, Hardy Building, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Pietro Ghezzi
- Department of Clinical Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN19RY, United Kingdom.
| |
Collapse
|
34
|
Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 2021; 18:123. [PMID: 34059091 PMCID: PMC8166383 DOI: 10.1186/s12974-021-02137-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-κB) pathways and the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASC); and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new strategies for ischemic stroke therapy.
Collapse
Affiliation(s)
- Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
35
|
Alhelf M, Rashed LA, Ragab N, Elmasry MF. Association between long noncoding RNA taurine-upregulated gene 1 and microRNA-377 in vitiligo. Int J Dermatol 2021; 61:199-207. [PMID: 34014568 DOI: 10.1111/ijd.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Taurine-upregulated gene 1 (TUG1) is one of the long noncoding RNAs (lncRNAs) that plays a role in melanogenesis. MicroRNA-377 (miRNA-377) is a conserved noncoding RNA that regulates angiogenesis and promotes oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are components of the nuclear hormone receptor superfamily. PPAR-γ activators stimulate melanogenesis. Interleukin (IL)-17 has been implicated in the pathogenesis of several immunological diseases. This work aimed at detecting the expression levels of lncRNA TUG1, miRNA-377, PPAR-γ, and IL-17 among vitiligo subjects and to investigate their possible role in the pathogenesis of vitiligo. METHODS This study was conducted on 30 healthy controls and 30 vitiligo patients. LncRNA TUG1 and miRNA-377 were detected in serum by real-time polymerase chain reaction (PCR). Also, expressions of PPAR-γ and IL-17 were assessed in tissue by real-time PCR. RESULTS LncRNA TUG1 and PPAR-γ levels were significantly downregulated in the vitiligo group compared with the control group. On the other hand, miRNA-377 and IL-17 were significantly upregulated in the vitiligo group compared with the control group. CONCLUSION This study demonstrated the dysregulated expressions of lncRNA TUG1 and miRNA-377 in patients with vitiligo suggesting that both contributed to the pathogenesis of vitiligo that might be through PPAR-γ downregulation and IL-17 upregulation.
Collapse
Affiliation(s)
- Maha Alhelf
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.,Biotechnology School, Nile University, Giza, Egypt
| | - Laila A Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noura Ragab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha F Elmasry
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY) 2021; 13:10326-10353. [PMID: 33819919 PMCID: PMC8064181 DOI: 10.18632/aging.202794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Excessive fructose (Fru) intake has become an increased risk for chronic kidney disease progression. Despite extensive researches that have been performed to develop effective treatments against Fru-induced renal injury, the outcome has achieved limited success. In this study, we attempted to explore whether carminic acid (CA) could influence the progression of Fru-induced kidney injury, and the underlying molecular mechanism. At first, our in vitro results showed that CA significantly reduced inflammation in mouse tubular epithelial cells and human tubule epithelial cells stimulated by Fru. The anti-inflammatory effects of CA were associated with the blockage of nuclear factor-κB (NF-κB) signaling. In addition, Fru-exposed cells showed higher oxidative stress, which was effectively restrained by CA treatment through improving nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) nuclear translocation. Importantly, we found that Fru-induced inflammation and oxidative stress were accelerated in cells with Nrf-2 knockdown. What's more, in Fru-stimulated cells, CA-alleviated inflammatory response and reactive oxygen species (ROS) production were evidently abolished by Nrf-2 knockdown. The in vivo analysis demonstrated that Fru led to metabolic disorder, excessive albuminuria and histologic changes in renal tissues, which were effectively reversed by CA supplementation. We confirmed that CA significantly reduced inflammation and oxidative stress in the kidneys of mice through regulating NF-κB and Nrf-2 signaling pathways, eventually alleviating the progression of chronic kidney injury. Taken together, these results identified CA as a potential therapeutic strategy for metabolic stress-induced renal injury through restraining inflammation and oxidative stress via the improvement of Nrf-2 signaling.
Collapse
|
37
|
MiR-377-3p inhibits atherosclerosis-associated vascular smooth muscle cell proliferation and migration via targeting neuropilin2. Biosci Rep 2021; 40:223827. [PMID: 32373927 PMCID: PMC7295640 DOI: 10.1042/bsr20193425] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are vital to atherosclerosis (AS) development and plaque rupture. MicroRNA-377-3p (miR-377-3p) has been reported to inhibit AS in apolipoprotein E knockout (ApoE−/−) mice. Herein, the mechanism underlying the effect of miR-377-3p on alleviating AS is explored. In vivo experiments, ApoE−/− mice were fed with high-fat diet (HFD) to induce AS and treated with miR-377-3p agomir or negative control agomir (agomir-NC) on week 0, 2, 4, 6, 8, 10 after HFD feeding. MiR-377-3p was found to restore HFD-induced AS lesions and expressions of matrix metalloproteinase (MMP)-2, MMP-9, α-smooth muscle actin (α-actin) and calponin. In in vitro experiments, human VSMCs were tranfected with miR-377-3p agomir or agomir-NC, followed by treatment with oxidized low-density lipoprotein (ox-LDL). MiR-377-3p was observed to significantly inhibit ox-LDL-induced VSMC proliferation characterized by inhibited cell viability, expressions of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E and cell cycle transition from G1 to S phase accompanied with less 5-Ethynyl-2′-deoxyuridine (EdU)-positive cells. Furthermore, MiR-377-3p significantly inhibited ox-LDL-induced VSMC migration characterized by inhibited wound closure and decreased relative VSMC migration. Besides, neuropilin2 (NRP2) was verified as a target of miR-377-3p. MiR-377-3p was observed to inhibit NRP2 expressions in vivo and in vitro. Moreover, miR-377-3p significantly inhibited MMP-2 and MMP-9 expressions in human VSMCs. Additionally, miR-377-3p-induced inhibition of VSMC proliferation and migration could be attenuated by NRP2 overexpression. These results indicated that miR-377-3p inhibited VSMC proliferation and migration via targeting NRP2. The present study provides an underlying mechanism for miR-377-3p-based AS therapy.
Collapse
|
38
|
Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook. Int J Mol Sci 2021; 22:ijms22052754. [PMID: 33803178 PMCID: PMC7963165 DOI: 10.3390/ijms22052754] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.
Collapse
|
39
|
Lin Y, Shao Z, Zhao M, Li J, Xu X. PTPN14 deficiency alleviates podocyte injury through suppressing inflammation and fibrosis by targeting TRIP6 in diabetic nephropathy. Biochem Biophys Res Commun 2021; 550:62-69. [PMID: 33684622 DOI: 10.1016/j.bbrc.2020.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes, and a leading cause of end-stage renal disease. However, the pathogenesis that contributes to DKD is still not fully understood. Protein tyrosine phosphatase non-receptor type 14 (PTPN14), a non receptor tyrosine phosphatase, has numerous cellular events, such as inflammation and cell death. But its potential on DKD has not been investigated yet. In this study, we found that PTPN14 expression was markedly up-regulated in kidney samples of DKD patients, which were confirmed in diabetic mice and were clearly localized in glomeruli. The diabetic mouse model was established using streptozotocin (STZ) in wild type (WT) or PTPN knockout (KO) mice. After, STZ challenge, STZ mice displayed improved kidney functions. The results also showed that STZ-induced histological changes and podocyte injury in renal tissues, which were effectively alleviated by PTPN14 deletion. Moreover, PTPN14 deficiency significantly mitigated inflammatory response and fibrosis in glomeruli of STZ-challenged mice through restraining the activation of nuclear factor-κB (NF-κB) and transforming growth factor (TGF)-β1 signaling pathways, respectively. The inhibitory effects of PTPN14 suppression on inflammation and fibrosis were confirmed in high glucose (HG)-incubated podocytes. We further found that thyroid receptor interactor protein 6 (TRIP6) expression was dramatically up-regulated in glomeruli of STZ-challenged mice, and was abolished by PTPN14 deletion, which was confirmed in HG-treated podocytes with PTPN14 knockdown. Intriguingly, our in vitro studies showed that PTPN14 directly interacted with TRIP6. Of note, over-expressing TRIP6 markedly abrogated the effects of PTPN14 silence to restrict inflammatory response and fibrosis in HG-incubated podocytes. Taken together, our findings demonstrated that targeting PTPN14 may provide feasible therapies for DKD treatment.
Collapse
Affiliation(s)
- Yiyang Lin
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Zhulin Shao
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Meng Zhao
- Central Laboratory, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Jinghui Li
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Xiangjin Xu
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China.
| |
Collapse
|
40
|
Okuyan HM, Begen MA. miRNAs as attractive diagnostic and therapeutic targets for Familial Mediterranean Fever. Mod Rheumatol 2021; 31:949-959. [PMID: 33427536 DOI: 10.1080/14397595.2020.1868674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Familial Mediterranean Fever (FMF) is a hereditary early-onset disease that causes periodical fever attack, excessive release of IL-1β, serositis, arthritis and peritonitis. Genetic analyses conducted on FMF patients (mutated and non-mutated) have highlighted that additional contributing factors such as epigenetics and environment play a role in clinical manifestations of FMF. Recently researchers report that microRNAs (miRNAs), implicated in epigenetic mechanisms, may contribute to the pathogenesis of FMF. miRNAs, a member of the captivating noncoding RNA family, are the single-strand transcripts that work in physiological and pathophysiological processes by regulating target gene expression. Recent studies have shown that miRNAs are associated with various mechanisms involved in the pathogenesis of FMF, such as apoptosis, inflammation and autophagy. Moreover, these miRNAs molecules might have potential use in treatment, therapeutic response monitoring and the diagnosis of subtypes of the disease in the future. Motivated by these potential benefits (diagnostic and therapeutic) of miRNAs, we focus on recent advances of clinical significances and potential action mechanisms of miRNAs in FMF pathogenesis and discuss their potential use for FMF.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Mehmet A Begen
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry; Ivey Business School; University of Western Ontario, London, Canada
| |
Collapse
|
41
|
Gu TT, Zhang DM, Wan ZY, Li TS, Jiao RQ, Chen TY, Zhao XJ, Kong LD. Polydatin enhances glomerular podocyte autophagy homeostasis by improving Nrf2-dependent antioxidant capacity in fructose-fed rats. Mol Cell Endocrinol 2021; 520:111079. [PMID: 33189863 DOI: 10.1016/j.mce.2020.111079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
High fructose is considered a causative factor for oxidative stress and autophagy imbalance that cause kidney pathogenesis. Antioxidant polydatin isolated from Polygonum cuspidatum has been reported to protect against kidney injury. In this study, polydatin was found to ameliorate fructose-induced podocyte injury. It activated mammalian target of rapamycin complex 1 (mTORC1) and suppressed autophagy in glomeruli of fructose-fed rats and in fructose-exposed conditionally immortalized human podocytes (HPCs). Polydatin also enhanced nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant capacity to suppress fructose-induced autophagy activation in vivo and in vitro, with the attenuation of fructose-induced up-regulation of cellular light chain 3 (LC3) II/I protein levels. This effect was abolished by Raptor siRNA in fructose-exposed HPCs. These results demonstrated that polydatin ameliorated fructose-induced autophagy imbalance in an mTORC1-dependent manner via improving Nrf2-dependent antioxidant capacity during podocyte injury. In conclusion, polydatin with anti-oxidation activity suppressed autophagy to protect against fructose-induced podocyte injury.
Collapse
Affiliation(s)
- Ting-Ting Gu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Yan Wan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Tu-Shuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Tian-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
42
|
Ebrahim OFA, Nafea OE, Samy W, Shawky LM. L-carnitine suppresses cisplatin-induced renal injury in rats: impact on cytoskeleton proteins expression. Toxicol Res (Camb) 2021; 10:51-59. [PMID: 33613972 DOI: 10.1093/toxres/tfaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
We designed this work to examine the curative role of L-carnitine (LCAR) in a rat model of cisplatin (CDDP)-induced kidney injury. We induced kidney injury in rats by a single intraperitoneal injection of 5 mg/kg of CDDP. Fifteen days post injection, rats were orally supplemented with 354 mg/kg of LCAR for another 15 days. Kidney tissues were subjected to histo-biochemical analysis along with mRNA gene expression quantification for cytoskeleton proteins encoding genes (vimentin, nestin, and connexin 43) by real-time reverse transcription polymerase chain reaction. LCAR reversed CDDP-induced renal structural and functional impairments. LCAR significantly declined serum urea and creatinine concentrations, restored oxidant/antioxidant balance, reversed inflammation, and antagonized caspase 3-mediated apoptotic cell death in renal tissues. Moreover, LCAR effectively down-regulated cytoskeleton proteins mRNA levels, reflecting amelioration of CDDP-provoked podocyte injury. We concluded that LCAR has a favorable therapeutic utility against CDDP-induced kidney injury.
Collapse
Affiliation(s)
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Walaa Samy
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Lamiaa Mohamed Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| |
Collapse
|
43
|
Chen RJ, Wang YJ. Pterostilbene and cancer chemoprevention. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Li X, Ye Y, Wang B, Zhao S. miR-140-5p Aggravates Insulin Resistance via Directly Targeting GYS1 and PPP1CC in Insulin-Resistant HepG2 Cells. Diabetes Metab Syndr Obes 2021; 14:2515-2524. [PMID: 34113143 PMCID: PMC8187005 DOI: 10.2147/dmso.s304055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Much attention has been paid to the regulatory role of microRNA (miRNA) in insulin resistance. Nevertheless, how miR-140-5p regulates insulin resistance remains unclear. In this research, we aim to investigate the roles of miR-140-5p in insulin resistance. METHODS qRT-PCR is used to analyze the expression level of miR-140-5p in insulin-resistant HepG2 cells. Glucose consumption and glucose uptake are detected to study the effect of miR-140-5p knockdown in insulin-resistant HepG2 cells and miR-140-5p overexpression in HepG2 cells. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-140-5p and study the effect of miR-140-5p on the downstream substrates of target genes. Rescue experiments have verified the roles of miR-140-5p and target gene in glucose metabolism. RESULTS The expression level of miR-140-5p was upregulated in insulin-resistant HepG2 cells and was significantly correlated with cellular glucose metabolism. Functionally, miR-140-5p overexpression induced impairment of glucose consumption and glucose uptake. Besides, bioinformatics analysis indicated that glycogen synthetase (GYS1) and protein phosphatase 1 catalytic subunit gamma (PPP1CC) were the target genes of miR-140-5p. Western blotting and qRT-PCR results revealed a negative correlation between GYS1, PPP1CC and miR-140-5p. The glycogen detection results showed that miR140-5p inhibited the production of the downstream substrates of the target gene. Rescue experiments showed that inhibition of GYS1 or PPP1CC partially enhanced the insulin-resistant effects of miR-140-5p knockdown in insulin-resistant HepG2 cells. CONCLUSION miR-140-5p overexpression augments the development of insulin resistance and miR-140-5p may be served as a therapeutic target of metabolic diseases.
Collapse
Affiliation(s)
- Xuemei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
- Correspondence: Xuemei Li; Shujun Zhao NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China Email ;
| | - Yan Ye
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| | - Shujun Zhao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, People’s Republic of China
| |
Collapse
|
45
|
Quan X, Liu H, Ye D, Ding X, Su X. Forsythoside A Alleviates High Glucose-Induced Oxidative Stress and Inflammation in Podocytes by Inactivating MAPK Signaling via MMP12 Inhibition. Diabetes Metab Syndr Obes 2021; 14:1885-1895. [PMID: 33953587 PMCID: PMC8089089 DOI: 10.2147/dmso.s305092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Podocyte injury serves an important role during the progression of diabetic nephropathy (DN). The aim of this study was to investigate the effects of forsythoside A (FA) on high glucose (HG)-induced podocyte injury and to identify the possible mechanisms. METHODS MPC-5 podocytes were cultured under HG conditions. After exposure to different doses of FA, cell viability and apoptosis were respectively evaluated with CCK-8 assay and flow cytometry. Then, the levels of oxidative stress-related markers and inflammatory factors were examined by corresponding kits. Western blot analysis was employed to detect the expression of Nox2, Nox4, COX-2, iNOS and matrix metalloproteinases 12 (MMP12). Subsequently, MMP12 was overexpressed to assess whether the effects of FA on HG-stimulated podocyte injury were mediated by MMP12 and MAPK signaling. RESULTS Results indicated that FA dose-dependently elevated cell viability, reduced cell apoptosis in HG-induced MPC-5 cells. Additionally, FA significantly inhibited oxidative stress, which could be certified by decreased content of malondialdehyde (MDA), enhanced activities of superoxide dismutase (SOD) and catalase (CAT), and downregulated expression of Nox2 and Nox4. Moreover, notably reduced levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were observed in FA-treated MPC-5 cells under HG conditions, accompanied by decreased COX-2 and iNOS expression. Remarkably, FA suppressed MMP12 expression in a dose-dependent manner, and the effects of FA on MPC-5 cells exposed to HG were partially counteracted by MMP12 overexpression. Mechanically, FA inactivated the expression of phospho-ERK (p-ERK), p-p38 and p-JNK, which was restored after MMP12 overexpression. CONCLUSION These findings demonstrate a protective mechanism of FA by inactivating MAPK signaling via MMP12 inhibition in HG-induced podocyte injury, providing a promising therapeutic candidate for the treatment of DN.
Collapse
Affiliation(s)
- Xiaohong Quan
- Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
- Correspondence: Xiaohong Quan Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, No. 1 Yingbin Road, Chifeng City, Inner Mongolia, 024000, People’s Republic of China Email
| | - Huihui Liu
- Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Dongmei Ye
- Core Facility Center for Functional Experiments, CUSBMS, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Xinling Ding
- Department of Human Anatomy, CUSBMS, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Xiulan Su
- Clinical Research Center for Medical Sciences, IMMU, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| |
Collapse
|
46
|
Singh P, Reza MI, Syed AA, Garg R, Husain A, Katekar R, Goand UK, Riyazuddin M, Gupta AP, Gayen JR. PSTi8 with metformin ameliorates perimenopause induced steatohepatitis associated ER stress by regulating SIRT-1/SREBP-1c axis. Heliyon 2020; 6:e05826. [PMID: 33426334 PMCID: PMC7779780 DOI: 10.1016/j.heliyon.2020.e05826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Hepatic steatosis in women confronting menopause is the manifestation of substantial fructose consumption and forms a positive feedback loop to develop endoplasmic reticulum (ER) stress. Previously pancreastatin inhibitor peptide-8 (PSTi8) and Metformin (Met) combination effectively ameliorated hepatic lipid accumulation in high fructose diet (HFrD) fed diabetic mice models at reduced doses. Moreover, SIRT-1 plays a crucial role in the regulation of SREBP-1c. Hence we hypothesized that Met and PSTi8 in combination (at therapeutic lower doses) could mitigate hepatic steatosis linked ER stress by activating SIRT-1 and precluding SREBP-1c in HFrD fed 4-Vinylcyclohexenediepoxide (HVCD) induced perimenopausal rats. Main methods HVCD rats were fed HFrD for 12 weeks, accompanied by 14 days of treatment with Met, PSTi8, and combination. We confirmed model establishment by estrus cycle study, estradiol level, and intraperitoneal glucose tolerance test. Plasma lipid profile and liver function were determined. Also, mRNA and protein expressions were examined. Moreover, distribution of SIRT-1 and SREBP-1c was detected in HepG2 cells by immunofluorescence staining. Key findings HVCD group displayed augmented insulin resistance (IR), lipogenesis, and ER stress in the liver. Combination therapy improved the estrus cyclicity, estradiol, and lipid profile of HVCD rats. Met and PSTi8 combination reduced hepatic SREBP-1c and triggered SIRT-1 expression in high fructose-induced insulin-resistant HepG2 cells; consequently, combination therapy attenuated ER stress. Significance Succinctly, present research promotes impetus concerning the remedial impact of Met with PSTi8 at lower therapeutic doses to ameliorate hepatic IR, steatosis, and associated ER stress by revamping the SIRT-1/SREBP-1c axis in perimenopausal rats.
Collapse
Affiliation(s)
- Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anand P Gupta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
47
|
Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients 2020; 13:nu13010001. [PMID: 33374894 PMCID: PMC7821920 DOI: 10.3390/nu13010001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.
Collapse
|
48
|
Zhu T, Li S, Wang J, Liu C, Gao L, Zeng Y, Mao R, Cui B, Ji H, Chen Z. Induced sputum metabolomic profiles and oxidative stress are associated with chronic obstructive pulmonary disease (COPD) severity: potential use for predictive, preventive, and personalized medicine. EPMA J 2020; 11:645-659. [PMID: 33235638 PMCID: PMC7680486 DOI: 10.1007/s13167-020-00227-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease, and metabolomics plays a hub role in predictive, preventive, and personalized medicine (PPPM) related to COPD. This study thus aimed to reveal the role of induced sputum metabolomics in predicting COPD severity. In this pilot study, a total of 20 COPD patients were included. The induced sputum metabolites were assayed using a liquid chromatography-mass spectrometry (LC-MS/MS) system. Five oxidative stress products (myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH), neutrophil elastase (NE), and 8-iso-PGF2α) in induced sputum were measured by ELISA, and the metabolomic profiles were distinguished by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis, and a significant difference in induced sputum metabolomics was observed between moderate and severe COPD. The KEGG analysis revealed that the glycerophospholipid metabolism pathway was downregulated in severe COPD. Due to the critical role of glycerophospholipid metabolism in oxidative stress, significant negative correlations were discovered between glycerophospholipid metabolites and three oxidative stress products (SOD, MPO, and 8-iso-PGF2α). The diagnostic values of SOD, MPO, and 8-iso-PGF2α in induced sputum were found to exhibit high sensitivities and specificities in the prediction of COPD severity. Collectively, this study provides the first identification of the association between induced sputum metabolomic profiles and COPD severity, indicating the potential value of metabolomics in PPPM for COPD management. The study also reveals the correlation between glycerophospholipid metabolites and oxidative stress products and their value for predicting COPD severity. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-020-00227-w.
Collapse
Affiliation(s)
- Tao Zhu
- Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Shanqun Li
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Jiajia Wang
- Rheumatology Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Chunfang Liu
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Lei Gao
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Yuzhen Zeng
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Bo Cui
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| | - Hong Ji
- California National Primate Research Center, and Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616 USA
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Fudan University, Shanghai, 20032 China
| |
Collapse
|
49
|
Xue W, Mao J, Chen Q, Ling W, Sun Y. Mogroside IIIE Alleviates High Glucose-Induced Inflammation, Oxidative Stress and Apoptosis of Podocytes by the Activation of AMPK/SIRT1 Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:3821-3830. [PMID: 33116729 PMCID: PMC7585782 DOI: 10.2147/dmso.s276184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of impaired renal function. The purpose of this study was to investigate the effects of Mogroside IIIE (MG IIIE), a cucurbitane-type compound isolated from Siraitia grosvenorii, in high glucose (HG)-induced podocytes and the possible mechanisms. METHODS MPC-5 cells were cultured under normal glucose or HG conditions. After treatment with MG IIIE, cell viability was examined using a cell counting kit-8 assay. The contents of inflammatory factors and oxidative stress-related markers were determined using the corresponding kits. Additionally, apoptosis of MPC-5 cells was determined using flow cytometry assay and the levels of apoptosis-associated proteins were evaluated by Western blot analysis. Moreover, the expression of proteins in AMPK/SIRT1 signaling was tested and the compound C, an AMPK inhibitor, was used to study whether the effects of MG IIIE on HG-induced MPC-5 cells were mediated by activation of the AMPK/SIRT1 signaling pathway. RESULTS MG IIIE elevated the cell viability of HG-induced MPC-5 cells, reduced the concentrations of inflammatory cytokines and decreased the levels of oxidative stress-related markers. What's more, the apoptosis of podocytes induced by HG was inhibited after MG IIIE intervention, accompanied by the upregulated expression of Bcl-2 and downregulated expression of Bax, cleaved caspase-3 and cleaved caspase-9. It was also found that MG IIIE could activate the AMPK/SIRT1 signaling, but compound C inhibited this pathway and reversed the inhibitory effects of MG IIIE on inflammation, oxidative stress and apoptosis in HG-stimulated podocytes. CONCLUSION MG IIIE can alleviate HG-induced inflammation and oxidative stress of podocytes by the activation of AMPK-SIRT1 signaling.
Collapse
Affiliation(s)
- Wei Xue
- Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi530011, People’s Republic of China
| | - Juhua Mao
- Center for Drug Control, Lishui Institute for Quality Inspection and Testing, Lishui, Zhejiang323000, People’s Republic of China
| | - Qingjie Chen
- Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi530011, People’s Republic of China
| | - Weide Ling
- Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi530011, People’s Republic of China
| | - Yuqi Sun
- Department of Anesthesiology, Guangzhou 12th People’s Hospital, Guangzhou, Guangdong510620, People’s Republic of China
| |
Collapse
|
50
|
Allopurinol Suppresses Azoxymethane-Induced Colorectal Tumorigenesis in C57BL/KsJ-db/db Mice. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obesity and related metabolic disorders, including chronic inflammation and enhanced oxidative stress, are closely associated with the development and progression of colorectal cancer. Previous epidemiological studies have demonstrated that increased serum uric acid is associated with the risk for various types of cancer, including colon cancer. This study examined the effects of a xanthine oxidase inhibitor allopurinol, widely used as a uric acid lowering medicine, on colorectal tumorigenesis in obese mice. Male C57BL/KsJ-db/db mice were injected with azoxymethane (15 mg/kg body weight) and then received drinking water containing allopurinol (30 mg/kg body weight) for fourteen weeks. At the time of sacrifice, allopurinol treatment significantly inhibited the development of colonic premalignant lesions. In the allopurinol-treated group, cellular proliferation in colonic mucosa was significantly suppressed, which was evaluated by the expression of proliferating cell nuclear antigen. Allopurinol also inhibited macrophage infiltration in the adipose tissue and decreased the serum level of TNF-α. The values of oxidative stress markers were markedly decreased in the allopurinol-treated group compared to those in the control group. These findings suggest that allopurinol attenuated chronic inflammation and decreased oxidative stress, preventing the development of colonic pre-neoplastic lesions in obesity-associated colon tumorigenesis model.
Collapse
|