1
|
Mathews L, Appukuttan D, Victor DJ, Venkadassalapathy S, Subramanian S, Prakash PSG. Role of miRNA-155 in macrophage polarisation in stage III/IV periodontitis with type II diabetes mellitus: An analytical case-control study. Hum Immunol 2025; 86:111214. [PMID: 39667205 DOI: 10.1016/j.humimm.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
AIM To evaluate the role of miR-155 in macrophage polarisation in stage III/IV periodontitis with Type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Sixty four patients were recruited and categorized into Group I-systemically and Periodontally healthy (n = 16), Group II-systemically healthy with Stage III/IV Periodontitis(n = 16), Group III-Periodontally healthy with T2DM (n = 16) and Group IV- Stage III/IV Periodontitis with T2DM(n = 16).Gingival tissue samples were collected and Real time-PCR was carried out for microRNA-155, TNF- α(marker for M1 phenotype) and Arg-1(marker for M2 phenotype) gene expression. RESULTS Group IV showed the highest increase in miR-155 fold change (FC) (11.17 ± 10.44), followed by groups III and II(10.35 ± 15.87, 5.1 ± 5.17 respectively) when compared to Group I. Likewise, the highest FC for TNF-α expression was observed in the group IV (10.11 ± 12.14). Groups II and III showed an almost similar increase in the FC(4.36 ± 4.48 and 4.79 ± 6.91, respectively). Periodontally healthy subjects demonstrated higher levels of Arg-1 gene expression(4.41 ± 5.17), followed by reduced expression in the groups II and IV (2.46 ± 2.21 and 2.65 ± 3.25, respectively). The TNF-α:Arg-1 ratio indicated that group I had higher Arg-1 expression, while group III and IV individuals had higher TNF-α expression. Compared to miR-155 and Arg-1, which demonstrated poor Area under the curve(AUC), sensitivity and specificity, TNF-α was able to distinguish between the groups III & IV (AUC = 0.74, p = 0.02, sensitivity 92 %, specificity 83 %, cut off = 27.28) and I & IV (AUC = 0.6, p = 0.03, sensitivity 81 %, specificity 77 %, cut off = 26.04). CONCLUSION Dysregulated miR-155 contributes to hyperinflammatory state in T2DM associated periodontitis by favouring macrophage polarisation towards the M1 phenotype.However, the strength of this relationship and the association with severity of periodontal disease could not be confirmed in this study.
Collapse
Affiliation(s)
- Leya Mathews
- Postgraduate Student, Department of Periodontics, SRM Dental College, Bharathi Salai, Chennai, India.
| | - Devapriya Appukuttan
- Professor, Department of Periodontics, SRM Dental College, Bharathi Salai,Chennai, India.
| | - Dhayanand John Victor
- Professor and Head of the Department, Department of Periodontics, SRM Dental College, Bharathi Salai, Chennai, India
| | | | - Sangeetha Subramanian
- Professor, Department of Periodontics, SRM Dental College, Bharathi Salai,Chennai, India
| | - P S G Prakash
- Professor, Department of Periodontics, SRM Dental College, Bharathi Salai,Chennai, India
| |
Collapse
|
2
|
Cui Q, Jiang T, Xie X, Wang H, Qian L, Cheng Y, Li Q, Lu T, Yao Q, Liu J, Lai B, Chen C, Xiao L, Wang N. S-nitrosylation attenuates pregnane X receptor hyperactivity and acetaminophen-induced liver injury. JCI Insight 2024; 9:e172632. [PMID: 38032737 PMCID: PMC10906221 DOI: 10.1172/jci.insight.172632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Drug-induced liver injury (DILI), especially acetaminophen overdose, is the leading cause of acute liver failure. Pregnane X receptor (PXR) is a nuclear receptor and the master regulator of drug metabolism. Aberrant activation of PXR plays a pathogenic role in the acetaminophen hepatotoxicity. Here, we aimed to examine the S-nitrosylation of PXR (SNO-PXR) in response to acetaminophen. We found that PXR was S-nitrosylated in hepatocytes and the mouse livers after exposure to acetaminophen or S-nitrosoglutathione (GSNO). Mass spectrometry and site-directed mutagenesis identified the cysteine 307 as the primary residue for S-nitrosylation (SNO) modification. In hepatocytes, SNO suppressed both agonist-induced (rifampicin and SR12813) and constitutively active PXR (VP-PXR, a human PXR fused to the minimal transactivator domain of the herpes virus transcription factor VP16) activations. Furthermore, in acetaminophen-overdosed mouse livers, PXR protein was decreased at the centrilobular regions overlapping with increased SNO. In PXR-/- mice, replenishing the livers with the SNO-deficient PXR significantly aggravated hepatic necrosis, increased HMGB1 release, and exacerbated liver injury and inflammation. Particularly, we demonstrated that S-nitrosoglutathione reductase (GSNOR) inhibitor N6022 promoted hepatoprotection by increasing the levels of SNO-PXR. In conclusion, PXR is posttranslationally modified by SNO in hepatocytes in response to acetaminophen. This modification mitigated the acetaminophen-induced PXR hyperactivity. It may serve as a target for therapeutical intervention.
Collapse
Affiliation(s)
- Qi Cui
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xinya Xie
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haodong Wang
- East China Normal University Health Science Center, Shanghai, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yanyan Cheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiang Li
- School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Tingxu Lu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Qinyu Yao
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jia Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Baochang Lai
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Xiao
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Nanping Wang
- East China Normal University Health Science Center, Shanghai, China
| |
Collapse
|
3
|
Engin AB. Message Transmission Between Adipocyte and Macrophage in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:273-295. [PMID: 39287855 DOI: 10.1007/978-3-031-63657-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1β) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
4
|
Tang X, Zhao S, Liu J, Liu X, Sha X, Huang C, Hu L, Sun S, Gao Y, Chen H, Zhang Z, Wang D, Gu Y, Chen S, Wang L, Gu A, Chen F, Pu J, Chen X, Yu B, Xie L, Huang Z, Han Y, Ji Y. Mitochondrial GSNOR Alleviates Cardiac Dysfunction via ANT1 Denitrosylation. Circ Res 2023; 133:220-236. [PMID: 37377022 DOI: 10.1161/circresaha.123.322654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Jieqiong Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Xiameng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Xinqi Sha
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Changgao Huang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Lulu Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (D.W., Y.G.)
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Zhiren Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital (Z.Z., Y.J.), Harbin Medical University, Heilongjiang, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (D.W., Y.G.)
| | - Yuexi Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital (S.C.), Nanjing Medical University, Jiangsu, China
| | - Liansheng Wang
- Department of Cardiology (L.W.), First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health (A.G.), Nanjing Medical University, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Forensic Medicine (F.C.), Nanjing Medical University, Jiangsu, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, China (J.P.)
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital (X.C.), Nanjing Medical University, Jiangsu, China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Ministry of Education (B.Y.), Harbin Medical University, Heilongjiang, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, China (Z.H.)
| | - Yi Han
- Department of Geriatrics (Y.H.), First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (X.T., S.Z., J.L., X.L., X.S., C.H., L.H., S.S., Y.G., H.C., L.X., Y.J.), Nanjing Medical University, Jiangsu, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital (Z.Z., Y.J.), Harbin Medical University, Heilongjiang, China
| |
Collapse
|
5
|
Li X, Ren Y, Chang K, Wu W, Griffiths HR, Lu S, Gao D. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol 2023; 14:1153915. [PMID: 37153549 PMCID: PMC10154623 DOI: 10.3389/fimmu.2023.1153915] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Macrophage infiltration into adipose tissue is a key pathological factor inducing adipose tissue dysfunction and contributing to obesity-induced inflammation and metabolic disorders. In this review, we aim to present the most recent research on macrophage heterogeneity in adipose tissue, with a focus on the molecular targets applied to macrophages as potential therapeutics for metabolic diseases. We begin by discussing the recruitment of macrophages and their roles in adipose tissue. While resident adipose tissue macrophages display an anti-inflammatory phenotype and promote the development of metabolically favorable beige adipose tissue, an increase in pro-inflammatory macrophages in adipose tissue has negative effects on adipose tissue function, including inhibition of adipogenesis, promotion of inflammation, insulin resistance, and fibrosis. Then, we presented the identities of the newly discovered adipose tissue macrophage subtypes (e.g. metabolically activated macrophages, CD9+ macrophages, lipid-associated macrophages, DARC+ macrophages, and MFehi macrophages), the majority of which are located in crown-like structures within adipose tissue during obesity. Finally, we discussed macrophage-targeting strategies to ameliorate obesity-related inflammation and metabolic abnormalities, with a focus on transcriptional factors such as PPARγ, KLF4, NFATc3, and HoxA5, which promote macrophage anti-inflammatory M2 polarization, as well as TLR4/NF-κB-mediated inflammatory pathways that activate pro-inflammatory M1 macrophages. In addition, a number of intracellular metabolic pathways closely associated with glucose metabolism, oxidative stress, nutrient sensing, and circadian clock regulation were examined. Understanding the complexities of macrophage plasticity and functionality may open up new avenues for the development of macrophage-based treatments for obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Xirong Li
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yakun Ren
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Kewei Chang
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| | - Wenlong Wu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Dan Gao
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| |
Collapse
|
6
|
The Potential Roles of Post-Translational Modifications of PPARγ in Treating Diabetes. Biomolecules 2022; 12:biom12121832. [PMID: 36551260 PMCID: PMC9775095 DOI: 10.3390/biom12121832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.
Collapse
|
7
|
Caputa G, Matsushita M, Sanin DE, Kabat AM, Edwards-Hicks J, Grzes KM, Pohlmeyer R, Stanczak MA, Castoldi A, Cupovic J, Forde AJ, Apostolova P, Seidl M, van Teijlingen Bakker N, Villa M, Baixauli F, Quintana A, Hackl A, Flachsmann L, Hässler F, Curtis JD, Patterson AE, Henneke P, Pearce EL, Pearce EJ. Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metab 2022; 34:747-760.e6. [PMID: 35508110 DOI: 10.1016/j.cmet.2022.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/24/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
Abstract
Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.
Collapse
Affiliation(s)
- George Caputa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Imaging Facility, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Michal A Stanczak
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Angela Castoldi
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jovana Cupovic
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Aaron J Forde
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Petya Apostolova
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, 40225 Duesseldorf, Germany
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matteo Villa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Francesc Baixauli
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Andrea Quintana
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Alexandra Hackl
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lea Flachsmann
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Fabian Hässler
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jonathan D Curtis
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Annette E Patterson
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immune Deficiency, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Kuo FC, Huang YC, Yen MR, Lee CH, Hsu KF, Yang HY, Wu LW, Lu CH, Hsu YJ, Chen PY. Aberrant overexpression of HOTAIR inhibits abdominal adipogenesis through remodelling of genome-wide DNA methylation and transcription. Mol Metab 2022; 60:101473. [PMID: 35292404 PMCID: PMC9034304 DOI: 10.1016/j.molmet.2022.101473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Abdominal adiposity is strongly associated with diabetic and cardiovascular comorbidities. The long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is an important epigenetic regulator with fat depot-specific expression. Its functional roles and epigenetic regulation in abdominal adipogenesis remain uncertain. Methods We collected different fat depots from healthy, severely obese, and uraemic subjects to measure fat-depot specific gene expression and quantify regional adiposity via dual-energy X-ray absorptiometry (DXA). HOTAIR was overexpressed to evaluate its functional roles. Reduced representation bisulfite sequencing (RRBS), RNA-sequencing, real-time qPCR and RNA/chromatin immunoprecipitation were performed to analyse HOTAIR-mediated epigenetic regulation. Results A negative correlation between adipose tissue HOTAIR expression (arm or abdominal subcutaneous fat depots) and regional adiposity under the status of severe obesity or uraemia was observed. HOTAIR overexpression using human immortalized abdominal preadipocytes further revealed its anti-adipogenic effects. Integrative analysis of genome-wide DNA methylation by reduced representation bisulfite sequencing (RRBS) and gene expression was performed. Overall, the differentially methylated genes were functionally enriched for nervous system development, suggesting that HOTAIR may be epigenetically associated with cell lineage commitment. We specifically found that HOTAIR-mediated genes showed strong changes in both DNA methylation and gene expression during abdominal adipogenesis. We observed that two HOTAIR-repressed genes, SLITRK4 and PITPNC1, present an obesity-driven fat-depot specific expression pattern that is positively correlated with the central body fat distribution. Conclusions Our study indicated that HOTAIR is a key regulator of abdominal adipogenesis via intricate DNA methylation and is likely to be associated with the transcriptional regulation of genes involved in nervous system development and lipid metabolism, such as SLITRK4 and PITPNC1. HOTAIR was lowly expressed in abdominal and arm fats compared to the gluteal fat. Fat-depot-specific HOTAIR expression could be altered in the obese or uraemic status. HOTAIR overexpression suppressed abdominal adipogenesis and modulated methylome. HOTAIR-suppressed genes were associated with neural development and lipid metabolism.
Collapse
|
9
|
Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol 2022; 18:111-128. [PMID: 34789923 PMCID: PMC8889587 DOI: 10.1038/s41574-021-00583-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic β-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
10
|
Cataldi S, Aprile M, Melillo D, Mucel I, Giorgetti-Peraldi S, Cormont M, Italiani P, Blüher M, Tanti JF, Ciccodicola A, Costa V. TNFα Mediates Inflammation-Induced Effects on PPARG Splicing in Adipose Tissue and Mesenchymal Precursor Cells. Cells 2021; 11:cells11010042. [PMID: 35011604 PMCID: PMC8750445 DOI: 10.3390/cells11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Low-grade chronic inflammation and reduced differentiation capacity are hallmarks of hypertrophic adipose tissue (AT) and key contributors of insulin resistance. We identified PPARGΔ5 as a dominant-negative splicing isoform overexpressed in the AT of obese/diabetic patients able to impair adipocyte differentiation and PPARγ activity in hypertrophic adipocytes. Herein, we investigate the impact of macrophage-secreted pro-inflammatory factors on PPARG splicing, focusing on PPARGΔ5. We report that the epididymal AT of LPS-treated mice displays increased PpargΔ5/cPparg ratio and reduced expression of Pparg-regulated genes. Interestingly, pro-inflammatory factors secreted from murine and human pro-inflammatory macrophages enhance the PPARGΔ5/cPPARG ratio in exposed adipogenic precursors. TNFα is identified herein as factor able to alter PPARG splicing—increasing PPARGΔ5/cPPARG ratio—through PI3K/Akt signaling and SRp40 splicing factor. In line with in vitro data, TNFA expression is higher in the SAT of obese (vs. lean) patients and positively correlates with PPARGΔ5 levels. In conclusion, our results indicate that inflammatory factors secreted by metabolically-activated macrophages are potent stimuli that modulate the expression and splicing of PPARG. The resulting imbalance between canonical and dominant negative isoforms may crucially contribute to impair PPARγ activity in hypertrophic AT, exacerbating the defective adipogenic capacity of precursor cells.
Collapse
Affiliation(s)
- Simona Cataldi
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
| | - Marianna Aprile
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (D.M.); (P.I.)
| | - Inès Mucel
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Sophie Giorgetti-Peraldi
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Mireille Cormont
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, 80131 Naples, Italy; (D.M.); (P.I.)
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jean-François Tanti
- Université Côte d’Azur, Inserm UMR1065, C3M, Team Cellular and Molecular Pathophysiology of Obesity, 06204 Nice, France; (I.M.); (S.G.-P.); (M.C.); (J.-F.T.)
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
- Department of Science and Technology, University of Naples ‘‘Parthenope’’, 80143 Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ‘‘Adriano Buzzati-Traverso’’, CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.C.); (M.A.); (A.C.)
- Correspondence: ; Tel.: +39-0816132617
| |
Collapse
|
11
|
Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. Int J Mol Sci 2021; 22:ijms22189997. [PMID: 34576160 PMCID: PMC8465275 DOI: 10.3390/ijms22189997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.
Collapse
|
12
|
Zhang X, Zhang Y, Miao Q, Shi Z, Hu L, Liu S, Gao J, Zhao S, Chen H, Huang Z, Han Y, Ji Y, Xie L. Inhibition of HSP90 S-nitrosylation Alleviates Cardiac Fibrosis via TGFβ/SMAD3 Signaling Pathway. Br J Pharmacol 2021; 178:4608-4625. [PMID: 34265086 DOI: 10.1111/bph.15626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Effective anti-fibrotic therapeutic solutions are unavailable so far. The heat shock protein 90 (HSP90) exerts deleterious effects in some fibrotic diseases. S-nitrosylation (SNO) of HSP90 affects its own function, however, little is known about its role in pathological stress. Here, we investigated the effect of SNO-HSP90 on cardiac fibrosis. EXPERIMENTAL APPROACH SNO-HSP90 level was measured by biotin-switch. SNO sites were identified through mass spectrometry. S-nitrosylation site-mutated plasmids or adeno-associated virus, gene deletion and pharmacological antagonists were used to identify the contribution of SNO-HSP90 in myocardial fibrosis. KEY RESULTS SNO-HSP90 level was positively correlated with fibrosis marker expression in hearts from patients and significantly higher in fibrotic hearts from spontaneously hypertensive rats and mice subjected to transverse aortic constriction, as well as in angiotensin II- or isoproterenol-treated neonatal rat cardiac fibroblasts. S-nitrosylated site of HSP90 at cysteine 589 was identified. Inhibition of SNO-HSP90 by Cys589 mutation reduced fibrosis in angiotensin II- or isoproterenol-treated cardiac fibroblasts. Administration of recombinant adeno-associated virus of Cys589 mutation improved heart function and alleviated fibrosis in transverse aortic constriction mice. Mechanismly, SNO-HSP90 stimulated transforming growth factor-β type II receptor (TGFβ RII) binding to HSP90 in response to fibrotic stimuli, subsequently increased phosphorylation and nuclear translocation of SMAD3. Additionally, inducible nitric oxide synthase (iNOS) deficiency or iNOS inhibitor, 1400W, reduced SNO-HSP90 level and the activation of TGFβ/SMAD3 signaling pathway. CONCLUSIONS AND IMPLICATIONS We demonstrate that genetic or pharmacological inhibition of SNO-HSP90 mitigates fibrosis through blocking TGFβ/SMAD3 signaling pathway, providing a potential therapy for cardiac remodeling.
Collapse
Affiliation(s)
- Xiyue Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yihua Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Miao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiguang Shi
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Lulu Hu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shangmin Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi Han
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Liping Xie
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Wang H, Li F, Feng J, Wang J, Liu X. The effects of S-nitrosylation-induced PPARγ/SFRP5 pathway inhibition on the conversion of non-alcoholic fatty liver to non-alcoholic steatohepatitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:684. [PMID: 33987382 PMCID: PMC8106108 DOI: 10.21037/atm-21-1070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Peroxisome proliferators-activated receptors γ (PPARγ) and secreted frizzled related protein 5 (SFRP5) are abnormally expressed in liver cells. But their role in the transformation of non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH) remains to be studied. We aimed to explore the role of S-nitrosylation (SNO) in the conversion of NAFL to NASH via the peroxisome PPARγ/SFRP5 pathway. Methods A normal diet and methionine-choline deficient diet were used to construct the NAFL and NASH mouse models, respectively. The differences between the SNO of PPARγ in both models were measured by irreversible biotinylation. Quantitative reverse transcription PCR (qRT-PCR) and Western blotting were used to detect the effect of SNO on the expression of PPARγ messageRNA (mRNA) and protein in L02 hepatocytes. Nubiscan software, luciferase reporter gene, and chromatin immunoprecipitation assay (CHIP) were used to verify the targeting relationship between PPAR and SFRP5. The expression of tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6), which are indicators for the activation of Kupffer cells, were determined by enzyme linked immunosorbent assay (ELISA) after co-cultivation of L02 hepatocytes and Kupffer macrophages, as well as the exogenous regulation of SNO, PPARγ, and SFRP5 in hepatic L02 cells. Results The NAFL and NASH mouse models were successfully constructed, and the level of PPARγ SNO in the NAFL model was significantly lower than the NASH model (P<0.05). The level of PPARγ was significantly downregulated after increasing the SNO of L02 cells, respectively (P<0.05). Nubiscan software and CHIP confirmed that PPARγ could bind to the promoter region of SFRP5 (P<0.05). Overexpression of PPARγ and SFRP5 could significantly downregulate the expression of TNFα, IL-1β, and IL-6 (P<0.05) correspondingly, while increasing the SNO level of L02 cells could restore the expression levels of TNFα, IL-1β, and IL-6. Conclusions SNO promoted the activation of macrophage Kupffer cells by inhibiting the PPARγ/SFRP5 pathway in L02 hepatocytes, thereby promoting the conversion of NAFL into NASH.
Collapse
Affiliation(s)
- Hongyun Wang
- Gastroenterology Department, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Fengxia Li
- Gastroenterology Department, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jing Feng
- Gastroenterology Department, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Junping Wang
- Gastroenterology Department, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaobing Liu
- Gastroenterology Department, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
14
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
16
|
Morgan ET, Skubic C, Lee CM, Cokan KB, Rozman D. Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease. Drug Metab Rev 2020; 52:455-471. [PMID: 32898444 DOI: 10.1080/03602532.2020.1817061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many hepatic cytochrome P450 enzymes and their associated drug metabolizing activities are down-regulated in disease states, and much of this has been associated with inflammatory cytokines and their signaling pathways. One such pathway is the induction of inducible nitric oxide synthase (NOS2) and generation of nitric oxide (NO) in many tissues and cells including the liver and hepatocytes. Experiments in the 1990s demonstrated that NO could bind to and inhibit P450 enzymes, and suggested that inhibition of NOS could attenuate, and NO generation could mimic, the down-regulation by inflammatory stimuli of not only P450 catalytic activities but also of mRNA expression and protein levels of certain P450 enzymes. This review will summarize and examine the evidence that NO functionally inhibits and down-regulates P450 enzymes in vivo and in vitro, with a particular focus on the mechanisms by which these effects are achieved.
Collapse
Affiliation(s)
- Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Choon-Myung Lee
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaja Blagotinšek Cokan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Tian Y, Liu Y, Xue C, Wang J, Wang Y, Xu J, Li Z. The exogenous natural phospholipids, EPA-PC and EPA-PE, contribute to ameliorate inflammation and promote macrophage polarization. Food Funct 2020; 11:6542-6551. [PMID: 32638797 DOI: 10.1039/d0fo00804d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dietary intake of sea cucumber phospholipids, a rich source of eicosapentaenoic acid in the form of phospholipids (EPA-PLs), has been shown to improve obesity and related disorders. However, whether dietary eicosapentaenoic acid in the form of phosphatidylcholine and phosphatidylethanolamine (EPA-PC and EPA-PE, respectively) shows anti-inflammatory efficacy and its underlying mechanism has scarcely been investigated to date. Thus, the purpose of this study was to determine if EPA-PC and EPA-PE improve chronic inflammation and alter the interaction between macrophages and adipocytes. We found that EPA-PC and EPA-PE reduced the elevated levels of serum TNF-α, IL-6 and MCP1 and attenuated macrophage infiltration in the liver and iWAT of an HFSD-induced inflammatory model. Importantly, EPA-PC and EPA-PE promoted macrophage polarization in white adipose tissue. Furthermore, this effect on macrophage polarization was also observed in a 3T3L1 and Raw 264.7 Transwell co-culture system, which suggests that EPA-PC and EPA-PE attenuate chronic inflammation by promoting the M2-dominant polarization of macrophages in vitro. Our experiments in vitro illustrated that EPA-PC and EPA-PE attenuated the phosphorylation of p65 NFκB in Raw264.7 macrophages and increased PPARγ expression in 3T3-L1 adipocytes during the co-culture, which may contribute to the improvement in adipose inflammation. Thus, dietary eicosapentaenoic acid in the form of phosphatidylcholine and phosphatidylethanolamine may be a therapeutic strategy for chronic inflammation in obese adipose tissue.
Collapse
Affiliation(s)
- Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tang X, Pan L, Zhao S, Dai F, Chao M, Jiang H, Li X, Lin Z, Huang Z, Meng G, Wang C, Chen C, Liu J, Wang X, Ferro A, Wang H, Chen H, Gao Y, Lu Q, Xie L, Han Y, Ji Y. SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)-Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation. Circulation 2020; 141:984-1000. [PMID: 31902237 DOI: 10.1161/circulationaha.119.042336] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND S-nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in the pathogenesis of cardiovascular disease. The aim of this study was to determine the role of SNO of MLP (muscle LIM protein) in myocardial hypertrophy, as well as the mechanism by which SNO-MLP modulates hypertrophic growth in response to pressure overload. METHODS Myocardial samples from patients and animal models exhibiting myocardial hypertrophy were examined for SNO-MLP level using biotin-switch methods. SNO sites were further identified through liquid chromatography-tandem mass spectrometry. Denitrosylation of MLP by the mutation of nitrosylation sites or overexpression of S-nitrosoglutathione reductase was used to analyze the contribution of SNO-MLP in myocardial hypertrophy. Downstream effectors of SNO-MLP were screened through mass spectrometry and confirmed by coimmunoprecipitation. Recruitment of TLR3 (Toll-like receptor 3) by SNO-MLP in myocardial hypertrophy was examined in TLR3 small interfering RNA-transfected neonatal rat cardiomyocytes and in a TLR3 knockout mouse model. RESULTS SNO-MLP level was significantly higher in hypertrophic myocardium from patients and in spontaneously hypertensive rats and mice subjected to transverse aortic constriction. The level of SNO-MLP also increased in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes. S-nitrosylated site of MLP at cysteine 79 was identified by liquid chromatography-tandem mass spectrometry and confirmed in neonatal rat cardiomyocytes. Mutation of cysteine 79 significantly reduced hypertrophic growth in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes and transverse aortic constriction mice. Reducing SNO-MLP level by overexpression of S-nitrosoglutathione reductase greatly attenuated myocardial hypertrophy. Mechanistically, SNO-MLP stimulated TLR3 binding to MLP in response to hypertrophic stimuli, and disrupted this interaction by downregulating TLR3-attenuated myocardial hypertrophy. SNO-MLP also increased the complex formation between TLR3 and RIP3 (receptor-interacting protein kinase 3). This interaction in turn induced NLRP3 (nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3) inflammasome activation, thereby promoting the development of myocardial hypertrophy. CONCLUSIONS Our findings revealed a key role of SNO-MLP in myocardial hypertrophy and demonstrated TLR3-mediated RIP3 and NLRP3 inflammasome activation as the downstream signaling pathway, which may represent a therapeutic target for myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Lihong Pan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Feiyue Dai
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Menglin Chao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Zhe Lin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Zhengrong Huang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, China (Z.H.)
| | - Guoliang Meng
- Nanjing Medical University, Nanjing, China (G.M.).,Department of Pharmacology, School of Pharmacy, Nantong University, China (G.M.)
| | - Chun Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, China (C.W.)
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China (C.C., J.L.)
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China (C.C., J.L.)
| | - Xin Wang
- Faculty of Biology, Medicine and Health, the University of Manchester, United Kingdom (X.W.)
| | - Albert Ferro
- Cardiovascular Clinical Pharmacology, British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, United Kingdom (A.F.)
| | - Hong Wang
- Department of Pharmacology, Lewis Kats School of Medicine, Temple University, Philadelphia, PA (H.W.)
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.)
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Medical University, Nanjing, China (X.T., L.P., S.Z., F.D., M.C., H.J., X.L., Z.L., H.C., Y.G., Q.L., L.X., Y.J.).,State Key Laboratory of Reproductive Medicine (Y.J.)
| |
Collapse
|
19
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
20
|
S-nitrosoglutathione inhibits adipogenesis in 3T3-L1 preadipocytes by S-nitrosation of CCAAT/enhancer-binding protein β. Sci Rep 2019; 9:15403. [PMID: 31659183 PMCID: PMC6817858 DOI: 10.1038/s41598-019-51579-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022] Open
Abstract
Murine 3T3-L1 adipocytes share many similarities with primary fat cells and represent a reliable in vitro model of adipogenesis. The aim of this study was to probe the effect of S-nitrosoglutathione (GSNO) on adipocyte differentiation. Adipogenesis was induced with a mixture of insulin, dexamethasone, and 3-isobutyl-1-methylxanthine in the absence and presence of increasing GSNO concentrations. Biochemical analysis after 7 days of differentiation showed a prominent anti-adipogenic effect of GSNO which was evident as reduced cellular triglycerides and total protein content as well as decreased mRNA and protein expression of late transcription factors (e.g. peroxisome proliferator activated receptor γ) and markers of terminal differentiation (e.g. leptin). By contrast, the nitrosothiol did not affect mRNA and protein expression of CCAAT/enhancer-binding protein β (C/EBPβ), which represents a pivotal early transcription factor of the adipogenic cascade. Differentiation was also inhibited by the NO donor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate. Biotin switch experiments showed significantly increased S-nitrosation of C/EBPβ variants indicating that posttranslational S-nitrosative modification of this transcription factor accounts for the observed anti-adipogenic effect of NO. Our results suggest that S-nitrosation might represent an important physiological regulatory mechanism of fat cell maturation.
Collapse
|
21
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Wei H, Li J, Shi S, Zhang L, Xiang A, Shi X, Yang G, Chu G. Hhip inhibits proliferation and promotes differentiation of adipocytes through suppressing hedgehog signaling pathway. Biochem Biophys Res Commun 2019; 514:148-156. [PMID: 31027733 DOI: 10.1016/j.bbrc.2019.04.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 12/19/2022]
Abstract
Adipogenesis, which directly control body fat mass, plays a crucial role in lipid metabolism and obesity-related diseases. Hedgehog interacting protein (Hhip) belongs to Hedgehog (Hh) signaling pathway. The Hh signaling pathway was already linked with adipogenesis in previous reports, however, the physiological functions of Hhip on lipid deposition are still poorly understood. In this study, the level of Hhip was down-regulated during the development of porcine adipose tissues. Recombinant Hedgehog interacting protein (rHhip) could down-regulate cell cycle related genes and cell numbers in S phage to inhibit cell proliferation. Moreover, rHhip could increase adipocytes differentiation by targeting canonical Hh signaling, indicated by the increase of lipid accumulation and up-regulation of Glut4 and PPARγ expression. Collectively, these findings illustrated the essential role of Hhip in the proliferation and differentiation of adipocytes, and provided a potential novel target for preventing obesity.
Collapse
Affiliation(s)
- Haiyan Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingjing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aoqi Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
23
|
Yao Q, Liu J, Xiao L, Wang N. Sonic hedgehog signaling instigates high-fat diet-induced insulin resistance by targeting PPARγ stability. J Biol Chem 2019; 294:3284-3293. [PMID: 30573683 PMCID: PMC6398147 DOI: 10.1074/jbc.ra118.004411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major risk for patients with chronic metabolic disorders including type 2 diabetes. Sonic hedgehog (Shh) is a morphogen that regulates the pancreas and adipose tissue formation during embryonic development. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and one of the most important regulators of insulin action. Here, we evaluated the role and mechanism of Shh signaling in obesity-associated insulin resistance and characterized its effect on PPARγ. We showed that Shh expression was up-regulated in subcutaneous fat from obese mice. In differentiated 3T3-L1 and primary cultured adipocytes from rats, recombinant Shh protein and SAG (an agonist of Shh signaling) activated an extracellular signal-regulated kinase (ERK)-dependent noncanonical pathway and induced PPARγ phosphorylation at serine 112, which decreased PPARγ activity. Meanwhile, Shh signaling degraded PPARγ protein via binding of PPARγ to neural precursor cell-expressed developmentally down-regulated protein 4-1 (NEDD4-1). Furthermore, vismodegib, an inhibitor of Shh signaling, attenuated ERK phosphorylation induced by a high fat diet (HFD) and restored PPARγ protein level, thus ameliorating glucose intolerance and insulin resistance in obese mice. Our finding suggests that Shh in subcutaneous fat decreases PPARγ activity and stability via activation of an ERK-dependent noncanonical pathway, resulting in impaired insulin action. Inhibition of Shh may serve as a potential therapeutic approach to treat obesity-related diabetes.
Collapse
Affiliation(s)
- Qinyu Yao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Jia Liu
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Lei Xiao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Nanping Wang
- the Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
24
|
Ban Y, Liu Y, Li Y, Zhang Y, Xiao L, Gu Y, Chen S, Zhao B, Chen C, Wang N. S-nitrosation impairs KLF4 activity and instigates endothelial dysfunction in pulmonary arterial hypertension. Redox Biol 2019; 21:101099. [PMID: 30660098 PMCID: PMC6348764 DOI: 10.1016/j.redox.2019.101099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/25/2018] [Accepted: 01/06/2019] [Indexed: 12/31/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor with conserved zinc finger domains. As an essential regulator of vascular homeostasis, KLF4 exerts a protective effect in endothelial cells (ECs), including regulating vasodilation, inflammation, coagulation and oxidative stress. However, the underlying mechanisms modifying KLF4 activity in mediating vascular function remain poorly understood. Recently, essential roles for S-nitrosation have been implicated in many pathophysiologic processes of cardiovascular disease. Here, we demonstrated that KLF4 could undergo S-nitrosation in response to nitrosative stress in ECs, leading to the decreased nuclear localization with compromised transactivity. Mass-spectrometry and site-directed mutagenesis revealed that S-nitrosation modified KLF4 predominantly at Cys437. Functionally, KLF4 dependent vasodilatory response was impaired after S-nitrosoglutathione (GSNO) treatment. In ECs, endothelin-1 (ET-1) induced KLF4 S-nitrosation, which was inhibited by an endothelin receptor antagonist Bosentan. In hypoxia-induced rat model of pulmonary arterial hypertension (PAH), S-nitrosated KLF4 (SNO-KLF4) was significantly increased in lung tissues, along with decreased nuclear localization of KLF4. In summary, we demonstrated that S-nitrosation is a novel mechanism for the post-translational modification of KLF4 in ECs. Moreover, these findings suggested that KLF4 S-nitrosation may be implicated in the pathogenesis of vascular dysfunction and diseases such as PAH.
Collapse
Affiliation(s)
- Yiqian Ban
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yazi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Xiao
- Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an 710006, China
| | - Yue Gu
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210061, China
| | - Shaoliang Chen
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210061, China
| | - Beilei Zhao
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
25
|
Trim W, Turner JE, Thompson D. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity. Front Immunol 2018; 9:169. [PMID: 29479350 PMCID: PMC5811473 DOI: 10.3389/fimmu.2018.00169] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed "inflammageing". In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity-including an accumulation of pro-inflammatory immune cell populations-plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence.
Collapse
Affiliation(s)
- William Trim
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
26
|
Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:165-176. [PMID: 29191638 DOI: 10.1016/j.bbalip.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/28/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) has been recognized as an important gasotransmitter analogous to nitric oxide and carbon monoxide. Cystathionine gamma-lyase (CSE)-derived H2S is implicated in the regulation of insulin resistance and glucose metabolism, but the involvement of CSE/H2S system in energy homeostasis and fat mass has not been extensively explored. In this study, a potential functional role of the CSE/H2S system in in vitro adipocyte differentiation and in vivo adipogenesis and the underlying mechanism was investigated. CSE expression and H2S production were increased during adipocyte differentiation, and that the pattern of CSE mRNA expression was similar to that of CCAAT/enhancer-binding protein (C/EBP) β and δ, two key regulators for adipogenesis. C/EBPβ and γ bind to the CCAAT box in CSE promoter and stimulate CSE gene transcription. H2S induced PPARγ transactivation activity by S-sulfhydrating all the cysteine residues in the DNA binding domain and stimulated adipogenesis. High fat diet-induced fat mass was lost in CSE deficient mice, and exogenously applied H2S promoted fat mass accumulation in fruit flies. In conclusion, CSE/H2S system is essential for adipogenesis and fat mass accumulation through enhancement of PPARγ function in adipocytes. This study suggests that the CSE/H2S system is involved in the pathogenesis of obesity in mice.
Collapse
|
27
|
Namkoong S, Sung J, Yang J, Choi Y, Jeong HS, Lee J. Nobiletin Attenuates the Inflammatory Response Through Heme Oxygenase-1 Induction in the Crosstalk Between Adipocytes and Macrophages. J Med Food 2017; 20:873-881. [DOI: 10.1089/jmf.2017.3921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Seulgi Namkoong
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeehye Sung
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jinwoo Yang
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Youngmin Choi
- Department of Agrofood Resources, National Institute of Agricultural Science, Wanju, Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
28
|
Adipocyte-Macrophage Cross-Talk in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:327-343. [DOI: 10.1007/978-3-319-48382-5_14] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P, Daiber A, Korac B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 2017; 174:1570-1590. [PMID: 27079449 PMCID: PMC5446578 DOI: 10.1111/bph.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Péter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Andreas Daiber
- Center for Cardiology ‐ Cardiology 1, Molecular CardiologyUniversity Medical CenterMainzGermany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| |
Collapse
|
30
|
Dipeptidyl peptidase‑4 inhibitor sitagliptin prevents high glucose‑induced apoptosis via activation of AMP‑activated protein kinase in endothelial cells. Mol Med Rep 2017; 15:4346-4351. [PMID: 28440488 DOI: 10.3892/mmr.2017.6501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/09/2017] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM), which is a chronic metabolic disorder, is the primary risk factor of life‑threatening vascular complications. Endothelial apoptosis is important in the development of the initial vascular lesion preceding the diabetic disease. Sitagliptin is a dipeptidyl peptidase‑4 (DPP‑4) inhibitor and extensively used in the clinical treatment of DM. DPP‑4 inhibitors have been demonstrated to be beneficial in the improvement of endothelial homeostasis, however the molecular mechanism by which they exhibit these effects remains to be elucidated. The effect of sitagliptin on endothelial apoptosis was examined in cultured human umbilical vein endothelial cells (HUVECs) incubated with high glucose (HG). The present study demonstrated that treatment of HUVECs with HG increased reactive oxygen species (ROS) production, stimulated mitochondrial depolarization and resulted in cell apoptosis. Pretreatment of HUVECs with sitagliptin significantly prevented HG‑induced endothelial apoptosis. It was further demonstrated that sitagliptin effectively inhibited ROS generation and mitochondrial membrane potential collapse. Similarly, adenosine monophosphate‑activated protein kinase (AMPK) activation by sitagliptin protected against HG‑induced ROS production, mitochondrial membrane potential collapse and endothelial cell apoptosis, as detected via western blotting and flow cytometry analysis. The present study therefore revealed a novel mechanism of sitagliptin‑mediated AMPK activation in preventing endothelial apoptosis and indicated the therapeutic potential of sitagliptin in vascular complications associated with endothelial apoptosis.
Collapse
|
31
|
Nakazawa H, Chang K, Shinozaki S, Yasukawa T, Ishimaru K, Yasuhara S, Yu YM, Martyn JAJ, Tompkins RG, Shimokado K, Kaneki M. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53. PLoS One 2017; 12:e0170391. [PMID: 28099528 PMCID: PMC5242494 DOI: 10.1371/journal.pone.0170391] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023] Open
Abstract
Inflammation and apoptosis develop in skeletal muscle after major trauma, including burn injury, and play a pivotal role in insulin resistance and muscle wasting. We and others have shown that inducible nitric oxide synthase (iNOS), a major mediator of inflammation, plays an important role in stress (e.g., burn)-induced insulin resistance. However, it remains to be determined how iNOS induces insulin resistance. Moreover, the interrelation between inflammatory response and apoptosis is poorly understood, although they often develop simultaneously. Nuclear factor (NF)-κB and p53 are key regulators of inflammation and apoptosis, respectively. Sirt1 inhibits p65 NF-κB and p53 by deacetylating these transcription factors. Recently, we have shown that iNOS induces S-nitrosylation of Sirt1, which inactivates Sirt1 and thereby increases acetylation and activity of p65 NF-κB and p53 in various cell types, including skeletal muscle cells. Here, we show that iNOS enhances burn-induced inflammatory response and apoptotic change in mouse skeletal muscle along with S-nitrosylation of Sirt1. Burn injury induced robust expression of iNOS in skeletal muscle and gene disruption of iNOS significantly inhibited burn-induced increases in inflammatory gene expression and apoptotic change. In parallel, burn increased Sirt1 S-nitrosylation and acetylation and DNA-binding capacity of p65 NF-κB and p53, all of which were reversed or ameliorated by iNOS deficiency. These results indicate that iNOS functions not only as a downstream effector but also as an upstream enhancer of burn-induced inflammatory response, at least in part, by Sirt1 S-nitrosylation-dependent activation (acetylation) of p65 NF-κB. Our data suggest that Sirt1 S-nitrosylation may play a role in iNOS-mediated enhanced inflammatory response and apoptotic change, which, in turn, contribute to muscle wasting and supposedly to insulin resistance after burn injury.
Collapse
Affiliation(s)
- Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Kyungho Chang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takashi Yasukawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Kazuhiro Ishimaru
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Yong-Ming Yu
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. A. Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Ronald. G. Tompkins
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kentaro Shimokado
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Soliman H, Varela JN, Nyamandi V, Garcia-Patino M, Lin G, Bankar GR, Jia Z, MacLeod KM. Attenuation of obesity-induced insulin resistance in mice with heterozygous deletion of ROCK2. Int J Obes (Lond) 2016; 40:1435-43. [PMID: 27163743 DOI: 10.1038/ijo.2016.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/26/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity-associated insulin resistance is a major risk factor for the development of type 2 diabetes, cardiovascular disease and non-alcoholic liver disease. Over-activation of the RhoA-Rho kinase (ROCK) pathway has been implicated in the development of obesity-induced insulin resistance, but the relative contribution of ROCK2 has not been elucidated. This was investigated in the present study. METHODS Male ROCK2+/- mice and their wild-type (WT) littermate controls were fed normal chow or a high fat diet (HFD) for 18 weeks. Glucose and insulin tolerance tests were conducted 8 and 16 weeks after the start of feeding. At termination, isoform-specific ROCK activity and insulin signaling were evaluated in epididymal adipose tissue. Adipocyte size was assessed morphometrically, while adipose tissue production of PPARγ was determined by western blotting, and inflammatory cytokines were evaluated by RT-PCR and immunofluorescence. RESULTS The decrease in systemic insulin sensitivity and glucose tolerance produced by high fat feeding was attenuated in ROCK2+/- mice. There was no reduction in food intake, body weight or epididymal fat pad weight in HFD-ROCK2+/- mice. However, the increase in adipocyte size detected in HFD-WT mice was attenuated in HFD-ROCK2+/- mice. The increase in adipose tissue ROCK2 activity produced by high fat feeding in WT mice was also prevented in ROCK2+/- mice, and this was accompanied by improved insulin-induced phosphorylation of Akt. The expression of both isoforms of PPARγ was increased in adipose tissue from HFD-ROCK2+/- mice, while adipocyte hypertrophy and production of inflammatory cytokines were reduced compared with HFD-WT mice. CONCLUSIONS These data suggest that activation of ROCK2 in adipose tissue contributes to obesity-induced insulin resistance. This may result in part from suppression of PPARγ expression, leading to adipocyte hypertrophy and an increase in inflammatory cytokine production. ROCK2 may be a suitable target to improve insulin sensitivity in obesity.
Collapse
Affiliation(s)
- H Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - J N Varela
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - V Nyamandi
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Garcia-Patino
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G R Bankar
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Z Jia
- Neurosciences and Mental Health, the Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - K M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Guo HL, Liao XH, Liu Q, Zhang L. Angiotensin II Type 2 Receptor Decreases Transforming Growth Factor-β Type II Receptor Expression and Function in Human Renal Proximal Tubule Cells. PLoS One 2016; 11:e0148696. [PMID: 26867007 PMCID: PMC4750982 DOI: 10.1371/journal.pone.0148696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor-β (TGF-β), via its receptors, induces epithelial-mesenchymal transition (EMT) and plays an important role in the development of renal tubulointersitial fibrosis. Angiotensin II type 2 receptor (AT2R), which mediates beneficial renal physiological functions, has received attention as a prospective therapeutic target for renoprotection. In this study, we investigated the effect and underlying mechanism of AT2R on the TGF-β receptor II (TGF-βRII) expression and function in human proximal tubular cells (HK-2). Here, we show that the AT2R agonist CGP42112A decreased TGF-βRII protein expression in a concentration- and time-dependent manner in HK-2 cells. The inhibitory effect of the AT2R on TGF-βRII expression was blocked by the AT2R antagonists PD123319 or PD123177. Stimulation with TGF-β1 enhanced EMT in HK-2 cells, which was prevented by pre-treatment with CGP42112A. One of mechanisms in this regulation is associated with the increased TGF-βRII degradation after activation of AT2R. Furthermore, laser confocal immunofluorescence microscopy showed that AT2R and TGF-βRII colocalized in HK-2 cells. AT2R and TGF-βRII coimmunoprecipitated and this interaction was increased after AT2R agonist stimulation for 30 min. The inhibitory effect of the AT2R on TGF-βRII expression was also blocked by the nitric oxide synthase inhibitor L-NAME, indicating that nitric oxide is involved in the signaling pathway. Taken together, our study indicates that the renal AT2R regulates TGF-βRII expression and function via the nitric oxide pathway, which may be important in the control of renal tubulointerstitial fibrosis.
Collapse
MESH Headings
- Cell Line
- Dose-Response Relationship, Drug
- Epithelial-Mesenchymal Transition
- Fibrosis/pathology
- Humans
- Imidazoles/chemistry
- Kidney/pathology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/pathology
- Microscopy, Confocal
- Microscopy, Fluorescence
- Nitric Oxide/chemistry
- Oligopeptides/chemistry
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyridines/chemistry
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Time Factors
Collapse
Affiliation(s)
- Hui-Lin Guo
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qi Liu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| |
Collapse
|