1
|
Jang Y. Bioactive Compounds Targeting Dihydroceramide and Their Therapeutic Potential in Cancer Treatment. Cancers (Basel) 2025; 17:909. [PMID: 40075756 PMCID: PMC11898591 DOI: 10.3390/cancers17050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Dihydroceramide (dhCer) was previously considered an inactive precursor of ceramide, a well-known sphingoid base involved in regulating apoptosis and cell death. However, recent studies have shown that dhCer plays a crucial role in various important cellular responses. In this review, we summarize the latest findings on the biological functions of dhCer and the enzymes involved in its biosynthesis. We specifically focus on the emerging evidence implicating dhCer in cancer, as well as its role in regulating key processes such as cell cycle arrest, autophagy, apoptosis, ER stress, and oxidative stress. Furthermore, we discuss bioactive compounds that can modulate dhCer levels in cancer cells, highlighting their potential therapeutic applications in counteracting cancer progression. This review emphasizes the growing recognition of dhCer as a bioactive sphingolipid metabolite with significant potential for cancer therapy.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea; ; Tel.: +82-52-259-2374
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
2
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2025; 83:e1295-e1310. [PMID: 39181121 PMCID: PMC11819494 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Es-Sai B, Wahnou H, Benayad S, Rabbaa S, Laaziouez Y, El Kebbaj R, Limami Y, Duval RE. Gamma-Tocopherol: A Comprehensive Review of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Molecules 2025; 30:653. [PMID: 39942758 PMCID: PMC11821177 DOI: 10.3390/molecules30030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Gamma-tocopherol (γ-tocopherol), a major isoform of vitamin E, exhibits potent antioxidant, anti-inflammatory, and anticancer properties, making it a promising therapeutic candidate for treating oxidative stress-related diseases. Unlike other tocopherol isoforms, γ-tocopherol effectively neutralizes reactive oxygen species (ROS) and reactive nitrogen species (RNS), providing robust cellular protection against oxidative damage and lipid peroxidation. Its anti-inflammatory effects are mediated through the modulation of pathways involving cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-α), reducing chronic inflammation and its associated risks. In cancer therapy, γ-tocopherol demonstrates multifaceted activity, including the inhibition of tumor growth, induction of apoptosis, and suppression of angiogenesis, with significant efficacy observed in cancers such as prostate, lung, and colon. Preclinical and clinical studies support its efficacy in mitigating oxidative stress, inflammation, and cancer progression, with excellent tolerance at physiological levels. However, high doses necessitate careful evaluation to minimize adverse effects. This review consolidates current knowledge on γ-tocopherol's biological activities and clinical implications, underscoring its importance as a natural compound for managing inflammation, oxidative stress, and cancer. As a perspective, advancements in nanoformulation technology could enhance γ-tocopherol's bioavailability, stability, and targeted delivery, offering the potential to optimize its therapeutic application in the future.
Collapse
Affiliation(s)
- Basma Es-Sai
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco;
| | - Salma Benayad
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Soufiane Rabbaa
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Yassir Laaziouez
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Riad El Kebbaj
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | - Youness Limami
- Sciences and Engineering of Biomedicals, Biophysics and Health Laboratory, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco; (B.E.-S.); (S.B.); (S.R.); (Y.L.); (R.E.K.); (Y.L.)
| | | |
Collapse
|
4
|
Zhao Y, Simpson A, Nakatsu C, Cross TW, Jones-Hall Y, Jiang Q. Combining vitamin E metabolite 13'-carboxychromanol and a lactic acid bacterium synergistically mitigates colitis and colitis-associated dysbiosis in mice. Free Radic Biol Med 2025; 226:397-407. [PMID: 39547524 PMCID: PMC11972688 DOI: 10.1016/j.freeradbiomed.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Synbiotics may be useful to mitigate intestinal diseases such as ulcerative colitis. Here we show that combining 13'-carboxychromanol (δT3-13'), a metabolite of vitamin E δ-tocotrienol (δT3) via omega-oxidation, and Lactococcus lactis subsp. cremori (L. cremoris), but neither agent alone, significantly attenuated dextran sulfate sodium (DSS)-induced fecal bleeding and diarrhea, histologic colitis and interleukin 1β in mice. The combination of δT3-13'+L. cremoris also synergistically prevented DSS-caused compositional changes in gut microbiota and enriched beneficial bacteria including Lactococcus and Butyricicoccus. Interestingly, the anti-colitis effect correlated with the concentrations of δT3-13'-hydrogenated metabolite that contains 2 double bonds on the side chain (δT2-13'), instead of δT3-13' itself. Moreover, in contrast to δT3-13', combining δT3 and L. cremoris showed modest anti-colitis effects and did not prevent colitis-associated dysbiosis. In addition, ex vivo anaerobic incubation studies revealed that gut microbes selected by δT3-13' in the animal study could metabolize this compound to δT2-13' via hydrogenation, which appeared to be enhanced by L. cremoris. Overall, our study demonstrates that combining δT3-13' and L. cremoris can synergically prevent dysbiosis, and may be a novel synbiotic against colitis potentially via promoting δT3-13' metabolizers, which in turn contributes to superior beneficial effects of the combination.
Collapse
Affiliation(s)
- Yiying Zhao
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Abigayle Simpson
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Cindy Nakatsu
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Tzu-Wen Cross
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Qing Jiang
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Mese-Tayfur S, Demirel-Yalcıner T, Migni A, Bartolini D, Galli F, Ozer NK, Sozen E. Modulation of inflammatory signaling by vitamin E metabolites and its therapeutic implications. Free Radic Res 2025; 59:86-101. [PMID: 39764767 DOI: 10.1080/10715762.2024.2449457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2 R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation. However, hepatic metabolism of these compounds via cytochrome P450-initiated side chain ω-oxidation involves the production of long-chain metabolites (LCMs) followed by intermediate (ICMs) and short-chain metabolites (SCMs), respectively. Despite the initial studies indicating these metabolites as catabolic-end products, recent findings identify their importance in providing biological functions. In this scope, LCMs, especially 13'-carboxychromanols (13'-COOHs), have been reported to hold stronger anti-inflammatory capacity than their unmetabolized precursors due to their ability to inhibit 5-lipoxygenase and cyclooxygenase-catalyzed eicosanoid formation, as well as their modulation of the pro-inflammatory transcriptional protein nuclear factor κB (NF-κB). Also, these LCMs have been reported to enhance detoxification and lipid metabolism pathways associated with cellular inflammation by modulating the nuclear receptors peroxisome proliferator-activated receptor-γ (PPARγ) and pregnane x receptor (PXR). These properties of LCMs will be described in this narrative review article focusing on recent information regarding their bioavailability, anti-inflammatory effects, and mechanisms of action in acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Seher Mese-Tayfur
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Tugce Demirel-Yalcıner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Liao S, Börmel L, Müller AK, Gottschalk L, Pritsch N, Preisner LZ, Samokhina O, Schwarz M, Kipp AP, Schlörmann W, Glei M, Schubert M, Schmölz L, Wallert M, Lorkowski S. α-Tocopherol Long-Chain Metabolite α-T-13'-COOH Exhibits Biphasic Effects on Cell Viability, Induces ROS-Dependent DNA Damage, and Modulates Redox Status in Murine RAW264.7 Macrophages. Mol Nutr Food Res 2024; 68:e2400455. [PMID: 39548913 DOI: 10.1002/mnfr.202400455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Indexed: 11/18/2024]
Abstract
SCOPE The α-tocopherol long-chain metabolite α-tocopherol-13'-hydroxy-chromanol (α-T-13'-COOH) is a proposed regulatory intermediate of endogenous vitamin E metabolism. Effects of α-T-13'-COOH on cell viability and adaptive stress response are not well understood. The present study aims to investigate the concentration-dependent effects of α-T-13'-COOH on cellular redox homeostasis, genotoxicity, and cytotoxicity in murine RAW264.7 macrophages as a model system. METHODS AND RESULTS Murine RAW264.7 macrophages are exposed to various dosages of α-T-13'-COOH to determine its regulatory effects on reactive oxygen species (ROS) production, DNA damage, expression of stress-related markers, and the activity of ROS scavenging enzymes including superoxide dismutases, catalase, and glutathione-S-transferases. The impact on cell viability is assessed by analyzing cell proliferation, cell cycle arrest, and cell apoptosis. CONCLUSION α-T-13'-COOH influences ROS production and induces DNA damage in a dose-dependent manner. The metabolite modulates the activity of ROS-scavenging enzymes, with significant changes observed in the activities of antioxidant enzymes. A biphasic response affecting cell viability is noted: sub-micromolar doses of α-T-13'-COOH promote cell proliferation and enhance DNA synthesis, whereas supraphysiological doses lead to DNA damage and cytotoxicity. It hypothesizes an adaptive stress response, characterized by upregulation of ROS detoxification mechanisms, enhanced cell cycle arrest, and increased apoptosis, indicating a correlation with oxidative stress and subsequent cellular damage.
Collapse
Affiliation(s)
- Sijia Liao
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Lisa Börmel
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Anke Katharina Müller
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Luisa Gottschalk
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Nadine Pritsch
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Lara Zoé Preisner
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Oleksandra Samokhina
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Anna P Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Wiebke Schlörmann
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schubert
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Lisa Schmölz
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
- Member of Leibniz Research Alliance, Leibniz Health Technology and Leibniz Centre for Photonics in Infection Research, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Maria Wallert
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
7
|
Jang Y, Kim CY. The Role of Vitamin E Isoforms and Metabolites in Cancer Prevention: Mechanistic Insights into Sphingolipid Metabolism Modulation. Nutrients 2024; 16:4115. [PMID: 39683509 DOI: 10.3390/nu16234115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Natural forms of vitamin E include four tocopherols and four tocotrienols (α, β, γ, and δ), which are essential as lipophilic antioxidants. Among these eight isoforms, α-tocopherol (αT), the predominant form of vitamin E found in tissues, has traditionally received the most attention in disease prevention research due to its robust antioxidant activity. However, recent studies suggest that other forms of vitamin E exhibit distinct and potentially more potent beneficial activities in disease prevention and treatment. These non-αT forms of vitamin E are metabolized in vivo, producing various metabolites, including 13'-carboxychromanol, though their biological roles remain largely unknown. Notably, sphingolipids, known for their significant roles in cancer biology, may be involved in the anticancer effects of vitamin E through the modulation of sphingolipid metabolism. This review focuses on the diverse biological activities of different vitamin E forms and their metabolites, particularly their anticancer effects, while highlighting the underlying mechanisms, including their novel impact on regulating sphingolipid pathways. By elucidating these interactions, we aim to provide a deeper understanding on the multifaceted roles of vitamin E in cancer prevention and therapy.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
9
|
Wu W, Li A, He H, Ye S, Zhou Z, Quan JH, Tan W. Long noncoding RNA LINC01550 inhibits colorectal cancer malignancy by suppressing the Wnt/β-catenin signaling pathway. J Biochem Mol Toxicol 2024; 38:e23774. [PMID: 39041324 DOI: 10.1002/jbt.23774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy. Long noncoding RNAs (lncRNAs) are associated with the progression of various cancers, including CRC. Herein, we explored the function of lncRNA LINC01550 in CRC. LINC01550 expression in CRC was analyzed using The Cancer Genome Atlas (TCGA). The diagnostic value of LINC01550 was evaluated using ROC curves. The relationship between clinicopathological variables and LINC01550 expression was explored, and its prognostic value was assessed using Kaplan-Meier and Cox regression analyses. The relationship between LINC01550 expression and immune cell infiltration was analyzed using CIBERSORT. Tumor-associated mutations and drug sensitivity were compared between high and low LINC01550 expression groups. The effects of LINC01550 overexpression on CRC cells were investigated using CCK-8, flow cytometry, wound healing, Transwell, qRT-PCR, and western blot assays. LINC01550 was downregulated in CRC tissues, and the low expression of LINC01550 was correlated with advanced stage and metastasis. CRC patients with low LINC01550 expression had poorer overall survival. LINC01550 expression was an independent risk factor for CRC prognosis. APC and TP53 mutations were more frequent in the low LINC01550 expression group, while the high LINC01550 expression group was significantly more sensitive to 5-fluorouracil, irinotecan, trametinib, gemcitabine, rapamycin, and XAV939. LINC01550 overexpression suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition of HCT-116 and HT-29 cells and promoted apoptosis. LINC01550 exerted these effects by inhibiting Wnt/β-catenin signaling. Our results suggest LINC01550 as a diagnostic and prognostic predictor in CRC that acts as a tumor suppressor and a potential therapeutic target.
Collapse
Affiliation(s)
- Weiyun Wu
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aiting Li
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huanjin He
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuliang Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juan-Hua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenkai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Jiang Q. Different Roles of Tocopherols and Tocotrienols in Chemoprevention and Treatment of Prostate Cancer. Adv Nutr 2024; 15:100240. [PMID: 38734077 PMCID: PMC11215218 DOI: 10.1016/j.advnut.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The vitamin E family contains α-tocopherol (αT), βT, γT, and δT and α-tocotrienol (TE), βTE, γTE, and δTE. Research has revealed distinct roles of these vitamin E forms in prostate cancer (PCa). The ATBC trial showed that αT at a modest dose significantly decreased PCa mortality among heavy smokers. However, other randomized controlled trials including the Selenium and Vitamin E Cancer Prevention Trial (SELECT) indicate that supplementation of high-dose αT (≥400 IU) does not prevent PCa among nonsmokers. Preclinical cell and animal studies also do not support chemopreventive roles of high-dose αT and offer explanations for increased incidence of early-stage PCa reported in the SELECT. In contrast, accumulating animal studies have demonstrated that γT, δT, γTE, and δTE appear to be effective for preventing early-stage PCa from progression to adenocarcinoma in various PCa models. Existing evidence also support therapeutic roles of γTE and its related combinations against advanced PCa. Mechanistic and cell-based studies show that different forms of vitamin E display varied efficacy, that is, δTE ≥ γTE > δT ≥ γT >> αT, in inhibiting cancer hallmarks and enabling characteristics, including uncontrolled cell proliferation, angiogenesis, and inflammation possibly via blocking 5-lipoxygenase, nuclear factor κB, hypoxia-inducible factor-1α, modulating sphingolipids, and targeting PCa stem cells. Overall, existing evidence suggests that modest αT supplement may be beneficial to smokers and γT, δT, γTE, and δTE are promising agents for PCa prevention for modest-risk to relatively high-risk population. Despite encouraging preclinical evidence, clinical research testing γT, δT, γTE, and δTE for PCa prevention is sparse and should be considered.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
11
|
Czauderna M, Wojtak W, Białek M, Białek A. Optimization of high-efficient pre-column sample treatments and C18-UFLC method for selective quantification of selected chemical forms of tocopherol and tocotrienol in diverse foods. Food Chem 2024; 437:137909. [PMID: 37939419 DOI: 10.1016/j.foodchem.2023.137909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
The improved pre-column methods followed by gradient elution C18-chromatography (C18-UFLC) with photodiode (DAD) and fluorescence (FLD) detection for analysis of tocotrienols (T3s), tocopherols (Ts), α-tocopheryl acetate and cholesterol in plant, algae and fish oils, milk and animal tissues have been described. C18-chromatography without saponification permitted quantification of T3s and Ts in oils. Quantification of tocols in milk involved saponification followed by C18-chromatography. β-tocol and γ-tocol were unseparated using C18-chromatography. Esterification of hydroxyl group of tocols with trifluoroacetic anhydride allows their satisfactory separation. The combination of esterification of tocols, C18-chromatography and DAD monitoring at 278 and 205 nm provide the suitable analytical tool for quantification of β- and γ-forms of tocols in biological samples. Our original C18-chromatographic methods are satisfactory precise, accurate, repeatable and offer low values of limit of detection (<10 ng/mL) and limit of quantification (<27 ng/mL) for assayed tocols and cholesterol.
Collapse
Affiliation(s)
- Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland.
| | - Agnieszka Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland; University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland.
| |
Collapse
|
12
|
Schlörmann W, Liao S, Dinc T, Lorkowski S, Wallert M, Glei M. Chemopreventive effects of α-tocopherol and its long-chain metabolites α-13'-hydroxy- and α-13'-carboxychromanol in LT97 colon adenoma cells. Food Funct 2024; 15:183-195. [PMID: 38019686 DOI: 10.1039/d3fo02826g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Anticancer effects of vitamin E (tocopherols) have been studied extensively. While in vitro and animal studies showed promising results regarding anticancer effects of tocopherols, human intervention studies failed to reproduce these results. In vivo, α-tocopherol (α-TOH) is metabolized to the long-chain metabolites (LCM) 13'-hydroxychromanol (α-13'-OH) and 13'-carboxychromanol (α-13'-COOH), which likely reach the large intestine. The LCM showed antiproliferative effects in different colon cancer cell lines, but the exact mechanism of action remains unclear. To further clarify the chemopreventive action of the LCM, premalignant LT97 colon adenoma cells were treated with α-TOH, α-13'-OH and α-13'-COOH to study their impact on growth, apoptosis, antigenotoxicity, and ROS-scavenging capacity as well as expression of selected genes involved in detoxification and the cell cycle. Growth inhibitory potential was observed for α-13'-OH (IC50: 37.4 μM) and α-13'-COOH (IC50: 5.8 μM) but not for α-TOH in the tested concentrations. Levels of caspase-3 activity and expression of genes regulating the cell cycle and detoxification remained unchanged. However, α-TOH, α-13'-OH and α-13'-COOH exhibited antigenotoxic and partly ROS-scavenging capacity. The results indicate that the LCM exert chemopreventive effects via ROS-scavenging capacity, the protection against DNA damage and the induction of cell death via caspase-independent mechanisms in premalignant colon cells.
Collapse
Affiliation(s)
- Wiebke Schlörmann
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Str. 24, 07743 Jena, Germany.
| | - Sijia Liao
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Str. 25, 07743 Jena, Germany
| | - Tülin Dinc
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Str. 24, 07743 Jena, Germany.
| | - Stefan Lorkowski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Str. 25, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Maria Wallert
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Str. 25, 07743 Jena, Germany
| | - Michael Glei
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Str. 24, 07743 Jena, Germany.
| |
Collapse
|
13
|
Landolsi C, Salem-Berrabah OB, Feki M, Harrabi S, Hosseinian F. Unsaponifiable Compounds and Phenols Content, Antioxidant and Antitrypsin Activities of Prunus persica Kernel Oil. J Oleo Sci 2024; 73:865-874. [PMID: 38825540 DOI: 10.5650/jos.ess24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Although peach kernels are rich in oil, there is a lack of information about its chemical and biological properties. Therefore, the purpose of this study was to determine the lipid profile, antioxidant capacity, and trypsin inhibitory propriety of peach oil extracted from two varieties (sweet cap and O'Henry) cultivated in Tunisia. The investigated peach kernel oil contains significant amount of unsaponifiable (2.1±0.5-2.8±0.2% of oil) and phenolic compounds (45.8±0.92-74.6±1.3 mg GAE/g of oil). Its n-alkane profile was characterized by the predominance of tetracosane n-C24 (47.24%) followed by tricosane n-C23 (34.43%). An important total tocopherol content (1192.83±3.1 mg/kg oil) has been found in sweet cap cultivar. Although rich in polyphenols and tocopherols, the tested oil did not display an inhibitory effect on trypsin. However, all peach oil samples showed effective antioxidant capacity and the highest values (86.34±1.3% and 603.50±2.6 μmol TE/g oil for DPPH test and ORAC assay, respectively) were observed for sweet cap oil. Peach oil has an excellent potential for application in the food and pharmaceutical industries as source of naturally-occurring bioactive substances.
Collapse
Affiliation(s)
- Cyrine Landolsi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis
| | - Olfa Ben Salem-Berrabah
- Laboratory of Environmental Science and Technologies, Higher Institute of Sciences and Technology of Environment, University of Carthage
| | - Moncef Feki
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis
| | - Saoussem Harrabi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis
| | - Farah Hosseinian
- Food Science Program, Carleton University
- Institute of Biochemistry, Carleton University
| |
Collapse
|
14
|
Xiong Z, Liu L, Jian Z, Ma Y, Li H, Jin X, Liao B, Wang K. Vitamin E and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses. Nutrients 2023; 15:3301. [PMID: 37571239 PMCID: PMC10421296 DOI: 10.3390/nu15153301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The relationship between vitamin E intake or circulating α-tocopherol and various health outcomes is still debatable and uncertain. We conducted an umbrella review to identify the relationships between vitamin E intake or circulating tocopherol and health outcomes by merging and recalculating earlier meta-analyses. The connections that were found to be statistically significant were then classified into different evidence levels based on p values, between-study heterogeneity, prediction intervals, and small study effects. We finally included 32 eligible meta-analyses with four vitamin E sources and 64 unique health outcomes. Only the association between circulating α-tocopherol and wheeze or asthma in children was substantiated by consistent evidence. Suggestive evidence was suggested for seven results on endothelial function (supplemental vitamin E): serum C-reactive protein (CRP) concentrations (supplemental vitamin E), cervical cancer (dietary vitamin E), esophageal cancer (dietary vitamin E), cervical intraepithelial neoplasia (CIN, dietary vitamin E), pancreatic cancer (total vitamin E intake), and colorectal cancer (circulating α-tocopherol levels); all of these showed a protective effect consistent with the vitamin E source. In conclusion, our work has indicated that vitamin E is protective for several particular health outcomes. Further prospective studies are required when other factors that may contribute to bias are considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, China; (Z.X.); (L.L.); (Z.J.); (Y.M.); (H.L.); (X.J.)
| |
Collapse
|
15
|
Liao S, Gollowitzer A, Börmel L, Maier C, Gottschalk L, Werz O, Wallert M, Koeberle A, Lorkowski S. α-Tocopherol-13'-Carboxychromanol Induces Cell Cycle Arrest and Cell Death by Inhibiting the SREBP1-SCD1 Axis and Causing Imbalance in Lipid Desaturation. Int J Mol Sci 2023; 24:ijms24119229. [PMID: 37298183 DOI: 10.3390/ijms24119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
α-Tocopherol-13'-carboxychromanol (α-T-13'-COOH) is an endogenously formed bioactive α-tocopherol metabolite that limits inflammation and has been proposed to exert lipid metabolism-regulatory, pro-apoptotic, and anti-tumoral properties at micromolar concentrations. The mechanisms underlying these cell stress-associated responses are, however, poorly understood. Here, we show that the induction of G0/G1 cell cycle arrest and apoptosis in macrophages triggered by α-T-13'-COOH is associated with the suppressed proteolytic activation of the lipid anabolic transcription factor sterol regulatory element-binding protein (SREBP)1 and with decreased cellular levels of stearoyl-CoA desaturase (SCD)1. In turn, the fatty acid composition of neutral lipids and phospholipids shifts from monounsaturated to saturated fatty acids, and the concentration of the stress-preventive, pro-survival lipokine 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] decreases. The selective inhibition of SCD1 mimics the pro-apoptotic and anti-proliferative activity of α-T-13'-COOH, and the provision of the SCD1 product oleic acid (C18:1) prevents α-T-13'-COOH-induced apoptosis. We conclude that micromolar concentrations of α-T-13'-COOH trigger cell death and likely also cell cycle arrest by suppressing the SREBP1-SCD1 axis and depleting cells of monounsaturated fatty acids and PI(18:1/18:1).
Collapse
Affiliation(s)
- Sijia Liao
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Charlotte Maier
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Luisa Gottschalk
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| |
Collapse
|
16
|
Metabolite Profiling of Wheat Response to Cultivar Improvement and Nitrogen Fertilizer. Metabolites 2023; 13:metabo13010107. [PMID: 36677032 PMCID: PMC9862063 DOI: 10.3390/metabo13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Both genetic improvement and the application of N fertilizer increase the quality and yields of wheat. However, the molecular kinetics that underlies the differences between them are not well understood. In this study, we performed a non-targeted metabolomic analysis on wheat cultivars from different release years to comprehensively investigate the metabolic differences between cultivar and N treatments. The results revealed that the plant height and tiller number steadily decreased with increased ears numbers, whereas the grain number and weight increased with genetic improvement. Following the addition of N fertilizer, the panicle numbers and grain weights increased in an old cultivar, whereas the panicle number and grain number per panicle increased in a modern cultivar. For the 1950s to 2010s cultivar, the yield increases due to genetic improvements ranged from -1.9% to 96.7%, whereas that of N application ranged from 19.1% to 81.6%. Based on the untargeted metabolomics approach, the findings demonstrated that genetic improvements induced 1.4 to 7.4 times more metabolic alterations than N fertilizer supply. After the addition of N, 69.6%, 29.4%, and 33.3% of the differential metabolites were upregulated in the 1950s, 1980s, and 2010s cultivars, respectively. The results of metabolic pathway analysis of the identified differential metabolites via genetic improvement indicated enrichment in 1-2 KEGG pathways, whereas the application of N fertilizer enriched 2-4 pathways. Our results provide new insights into the molecular mechanisms of wheat quality and grain yield developments.
Collapse
|
17
|
Riedl R, Wallert M, Lorkowski S, Wiegand C. Effects of Histamine and the α-Tocopherol Metabolite α-13'-COOH in an Atopic Dermatitis Full-Thickness Skin Model. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010440. [PMID: 36615633 PMCID: PMC9824170 DOI: 10.3390/molecules28010440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Atopic dermatitis is a T-cell mediated inflammatory skin disease with detected elevated levels of histamine in skin or plasma. In this study, the effects of histamine in a TH2 cytokine environment on human keratinocytes and three-dimensional skin models were investigated. These models were used to explore the anti-inflammatory properties of the α-tocopherol-derived long-chain metabolite α-13'-carboxychromanol (α-13'-COOH). Histamine and TH2 cytokine-induced proliferation of keratinocytes was studied using a scratch assay. The inflammatory marker interleukin-8 was significantly increased in healthy and TH2 cytokine-stimulated keratinocytes and skin models after histamine treatment. The incubation of full-thickness skin models with TH2 cytokines and histamine resulted in morphological changes in the epidermal layer, interpreted as hyperkeratosis. α-13'-COOH significantly decreased interleukin-8 in these disease-associated skin models. Histological staining of filaggrin showed skin-strengthening effects following α-13'-COOH treatment, without changes in mRNA expression. Cytokeratin 10 mRNA expression tended to be increased in response to α-13'-COOH. Anti-allergic properties of α-13'-COOH were studied by pre-incubation of human leukocytes with α-13'-COOH. This resulted in reduced sulfido-leukotriene synthesis. The hyperproliferation effect of histamine in atopic dermatitis skin models may be of further interest to the study of disease-associated morphological changes. Moreover, α-13'-COOH is a promising natural compound for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Rebecca Riedl
- Department of Dermatology, University Hospital Jena, 07743 Jena, Germany
- Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence:
| | - Maria Wallert
- Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, 07743 Jena, Germany
| |
Collapse
|
18
|
Khallouki F, Saber S, Bouddine T, Hajji L, Elbouhali B, Silvente-Poirot S, Poirot M. In vitro and In vivo oxidation and cleavage products of tocols: From chemical tuners to “VitaminEome” therapeutics. A narrative review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Liao S, Omage SO, Börmel L, Kluge S, Schubert M, Wallert M, Lorkowski S. Vitamin E and Metabolic Health: Relevance of Interactions with Other Micronutrients. Antioxidants (Basel) 2022; 11:antiox11091785. [PMID: 36139859 PMCID: PMC9495493 DOI: 10.3390/antiox11091785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
A hundred years have passed since vitamin E was identified as an essential micronutrient for mammals. Since then, many biological functions of vitamin E have been unraveled in both cell and animal models, including antioxidant and anti-inflammatory properties, as well as regulatory activities on cell signaling and gene expression. However, the bioavailability and physiological functions of vitamin E have been considerably shown to depend on lifestyle, genetic factors, and individual health conditions. Another important facet that has been considered less so far is the endogenous interaction with other nutrients. Accumulating evidence indicates that the interaction between vitamin E and other nutrients, especially those that are enriched by supplementation in humans, may explain at least some of the discrepancies observed in clinical trials. Meanwhile, increasing evidence suggests that the different forms of vitamin E metabolites and derivates also exhibit physiological activities, which are more potent and mediated via different pathways compared to the respective vitamin E precursors. In this review, possible molecular mechanisms between vitamin E and other nutritional factors are discussed and their potential impact on physiological and pathophysiological processes is evaluated using published co-supplementation studies.
Collapse
Affiliation(s)
- Sijia Liao
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Sylvia Oghogho Omage
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
20
|
Li Y, Nicholson RJ, Summers SA. Ceramide signaling in the gut. Mol Cell Endocrinol 2022; 544:111554. [PMID: 34998898 PMCID: PMC8828712 DOI: 10.1016/j.mce.2022.111554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
Sphingolipids are essential lipid components in the intestinal epithelial cells (IEC) along the intestinal tract. They play crucial roles in maintaining barrier integrity, regulating nutrient absorption, and acting as signaling molecules to regulate regeneration and differentiation of intestinal mucosa (Kurek et al., 2012). Ceramide is the central sphingolipid species and the precursor of all complex sphingolipids and other downstream simple intermediates like sphingosine (SPH), ceramide-1-phosphate (C-1-P), and sphingosine-1-phosphate (S-1-P). It is also a critical signaling molecule regulating numerous physiologic and pathologic processes. This review will summarize the metabolism of ceramides in the gut and their regulation in inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA.
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| |
Collapse
|
21
|
Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr Rev Food Sci Food Saf 2022; 21:964-998. [PMID: 35181987 DOI: 10.1111/1541-4337.12924] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, β-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, β-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| | - YuanFa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| |
Collapse
|
22
|
Jiang Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med 2022; 179:375-387. [PMID: 34785321 PMCID: PMC9018116 DOI: 10.1016/j.freeradbiomed.2021.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Natural forms of vitamin E comprise four tocopherols and four tocotrienols. During the last twenty years, there have been breakthroughs in our understanding of vitamin E metabolism and biological activities of vitamin E metabolites. Research has established that tocopherols and tocotrienols are metabolized via ω-hydroxylase (CYP4F2)-initiated side chain oxidation to form 13'-hydroxychromanol and 13'-carobyxychromanol (13'-COOH). 13'-COOHs are further metabolized via β-oxidation and sulfation to intermediate carboxychromanols, terminal metabolite carboxyethyl-hydroxychroman (CEHC), and sulfated analogs. Animal and human studies show that γ-, δ-tocopherol and tocotrienols are more extensively metabolized than α-tocopherol (αT), as indicated by higher formation of CEHCs and 13'-COOHs from non-αT forms than those from αT. 13'-COOHs are shown to be inhibitors of cyclooxygenase-1/-2 and 5-lipoxygenase and much stronger than CEHCs for these activities. 13'-COOHs inhibit cancer cell growth, modulate cellular lipids and activate peroxisome proliferator-activated receptor-γ and pregnane X receptor. Consistent with mechanistic findings, αT-13'-COOH or δTE-13'-COOH, respective metabolites of αT or δ-tocotrienol, show anti-inflammatory and cancer-preventive effects, modulates the gut microbiota and prevents β-amyloid formation in mice. Therefore, 13'-COOHs are a new class of bioactive compounds with anti-inflammatory and anti-cancer activities and potentially capable of modulating lipid and drug metabolism. Based on the existing evidence, this author proposes that metabolites may contribute to disease-preventing effects of γ-, δ-tocopherol and tocotrienols. The role of metabolites in αT's actions may be somewhat limited considering controlled metabolism of αT because of its association with tocopherol-transport protein and less catabolism by CYP4F2 than other vitamin E forms.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| |
Collapse
|
23
|
Jiang Q, Im S, Wagner JG, Hernandez ML, Peden DB. Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radic Biol Med 2022; 178:347-359. [PMID: 34896589 PMCID: PMC8826491 DOI: 10.1016/j.freeradbiomed.2021.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
γ-Tocopherol (γT) is a major form of vitamin E in the US diet and the second most abundant vitamin E in the blood and tissues, while α-tocopherol (αT) is the predominant vitamin E in tissues. During the last >25 years, research has revealed that γT has unique antioxidant and anti-inflammatory activities relevant to disease prevention compared to αT. While both compounds are potent lipophilic antioxidants, γT but not αT can trap reactive nitrogen species by forming 5-nitro-γT, and appears to show superior protection of mitochondrial function. γT inhibits ionophore-stimulated leukotrienes by blocking 5-lipoxygenase (5-LOX) translocation in leukocytes, decreases cyclooxygenase-2 (COX-2)-catalyzed prostaglandins in macrophages and blocks the growth of cancer cells but not healthy cells. For these activities, γT is stronger than αT. Moreover, γT is more extensively metabolized than αT via cytochrome P-450 (CYP4F2)-initiated side-chain oxidation, which leads to formation of metabolites including 13'-carboxychromanol (13'-COOH) and carboxyethyl-hydroxychroman (γ-CEHC). 13'-COOH and γ-CEHC are shown to be the predominant metabolites found in feces and urine, respectively. Interestingly, γ-CEHC has natriuretic activity and 13'-COOH inhibits both COX-1/-2 and 5-LOX activity. Consistent with these mechanistic findings of γT and metabolites, studies show that supplementation of γT mitigates inflammation and disease symptoms in animal models with induced inflammation, asthma and cancer. In addition, supplementation of γT decreased inflammation markers in patients with kidney diseases and mild asthma. These observations support that γT may be useful against inflammation-associated diseases.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| | - Suji Im
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, USA
| | - Michelle L Hernandez
- Division of Allergy & Immunology, University of North Carolina School of Medicine, USA
| | - David B Peden
- Division of Allergy & Immunology, University of North Carolina School of Medicine, USA
| |
Collapse
|
24
|
Schubert M, Kluge S, Brunner E, Pace S, Birringer M, Werz O, Lorkowski S. The α-tocopherol-derived long-chain metabolite α-13'-COOH mediates endotoxin tolerance and modulates the inflammatory response via MAPK and NFκB pathways. Free Radic Biol Med 2022; 178:83-96. [PMID: 34848369 DOI: 10.1016/j.freeradbiomed.2021.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022]
Abstract
SCOPE The long-chain metabolites of (LCM) vitamin E are proposed as the active regulatory metabolites of vitamin E providing, with their anti-inflammatory properties, an explanatory approach for the inconsistent effects of vitamin E on inflammatory-driven diseases. We examined the modulation of cytokine expression and release from macrophages, a fundamental process in many diseases, to gain insights into the anti-inflammatory mechanisms of the α-tocopherol-derived LCM α-13'-COOH. METHODS AND RESULTS Suppressed gene expression of C-C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf), and interleukin (Il) 6 in response to lipopolysaccharides by 24 h pre-treatment with α-13'-COOH in RAW264.7 macrophages was revealed using quantitative reverse transcription PCR. Further, reduced secretion of IL1β and CCL2 was found in this setup using flow cytometry. In contrast, 1 h pre-treatment suppressed only CCL2. Consequent gene expression analysis within 24 h of α-13'-COOH treatment revealed the induction of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) negative feedback regulators including the 'master regulators' dual-specificity phosphatase 1 (Dusp1/Mkp1) and tumor necrosis factor induced protein 3 (Tnfaip3/A20). Approaches with immunoblots and chemical antagonists suggest a feedback induction via activation of extracellular-signal regulated kinase (ERK), p38 MAPK and NFκB pathways. CONCLUSIONS CCL2 is suppressed in murine macrophages by α-13'-COOH and the indirect suppression of MAPK and NFκB pathways is likely a relevant process contributing to anti-inflammatory actions of α-13'-COOH. These results improve the understanding of the effects of α-13'-COOH and provide a basis for new research strategies in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Elena Brunner
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Simona Pace
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Germany; Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
25
|
Park NY, Im S, Jiang Q. Different forms of vitamin E and metabolite 13'-carboxychromanols inhibit cyclooxygenase-1 and its catalyzed thromboxane in platelets, and tocotrienols and 13'-carboxychromanols are competitive inhibitors of 5-lipoxygenase. J Nutr Biochem 2021; 100:108884. [PMID: 34710615 DOI: 10.1016/j.jnutbio.2021.108884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/01/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase (COX-1 and COX-2)- and 5-lipoxygenase (5-LOX)-catalyzed biosynthesis of eicosanoids play important roles in inflammation and chronic diseases. The vitamin E family has four tocopherols and tocotrienols. We have shown that the metabolites of δ-tocopherol (δT) and δ-tocotrienol (δTE), i.e., δT-13'-carboxychromanol (COOH) and δTE-13'-COOH, respectively, inhibit COX-1/-2 and 5-LOX activity, but the nature of how they inhibit 5-LOX is not clear. Further, the impact of tocopherols and tocotrienols on COX-1/-2 or 5-LOX activity has not been fully delineated. In this study, we found that tocopherols and tocotrienols inhibited human recombinant COX-1 with IC50s of 1-12 µM, and suppressed COX-1-mediated formation of thromboxane in collagen-stimulated rat's platelets with IC50s of 8-50 µM. None of the vitamin E forms directly inhibited COX-2 activity. 13'-COOHs inhibited COX-1 and COX-2 enzyme activity with IC50s of 3-4 and 4-10 µM, respectively, blocked thromboxane formation in collagen- and ionophore-stimulated rats' platelets with IC50s of 1.5-2.5 µM, and also inhibited COX-2-mediated prostaglandins in stimulated cells. Using enzyme kinetics, we observed that δT-13'-COOH, δTE-13'-COOH and δTE competitively inhibited 5-LOX activity with Ki of 1.6, 0.8 and 2.2 µM, respectively. These compounds decreased leukotriene B4 from stimulated neutrophil-like cells without affecting translocation of 5-LOX from cytosol to the nucleus. Our study reveals inhibitory effects of vitamin E forms and 13'-COOHs on COX-1 activity and thromboxane formation in platelets, and elucidates mechanisms underlying their inhibition of 5-LOX. These observations are useful for understanding the role of these compounds in disease prevention and therapy.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Suji Im
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Qing Jiang
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
26
|
Szewczyk K, Chojnacka A, Górnicka M. Tocopherols and Tocotrienols-Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int J Mol Sci 2021; 22:6222. [PMID: 34207571 PMCID: PMC8227182 DOI: 10.3390/ijms22126222] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.
Collapse
Affiliation(s)
- Kacper Szewczyk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Aleksandra Chojnacka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Magdalena Górnicka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| |
Collapse
|
27
|
Petronek MS, Stolwijk JM, Murray SD, Steinbach EJ, Zakharia Y, Buettner GR, Spitz DR, Allen BG. Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol 2021; 42:101864. [PMID: 33485837 PMCID: PMC8113052 DOI: 10.1016/j.redox.2021.101864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
There is a rapidly growing body of literature supporting the notion that differential oxidative metabolism in cancer versus normal cells represents a metabolic frailty that can be exploited to open a therapeutic window into cancer therapy. These cancer cell-specific metabolic frailties may be amenable to manipulation with non-toxic small molecule redox active compounds traditionally thought to be antioxidants. In this review we describe the potential mechanisms and clinical applicability in cancer therapy of four small molecule redox active agents: melatonin, vitamin E, selenium, and vitamin C. Each has shown the potential to have pro-oxidant effects in cancer cells while retaining antioxidant activity in normal cells. This dichotomy can be exploited to improve responses to radiation and chemotherapy by opening a therapeutic window based on a testable biochemical rationale amenable to confirmation with biomarker studies during clinical trials. Thus, the unique pro-oxidant/antioxidant properties of melatonin, vitamin E, selenium, and vitamin C have the potential to act as effective adjuvants to traditional cancer therapies, thereby improving cancer patient outcomes.
Collapse
Affiliation(s)
- M S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Stolwijk
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - S D Murray
- Department of Cancer Biology, University of Iowa, Iowa City, IA, USA
| | - E J Steinbach
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Y Zakharia
- Division of Hematology and Oncology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - G R Buettner
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D R Spitz
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - B G Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Liu KY, Nakatsu CH, Jones-Hall Y, Kozik A, Jiang Q. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radic Biol Med 2021; 163:180-189. [PMID: 33352218 DOI: 10.1016/j.freeradbiomed.2020.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBDs) including colitis are intestinal disorders characterized by chronic inflammation, barrier dysfunction and dysbiosis. Specific forms of vitamin E have been shown to attenuate colitis, but the mechanisms are not fully understood. The objective of this study is to examine the impact of α-tocopherol (αT) and γ-tocopherol-rich tocopherols (γTmT) on gut inflammation, barrier integrity and microbiota in dextran sulfate sodium (DSS)-induced colitis in mice. We observe that αT and γTmT mitigated DSS-caused fecal bleeding, diarrhea and elevation of IL-6. These vitamin E forms inhibited colitis-induced loss of the tight junction protein occludin, and attenuated colitis-caused elevation of LPS-binding protein in the plasma, a surrogate marker of intestinal barrier dysfunction, suggesting protection of gut barrier integrity. Consistently, αT and γT mitigated TNF-α/IFN-γ-induced impairment of trans-epithelial electrical resistance in human intestinal epithelial Caco-2 cell monolayer. Using 16S rRNA gene sequencing of fecal DNA, we observe that DSS reduced gut microbial evenness and separated microbial composition from healthy controls. In colitis-induced mice, γTmT but not αT separated gut microbial composition from controls, and attenuated DSS-caused depletion of Roseburia, which contains butyrate producing bacteria and is decreased in IBD patients. Canonical correspondence analysis also supports that γTmT favorably altered gut microbial community. In contrast, neither αT nor γTmT affected gut microbes in healthy animals. These results provide evidence supporting protective effects of αT and γT on intestinal barrier function and that γTmT caused favorable changes of the gut microbiota in colitis-induced mice.
Collapse
Affiliation(s)
- Kilia Y Liu
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907-2059, USA
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907-2059, USA
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907-2059, USA
| | - Ariangela Kozik
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907-2059, USA
| | - Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907-2059, USA.
| |
Collapse
|
29
|
Vitamin E delta-tocotrienol and metabolite 13'-carboxychromanol inhibit colitis-associated colon tumorigenesis and modulate gut microbiota in mice. J Nutr Biochem 2021; 89:108567. [PMID: 33347911 DOI: 10.1016/j.jnutbio.2020.108567] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
The gut microbiota play important roles in colon cancer. Vitamin E δ-tocotrienol (δTE) and its metabolite δTE-13'-carboxychromanol (δTE-13') are known to have cancer-preventive effects, but their impact on gut flora during tumorigenesis and the role of the metabolite in δTE's beneficial effects remain to be determined. In the murine colitis-associated colon cancer (CAC) induced by azoxymethane (AOM) and dextran sulfate sodium (DSS), we show that δTE and δTE-13' inhibited the multiplicity of large adenomas (>2 mm2) by 34% (P<.05) and 55% (P<.01), respectively, compared to the control diet. δTE-13' diminished AOM/DSS-increased GM-CSF and MCP-1, and δTE decreased IL-1β. Using 16S rRNA gene sequencing of fecal DNAs, we observe that δTE and δTE-13' modulated the composition but not the richness of gut microbes compared to the control. Both δTE and δTE-13' enhanced potentially beneficial Lactococcus and Bacteroides. The elevation of Lactococcus positively correlated with fecal concentrations of δTE-13' and its hydrogenated metabolite, suggesting that the metabolite may contribute to δTE's modulation of gut microbes. Furthermore, δTE-13' counteracted AOM/DSS-induced depletion of Roseburia that is known to be decreased in patients with inflammatory bowel diseases. δTE uniquely elevated (Eubacterium) coprostanoloigenes. Our study demonstrates that δTE and δTE-13' inhibited tumorigenesis, suppressed pro-inflammatory cytokines and modulated gut microbiota in a murine CAC model. These findings uncover new and distinct activities of δTE and δTE-13' and support the notion that the metabolite may play a role in δTE's anticancer and modulation of gut microbes.
Collapse
|
30
|
Gujarathi S, Zafar MK, Liu X, Eoff RL, Zheng G. A Facile Semisynthesis and Evaluation of Garcinoic Acid and Its Analogs for the Inhibition of Human DNA Polymerase β. Molecules 2020; 25:E5847. [PMID: 33322249 PMCID: PMC7763917 DOI: 10.3390/molecules25245847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Garcinoic acid has been identified as an inhibitor of DNA polymerase β (pol β). However, no structure-activity relationship (SAR) studies of garcinoic acid as a pol β inhibitor have been conducted, in part due to the lack of an efficient synthetic method for this natural product and its analogs. We developed an efficient semi-synthetic method for garcinoic acid and its analogs by starting from natural product δ-tocotrienol. Our preliminary SAR studies provided a valuable insight into future discovery of garcinoic acid-based pol β inhibitors.
Collapse
Affiliation(s)
- Satheesh Gujarathi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.G.); (X.L.)
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.K.Z.); (R.L.E.)
| | - Xingui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.G.); (X.L.)
| | - Robert L. Eoff
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.K.Z.); (R.L.E.)
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.G.); (X.L.)
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
Raviadaran R, Ng MH, Manickam S, Chandran D. Ultrasound-assisted production of palm oil-based isotonic W/O/W multiple nanoemulsion encapsulating both hydrophobic tocotrienols and hydrophilic caffeic acid with enhanced stability using oil-based Sucragel. ULTRASONICS SONOCHEMISTRY 2020; 64:104995. [PMID: 32106064 DOI: 10.1016/j.ultsonch.2020.104995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
In this work, the effects of thickeners and tonicity towards producing stable palm oil-based water-in-oil-in-water (W/O/W) multiple nanoemulsion using ultrasound and microfluidizer were investigated. Palm oil, Sucragel, polyglycerol polyricinoleate, Tween 80, Xanthan gum, and NaCl were used. W/O/W was formed under the optimized conditions of ultrasound at 40% amplitude and for 180 s of irradiation time, whereas for the microfluidizer, the optimized conditions were 350 bar and 8 cycles. This is the first work that successfully utilized Sucragel (oil-based thickener) in imparting enhanced stability in W/O/W. W/O/W with isotonic stabilization produced the lowest change in the mean droplet diameter (MDD), NaCl concentration, and water content by 1.5%, 2.6%, and 0.4%, respectively, due to reduced water movement. The final optimized W/O/W possessed MDD and dispersity index of 175.5 ± 9.8 and 0.232 ± 0.012, respectively. The future direction of formulating stable W/O/W would be by employing oil phase thickeners and isotonicity. The observed ~12 times lesser energy consumed by ultrasound than microfluidizer to generate a comparable droplet size of ~235 nm, further confirms its potential in generating the droplets energy-efficiently.
Collapse
Affiliation(s)
- Revathi Raviadaran
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mei Han Ng
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Davannendran Chandran
- Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
32
|
Guo Y, Lu Y, Jin H. Appraising the role of circulating concentrations of micro-nutrients in epithelial ovarian cancer risk: A Mendelian randomization analysis. Sci Rep 2020; 10:7356. [PMID: 32355161 PMCID: PMC7193611 DOI: 10.1038/s41598-020-63909-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/05/2020] [Indexed: 01/02/2023] Open
Abstract
To determine the causality of micro-nutrients concentrations and risk of ovarian cancer using the Mendelian randomization approach. Analyses were conducted using summary statistics data for SNPs robustly associated with concentrations of thirteen micro-nutrients (iron, copper, zinc, calcium, magnesium, phosphorus, selenium, vitamin A, β-carotene, vitamin B6, vitamin B12, vitamin E, folate). The corresponding data for ovarian cancer were obtained from the Ovarian Cancer Association Consortium (25,509 cases and 40,941 controls). In standard Mendelian randomization analysis, the odds ratios (OR) of invasive epithelial ovarian cancer were 0.14 (95% CI, 0.03-0.70; P = 0.02) per 0.1 mmol/L (about one standard deviation, SD) increase in genetically predicted magnesium concentration, 1.04 (95% CI, 1.00-1.09; P = 0.03) per 0.3 μmol/liter (about one SD) increase in genetically predicted β-carotene concentration. The OR of low malignant potential tumours were 0.82 (95% CI, 0.76-0.90; P = 1.01 × 10-5) per 0.3 μmol/liter (about one SD) increase in β-carotene concentration, 1.42 (95% CI, 1.21-1.68; P = 3 × 10-5) per 153 pmol/L (about one SD) increase in vitamin B12 concentration, 0.21 (95% CI, 0.06-0.76; P = 0.02) per 6 mg/L (about one SD) increase in vitamin E concentration. No significant associations of other micro-nutrients and ovarian cancer were observed. This study found that an increased risk of invasive epithelial ovarian cancer was observed with a genetically higher concentration of β-carotene, whereas a decreased risk of invasive epithelial ovarian cancer was found with a higher concentration of magnesium. As for low malignant potential tumours, increased concentration of vitamin B12 could increase the risk of low malignant potential tumours, while increased concentrations of β-carotene and vitamin E could lower the risk of low malignant potential tumours.
Collapse
Affiliation(s)
- Yan Guo
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310000, China
| | - Yunlong Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
33
|
Wallert M, Kluge S, Schubert M, Koeberle A, Werz O, Birringer M, Lorkowski S. Diversity of Chromanol and Chromenol Structures and Functions: An Emerging Class of Anti-Inflammatory and Anti-Carcinogenic Agents. Front Pharmacol 2020; 11:362. [PMID: 32372948 PMCID: PMC7187200 DOI: 10.3389/fphar.2020.00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Natural chromanols and chromenols comprise a family of molecules with enormous structural diversity and biological activities of pharmacological interest. A recently published systematic review described more than 230 structures that are derived from a chromanol ortpd chromenol core. For many of these compounds structure-activity relationships have been described with mostly anti-inflammatory as well as anti-carcinogenic activities. To extend the knowledge on the biological activity and the therapeutic potential of these promising class of natural compounds, we here present a report on selected chromanols and chromenols based on the availability of data on signaling pathways involved in inflammation, apoptosis, cell proliferation, and carcinogenesis. The chromanol and chromenol derivatives seem to bind or to interfere with several molecular targets and pathways, including 5-lipoxygenase, nuclear receptors, and the nuclear-factor "kappa-light-chain-enhancer" of activated B-cells (NFκB) pathway. Interestingly, available data suggest that the chromanols and chromenols are promiscuitively acting molecules that inhibit enzyme activities, bind to cellular receptors, and modulate mitochondrial function as well as gene expression. It is also noteworthy that the molecular modes of actions by which the chromanols and chromenols exert their effects strongly depend on the concentrations of the compounds. Thereby, low- and high-affinity molecular targets can be classified. This review summarizes the available knowledge on the biological activity of selected chromanols and chromenols which may represent interesting lead structures for the development of therapeutic anti-inflammatory and chemopreventive approaches.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
- Regionales Innovationszentrum Gesundheit und Lebensqualität (RIGL), Fulda, Germany
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
34
|
Yang CS, Luo P, Zeng Z, Wang H, Malafa M, Suh N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol Carcinog 2020; 59:365-389. [PMID: 32017273 DOI: 10.1002/mc.23160] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
α-Tocopherol (α-T) is the major form of vitamin E (VE) in animals and has the highest activity in carrying out the essential antioxidant functions of VE. Because of the involvement of oxidative stress in carcinogenesis, the cancer prevention activity of α-T has been studied extensively. Lower VE intake or nutritional status has been shown to be associated with increased cancer risk, and supplementation of α-T to populations with VE insufficiency has shown beneficial effects in lowering the cancer risk in some intervention studies. However, several large intervention studies with α-T conducted in North America have not demonstrated a cancer prevention effect. More recent studies have centered on the γ- and δ-forms of tocopherols and tocotrienols (T3). In comparison with α-T, these forms have much lower systemic bioavailability but have shown stronger cancer-preventive activities in many studies in animal models and cell lines. γ-T3 and δ-T3 generally have even higher activities than γ-T and δ-T. In this article, we review recent results from human and laboratory studies on the cancer-preventive activities of different forms of tocopherols and tocotrienols, at nutritional and pharmacological levels. We aim to elucidate the possible mechanisms of the preventive actions and discuss the possible application of the available information for human cancer prevention by different VE forms.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Philip Luo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
35
|
Liu KY, Jiang Q. Tocopherols and Tocotrienols Are Bioavailable in Rats and Primarily Excreted in Feces as the Intact Forms and 13'-Carboxychromanol Metabolites. J Nutr 2020; 150:222-230. [PMID: 31495894 PMCID: PMC7373819 DOI: 10.1093/jn/nxz217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vitamin E α-, γ-, or δ-tocopherol (αT, γT, δT) and γ- or δ-tocotrienol (γTE, δTE) are metabolized to hydroxychromanols and carboxychromanols including 13'-carboxychromanol (13'-COOH), 11'-COOH, and carboxyethyl hydroxychroman (CEHC), some of which have unique bioactivities compared with the vitamers. However, the bioavailability of these metabolites has not been well characterized. OBJECTIVE We investigated the pharmacokinetics (PK) of vitamin E forms and metabolites in rats. METHODS Six-week-old male Wistar rats received 1-time gavage of γT-rich tocopherols (50 mg/kg) containing γT/δT/αT (57.7%, 21.9%, and 10.9%, respectively) or δTE-rich tocotrienols (35 mg/kg) containing δTE/γTE (8:1). We quantified the time course of vitamin E forms and metabolites in the plasma and their 24-h excretion to the urine and feces. The general linear model repeated measure was used for analyses of the PK data. RESULTS In the rats' plasma, Cmax of γT or δTE was 25.6 ± 9.1 μM (Tmax = 4 h) or 16.0 ± 2.3 μM (Tmax = 2 h), respectively, and sulfated CEHCs and sulfated 11'-COOHs were the predominant metabolites with Cmax of 0.4-0.5 μM (Tmax ∼5-7 h) or ∼0.3 μM (Tmax at 4.7 h), respectively. In 24-h urine, 2.7% of γT and 0.7% of δTE were excreted as conjugated CEHCs. In the feces, 17-45% of supplemented vitamers were excreted as unmetabolized forms and 4.9-9.2% as unconjugated carboxychromanols, among which 13'-COOHs constituted ∼50% of total metabolites and the amount of δTE-derived 13'-COOHs was double that of 13'-COOH derived from γT. CONCLUSIONS PK data of vitamin E forms in rats reveal that γT, δT, γTE, and δTE are bioavailable in the plasma and are mainly excreted as unmetabolized forms and long-chain metabolites including 13'-COOHs in feces, with more metabolites from tocotrienols than from tocopherols.
Collapse
Affiliation(s)
- Kilia Y Liu
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Qing Jiang
- Department of Nutrition Science, Interdepartmental Nutrition Program, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA,Address correspondence to QJ (e-mail: )
| |
Collapse
|
36
|
Birringer M, Lorkowski S. Vitamin E: Regulatory role of metabolites. IUBMB Life 2018; 71:479-486. [PMID: 30578664 DOI: 10.1002/iub.1988] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
Vitamin E plays an important role as a lipophilic antioxidant in cellular redox homeostasis. Besides this function, numerous non-antioxidant properties of this vitamin have been discovered in the past. DNA microarray technology revealed a complex regulatory network influenced by the different vitamin E forms (Rimbach et al., Molecules, 15, 1746 (2010); Galli et al., Free Radic. Biol. Med., 102, 16 (2017)); however, little is known about the biological activity of vitamin E metabolites. A new chapter of vitamin E research was been opened when endogenous long-chain tocopherol metabolites were identified and their high biological activity in vitro and in vivo was recognized (Schmölz et al., World J. Biol. Chem., 7, 14 (2016); Torquato et al., J. Pharm. Biomed. Anal., 124, 399 (2016)). Just recently, it was shown that an endogenous metabolite of vitamin E inhibits 5-lipoxygenase at nanomolar concentrations, thereby limiting inflammation (Pein et al., Nat. Commun., 9, 3834 (2018)). Furthermore, long-chain vitamin E metabolites (LCM) exhibit hormone-like activities similar to the lipid soluble vitamins A and D (Galli et al., Free Radic. Biol. Med., 102, 16 (2017); Schubert et al., Antioxidants, 7 (2018)). This review aims at summarizing recent findings on the regulatory activities of vitamin E metabolites, especially of LCMs. © 2018 IUBMB Life, 71(4):479-486, 2019.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
37
|
Jiang Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life 2018; 71:495-506. [PMID: 30548200 DOI: 10.1002/iub.1978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 12/25/2022]
Abstract
The disappointing results from large clinical studies of α-tocopherol (αT), the major form of vitamin E in tissues, for prevention of chronic diseases including cancer have cast doubt on not only αT but also other forms of vitamin E regarding their role in preventing carcinogenesis. However, basic research has shown that specific forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE) and δ-tocotrienol (δTE) can inhibit the growth and induce death of many types of cancer cells, and are capable of suppressing cancer development in preclinical cancer models. For these activities, these vitamin E forms are much stronger than αT. Further, recent research revealed novel anti-inflammatory and anticancer effects of vitamin E metabolites including 13'-carboxychromanols. This review focuses on anti-proliferation and induction of death in cancer cells by vitamin E forms and metabolites, and discuss mechanisms underlying these anticancer activities. The existing in vitro and in vivo evidence indicates that γT, δT, tocotrienols and 13'-carboxychromanols have anti-cancer activities via modulating key signaling or mediators that regulate cell death and tumor progression, such as eicosanoids, NF-κB, STAT3, PI3K, and sphingolipid metabolism. These results provide useful scientific rationales and mechanistic understanding for further translation of basic discoveries to the clinic with respect to potential use of these vitamin E forms and metabolites for cancer prevention and therapy. © 2018 IUBMB Life, 71(4):495-506, 2019.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
38
|
Vitamin E δ-tocotrienol inhibits TNF-α-stimulated NF-κB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. J Nutr Biochem 2018; 64:101-109. [PMID: 30471562 DOI: 10.1016/j.jnutbio.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/30/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Nuclear factor-κB (NF-κB) regulates inflammation and cell survival, and is considered a potential target for anti-inflammatory and anti-cancer therapy. δ-Tocotrienol (δTE), a vitamin E form, has been shown to inhibit NF-κB, but the mechanism underlying this action is not clear. In the present study, we show that δTE inhibited TNF-α-induced activation of NF-κB and LPS-stimulated IL-6 in a dose- and time-dependent manner in Raw 264.7 macrophages. δTE potently inhibited TNF-α-induced phosphorylation of transforming growth factor β-activated kinase 1 (TAK1), an upstream kinase essential for the activation of NF-κB. Interestingly, δTE significantly increased the expression of A20 and to a less extent, cylindromatosis (CYLD), both of which are inhibitors of NF-κB. The importance of induction of A20 in δTE's anti-NF-κB effect is validated in A20 knockout cells where δTE's inhibition of NF-κB was largely diminished. In pursuit of the cause for A20 induction, we found that δTE treatment caused rapid and persistent elevation of dihydroceramides, while decreased ceramides initially but increased ceramides during prolonged treatment. These changes of sphingolipids were accompanied by increased cellular stress markers. Importantly, δTE's induction of A20 and inhibition of NF-κB activation were partially counteracted by myriocin, a potent inhibitor of de novo synthesis of sphingolipids, indicating a critical role of sphingolipid modulation in δTE-mediated effects. Since dihydroceramide has been shown to induce A20 and inhibit NF-κB in RAW cells, we conclude that that δTE inhibits NF-κB activation by enhancing its negative regulator A20 as a result of modulating sphingolipids especially elevation of dihydroceramides.
Collapse
|
39
|
Pein H, Ville A, Pace S, Temml V, Garscha U, Raasch M, Alsabil K, Viault G, Dinh CP, Guilet D, Troisi F, Neukirch K, König S, Bilancia R, Waltenberger B, Stuppner H, Wallert M, Lorkowski S, Weinigel C, Rummler S, Birringer M, Roviezzo F, Sautebin L, Helesbeux JJ, Séraphin D, Mosig AS, Schuster D, Rossi A, Richomme P, Werz O, Koeberle A. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun 2018; 9:3834. [PMID: 30237488 PMCID: PMC6148290 DOI: 10.1038/s41467-018-06158-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Systemic vitamin E metabolites have been proposed as signaling molecules, but their physiological role is unknown. Here we show, by library screening of potential human vitamin E metabolites, that long-chain ω-carboxylates are potent allosteric inhibitors of 5-lipoxygenase, a key enzyme in the biosynthesis of chemoattractant and vasoactive leukotrienes. 13-((2R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-2,6,10-trimethyltridecanoic acid (α-T-13'-COOH) can be synthesized from α-tocopherol in a human liver-on-chip, and is detected in human and mouse plasma at concentrations (8-49 nM) that inhibit 5-lipoxygenase in human leukocytes. α-T-13'-COOH accumulates in immune cells and inflamed murine exudates, selectively inhibits the biosynthesis of 5-lipoxygenase-derived lipid mediators in vitro and in vivo, and efficiently suppresses inflammation and bronchial hyper-reactivity in mouse models of peritonitis and asthma. Together, our data suggest that the immune regulatory and anti-inflammatory functions of α-tocopherol depend on its endogenous metabolite α-T-13'-COOH, potentially through inhibiting 5-lipoxygenase in immune cells.
Collapse
Affiliation(s)
- Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Alexia Ville
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Simona Pace
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Martin Raasch
- Institute of Biochemistry II and Center for Sepsis Control and Care, University Hospital Jena, 07743, Jena, Germany
| | - Khaled Alsabil
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Guillaume Viault
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Chau-Phi Dinh
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - David Guilet
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Fabiana Troisi
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Konstantin Neukirch
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Stefanie König
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Maria Wallert
- Chair of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Stefan Lorkowski
- Chair of Nutritional Biochemistry and Physiology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743, Jena, Germany.,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle, Jena and Leipzig, Jena, 07743, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, 07747, Jena, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, 36037, Fulda, Germany
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Denis Séraphin
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Alexander S Mosig
- Institute of Biochemistry II and Center for Sepsis Control and Care, University Hospital Jena, 07743, Jena, Germany
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131, Naples, Italy
| | - Pascal Richomme
- Substances d'Origine Naturelle et Analogues Structuraux, SONAS, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, 49070, Beaucouzé, France
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.
| |
Collapse
|
40
|
Wang Q, Wang P, Xiao Z. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway. Int J Mol Med 2018; 41:1887-1898. [PMID: 29393371 PMCID: PMC5810243 DOI: 10.3892/ijmm.2018.3423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Resistant starch is as common soluble fiber that escapes digestion in the small intestine and can regulate intestinal function, metabolism of blood glucose and lipids, and may prevent tumorigenesis of gastrointestinal cancer. Epidemiology and other evidence have suggested that resistant starch may prevent colon cancer development. The aim of the current study was to explore the ameliorative effects and potential mechanisms of resistant starch in the tumorigenesis of colon tumors induced by dimethylhydrazine in C57BL/6 mice. Western blot analysis, ELISA, microscopy, immunofluorescence and immunohistochemistry were used to analyze the efficacy of resistant starch on the metabolic balance in the colon and tumorigenesis of colon tumors. The results demonstrated that a diet containing resistant starch decreased the animal body weight and reduced free ammonia, pH and short chain fatty acids in feces compared with mice that received a standard diet. Resistant starch reduced the incidence of colon tumors and suppressed the expression of carcinogenesis-associated proteins, including heat shock protein 25, protein kinase C-d and gastrointestinal glutathione peroxidase in colon epithelial cells compared with standard starch and control groups. Colon tumor cells proliferation and dedifferentiation were significantly decreased by a resistant starch diet. The results also demonstrated that resistant starch increased the apoptosis of colon tumor cells through regulation of apoptosis-associated gene expression levels in colon tumor cells. Oxidative stress and endoplasmic reticulum stress were upregulated, and elevation eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor-4 and secretase-β expression levels were increased in the resistant starch diet group. Additionally, the activity of eIF2α and PERK were increased in colon tumor cells from mice that had received resistant starch. Increasing DNA damage-inducible transcript 3 protein (CHOP), binding immunoglobulin protein (BIP) and caspase-12 expression levels upregulated by resistant starch diet may contribute to the resistant starch-induced apoptosis of colon tumor cells induced by 1,2-dimethylhydrazine. In vitro assays demonstrated that knockdown of eIF2α inhibited apoptosis of colon tumor cells isolated from mice fed with resistant starch, which also downregulated CHOP, BIP and caspase-3 expression levels compared with controls. Furthermore, long-term survival of experimental mice was prolonged by the resistant starch diet compared with the standard diet group. In conclusion, the results indicate that resistant starch in the diet may prevent carcinogenesis of colon epithelial cells, mediated by enhancing apoptosis through an endoplasmic reticulum stress-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Qiuyu Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Peng Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhigang Xiao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
41
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
42
|
Schubert M, Kluge S, Schmölz L, Wallert M, Galli F, Birringer M, Lorkowski S. Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins? Antioxidants (Basel) 2018; 7:antiox7010010. [PMID: 29329238 PMCID: PMC5789320 DOI: 10.3390/antiox7010010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.
Collapse
Affiliation(s)
- Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Lisa Schmölz
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Baker IDI Heart and Diabetes Institute, Melbourne VIC 3004, Australia.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Clinical Biochemistry, University of Perugia, 06123 Perugia, Italy.
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, 36037 Fulda, Germany.
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| |
Collapse
|
43
|
Marzagalli M, Moretti RM, Messi E, Marelli MM, Fontana F, Anastasia A, Bani MR, Beretta G, Limonta P. Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol. Sci Rep 2018; 8:587. [PMID: 29330434 PMCID: PMC5766483 DOI: 10.1038/s41598-017-19057-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
The prognosis of metastatic melanoma is very poor, due to the development of drug resistance. Cancer stem cells (CSCs) may play a crucial role in this mechanism, contributing to disease relapse. We first characterized CSCs in melanoma cell lines. We observed that A375 (but not BLM) cells are able to form melanospheres and show CSCs traits: expression of the pluripotency markers SOX2 and KLF4, higher invasiveness and tumor formation capability in vivo with respect to parental adherent cells. We also showed that a subpopulation of autofluorescent cells expressing the ABCG2 stem cell marker is present in the A375 spheroid culture. Based on these data, we investigated whether δ-TT might target melanoma CSCs. We demonstrated that melanoma cells escaping the antitumor activity of δ-TT are completely devoid of the ability to form melanospheres. In contrast, cells that escaped vemurafenib treatment show a higher ability to form melanospheres than control cells. δ-TT also induced disaggregation of A375 melanospheres and reduced the spheroidogenic ability of sphere-derived cells, reducing the expression of the ABCG2 marker. These data demonstrate that δ-TT exerts its antitumor activity by targeting the CSC subpopulation of A375 melanoma cells and might represent a novel chemopreventive/therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Elio Messi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Alessia Anastasia
- Laboratory of Biology and Treatment of Metastasis, IRCCS-Mario Negri Institute for Pharmacological Research, Milano, 20156, Italy
| | - Maria Rosa Bani
- Laboratory of Biology and Treatment of Metastasis, IRCCS-Mario Negri Institute for Pharmacological Research, Milano, 20156, Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy.
| |
Collapse
|
44
|
Abstract
Initial research on vitamin E and cancer has focused on α-tocopherol (αT), but recent clinical studies on cancer-preventive effects of αT supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE), and δ-tocotrienol (δTE), have far superior cancer-preventive activities than does αT. These vitamin E forms are much stronger than αT in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)- and 5-lipoxygenase (5-LOX)-catalyzed eicosanoids, and transcription factors such as nuclear transcription factor κB (NF-κB) and signal transducer and activator of transcription factor 3 (STAT3). These vitamin E forms, but not αT, cause pro-death or antiproliferation effects in cancer cells via modulating various signaling pathways, including sphingolipid metabolism. Unlike αT, these vitamin E forms are quickly metabolized to various carboxychromanols including 13'-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors. Consistent with mechanistic findings, γT, δT, γTE, and δTE, but not αT, have been shown to be effective for preventing the progression of various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of γT, δT, γTE, and δTE in cells and preclinical models and discusses current progress in clinical trials. The existing evidence strongly indicates that these lesser-known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
45
|
Schmölz L, Wallert M, Rozzino N, Cignarella A, Galli F, Glei M, Werz O, Koeberle A, Birringer M, Lorkowski S. Structure–Function Relationship Studies In Vitro Reveal Distinct and Specific Effects of Long‐Chain Metabolites of Vitamin E. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Lisa Schmölz
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
| | - Maria Wallert
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
- Baker Heart and Diabetes Institute Melbourne Australia
| | - Nicolò Rozzino
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padova Padova Italy
| | | | - Francesco Galli
- Department of Pharmaceutical SciencesLaboratory of Nutrition and Clinical BiochemistryUniversity of Perugia Perugia Italy
| | - Michael Glei
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
- Department of Nutritional ToxicologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich Schiller University Jena Jena Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich Schiller University Jena Jena Germany
| | - Marc Birringer
- Department of NutritionalFood and Consumer ScienceUniversity of Applied Sciences Fulda Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and PhysiologyInstitute of NutritionFriedrich Schiller University Jena Jena Germany
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD)Halle‐Jena‐Leipzig
| |
Collapse
|
46
|
Shen FQ, Wang ZC, Wu SY, Ren SZ, Man RJ, Wang BZ, Zhu HL. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg Med Chem Lett 2017; 27:3653-3660. [PMID: 28720504 DOI: 10.1016/j.bmcl.2017.07.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC50=0.23±0.16μM for COX-2, IC50=0.87±0.07μM for 5-LOX, IC50=4.48±0.57μM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC50=0.41±0.28μM for COX-2, IC50=7.68±0.55μM against A549) and Zileuton (IC50=1.35±0.24μM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents.
Collapse
Affiliation(s)
- Fa-Qian Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210046, People's Republic of China; Elion Nature Biological Technology Co., Ltd, 16 Hengtong Road, Nanjing 210038, People's Republic of China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210046, People's Republic of China; Elion Nature Biological Technology Co., Ltd, 16 Hengtong Road, Nanjing 210038, People's Republic of China
| | - Song-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210046, People's Republic of China; Elion Nature Biological Technology Co., Ltd, 16 Hengtong Road, Nanjing 210038, People's Republic of China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210046, People's Republic of China; Elion Nature Biological Technology Co., Ltd, 16 Hengtong Road, Nanjing 210038, People's Republic of China
| | - Ruo-Jun Man
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210046, People's Republic of China; Elion Nature Biological Technology Co., Ltd, 16 Hengtong Road, Nanjing 210038, People's Republic of China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210046, People's Republic of China; Elion Nature Biological Technology Co., Ltd, 16 Hengtong Road, Nanjing 210038, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210046, People's Republic of China; Elion Nature Biological Technology Co., Ltd, 16 Hengtong Road, Nanjing 210038, People's Republic of China.
| |
Collapse
|
47
|
Jang Y, Rao X, Jiang Q. Gamma-tocotrienol profoundly alters sphingolipids in cancer cells by inhibition of dihydroceramide desaturase and possibly activation of sphingolipid hydrolysis during prolonged treatment. J Nutr Biochem 2017; 46:49-56. [PMID: 28456081 DOI: 10.1016/j.jnutbio.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 01/10/2023]
Abstract
Vitamin E gamma-tocotrienol (γTE) is known to have anticancer effects, but mechanisms underlying these actions are not clear. Here using liquid chromatography tandem mass spectrometry, we show that γTE induced marked changes of sphingolipids including rapid elevation of dihydrosphingosine and dihydroceramides (dhCers) in various types of cancer cells. The elevation of dihydrosphingolipids coincided with increased cellular stress, as indicated by JNK phosphorylation, and was prior to any sign of induction of apoptosis. Chemically blocking de novo synthesis of sphingolipids partially counteracted γTE-induced apoptosis and autophagy. Experiments using 13C3, 15N-labeled l-serine together with enzyme assays indicate that γTE inhibited cellular dihydroceramide desaturase (DEGS) activity without affecting its protein expression or de novo synthesis of sphingolipids. Unlike the effect on dhCers, γTE decreased ceramides (Cers) after 8-h treatment but increased C18:0-Cer and C16:0-Cer after 16 and 24 h, respectively. The increase of Cers coincides with γTE-induced apoptosis and autophagy. Since γTE inhibits DEGS and decreases de novo Cer synthesis, elevation of Cers during prolonged γTE treatment is likely caused by sphingomeylinase-mediated hydrolysis of sphingomyelin. This idea is supported by the observation that an acid sphingomeylinase inhibitor partially reversed γTE-induced cell death. Our study demonstrates that γTE altered sphingolipid metabolism by inhibiting DEGS activity and possibly by activating SM hydrolysis during prolonged treatment in cancer cells.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Xiayu Rao
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|