1
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
2
|
Buchanan RA, Wang Y, May JM, Harrison FE. Ascorbate insufficiency disrupts glutamatergic signaling and alters electroencephalogram phenotypes in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 199:106602. [PMID: 39004234 DOI: 10.1016/j.nbd.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Clinical studies have reported that increased epileptiform and subclinical epileptiform activity can be detected in many patients with an Alzheimer's disease (AD) diagnosis using electroencephalogram (EEG) and this may correlate with poorer cognition. Ascorbate may have a specific role as a neuromodulator in AD as it is released concomitantly with glutamate reuptake following excitatory neurotransmission. Insufficiency may therefore result in an exacerbated excitatory/inhibitory imbalance in neuronal signaling. Using a mouse model of AD that requires dietary ascorbate (Gulo-/-APPswe/PSEN1dE9), EEG was recorded at baseline and during 4 weeks of ascorbate depletion in young (5-month-old) and aged (20-month-old) animals. Data were scored for changes in quantity of spike trains, individual spikes, sleep-wake rhythms, sleep fragmentation, and brainwave power bands during light periods each week. We found an early increase in neuronal spike discharges with age and following ascorbate depletion in AD model mice and not controls, which did not correlate with brain amyloid load. Our data also show more sleep fragmentation with age and with ascorbate depletion. Additionally, changes in brain wave activity were observed within different vigilance states in both young and aged mice, where Gulo-/-APPswe/PSEN1dE9 mice had shifts towards higher frequency bands (alpha, beta, and gamma) and ascorbate depletion resulted in shifts towards lower frequency bands (delta and theta). Microarray data supported ascorbate insufficiency altering glutamatergic transmission through the decreased expression of glutamate related genes, however no changes in protein expression of glutamate reuptake transporters were observed. These data suggest that maintaining optimal brain ascorbate levels may support normal brain electrical activity and sleep patterns, particularly in AD patient populations where disruptions are observed.
Collapse
Affiliation(s)
- Rebecca A Buchanan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Yuhan Wang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James M May
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
3
|
Shah M, Arumugam S. Exploring putative drug properties associated with TNF-alpha inhibition and identification of potential targets in cardiovascular disease using machine learning-assisted QSAR modeling and virtual reverse pharmacology approach. Mol Divers 2024; 28:2263-2287. [PMID: 38954070 DOI: 10.1007/s11030-024-10921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Cardiovascular disease is a chronic inflammatory disease with high mortality rates. TNF-alpha is pro-inflammatory and associated with the disease, but current medications have adverse effects. Therefore, efficient inhibitors are urgently needed as alternatives. This study represents a structural-activity relationship investigation of TNF-alpha, curated from the ChEMBL database. Exploratory data analysis was performed to visualize the physicochemical properties of different bioactivity groups. The extracted molecules were subjected to PubChem and SubStructure fingerprints, and a QSAR-based Random Forest (QSAR-RF) model was generated using the WEKA tool. The QSAR random Forest model was built based on the SubStructure fingerprint with a correlation coefficient of 0.992 and 0.716 as the respective tenfold cross-validation scores. The variance important plot (VIP) method was used to extract the important features for TNF-alpha inhibition. The Substructure-based QSAR-RF (SS-QSAR-RF) model was validated using molecules from PubChem and ZINC databases. The generated model also predicts the pIC50 value of the molecules selected from the docking study followed by molecular dynamic simulation with the time step of 100 ns. Through virtual reverse pharmacology, we determined the main drug targets from the top four hit compounds obtained via molecular docking study. Our analysis included an integrated bioinformatics approach to pinpoint crucial targets like EGRF, HSP900A1, STAT3, PSEN1, AKT1, and MDM2. Further, GO and KEGG pathways analysis identified relevant cardiovascular disease-related pathways for the hub gene involved. However, this study provides valuable insights, it is important to note that it lacks experimental application. Future research may benefit from conducting in-vitro and in-vivo studies.
Collapse
Affiliation(s)
- Manisha Shah
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sivakumar Arumugam
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Park J, Won J, Yang E, Seo J, Cho J, Seong JB, Yeo HG, Kim K, Kim YG, Kim M, Jeon CY, Lim KS, Lee DS, Lee Y. Peroxiredoxin 1 inhibits streptozotocin-induced Alzheimer's disease-like pathology in hippocampal neuronal cells via the blocking of Ca 2+/Calpain/Cdk5-mediated mitochondrial fragmentation. Sci Rep 2024; 14:15642. [PMID: 38977865 PMCID: PMC11231305 DOI: 10.1038/s41598-024-66256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Eunyeoung Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jiyeon Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Minji Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Raghav D, Shukla S, Jadiya P. Mitochondrial calcium signaling in non-neuronal cells: Implications for Alzheimer's disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167169. [PMID: 38631408 PMCID: PMC11111334 DOI: 10.1016/j.bbadis.2024.167169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.
Collapse
Affiliation(s)
- Darpan Raghav
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
6
|
Saldivia N, Salazar K, Cifuentes M, Espinoza F, Harrison FE, Nualart F. Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages. Glia 2024; 72:708-727. [PMID: 38180226 DOI: 10.1002/glia.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-β through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.
Collapse
Affiliation(s)
- Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Francisca Espinoza
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
7
|
Bartman S, Coppotelli G, Ross JM. Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases. Curr Issues Mol Biol 2024; 46:1987-2026. [PMID: 38534746 DOI: 10.3390/cimb46030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.
Collapse
Affiliation(s)
- Sydney Bartman
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Giuseppe Coppotelli
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jaime M Ross
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
8
|
Park JS, Rehman IU, Choe K, Ahmad R, Lee HJ, Kim MO. A Triterpenoid Lupeol as an Antioxidant and Anti-Neuroinflammatory Agent: Impacts on Oxidative Stress in Alzheimer's Disease. Nutrients 2023; 15:3059. [PMID: 37447385 DOI: 10.3390/nu15133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Singh S, Jha HC, Poluri KM, Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol 2023; 11:1146564. [PMID: 36968195 PMCID: PMC10036443 DOI: 10.3389/fcell.2023.1146564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
- *Correspondence: Amit Mishra,
| |
Collapse
|
10
|
Yan QY, Lv JL, Shen XY, Ou-Yang XN, Yang JZ, Nie RF, Lu J, Huang YJ, Wang JY, Shen X. Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice. Acta Pharmacol Sin 2022; 43:2226-2241. [PMID: 35091686 PMCID: PMC9433381 DOI: 10.1038/s41401-021-00857-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Clinical evidence shows that postmenpausal women are almost twice as likely to develop Alzheimer's disease (AD) as men of the same age, and estrogen is closely related to the occurrence of AD. Estrogen receptor (ER) α is mainly expressed in the mammary gland and other reproductive organs like uterus while ERβ is largely distributed in the hippocampus and cardiovascular system, suggesting that ERβ selective agonist is a valuable drug against neurodegenerative diseases with low tendency in inducing cancers of breast and other reproductive organs. In this study we identified a natural product patchouli alcohol (PTA) as a selective ERβ agonist which improved the cognitive defects in female APP/PS1 mice, and explore the underlying mechanisms. Six-month-old female APP/PS1 mice were administered PTA (20, 40 mg · kg-1 · d-1, i.g.) for 90 days. We first demonstrated that PTA bound to ERβ with a dissociation constant (KD) of 288.9 ± 35.14 nM in microscale thermophoresis. Then we showed that PTA administration dose-dependently ameliorated cognitive defects evaluated in Morris water maze and Y-maze testes. Furthermore, PTA administration reduced amyloid plaque deposition in the hippocampus by promoting microglial phagocytosis; PTA administration improved synaptic integrity through enhancing BDNF/TrkB/CREB signaling, ameliorated oxidative stress by Catalase level, and regulated Bcl-2 family proteins in the hippocampus. The therapeutic effects of PTA were also observed in vitro: PTA (5, 10, 20 μM) dose-dependently increased phagocytosis of o-FAM-Aβ42 in primary microglia and BV2 cells through enhancing ERβ/TLR4 signaling; PTA treatment ameliorated o-Aβ25-35-induced reduction of synapse-related proteins VAMP2 and PSD95 in primary neurons through enhancing ERβ/BDNF/TrkB/CREB pathways; PTA treatment alleviated o-Aβ25-35-induced oxidative stress in primary neurons through targeting ERβ and increasing Catalase expression. Together, this study has addressed the efficacy of selective ERβ agonist in the amelioration of AD and highlighted the potential of PTA as a drug lead compound against the disease.
Collapse
Affiliation(s)
- Qiu-Ying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Lu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Yi Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Nan Ou-Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Zhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui-Fang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Jie Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
12
|
Wang Y, Zhang H, Hua L, Wang Z, Geng S, Zhang H, Zeng Z, Zhao J, Wang X, Wang Y. Curcumin prevents Alzheimer's disease progression by upregulating JMJD3. Am J Transl Res 2022; 14:5280-5294. [PMID: 36105064 PMCID: PMC9452350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
The main purpose of this research was to explore the molecular mechanisms of Jumonji Domain-Containing Protein 3 (JMJD3) in Alzheimer's disease (AD) and to analyze its role in the anti-AD mechanism of curcumin (CUR). In the in vitro study of AD, JMJD3 overexpression promoted the trimethylation of histone H3 lysine 27 (H3K27me3), downregulated brain-derived neurotrophic factor (BDNF ), improved the abnormality of mitochondrial stress response (MSR) markers, Aβ accumulation, increased cell proliferation and inhibited apoptosis. Upregulating BDNF also achieved above similar results. Knockout of JMJD3 could downregulate BDNF, upregulate the level of H3K27me3 methylation and inhibit MSR markers, while transfection of JMJD3 RNAi could counteract the upregulated effect of BDNF. Then, MSR activator could also improve AD. In addition, JMJD3 in AD in vitro models was obviously upregulated under CUR stimulation, and it triggered a series of reactions as mentioned above. In the in vivo study, the levels of JMJD3, the mRNA and protein levels of BDNF in the right brain tissues of AD mice were downregulated, the methylation of H3K27me3 increased, and the MSR markers (ClpP, HSP6, HSP-60, ATFS-1, etc.) were downregulated; the above indexes were improved in varying degrees with the intervention of CUR. Thus, we conclude that CUR can induce the upregulation of JMJD3 and improve BDNF expression by promoting the demethylation of H3K27me3, thereby maintaining the balance of MSR and thus, preventing AD development.
Collapse
Affiliation(s)
- Yutong Wang
- Qilu Medical CollegeZibo, Shandong 255300, PR China
| | - Hong Zhang
- Department of Neurology, 960th Hospital of PLAZibo 255300, Shandong, PR China
| | - Linlin Hua
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, PR China
| | - Zhen Wang
- Department of Neurology, 960th Hospital of PLAZibo 255300, Shandong, PR China
| | - Shuang Geng
- Department of Neurology, 960th Hospital of PLAZibo 255300, Shandong, PR China
| | - Hui Zhang
- Department of Neurology, 960th Hospital of PLAZibo 255300, Shandong, PR China
| | - Zhilei Zeng
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, PR China
| | - Jing Zhao
- Department of Neurology, 960th Hospital of PLAZibo 255300, Shandong, PR China
| | - Xiaoyan Wang
- Department of Neurology, 960th Hospital of PLAZibo 255300, Shandong, PR China
| | - Yunliang Wang
- Qilu Medical CollegeZibo, Shandong 255300, PR China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, Henan, PR China
| |
Collapse
|
13
|
Wang S, Ichinomiya T, Savchenko P, Devulapalli S, Wang D, Beltz G, Saito T, Saido TC, Wagner SL, Patel HH, Head BP. Age-Dependent Behavioral and Metabolic Assessment of App NL-G-F/NL-G-F Knock-in (KI) Mice. Front Mol Neurosci 2022; 15:909989. [PMID: 35966019 PMCID: PMC9373872 DOI: 10.3389/fnmol.2022.909989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondria play a crucial role in Alzheimer's disease (AD) onset and progression. Traditional transgenic AD mouse models which were widely used in the past decades share a common limitation: The overexpression of APP and overproduction of amyloid-beta (Aβ) are accompanied by other APP peptide fragments, which could introduce artificial and non-clinically relevant phenotypes. Here, we performed an in-depth and time-resolved behavioral and metabolic characterization of a clinically relevant AD mouse model engineered to express normal physiological levels of APP harboring humanized Swedish (K670N/M671L), Beyreuther/Iberian (I716F), and Arctic (E693G) mutations (App NL-G-F/NL-G-F ), termed APP knock-in (APPKI) mice. Our result showed that APPKI mice exhibited fear learning deficits at 6-m age and contextual memory deficit at 12-m age. Histopathological analysis revealed mild amyloidosis (6E10) accompanied by microgliosis (Iba1) as early as 3 months, which progressed significantly together with significant astrocytosis at 6 and 12 m. We further analyzed hippocampal mitochondrial dysfunction by multiple assays, while 3-m APPKI mice brain mitochondrial function remains a similar level as WT mice. Significant mitochondrial dysfunction characterized by decreased ATP production and higher membrane potential with subsequent overproduction of reactive oxygen species (ROS) was observed in mitochondria isolated from 7-m APPKI mice hippocampal tissue. Morphologically, these mitochondria were larger in volume with a decreased level of mitochondrial fusion protein mitofusin-2 (MFN2). At 12 months, APPKI mice exhibit a significantly decreased total mitochondrial oxygen consumption rate (OCR) in isolated hippocampal mitochondria detected by high-resolution respirometry. These data indicate early mitochondrial dysfunction in the brain at pre-symptomatic age in the App NL-G-F/NL-G-mice, which may play a key role in the progression of the disease. Moreover, the identified behavioral and bioenergetic alterations in this clinically relevant AD mouse model provide a valuable tool to optimize the temporal component for therapeutic interventions to treat AD.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Taiga Ichinomiya
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States,Department of Anesthesiology and Intensive Care Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Paul Savchenko
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Swetha Devulapalli
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Dongsheng Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Gianna Beltz
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Steve L. Wagner
- Neurosciences Department, University of California, San Diego, San Diego, CA, United States
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States,*Correspondence: Brian P. Head
| |
Collapse
|
14
|
Gorina YV, Khilazheva ED, Mosyagina AI, Kharitonova EV, Kapkaeva MR, Stelmashook EV, Isaev NK, Rozanova NA, Salmina AB. Impact of Lactate on Mitochondrial Activity in Endothelial Cells Exposed in vitro to the Acute Toxic Effect of beta-Amyloid. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ayabe T, Takahashi C, Ohya R, Ano Y. β-Lactolin improves mitochondrial function in Aβ-treated mouse hippocampal neuronal cell line and a human iPSC-derived neuronal cell model of Alzheimer's disease. FASEB J 2022; 36:e22277. [PMID: 35319792 DOI: 10.1096/fj.202101366rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Abstract
Mitochondrial dysfunctions are a key hallmark of Alzheimer's disease (AD). β-Lactolin, a whey-derived glycine-threonine-tryptophan-tyrosine tetrapeptide, has been previously reported to prevent AD-like pathologies in an AD mouse model via regulation of microglial functions. However, the direct effect of β-lactolin on neuronal cells and neuronal mitochondrial functions remains unknown. Here, we investigated the effects of β-lactolin on mitochondrial functions in amyloid β (Aβ)-treated mouse hippocampal neuronal HT22 cells and human induced-pluripotent cell (hiPSC)-derived AD model neurons. Adding β-lactolin to Aβ-treated HT22 cells increased both the oxygen consumption rate and cellular ATP concentrations, suggesting that β-lactolin improves mitochondrial respiration and energy production. Using high content image analysis, we found that β-lactolin improved mitochondrial fragmentation, membrane potential, and oxidative stress in Aβ-treated cells, eventually preventing neuronal cell death. From a mechanistic perspective, we found that β-lactolin increased gene expression of mitofusin-2, which contributes to mitochondrial fusion events. Finally, we showed that β-lactolin improves both mitochondrial morphologies and membrane potentials in hiPSC-derived AD model neurons. Taken together, β-lactolin improved mitochondrial functions AD-related neuronal cell models and prevented neuronal cell death. The dual function of β-lactolin on both neuron and microglia marks an advantage in maintaining neuronal health.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Kirin Central Research Institute, Kirin Holdings Company Limited, Fujisawa, Japan
| | - Chika Takahashi
- Kirin Central Research Institute, Kirin Holdings Company Limited, Fujisawa, Japan
| | - Rena Ohya
- Kirin Central Research Institute, Kirin Holdings Company Limited, Fujisawa, Japan
| | - Yasuhisa Ano
- Kirin Central Research Institute, Kirin Holdings Company Limited, Fujisawa, Japan
| |
Collapse
|
16
|
Li YR, Zhu H. Vitamin C for sepsis intervention: from redox biochemistry to clinical medicine. Mol Cell Biochem 2021; 476:4449-4460. [PMID: 34478032 PMCID: PMC8413356 DOI: 10.1007/s11010-021-04240-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022]
Abstract
Vitamin C, also known as ascorbic acid or ascorbate, is a water-soluble vitamin synthesized in plants as well as in animals except humans and several other animal species. Humans obtain vitamin C from dietary sources and via vitamin supplementation. Vitamin C possesses important biological functions, including serving as a cofactor for many enzymes, acting as an antioxidant and anti-inflammatory compound, and participating in regulating stem cell biology and epigenetics. The multifunctional nature of vitamin C contributes to its essentialness in maintaining and safeguarding physiological homeostasis, especially regulation of immunity and inflammatory responses. In this context, vitamin C has been investigated for its efficacy in treating diverse inflammatory disorders, including sepsis, one of the major causes of death globally and for which currently there is no cure. Accordingly, this Mini-Review surveys recent major research findings on the effectiveness of vitamin C and the underling molecular mechanisms in sepsis intervention in both experimental animal models and randomized controlled trials. To set a stage for discussing the effects and mechanisms of vitamin C in sepsis intervention, this Mini-Review begins with an overview of vitamin C redox biochemistry and its multifunctional properties.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA.
| | - Hong Zhu
- Department of Physiology and Pathophysiology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| |
Collapse
|
17
|
Hayashi K, Noguchi-Shinohara M, Sato T, Hosomichi K, Kannon T, Abe C, Domoto C, Yuki-Nozaki S, Mori A, Horimoto M, Yokogawa M, Sakai K, Iwasa K, Komai K, Ishimiya M, Nakamura H, Ishida N, Suga Y, Ishizaki J, Ishigami A, Tajima A, Yamada M. Effects of functional variants of vitamin C transporter genes on apolipoprotein E E4-associated risk of cognitive decline: The Nakajima study. PLoS One 2021; 16:e0259663. [PMID: 34780525 PMCID: PMC8592483 DOI: 10.1371/journal.pone.0259663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein E E4 (APOE4) is a risk factor for cognitive decline. A high blood vitamin C (VC) level reduces APOE4-associated risk of developing cognitive decline in women. In the present study, we aimed to examine the effects of functional variants of VC transporter genes expressed in the brain (SLC2A1, SLC2A3, and SLC23A2) on APOE4-associated risk of developing cognitive decline. This case–control study involved 393 Japanese subjects: 252 cognitively normal and 141 cognitively impaired individuals (87 mild cognitive impairment and 54 dementia). Database searches revealed that rs1279683 of SLC23A2, and rs710218 and rs841851 of SLC2A1 are functional variants that are significantly associated with the altered expression of the respective genes and genotyped as three single nucleotide variants (SNVs). When stratified by SNV genotype, we found a significant association between APOE4 and cognitive decline in minor allele carriers of rs1279683 (odds ratio [OR] 2.02, 95% CI, 1.05–3.87, p = 0.035) but not in the homozygote carriers of the major allele. Significant associations between APOE4 and cognitive decline were also observed in participants with major allele homozygotes of rs710218 (OR 2.35, 95% CI, 1.05–5.23, p = 0.037) and rs841851 (OR 3.2, 95% CI, 1.58–6.46, p = 0.0012), but not in minor allele carriers of the respective SNVs. In contrast, the three functional SNVs showed no significant effect on cognitive decline. Our results imply that functional SNVs of VC transporter genes can affect APOE4-associated risk of developing cognitive decline via altered VC levels in the brain.
Collapse
Affiliation(s)
- Koji Hayashi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Preemptive Medicine for Dementia, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiemi Abe
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Chiaki Domoto
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sohshi Yuki-Nozaki
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ayaka Mori
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mai Horimoto
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masami Yokogawa
- Department of Physical Therapy, Division of Health Sciences, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuo Iwasa
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Ishikawa Prefectural Nursing University, Kahoku, Japan
| | - Kiyonobu Komai
- Department of Neurology, Iou Hospital National Hospital Organization, Kanazawa, Japan
| | - Mai Ishimiya
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Oral and Maxillofacial Surgery, Ryukyu University Hospital, Nishihara, Japan
| | - Natsuko Ishida
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan
| | - Yukio Suga
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan
| | - Junko Ishizaki
- Clinical Pharmacy and Healthcare Sciences, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- * E-mail: (AT); (MY)
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- * E-mail: (AT); (MY)
| |
Collapse
|
18
|
Patro S, Ratna S, Yamamoto HA, Ebenezer AT, Ferguson DS, Kaur A, McIntyre BC, Snow R, Solesio ME. ATP Synthase and Mitochondrial Bioenergetics Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:11185. [PMID: 34681851 PMCID: PMC8539681 DOI: 10.3390/ijms222011185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disorder in our society, as the population ages, its incidence is expected to increase in the coming decades. The etiopathology of this disease still remains largely unclear, probably because of the highly complex and multifactorial nature of AD. However, the presence of mitochondrial dysfunction has been broadly described in AD neurons and other cellular populations within the brain, in a wide variety of models and organisms, including post-mortem humans. Mitochondria are complex organelles that play a crucial role in a wide range of cellular processes, including bioenergetics. In fact, in mammals, including humans, the main source of cellular ATP is the oxidative phosphorylation (OXPHOS), a process that occurs in the mitochondrial electron transfer chain (ETC). The last enzyme of the ETC, and therefore the ulterior generator of ATP, is the ATP synthase. Interestingly, in mammalian cells, the ATP synthase can also degrade ATP under certain conditions (ATPase), which further illustrates the crucial role of this enzyme in the regulation of cellular bioenergetics and metabolism. In this collaborative review, we aim to summarize the knowledge of the presence of dysregulated ATP synthase, and of other components of mammalian mitochondrial bioenergetics, as an early event in AD. This dysregulation can act as a trigger of the dysfunction of the organelle, which is a clear component in the etiopathology of AD. Consequently, the pharmacological modulation of the ATP synthase could be a potential strategy to prevent mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (S.P.); (S.R.); (H.A.Y.); (A.T.E.); (D.S.F.); (A.K.); (B.C.M.); (R.S.)
| |
Collapse
|
19
|
Mira RG, Cerpa W. Building a Bridge Between NMDAR-Mediated Excitotoxicity and Mitochondrial Dysfunction in Chronic and Acute Diseases. Cell Mol Neurobiol 2021; 41:1413-1430. [PMID: 32700093 PMCID: PMC11448584 DOI: 10.1007/s10571-020-00924-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain, and it is widely accepted to play a role in synaptic plasticity and excitotoxic cell death. Glutamate binds to several receptors, including ionotropic N-methyl-D-Aspartate receptor (NMDAR), which is essential in synaptic plasticity and excitotoxicity. This receptor is a calcium channel that is located in synaptic and extrasynaptic sites, triggering different signalling cascades in each case. The calcium entry through extrasynaptic NMDARs is linked to calcium overload in the mitochondria in neurons in vitro. The mitochondria, besides their role in ATP production in the cell, participate in calcium homeostasis, acting as a buffering organelle. Disruption of mitochondrial calcium homeostasis has been linked to neuronal death either by triggering apoptosis or driven by the opening of the mitochondrial transition pore. These cell-death mechanisms contribute to the pathophysiology of diverse diseases such as neurodegenerative Alzheimer's disease or Parkinson's disease, and acute neuropathological conditions such as stroke or traumatic brain injury. In this review, we will address the available evidence that positions the mitochondria as an essential organelle in the control of calcium-mediated toxicity, highlighting its role from the perspective of specific NMDAR signalling microdomains at the level of the central synapse.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de función y patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
20
|
Wilcox JM, Consoli DC, Tienda AA, Dixit S, Buchanan RA, May JM, Nobis WP, Harrison FE. Altered synaptic glutamate homeostasis contributes to cognitive decline in young APP/PSEN1 mice. Neurobiol Dis 2021; 158:105486. [PMID: 34450329 PMCID: PMC8457528 DOI: 10.1016/j.nbd.2021.105486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Non-convulsive epileptiform activity is a common and under-studied comorbidity of Alzheimer’s disease that may significantly contribute to onset of clinical symptoms independently of other neuropathological features such as β-amyloid deposition. We used repeated treatment with low dose kainic acid (KA) to trigger subthreshold epileptiform activity in young (less than 6 months) wild-type (WT) and APP/PSEN1 mice to test the role of disruption to the glutamatergic system in epileptiform activity changes and the development of memory deficits. Short-term repeated low-dose KA (five daily treatments with 5 mg/kg, IP) impaired long-term potentiation in hippocampus of APP/PSEN1 but not WT mice. Long-term repeated low-dose KA (fourteen weeks of bi-weekly treatment with 7.5–10 mg/kg) led to high mortality in APP/PSEN1 mice. KA treatment also impaired memory retention in the APP/PSEN1 mice in a Morris water maze task under cognitively challenging reversal learning conditions where the platform was moved to a new location. Four weeks of bi-weekly treatment with 5 mg/kg KA also increased abnormal spike activity in APP/PSEN1 and not WT mice but did not impact sleep/wake behavioral states. These findings suggest that hyperexcitability in Alzheimer’s disease may indeed be an early contributor to cognitive decline that is independent of heavy β-amyloid-plaque load, which is absent in APP/PSEN1 mice under 6 months of age.
Collapse
Affiliation(s)
- J M Wilcox
- Program in Neuroscience, Vanderbilt University, Nashville, TN, United States of America; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - D C Consoli
- Program in Neuroscience, Vanderbilt University, Nashville, TN, United States of America
| | - A A Tienda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - S Dixit
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - R A Buchanan
- Program in Neuroscience, Vanderbilt University, Nashville, TN, United States of America
| | - J M May
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - W P Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - F E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
21
|
Taylor AL, Davis DE, Codreanu SG, Harrison FE, Sherrod SD, McLean JA. Targeted and Untargeted Mass Spectrometry Reveals the Impact of High-Fat Diet on Peripheral Amino Acid Regulation in a Mouse Model of Alzheimer's Disease. J Proteome Res 2021; 20:4405-4414. [PMID: 34382806 DOI: 10.1021/acs.jproteome.1c00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent research regarding amino acid metabolism has shown that there may be a link between obesity and Alzheimer's disease (AD). This work reports a metabolomics study using targeted and untargeted mass spectrometry-based metabolomic strategies to investigate this link. Targeted hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry and untargeted reversed-phase liquid chromatography-high resolution tandem mass spectrometry assays were developed to analyze the metabolic changes that occur in AD and obesity. APPSwe/PS1ΔE9 (APP/PSEN1) transgenic mice (to represent familial or early-onset AD) and wild-type littermate controls were fed either a high-fat diet (HFD, 60% kcal from lard) or a low-fat diet (LFD, 10% kcal from lard) from 2 months of age or a reversal diet (HFD, followed by LFD from 9.5 months). For targeted analyses, we applied the guidelines outlined in the Clinical and Laboratory Standards Institute (CLSI) LC-MS C62-A document and the U.S. Food and Drug Administration (FDA) bioanalytical method validation guidance for industry to evaluate the figures of merit of the assays. Our targeted and untargeted metabolomics results suggest that numerous peripheral pathways, specifically amino acid metabolism and fatty acid metabolism, were significantly affected by AD and diet. Multiple amino acids (including alanine, glutamic acid, leucine, isoleucine, and phenylalanine), carnitines, and members of the fatty acid oxidation pathway were significantly increased in APP/PSEN1 mice on HFD compared to those on LFD. More substantial effects and changes were observed in the APP/PSEN1 mice than in the WT mice, suggesting that they were more sensitive to an HFD. These dysregulated peripheral pathways include numerous amino acid pathways and fatty acid beta oxidation and suggest that obesity combined with AD further enhances cognitive impairment, possibly through aggravated mitochondrial dysfunction. Furthermore, partial reversibility of many altered pathways was observed, which highlights that diet change can mitigate the metabolic effects of AD. The same trends in individual amino acids were observed in both strategies, highlighting the biological validity of the results.
Collapse
Affiliation(s)
- Amelia L Taylor
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Don E Davis
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Fiona E Harrison
- Vanderbilt University Medical Center, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Stacy D Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
22
|
Structural and Functional Alterations in Mitochondria-Associated Membranes (MAMs) and in Mitochondria Activate Stress Response Mechanisms in an In Vitro Model of Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9080881. [PMID: 34440085 PMCID: PMC8389659 DOI: 10.3390/biomedicines9080881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of extracellular plaques composed by amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. AD-related neurodegenerative mechanisms involve early changes of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) and impairment of cellular events modulated by these subcellular domains. In this study, we characterized the structural and functional alterations at MAM, mitochondria, and ER/microsomes in a mouse neuroblastoma cell line (N2A) overexpressing the human amyloid precursor protein (APP) with the familial Swedish mutation (APPswe). Proteins levels were determined by Western blot, ER-mitochondria contacts were quantified by transmission electron microscopy, and Ca2+ homeostasis and mitochondria function were analyzed using fluorescent probes and Seahorse assays. In this in vitro AD model, we found APP accumulated in MAM and mitochondria, and altered levels of proteins implicated in ER-mitochondria tethering, Ca2+ signaling, mitochondrial dynamics, biogenesis and protein import, as well as in the stress response. Moreover, we observed a decreased number of close ER-mitochondria contacts, activation of the ER unfolded protein response, reduced Ca2+ transfer from ER to mitochondria, and impaired mitochondrial function. Together, these results demonstrate that several subcellular alterations occur in AD-like neuronal cells, which supports that the defective ER-mitochondria crosstalk is an important player in AD physiopathology.
Collapse
|
23
|
Consoli DC, Brady LJ, Bowman AB, Calipari ES, Harrison FE. Ascorbate deficiency decreases dopamine release in gulo -/- and APP/PSEN1 mice. J Neurochem 2021; 157:656-665. [PMID: 32797675 PMCID: PMC7882008 DOI: 10.1111/jnc.15151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Dopamine (DA) has important roles in learning, memory, and motivational processes and is highly susceptible to oxidation. In addition to dementia, Alzheimer's disease (AD) patients frequently exhibit decreased motivation, anhedonia, and sleep disorders, suggesting deficits in dopaminergic neurotransmission. Vitamin C (ascorbate, ASC) is a critical antioxidant in the brain and is often depleted in AD patients as a result of disease-related oxidative stress and dietary deficiencies. To probe the effects of ASC deficiency and AD pathology on the DAergic system, gulo-/- mice, which like humans depend on dietary ASC to maintain adequate tissue levels, were crossed with APP/PSEN1 mice and provided sufficient or depleted ASC supplementation from weaning until 12 months of age. Ex vivo fast-scan cyclic voltammetry showed that chronic ASC depletion and APP/PSEN1 genotype both independently decreased dopamine release in the nucleus accumbens, a hub for motivational behavior and reward, while DA clearance was similar across all groups. In striatal tissue containing nucleus accumbens, low ASC treatment led to decreased levels of DA and its metabolites 3,4-dihydroxyohenyl-acetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA). Decreased enzyme activity observed through lower pTH/TH ratio was driven by a cumulative effect of ASC depletion and APP/PSEN1 genotype. Together the data show that deficits in dopaminergic neurotransmission resulting from age and disease status are magnified in conditions of low ASC which decrease DA availability during synaptic transmission. Such deficits may contribute to the non-cognitive behavioral changes observed in AD including decreased motivation, anhedonia, and sleep disorders.
Collapse
Affiliation(s)
- David C. Consoli
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Lillian J. Brady
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Fiona E. Harrison
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| |
Collapse
|
24
|
Reutzel M, Grewal R, Esselun C, Petry SF, Linn T, Brandt A, Bergheim I, Eckert GP. Effects of different standard and special diets on cognition and brain mitochondrial function in mice. Nutr Neurosci 2021; 25:1823-1835. [PMID: 33814001 DOI: 10.1080/1028415x.2021.1906392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objectives: Human nutrition plays an important role in prevention or at least slowing down the progression of age- and diet-related diseases. Thereby, mitochondrial dysfunction represents one common underlying mechanism, which is being investigated in mouse models. However, the influence of the selected diets in preclinical studies on cognition and mitochondrial function has not yet been reported cohesively.Methods: Therefore, we present the results of three different studies that addressed this question. First, we investigated the influence of two standard control chow diets and a special diet low in antioxidants over 6 months in aged NMRI mice. Additionally, a 70% high-fat (HF) chow diet as well as a western-style diet (WSD) rich in lard and fructose were examined in C57/BL6 mice. Cognitive performance, mitochondrial function and bioenergetics in the brain were investigated. Moreover, cerebral expression of genes involved in biogenesis and antioxidant defence (citrate synthase, complex I, complex IV, SOD2, Cat1, GPx-1) were quantified.Results: The results show that a modified, low antioxidant diet increased ATP levels in the brain of aged mice, while cognitive functions remained largely unaffected. A HF diet also showed significant effects on ATP levels and gene expression levels of relevant antioxidant markers, while the WSD had marginal effects on mitochondrial function and bioenergetics in the brain.Discussion: Our results indicate that standard- and special diets have an impact on cognition and mitochondrial function in the brain. Thus, appropriate caution is warranted when selecting a suitable diet for preclinical studies in mice.
Collapse
Affiliation(s)
- Martina Reutzel
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Rekha Grewal
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Carsten Esselun
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Gunter P Eckert
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| |
Collapse
|
25
|
Bhatti JS, Tamarai K, Kandimalla R, Manczak M, Yin X, Ramasubramanian B, Sawant N, Pradeepkiran JA, Vijayan M, Kumar S, Reddy PH. Protective effects of a mitochondria-targeted small peptide SS31 against hyperglycemia-induced mitochondrial abnormalities in the liver tissues of diabetic mice, Tallyho/JngJ mice. Mitochondrion 2021; 58:49-58. [PMID: 33639273 DOI: 10.1016/j.mito.2021.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/17/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes mellitus (T2DM) has become a major public health issue associated with a high risk of late-onset Alzheimer's disease (LOAD). Mitochondrial dysfunction is one of the molecular events that occur in the LOAD pathophysiology. The present study was planned to investigate the molecular alterations induced by hyperglycemia in the mitochondria of diabetic mice and further explore the possible ameliorative role of the mitochondria-targeted small peptide, SS31 in diabetic mice. For this purpose, we used a polygenic mouse model of type 2 diabetes, TALLYHO/JngJ (TH), and nondiabetic, SWR/J mice strains. The diabetic status in TH mice was confirmed at 8 weeks of age. The 24 weeks old experimental animals were segregated into three groups: Non-diabetic controls (SWR/J mice), diabetic (TH mice) and, SS31 treated diabetic TH mice. The mRNA and protein expression levels of mitochondrial proteins were investigated in all the study groups in the liver tissues using qPCR and immunoblot analysis. Also, the mitochondrial functions including H2O2 production, ATP generation, and lipid peroxidation were assessed in all the groups. Mitochondrial dysfunction was observed in TH mice as evident by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. The mRNA expression and Western blot analysis of mitochondrial dynamics (Drp1 and Fis1 - fission; Mfn1, Mfn2, and Opa1 -fusion), and biogenesis (PGC-1α, Nrf1, Nrf2, and TFAM) genes were significantly altered in diabetic TH mice. Furthermore, SS31 treatment significantly reduced the mitochondrial abnormalities and restore mitochondrial functions in diabetic TH mice.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Kavya Tamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Bhagavathi Ramasubramanian
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Jangampalli Adi Pradeepkiran
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| |
Collapse
|
26
|
Contino S, Suelves N, Vrancx C, Vadukul DM, Payen VL, Stanga S, Bertrand L, Kienlen-Campard P. Presenilin-Deficient Neurons and Astrocytes Display Normal Mitochondrial Phenotypes. Front Neurosci 2021; 14:586108. [PMID: 33551720 PMCID: PMC7862347 DOI: 10.3389/fnins.2020.586108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Presenilin 1 (PS1) and Presenilin 2 (PS2) are predominantly known as the catalytic subunits of the γ-secretase complex that generates the amyloid-β (Aβ) peptide, the major constituent of the senile plaques found in the brain of Alzheimer's disease (AD) patients. Apart from their role in γ-secretase activity, a growing number of cellular functions have been recently attributed to PSs. Notably, PSs were found to be enriched in mitochondria-associated membranes (MAMs) where mitochondria and endoplasmic reticulum (ER) interact. PS2 was more specifically reported to regulate calcium shuttling between these two organelles by controlling the formation of functional MAMs. We have previously demonstrated in mouse embryonic fibroblasts (MEF) an altered mitochondrial morphology along with reduced mitochondrial respiration and increased glycolysis in PS2-deficient cells (PS2KO). This phenotype was restored by the stable re-expression of human PS2. Still, all these results were obtained in immortalized cells, and one bottom-line question is to know whether these observations hold true in central nervous system (CNS) cells. To that end, we carried out primary cultures of PS1 knockdown (KD), PS2KO, and PS1KD/PS2KO (PSdKO) neurons and astrocytes. They were obtained from the same litter by crossing PS2 heterozygous; PS1 floxed (PS2+/-; PS1flox/flox) animals. Genetic downregulation of PS1 was achieved by lentiviral expression of the Cre recombinase in primary cultures. Strikingly, we did not observe any mitochondrial phenotype in PS1KD, PS2KO, or PSdKO primary cultures in basal conditions. Mitochondrial respiration and membrane potential were similar in all models, as were the glycolytic flux and NAD+/NADH ratio. Likewise, mitochondrial morphology and content was unaltered by PS expression. We further investigated the differences between results we obtained here in primary nerve cells and those previously reported in MEF cell lines by analyzing PS2KO primary fibroblasts. We found no mitochondrial dysfunction in this model, in line with observations in PS2KO primary neurons and astrocytes. Together, our results indicate that the mitochondrial phenotype observed in immortalized PS2-deficient cell lines cannot be extrapolated to primary neurons, astrocytes, and even to primary fibroblasts. The PS-dependent mitochondrial phenotype reported so far might therefore be the consequence of a cell immortalization process and should be critically reconsidered regarding its relevance to AD.
Collapse
Affiliation(s)
- Sabrina Contino
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Nuria Suelves
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Vrancx
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Devkee M. Vadukul
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Valery L. Payen
- Laboratory of Advanced Drug Delivery and Biomaterial (ADDB), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels, Belgium
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
27
|
George EK, Reddy PH. Can Healthy Diets, Regular Exercise, and Better Lifestyle Delay the Progression of Dementia in Elderly Individuals? J Alzheimers Dis 2020; 72:S37-S58. [PMID: 31227652 DOI: 10.3233/jad-190232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. Current healthcare costs for over 50 million people afflicted with AD are about $818 million and are projected to be $2 billion by 2050. Unfortunately, there are no drugs currently available that can delay and/or prevent the progression of disease in elderly individuals and in AD patients. Loss of synapses and synaptic damage are largely correlated with cognitive decline in AD patients. Women are at a higher lifetime risk of developing AD encompassing two-thirds of the total AD afflicted population. Only about 1-2% of total AD patients can be explained by genetic mutations in APP, PS1, and PS2 genes. Several risk factors have been identified, such as Apolipoprotein E4 genotype, type 2 diabetes, traumatic brain injury, depression, and hormonal imbalance, are reported to be associated with late-onset AD. Strong evidence reveals that antioxidant enriched diets and regular exercise reduces toxic radicals, enhances mitochondrial function and synaptic activity, and improves cognitive function in elderly populations. Current available data on the use of antioxidants in mouse models of AD and antioxidant(s) supplements in diets of elderly individuals were investigated. The use of antioxidants in randomized clinical trials in AD patients was also critically assessed. Based on our survey of current literature and findings, we cautiously conclude that healthy diets, regular exercise, and improved lifestyle can delay dementia progression and reduce the risk of AD in elderly individuals and reverse subjects with mild cognitive impairment to a non-demented state.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA
| |
Collapse
|
28
|
Wang Q, Ge X, Zhang J, Chen L. Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer's disease via inhibition of the miR-375/SIX4 axis. Aging (Albany NY) 2020; 12:23974-23995. [PMID: 33234729 PMCID: PMC7762490 DOI: 10.18632/aging.104079] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Objective: To study the effect of lncRNA WT1-AS on oxidative stress injury (OSI) and apoptosis of neurons in Alzheimer's disease (AD) and its specific mechanisms related to the microRNA-375 (miR-375)/SIX4 axis and WT1 expression. Results: After bioinformatic prediction, WT1-AS was found to be downregulated in Aβ25-35treated SH-SY5Y cells, and WT1-AS overexpression inhibited WT1 expression. WT1 could target miR-375 to promote its expression. miR-375 bound to SIX4, and miR-375 overexpression inhibited SIX4 expression. WT1-AS inhibited OSI and apoptosis, while WT1 and miR-375 overexpression or SIX4 silencing reversed the WT1-AS effect on OSI and apoptosis. In vivo experiments revealed that WT1-AS improved learning/memory abilities and inhibited OSI and apoptosis in AD mice. Conclusion: Overexpression of WT1-AS can inhibit the miR-375/SIX4 axis, OSI and neuronal apoptosis in AD by inhibiting WT1 expression. Methods: Related lncRNAs were identified, and miR-375 downstream targets were predicted. WT1-AS, WT1, miR-375 and SIX4 expression was detected in a cell model induced by Aβ25-35. The binding of WT1 with miR-375 and that of miR-375 with SIX4 were further confirmed. Adenosine triphosphate (ATP), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and lactate dehydrogenase (LDH) activities, and apoptosis levels were tested after mitochondrial membrane potential observation. Learning/memory abilities and neuronal apoptosis were tested in a mouse model.
Collapse
Affiliation(s)
- Quanbao Wang
- Department of Neurology, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| | - Xiumin Ge
- Department of Neurology, Linyi Mental Health Center, Linyi 276000, P.R. China
| | - Jie Zhang
- Department of Emergency Internal Medicine, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| | - Licheng Chen
- Department of Neurology, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| |
Collapse
|
29
|
Barel G, Herwig R. NetCore: a network propagation approach using node coreness. Nucleic Acids Res 2020; 48:e98. [PMID: 32735660 PMCID: PMC7515737 DOI: 10.1093/nar/gkaa639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
We present NetCore, a novel network propagation approach based on node coreness, for phenotype–genotype associations and module identification. NetCore addresses the node degree bias in PPI networks by using node coreness in the random walk with restart procedure, and achieves improved re-ranking of genes after propagation. Furthermore, NetCore implements a semi-supervised approach to identify phenotype-associated network modules, which anchors the identification of novel candidate genes at known genes associated with the phenotype. We evaluated NetCore on gene sets from 11 different GWAS traits and showed improved performance compared to the standard degree-based network propagation using cross-validation. Furthermore, we applied NetCore to identify disease genes and modules for Schizophrenia GWAS data and pan-cancer mutation data. We compared the novel approach to existing network propagation approaches and showed the benefits of using NetCore in comparison to those. We provide an easy-to-use implementation, together with a high confidence PPI network extracted from ConsensusPathDB, which can be applied to various types of genomics data in order to obtain a re-ranking of genes and functionally relevant network modules.
Collapse
Affiliation(s)
- Gal Barel
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| |
Collapse
|
30
|
A Novel Compound YS-5-23 Exhibits Neuroprotective Effect by Reducing β-Site Amyloid Precursor Protein Cleaving Enzyme 1's Expression and H 2O 2-Induced Cytotoxicity in SH-SY5Y Cells. Neurochem Res 2020; 45:2113-2127. [PMID: 32556702 DOI: 10.1007/s11064-020-03073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The abnormally accumulated amyloid-β (Aβ) and oxidative stress contribute to the initiation and progression of Alzheimer's disease (AD). β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for the production of Aβ. Furthermore, Aβ was reported to increase oxidative stress; then the overproduced oxidative stress continues to increase the expression and activity of BACE1. Consequently, inhibition of both BACE1 and oxidative stress is a better strategy for AD therapy compared with those one-target treatment methods. In the present study, our novel small molecule YS-5-23 was proved to possess both of the activities. Specifically, we found that YS-5-23 reduces BACE1's expression in both SH-SY5Y and Swedish mutated amyloid precursor protein (APP) overexpressed HEK293 cells, and it can also suppress BACE1's expression induced by H2O2. Moreover, YS-5-23 decreases H2O2-induced cytotoxicity including alleviating H2O2-induced apoptosis and loss of mitochondria membrane potential (MMP) because it attenuates the reactive oxygen species (ROS) level elevated by H2O2. Meanwhile, PI3K/Akt signaling pathway is involved in the anti-H2O2 and BACE1 inhibition effect of YS-5-23. Our findings indicate that YS-5-23 may develop as a drug candidate in the prevention and treatment of AD.
Collapse
|
31
|
Murakami M, Ikeda Y, Nakagawa Y, Tsuji A, Kitagishi Y, Matsuda S. Special bioactive compounds and functional foods may exhibit neuroprotective effects in patients with dementia (Review). Biomed Rep 2020; 13:1. [PMID: 32509304 PMCID: PMC7271706 DOI: 10.3892/br.2020.1310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Dementia is a failure of cognitive ability characterized by severe neurodegeneration in select neural systems, and Alzheimer's disease (AD) is the most common type of neurodegenerative disease. Although numerous studies have provided insights into the pathogenesis of AD, the underlying signaling and molecular pathways mediating the progressive decline of cognitive function remain poorly understood. Recent progress in molecular biology has provided an improved understanding of the importance of molecular pathogenesis of AD, and has proposed an association between DNA repair mechanisms and AD. In particular, the fundamental roles of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and breast cancer gene 1 (BRCA1) tumor suppressors have been shown to regulate the pathogenesis of neurodegeneration. Consequently, onset of neurodegenerative diseases may be deferred with the use of dietary neuroprotective agents which alter the signaling mediated by the aforementioned tumor suppressors. In a healthy neuron, homeostasis of key intracellular molecules is of great importance, and preventing neuronal apoptosis is one of the primary goals of treatments designed for dementia-associated diseases. In the present review, progress into the understanding of dietary regulation for preventing or limiting development of dementia is discussed with a focus on the modulatory roles of PTEN and BRCA1 signaling.
Collapse
Affiliation(s)
- Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
32
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
33
|
Mascarenhas DD. Transcriptional re-programming in rat central nervous system two weeks after burn trauma: the impact of nephrilin treatment on the expression of oxidative stress-related genes. Scars Burn Heal 2020; 6:2059513120939443. [PMID: 32850134 PMCID: PMC7425318 DOI: 10.1177/2059513120939443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Survivors of severe burns suffer lifetime neuroinflammatory consequences manifested by higher incidence of major depression and neurodegenerative disease. In a scald model, nephrilin peptide has previously been shown to protect rats from loss of lean body mass, kidney function and glycaemic control, complications that have also been shown to endure in burn patient populations. Nephrilin's mechanism of action has been suggested to involve protection from excessive oxidative stress. METHODS Using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) amplification of transcripts in total RNA extracted from dorsal root ganglia of male rats 14 days after exposure to thermal insult, we query the relative levels of expression of 34 genes believed to be associated with oxidative stress biology in the central nervous system (CNS). We use these data to explore the central role of oxidative stress in astrogliosis, immunosuppression and mitochondrial homeostasis. RESULTS AND DISCUSSION Rats that received nephrilin treatment (4 mg/kg by subcutaneous bolus injection once daily for seven days after scald injury) showed significantly reduced elevations in gene expression of some key genes such as NOX2, GFAP, AQP4 and RAC1, but not of others such as NOX4, STEAP4, ARG1 and CCL2. CONCLUSION The implications of these data with reference to nephrilin's potential clinical utility for mitigating the enduring effects of burn trauma on the CNS are discussed. Nephrilin reduces the expression of some genes implicated in neurodegeneration after burn insult. LAY SUMMARY Nephrilin peptide is a novel treatment for short- and long-term systemic effects of burn trauma. This study measures the capability of nephrilin to address post-traumatic neurodegenerative disease by looking at the expression of genes in the central nervous system, in a rat scald model. Nephrilin appears to have beneficial effects by reducing the expression of some key genes known to be relevant in neurodegenerative processes, but not others.
Collapse
Affiliation(s)
- Desmond D Mascarenhas
- Mayflower Organization for Research & Education, Sunnyvale, CA, USA
- Transporin, Inc., Sunnyvale, CA, USA
| |
Collapse
|
34
|
Moretti M, Rodrigues ALS. Ascorbic acid as an antioxidant and applications to the central nervous system. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Wang Q, Jiang H, Wang L, Yi H, Li Z, Liu R. Vitegnoside Mitigates Neuronal Injury, Mitochondrial Apoptosis, and Inflammation in an Alzheimer’s Disease Cell Model via the p38 MAPK/JNK Pathway. J Alzheimers Dis 2019; 72:199-214. [DOI: 10.3233/jad-190640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Linlin Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
36
|
Emmerzaal TL, Rodenburg RJ, Tanila H, Verweij V, Kiliaan AJ, Kozicz T. Age-Dependent Decrease of Mitochondrial Complex II Activity in a Familial Mouse Model for Alzheimer's Disease. J Alzheimers Dis 2019; 66:75-82. [PMID: 30248054 DOI: 10.3233/jad-180337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder for which the exact etiology is largely unknown. An increasingly recognized and investigated notion is the pathogenic role of mitochondrial dysfunction in AD. We assessed mitochondrial oxidative-phosphorylation (OXPHOS) enzyme activities in the APPswe/PS1ΔE9 mouse model from 4.5 to 14 months of age. We show an age-dependent decrease in mitochondrial complex-II activity starting at 9 months in APP/PS1 mice. Other enzymes of the OXPHOS do not show any alterations. Since amyloid-β (Aβ) plaques are already present from 4 months of age, mitochondrial dysfunction likely occurs downstream of Aβ pathology in this mouse model.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Vivienne Verweij
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5×FAD mouse model of Alzheimer’s disease. Behav Brain Res 2019; 370:111932. [DOI: 10.1016/j.bbr.2019.111932] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 01/14/2023]
|
38
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
39
|
Friel H. Biopharmaceutical Monotargeting versus 'Universal Targeting' of Late-Onset Alzheimer's Disease Using Mixtures of Pleiotropic Natural Compounds. J Alzheimers Dis Rep 2019; 3:219-232. [PMID: 31435619 PMCID: PMC6700529 DOI: 10.3233/adr-190127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A five-year close reading of the scientific literature on late-onset Alzheimer’s disease (AD) has prompted the invention of a novel therapeutic method that biomechanistically targets the targetable disease-process targets of AD with one or another mixture of non-toxic pleiotropic natural compounds. The featured mixture herein is comprised of curcumin, resveratrol, and EGCG. The mixture’s targets include central pathological elements of AD (including amyloid, tau, synaptic dysfunction, oxidative stress, mitochondrial dysfunction, and aberrant neuroinflammation), modifiable risk factors, comorbidities, and epigenetic elements. The featured mixture and other such mixtures are suitable for long-term use, and may be applied to any stage of AD, including primary and secondary prevention. Such mixtures also would be amenable for use as pre-treatment, co-treatment, and post-treatment applications with certain biopharmaceutical agents. The targeting focus here is the major credible hypotheses of AD. The focus of future such articles will include other AD-related targets, modifiable risk factors and comorbidities, APOE4, epigenetic factors, bioavailability, dose response, and implications for clinical testing. The “universal targeting” method described herein—that is, “targeting the targetable targets” of AD using certain mixtures of natural compounds—is reprogrammable and thus is applicable to other chronic neurological conditions, including Parkinson’s disease, vascular dementia, ischemic-stroke prevention and recovery, and sports-related head injuries and sequelae leading to chronic traumatic encephalopathy.
Collapse
|
40
|
Intrinsic Effects of Gold Nanoparticles on Oxygen-Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons. Neurochem Res 2019; 44:1549-1566. [PMID: 31093902 DOI: 10.1007/s11064-019-02776-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/14/2023]
Abstract
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Collapse
|
41
|
Fruhmann G, Marchal C, Vignaud H, Verduyckt M, Talarek N, De Virgilio C, Winderickx J, Cullin C. The Impact of ESCRT on Aβ 1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer's Disease. Front Mol Neurosci 2018; 11:406. [PMID: 30455629 PMCID: PMC6230623 DOI: 10.3389/fnmol.2018.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Aβ metabolism plays a pivotal role in Alzheimer’s disease. Here, we used a yeast model to monitor Aβ42 toxicity when entering the secretory pathway and demonstrate that processing in, and exit from the endoplasmic reticulum (ER) is required to unleash the full Aβ42 toxic potential. Consistent with previously reported data, our data suggests that Aβ42 interacts with mitochondria, thereby enhancing formation of reactive oxygen species and eventually leading to cell demise. We used our model to search for genes that modulate this deleterious effect, either by reducing or enhancing Aβ42 toxicity, based on screening of the yeast knockout collection. This revealed a reduced Aβ42 toxicity not only in strains hampered in ER-Golgi traffic and mitochondrial functioning but also in strains lacking genes connected to the cell cycle and the DNA replication stress response. On the other hand, increased Aβ42 toxicity was observed in strains affected in the actin cytoskeleton organization, endocytosis and the formation of multivesicular bodies, including key factors of the ESCRT machinery. Since the latter was shown to be required for the repair of membrane lesions in mammalian systems, we studied this aspect in more detail in our yeast model. Our data demonstrated that Aβ42 heavily disturbed the plasma membrane integrity in a strain lacking the ESCRT-III accessory factor Bro1, a phenotype that came along with a severe growth defect and enhanced loading of lipid droplets. Thus, it appears that also in yeast ESCRT is required for membrane repair, thereby counteracting one of the deleterious effects induced by the expression of Aβ42. Combined, our studies once more validated the use of yeast as a model to investigate fundamental mechanisms underlying the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Christelle Marchal
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | - Hélène Vignaud
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | | | - Nicolas Talarek
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | | | - Christophe Cullin
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| |
Collapse
|
42
|
Ji F, Zhao C, Wang B, Tang Y, Miao Z, Wang Y. The role of 5-hydroxymethylcytosine in mitochondria after ischemic stroke. J Neurosci Res 2018; 96:1717-1726. [PMID: 30043506 DOI: 10.1002/jnr.24274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) exists in DNA, RNA, and mitochondrial DNA (mtDNA) and plays an important role in many diseases. Specifically, 5hmC is involved in promoting gene expression, and this process is regulated by Tet enzymes. In this study, we identified that there is no difference in male mice and female mice at first; then we examined the levels of 5hmC in mtDNA and explored the relationship among 5hmC, mitochondrial gene expression and ATP production after acute brain ischemia. The abundance of mtDNA 5hmC was increased at 1 d and peaked at 2 d after ischemic injury, whereas that of mtDNA 5mC was unchanged. Furthermore, increased mitochondrial Tet2 expression was found to be responsible for the increase in mtDNA 5hmC. Tet2 inhibition decreased the mtDNA 5hmC abundance and increased the ATP levels in mitochondria, suggesting an association between the cellular ATP levels and mtDNA 5hmC abundance. We also demonstrated that mtDNA 5hmC increased the mRNA levels of mitochondrial genes after ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Feng Ji
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Chenyu Zhao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Yan Tang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou City, China.,Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou City, China
| |
Collapse
|
43
|
Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochem Soc Trans 2018; 46:891-909. [PMID: 30026371 DOI: 10.1042/bst20170501] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes.
Collapse
|
44
|
Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons. Mol Neurobiol 2018; 55:8965-8977. [PMID: 29619740 DOI: 10.1007/s12035-018-1034-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria are widely recognized as fundamental organelles for cellular physiology and constitute the main energy source for different cellular processes. The location, morphology, and interactions of mitochondria with other organelles, such as the endoplasmic reticulum (ER), have emerged as critical events capable of determining cellular fate. Mitochondria-related functions have proven particularly relevant in neurons; mitochondria are necessary for proper neuronal morphogenesis and the highly energy-demanding synaptic transmission process. Mitochondrial health depends on balanced fusion-fission events, termed mitochondrial dynamics, to repair damaged organelles and/or improve the quality of mitochondrial function, ATP production, calcium homeostasis, and apoptosis, which represent some mitochondrial functions closely related to mitochondrial dynamics. Several neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases, have been correlated with severe mitochondrial dysfunction. In this regard, nicotine, which has been associated with relevant neuroprotective effects mainly through activation of the nicotinic acetylcholine receptor (nAChR), exerts its effects at least in part by acting directly on mitochondrial physiology and morphology. Additionally, a recent description of mitochondrial nAChR localization suggests a nicotine-dependent mitochondrial function. In the present work, we evaluated in cultured hipocampal neurons the effects of nicotine on mitochondrial dynamics by assessing mitochondrial morphology, membrane potential, as well as interactions between mitochondria, cytoskeleton and IP3R, levels of the cofactor PGC-1α, and fission-fusion-related proteins. Our results suggest that nicotine modulates mitochondrial dynamics and influences mitochondrial association from microtubules, increasing IP3 receptor clustering showing modulation between mitochondria-ER communications, together with the increase of mitochondrial biogenesis.
Collapse
|
45
|
Yu H, Lin X, Wang D, Zhang Z, Guo Y, Ren X, Xu B, Yuan J, Liu J, Spencer PS, Wang JZ, Yang X. Mitochondrial Molecular Abnormalities Revealed by Proteomic Analysis of Hippocampal Organelles of Mice Triple Transgenic for Alzheimer Disease. Front Mol Neurosci 2018; 11:74. [PMID: 29593495 PMCID: PMC5854685 DOI: 10.3389/fnmol.2018.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer's disease (AD). However, the precise mitochondrial molecular deficits in AD remain poorly understood. Mitochondrial and nuclear proteomic analysis in mature male triple transgenic AD mice (PS1M146V/APPSwe/TauP301L) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with MALDI-TOF-MS/MS, bio-informatics analysis and immunofluorescent staining were performed in this study. In addition to impaired spatial memory impairment and intracellular accumulation of amyloid 1-42 (Aβ1-42) in the 3xTg-AD mice, a well-accepted mouse model of the human disease, we also found significantly increased DNA oxidative damage in entorhinal cortex, hippocampal CA1, CA3 and dental gyrus (DG), as evidenced by the positive staining of 8-hydroxyguanosine, a biomarker of mild cognitive impairment early in AD. We identified significant differences in 27 hippocampal mitochondrial proteins (11 increased and 16 decreased), and 37 hippocampal nuclear proteins (12 increased and 25 decreased) in 3xTg-AD mice compared with the wild-type (WT) mice. Differentially expressed mitochondrial and nuclear proteins were mainly involved in energy metabolism (>55%), synapses, DNA damage, apoptosis and oxidative stress. Two proteins were differentially expressed in both hippocampal mitochondria and nuclei, namely electron transport chain (ETC)-related protein ATP synthase subunit d (ATP5H) was significantly decreased, and apoptosis-related dynamin-1 (DYN1), a pre-synaptic and mitochondrial division-regulated protein that was significantly increased. In sum, perturbations of hippocampus mitochondrial energy metabolism-related proteins responsible for ATP generation via oxidation phosphorylation (OXPHOS), especially nuclear-encoded OXPHOS proteins, correlated with the amyloid-associated cognitive deficits of this murine AD model. The molecular changes in respiratory chain-related proteins and DYN1 may represent novel biomarkers of AD.
Collapse
Affiliation(s)
- Haitao Yu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuemei Lin
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dian Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yi Guo
- Department of Neurology, Second Clinical College, Jinan University, Shenzhen, China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianhui Yuan
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Peter S. Spencer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|