1
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian Clock Disruption and Growth of Kidney Cysts in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:378-392. [PMID: 39401086 PMCID: PMC11888963 DOI: 10.1681/asn.0000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Key Points Lack of Bmal1 , a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an autosomal dominant polycystic kidney disease mouse model. Bmal1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells. Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with autosomal dominant polycystic kidney disease. Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here, we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC;Bmal1 f/f;Pkhd1 cre, called double knockout [DKO] mice) and in Pkd1 knockout mouse inner medullary collecting duct cells (Pkd1Bmal1 KO mouse renal inner medullary collecting duct cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys showed altered clock gene expression when compared with normal control human kidneys. When compared with RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis, and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis–related gene expression and increased tissue triglyceride levels compared with RC/RC kidneys. Similarly, in vitro , Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis–related genes, and reduced fatty acid oxidation–related gene expression compared with Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared with Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusions Renal collecting duct–specific Bmal1 gene deletion disrupted the circadian clock and triggered accelerated ADPKD progression by altering lipid metabolism–related gene expression.
Collapse
Affiliation(s)
- Abeda Jamadar
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Christopher J. Ward
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Viji Remadevi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Meekha M. Varghese
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michelle L. Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Physiology and Aging, Department of Medicine, University of Florida, Gainesville, Florida
| | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2
|
He X, Wang Z, Cheng L, Wang H, Sun Y. An antagonistic role of clock genes and lima1 in kidney regeneration. Commun Biol 2025; 8:29. [PMID: 39789202 PMCID: PMC11718004 DOI: 10.1038/s42003-025-07455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish. The core clock genes such as per1/2 and nr1d1, which encode transcriptional repressors of the circadian system, are strongly induced in the proximal tubule epithelial cells (PTECs). By generating mutant zebrafish lines, we show that per1a and nr1d1 are required for proper renal regeneration, by facilitating the expression of renal progenitor cell (RPC) genes. In per1a and nr1d1 mutants, the expression of RPC genes and the number of RPCs were decreased, resulting in a marked delay in nephron regeneration. lima1a, which encodes a cytoskeleton binding protein that functions to negatively regulate epithelial to mesenchymal transition (EMT), is identified as the direct target of the clock proteins. Down-regulation of lima1a is associated with enhanced EMT, increased expression of cell migration- and RPC markers, and accelerated nephron regeneration. We propose that per1a and nr1d1 are important for the formation of nephrongenic RPCs by repressing lima1a. Our findings using zebrafish provide important insights into the roles of the clock genes in kidney repair.
Collapse
Affiliation(s)
- Xian He
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
- The Innovation of Seed Design, Chinese Academy of Sciences, 430072, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Ziming Wang
- Center for Circadian Clocks, and School of Basic Medical Sciences, Suzhou Medical College, Soochow University, 215123, Suzhou, China
| | - Linxi Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
- The Innovation of Seed Design, Chinese Academy of Sciences, 430072, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Han Wang
- Center for Circadian Clocks, and School of Basic Medical Sciences, Suzhou Medical College, Soochow University, 215123, Suzhou, China
| | - Yuhua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
- The Innovation of Seed Design, Chinese Academy of Sciences, 430072, Wuhan, China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
- Hubei Hongshan Laboratory, 430070, Wuhan, China.
| |
Collapse
|
3
|
Preston R, Chrisp R, Dudek M, Morais MRPT, Tian P, Williams E, Naylor RW, Davenport B, Pathiranage DRJ, Benson E, Spiller DG, Bagnall J, Zeef L, Lawless C, Baker SM, Meng QJ, Lennon R. The glomerular circadian clock temporally regulates basement membrane dynamics and the podocyte glucocorticoid response. Kidney Int 2025; 107:99-115. [PMID: 39515644 DOI: 10.1016/j.kint.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Kidney physiology shows diurnal variation, and a disrupted circadian rhythm is associated with kidney disease. However, it remains largely unknown whether glomeruli, the filtering units in the kidney, are under circadian control. Here, we investigated core circadian clock components in glomeruli, together with their rhythmic targets and modes of regulation. With clock gene reporter mice, cell-autonomous glomerular clocks which likely govern rhythmic fluctuations in glomerular physiology were identified. Using circadian time-series transcriptomic profiling, the first circadian glomerular transcriptome with 375 rhythmic transcripts, enriched for extracellular matrix and glucocorticoid receptor signaling ontologies, were identified. Subsets of rhythmic matrix-related genes required for basement membrane assembly and turnover, and circadian variation in matrix ultrastructure, coinciding with peak abundance of rhythmic basement membrane proteins, were uncovered. This provided multiomic evidence for interactions between glomerular matrix and intracellular time-keeping mechanisms. Furthermore, glucocorticoids, which are frequently used to treat glomerular disease, reset the podocyte clock and induce rhythmic expression of potential glomerular disease genes associated with nephrotic syndrome that included Nphs1 (nephrin) and Nphs2 (podocin). Disruption of the clock with pharmacological inhibition altered the expression of these disease genes, indicating an interplay between clock gene expression and key genes required for podocyte health. Thus, our results provide a strong basis for future investigations of the functional implications and therapeutic potential of chronotherapy in glomerular health and disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ruby Chrisp
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mychel R P T Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emily Williams
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dharshika R J Pathiranage
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma Benson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David G Spiller
- Bioimaging Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - James Bagnall
- Bioimaging Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Leo Zeef
- Bioinformatics Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Syed Murtuza Baker
- Bioinformatics Core Facility, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
4
|
Song QX, Suadicani SO, Negoro H, Jiang HH, Jabr R, Fry C, Xue W, Damaser MS. Disruption of circadian rhythm as a potential pathogenesis of nocturia. Nat Rev Urol 2024:10.1038/s41585-024-00961-0. [PMID: 39543359 DOI: 10.1038/s41585-024-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Increasing evidence suggested the multifactorial nature of nocturia, but the true pathogenesis of this condition still remains to be elucidated. Contemporary clinical medications are mostly symptom based, aimed at either reducing nocturnal urine volume or targeting autonomic receptors within the bladder to facilitate urine storage. The day-night switch of the micturition pattern is controlled by circadian clocks located both in the central nervous system and in the peripheral organs. Arousal threshold and secretion of melatonin and vasopressin increase at night-time to achieve high-quality sleep and minimize nocturnal urine production. In response to the increased vasopressin, the kidney reduces the glomerular filtration rate and facilitates the reabsorption of water. Synchronously, in the bladder, circadian oscillation of crucial molecules occurs to reduce afferent sensory input and maintain sufficient bladder capacity during the night sleep period. Thus, nocturia might occur as a result of desynchronization in one or more of these circadian regulatory mechanisms. Disrupted rhythmicity of the central nervous system, kidney and bladder (known as the brain-kidney-bladder circadian axis) contributes to the pathogenesis of nocturia. Novel insights into the chronobiological nature of nocturia will be crucial to promote a revolutionary shift towards effective therapeutics targeting the realignment of the circadian rhythm.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sylvia O Suadicani
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hiromitsu Negoro
- Department of Urology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hai-Hong Jiang
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rita Jabr
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Christopher Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian clock disruption and growth of kidney cysts in autosomal dominant polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606676. [PMID: 39211074 PMCID: PMC11361200 DOI: 10.1101/2024.08.05.606676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes, and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC; Bmal1 f/f ; Pkhd1 cre , called DKO mice), and in Pkd1 knockout mouse inner medullary collecting duct cells ( Pkd1Bmal1 KO mIMCD3 cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys and Pkd1 KO mIMCD3 cells showed reduced Bmal1 gene expression compared to normal controls. When compared to RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis-related gene expression, and increased tissue triglyceride levels compared to RC/RC kidneys. Similarly, in vitro, Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis-related genes, and reduced fatty-acid oxidation-related gene expression compared to Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared to Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusion Renal collecting duct specific Bmal1 gene deletion disrupts the circadian clock and triggers accelerated ADPKD progression by altering lipid metabolism-related gene expression. Key points Lack of BMAL1, a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an ADPKD mouse model.BMAL1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells.Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with ADPKD.
Collapse
|
6
|
Dutta P, Layton AT. Sex and circadian regulation of metabolic demands in the rat kidney: A modeling analysis. PLoS One 2024; 19:e0293419. [PMID: 39018272 PMCID: PMC11253979 DOI: 10.1371/journal.pone.0293419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/12/2023] [Indexed: 07/19/2024] Open
Abstract
Renal hemodynamics, renal transporter expression levels, and urine excretion exhibit circadian variations. Disruption of these diurnal patterns is associated with the pathophysiology of hypertension and chronic kidney disease. Renal hemodynamics determines oxygen delivery, whereas renal transport and metabolism determines oxygen consumption; the balance between them yields renal oxygenation which also demonstrates 24-h periodicity. Another notable modulator of kidney function is sex, which has impacts on renal hemodynamics and transport function that are regulated by as well as independent of the circadian clock. The goal of this study was to investigate the diurnal and sexual variations in renal oxygen consumption and oxygenation. For this purpose, we developed computational models of rat kidney function that represent sexual dimorphism and circadian variation in renal hemodynamics and transporter activities. Model simulations predicted substantial differences in tubular Na+ transport and oxygen consumption among different nephron segments. We also simulated the effect of loop diuretics, which are used in the treatment of renal hypoxia, on medullary oxygen tension. Our model predicted a significantly higher effect of loop diuretics on medullary oxygenation in female rats compared to male rats and when administered during the active phase.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Wang L, Tian H, Wang H, Mao X, Luo J, He Q, Wen P, Cao H, Fang L, Zhou Y, Yang J, Jiang L. Disrupting circadian control of autophagy induces podocyte injury and proteinuria. Kidney Int 2024; 105:1020-1034. [PMID: 38387504 DOI: 10.1016/j.kint.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Tian
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Mao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Luo
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingyun He
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongdi Cao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Fang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Yang Zhou
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Jiang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Chen X, Zhang Y, Yan L, Xie Y, Li S, Zhuang Y, Wang L. Urine albumin-to-creatinine ratio diurnal variation rate predicts outcomes in idiopathic membranous nephropathy. Clin Exp Nephrol 2024; 28:409-420. [PMID: 38240880 PMCID: PMC11033241 DOI: 10.1007/s10157-023-02444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND Idiopathic membranous nephropathy (IMN) is a leading cause of end-stage renal disease (ESRD). The purpose of this study was to evaluate whether urinary albumin-to-creatinine ratio (UACR) diurnal variation rate calculated by spot urinary protein test predicts 1-year nephrotic outcomes as a biomarker of proteinuria severity in patients with IMN. METHODS Patients' baseline demographics, blood and urinary biomarkers, and clinical and pathological characteristics were collected retrospectively. Urine samples were collected at 7:00 (before breakfast) and 19:00 (after dinner) to calculate the UACR diurnal variation rate. A prediction model for no remission (NR) was developed statistically based on differences between prognosis groups. Receiver operating characteristic curve (ROC) analysis was performed to evaluate prediction abilities and determine optimal cut-off points of the model and UACR diurnal variation rate alone. RESULTS The formula for calculating the probability of NR was exp(L)/(1 + exp(L)), where the linear predictor L = - 22.038 + 0.134 × Age (years) + 0.457 × 24-h urinary protein + 0.511 × blood urea nitrogen (BUN) + 0.014 × serum uric acid (SUA) + 2.411 if glomerular sclerosis + 0.816 × fasting blood glucose (FBG)-0.039 × UACR diurnal variation rate (%). Optimal cut-off points for NR prediction by the final model and UACR diurnal variation rate alone were 0.331 and 58.5%, respectively. Sensitivity and specificity were 0.889 and 0.859 for the final model, and 0.926 and 0.676 for UACR diurnal variation rate alone. CONCLUSION UACR diurnal variation using spot urinary protein is a simpler way to predict nephrotic outcomes and is a highly sensitive screening tool for identifying patients who should undergo further comprehensive risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Nephrology, The 900th Hospital of Joint Logistics Support Force, 156 West Second Ring Road, Fuzhou, 350025, People's Republic of China
| | - Yong Zhang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Nephrology, The 900th Hospital of Joint Logistics Support Force, 156 West Second Ring Road, Fuzhou, 350025, People's Republic of China
| | - Liqun Yan
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Yangbin Xie
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Shujing Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Yongze Zhuang
- Department of Nephrology, The 900th Hospital of Joint Logistics Support Force, 156 West Second Ring Road, Fuzhou, 350025, People's Republic of China
| | - Liping Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Nephrology, The 900th Hospital of Joint Logistics Support Force, 156 West Second Ring Road, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
9
|
Xiong Y, Zhong Q, Zhang Y, Liu Z, Wang X. The association between circadian syndrome and chronic kidney disease in an aging population: a 4-year follow-up study. Front Endocrinol (Lausanne) 2024; 15:1338110. [PMID: 38737554 PMCID: PMC11082579 DOI: 10.3389/fendo.2024.1338110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Circadian syndrome (CircS) is proposed as a novel risk cluster based on reduced sleep duration, abdominal obesity, depression, hypertension, dyslipidemia and hyperglycemia. However, the association between CircS and chronic kidney disease (CKD) remains unclear. To investigate the cross-sectional and longitudinal association between CircS and CKD, this study was performed. Methods A national prospective cohort (China Health and Retirement Longitudinal Study, CHARLS) was used in this study. To define CKD, the estimated glomerular filtration rate (eGFR) was calculated based on the 2012 CKD-EPI creatinine-cystatin C equation. Participants with eGFR <60 mL.min-1/1.73/m2 were diagnosed with CKD. Multivariate binary logistic regression was used to assess the cross-sectional association between CircS and CKD. Subgroup and interactive analyses were performed to determine the interactive effects of covariates. In the sensitivity analysis, the obese population was excluded and another method for calculating the eGFR was used to verify the robustness of previous findings. In addition, participants without CKD at baseline were followed up for four years to investigate the longitudinal relationship between CircS and CKD. Results A total of 6355 participants were included in this study. In the full model, CircS was positively associated with CKD (OR = 1.28, 95% CI = 1.04-1.59, P < 0.05). As per one increase of CircS components, there was a 1.11-fold (95% CI = 1.04-1.18, P < 0.05) risk of prevalent CKD in the full model. A significant interactive effect of hyperuricemia in the CircS-CKD association (P for interaction < 0.01) was observed. Sensitivity analyses excluding the obese population and using the 2009 CKD-EPI creatinine equation to diagnose CKD supported the positive correlation between CircS and CKD. In the 2011-2015 follow-up cohort, the CircS group had a 2.18-fold risk of incident CKD (95% CI = 1.33-3.58, P < 0.01) in the full model. The OR was 1.29 (95% CI = 1.10-1.51, P < 0.001) with per one increase of CircS components. Conclusion CircS is a risk factor for CKD and may serve as a predictor of CKD for early identification and intervention.
Collapse
Affiliation(s)
- Yang Xiong
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhong
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangchang Zhang
- Department of Public Health, Capital Medical University, Beijing, China
| | - Zhihong Liu
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianding Wang
- Department of Urology and Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Kidney Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Eckle T, Bertazzo J, Khatua TN, Tabatabaei SRF, Bakhtiari NM, Walker LA, Martino TA. Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure. Circ Res 2024; 134:675-694. [PMID: 38484024 PMCID: PMC10947118 DOI: 10.1161/circresaha.123.323522] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.
Collapse
Affiliation(s)
- Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Júlia Bertazzo
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Seyed Reza Fatemi Tabatabaei
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Naghmeh Moori Bakhtiari
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
12
|
Yang Z, Zarbl H, Guo GL. Circadian Regulation of Endocrine Fibroblast Growth Factors on Systemic Energy Metabolism. Mol Pharmacol 2024; 105:179-193. [PMID: 38238100 PMCID: PMC10877735 DOI: 10.1124/molpharm.123.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
The circadian clock is an endogenous biochemical timing system that coordinates the physiology and behavior of organisms to earth's ∼24-hour circadian day/night cycle. The central circadian clock synchronized by environmental cues hierarchically entrains peripheral clocks throughout the body. The circadian system modulates a wide variety of metabolic signaling pathways to maintain whole-body metabolic homeostasis in mammals under changing environmental conditions. Endocrine fibroblast growth factors (FGFs), namely FGF15/19, FGF21, and FGF23, play an important role in regulating systemic metabolism of bile acids, lipids, glucose, proteins, and minerals. Recent evidence indicates that endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between peripheral clocks and energy homeostasis by regulating the expression of metabolic enzymes and hormones. Circadian disruption induced by environmental stressors or genetic ablation is associated with metabolic dysfunction and diurnal disturbances in FGF signaling pathways that contribute to the pathogenesis of metabolic diseases. Time-restricted feeding strengthens the circadian pattern of metabolic signals to improve metabolic health and prevent against metabolic diseases. Chronotherapy, the strategic timing of medication administration to maximize beneficial effects and minimize toxic effects, can provide novel insights into linking biologic rhythms to drug metabolism and toxicity within the therapeutical regimens of diseases. Here we review the circadian regulation of endocrine FGF signaling in whole-body metabolism and the potential effect of circadian dysfunction on the pathogenesis and development of metabolic diseases. We also discuss the potential of chrononutrition and chronotherapy for informing the development of timing interventions with endocrine FGFs to optimize whole-body metabolism in humans. SIGNIFICANCE STATEMENT: The circadian timing system governs physiological, metabolic, and behavioral functions in living organisms. The endocrine fibroblast growth factor (FGF) family (FGF15/19, FGF21, and FGF23) plays an important role in regulating energy and mineral metabolism. Endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between circadian clocks and metabolic homeostasis. Chronic disruption of circadian rhythms increases the risk of metabolic diseases. Chronological interventions such as chrononutrition and chronotherapy provide insights into linking biological rhythms to disease prevention and treatment.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Helmut Zarbl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| |
Collapse
|
13
|
McCullar KS, Abbaspour S, Wang W, Aguirre AD, Westover MB, Klerman EB. Timing of diuretic administration effects on urine volume in hospitalized patients. Front Physiol 2024; 14:1208324. [PMID: 38321985 PMCID: PMC10844419 DOI: 10.3389/fphys.2023.1208324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Importance: Some medications have effects that depend on the time of day they are given. Current knowledge of the time-of-day effects of specific medications in hospitalized patients with cardiovascular disease is very limited. In hospitalized patients, increased medication efficiency might reduce dose (and associated side effects) and/or the length of time in the Intensive Care Unit (ICU) or hospital-potentially improving patient outcomes and patient and family quality of life and reducing financial costs. We studied whether the time of day or night patients in Cardiac or Intensive Care Units receive a diuretic affects urine volume. Methods: In this observational study, data were collected from 7,685 patients (63% male, 18 to 98 years old) admitted to one hospital's Acute Care Cardiac units, Cardiac ICUs, Cardiac Surgery ICUs, and/or Non-cardiac ICUs who received intravenous furosemide (a diuretic), had measurements of urine volume, were hospitalized for ≥3 days between January 2016 to July 2021 and were older than 18 years. The outcomes of interest were urine volume normalized by the most recent (not older than 24 h) weight or body mass index (BMI), (i) in the hour after the time of diuretic administration, and (ii) when no diuretics were administered for the previous 3 h. Results: We identified diuretic medication administration time 23:00-04:59 as a predictor of higher urine volume response. For patients without recent diuretic medication, higher urine volume was predicted 11:00-16:59 and 17:00-22:59. Other factors that affected urine volume response to the diuretic were sex, age, medication dose, creatinine concentration, diagnoses, and hospital unit. Discussion: Time-of-day of medication administration may be a factor associated with increased medication efficiency. Randomized controlled trials should be conducted to quantify the relative effect of modifiable factors, such as time of medication administration, that may affect short- and longer-term outcomes.
Collapse
Affiliation(s)
- Katie S. McCullar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Sara Abbaspour
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Wei Wang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
| | - Aaron D. Aguirre
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Elizabeth B. Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Shi Y, Guo Z, Liu F, Pan S, Gao D, Zhou S, Liu Z, Wang F, Liu D, Liu Z. Analysis of potential biomarkers for diabetic kidney disease based on single-cell RNA-sequencing integrated with a single-cell sequencing assay for transposase-accessible chromatin. Aging (Albany NY) 2023; 15:10681-10704. [PMID: 37827693 PMCID: PMC10599739 DOI: 10.18632/aging.205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Diabetic kidney disease (DKD) is a renal microvascular disease caused by hyperglycemia that involves metabolic remodeling, oxidative stress, inflammation, and other factors. The mechanism is complex and not fully unraveled. We performed an integrated single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) analyses of kidneys from db/db and db/m mice to identify differential open chromatin regions and gene expression, particularly in genes related to proximal tubular reabsorption and secretion. We identified 9,776 differentially expressed genes (DEGs) and 884 cell type-specific transcription factors (TFs) across 15 cell types. Glucose and lipid transporters, and TFs related to the circadian rhythm in the proximal tubules had significantly higher expression in db/db mice than in db/m mice (P<0.01). Crosstalk between podocytes and tubular cells in the proximal tubules was enhanced, and renal inflammation, oxidative stress, and fibrosis pathways were activated in db/db mice. Western blotting and immunohistochemical staining results showed that Wfdc2 expression in the urine and kidneys of DKD patients was higher than that in non-diabetic kidney disease (NDKD) controls. The revealed landscape of chromatin accessibility and transcriptional profiles in db/db mice provide insights into the pathological mechanism of DKD.
Collapse
Affiliation(s)
- Yan Shi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zuishuang Guo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zhenjie Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Feng Wang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Department of Nephrology, Shanghai Eighth People’s Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P.R. China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P.R. China
| |
Collapse
|
15
|
Veiz E, Kieslich SK, Czesnik D, Herrmann-Lingen C, Meyer T, Staab J. A randomized vagus nerve stimulation study demonstrates that serum aldosterone levels decrease with age in women, but not in men. Sci Rep 2023; 13:14197. [PMID: 37648715 PMCID: PMC10469189 DOI: 10.1038/s41598-023-40113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
In this randomized, sham-controlled study, we explored the effects of acute transcutaneous vagus nerve stimulation (tVNS) on serum aldosterone in 20 younger (21-26 years) and 19 older (40-70 years) healthy participants. Blood samples were collected on two different days before and after a 20-min application of active tVNS at the inner tragus or sham stimulation of the earlobe. Irrespective of the stimulation mode, aldosterone levels decreased from pre- to post-stimulation in both the young (active: β = - 1.610 (- 2.855, - 0.365), p = 0.022; sham: β = - 0.857 (- 2.102, 0.388), p = 0.257) and the old cohort (active: β = - 1.969 (- 3.234, - 0.703), p = 0.005; sham: β = - 1.334 (- 2.600, - 0.069), p = 0.063). Although this decline was significant during active tVNS, the difference in estimated β-coefficients between active and sham stimulation was not statistically significant in either cohort. Nevertheless, aldosterone concentrations showed a significant interaction effect between sex and age (p = 0.001). Among all study participants, younger women (23.3 ± 1.6 years) had the highest mineralocorticoid levels (pre active: 172.1 ± 102.0 pg/ml, pre sham: 214.3 ± 82.3 pg/ml), whereas the lowest were observed in older females (59.4 ± 9.4 years) (pre active: 104.9 ± 85.8 pg/ml, pre sham: 81.1 ± 53.8 pg/ml). This post hoc analysis did not suggest that active auricular tVNS reduces serum aldosterone levels compared to sham stimulation in healthy subjects. However, serum aldosterone levels differed among subjects depending on their age and sex, irrespective of tVNS.
Collapse
Affiliation(s)
- Elisabeth Veiz
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Susann-Kristin Kieslich
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Dirk Czesnik
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Crnko S, Printezi MI, Zwetsloot PPM, Leiteris L, Lumley AI, Zhang L, Ernens I, Jansen TPJ, Homsma L, Feyen D, van Faassen M, du Pré BC, Gaillard CAJM, Kemperman H, Oerlemans MIFJ, Doevendans PAFM, May AM, Zuithoff NPA, Sluijter JPG, Devaux Y, van Laake LW. The circadian clock remains intact, but with dampened hormonal output in heart failure. EBioMedicine 2023; 91:104556. [PMID: 37075492 PMCID: PMC10131037 DOI: 10.1016/j.ebiom.2023.104556] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Circadian (24-h) rhythms are important regulators in physiology and disease, but systemic disease may disrupt circadian rhythmicity. Heart failure (HF) is a systemic disease affecting hormonal regulation. We investigate whether HF affects the rhythmic expression of melatonin and cortisol, main endocrine products of the central clock, and cardiac-specific troponin in patients. We corroborate the functionality of the peripheral clock directly in the organs of translational models, inaccessible in human participants. METHODS We included 46 HF patients (71.7% male, median age of 60 years, NYHA class II (32.6%) or III (67.4%), ischemic cardiomyopathy (43.5%), comorbidities: diabetes 21.7%, atrial fibrillation 30.4%), and 24 matched controls. Blood was collected at seven time-points during a 24-h period (totalling 320 HF and 167 control samples) for melatonin, cortisol, and cardiac troponin T (cTnT) measurements after which circadian rhythms were assessed through cosinor analyses, both on the individual and the group level. Next, we analysed peripheral circadian clock functionality using cosinor analysis in male animal HF models: nocturnal mice and diurnal zebrafish, based on expression of core clock genes in heart, kidneys, and liver, every 4 h during a 24-h period in a light/darkness synchronised environment. FINDINGS Melatonin and cortisol concentrations followed a physiological 24-h pattern in both patients and controls. For melatonin, acrophase occurred during the night for both groups, with significantly decreased amplitude (median 5.2 vs 8.8, P = 0.0001) and circadian variation ([maximum]/[minimum]) in heart failure patients. For cortisol, mesor showed a significant increase for HF patients (mean 331.9 vs 275.1, P = 0.017) with a difference of 56.8 (95% CI 10.3-103.3) again resulting in a relatively lower variation: median 3.9 vs 6.3 (P = 0.0058). A nocturnal blood pressure dip was absent in 77.8% of HF patients. Clock gene expression profiles (Bmal, Clock, Per, Cry) were similar and with expected phase relations in animal HF models and controls, demonstrating preserved peripheral clock functionality in HF. Furthermore, oscillations in diurnal zebrafish were expectedly in opposite phases to those of nocturnal mice. Concordantly, cTnT concentrations in HF patients revealed significant circadian oscillations. INTERPRETATION Central clock output is dampened in HF patients while the molecular peripheral clock, as confirmed in animal models, remains intact. This emphasises the importance of taking timing into account in research and therapy for HF, setting the stage for another dimension of diagnostic, prognostic and therapeutic approaches. FUNDING Hartstichting.
Collapse
Affiliation(s)
- Sandra Crnko
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Markella I Printezi
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter-Paul M Zwetsloot
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Laurynas Leiteris
- Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Andrew I Lumley
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Isabelle Ernens
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Tijn P J Jansen
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lilian Homsma
- Department of Internal Medicine, Jeroen Bosch Hospital, 's-Hertogenbosch, the Netherlands
| | - Dries Feyen
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Bastiaan C du Pré
- Division of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Carlo A J M Gaillard
- Division of Internal Medicine and Dermatology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Hans Kemperman
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marish I F J Oerlemans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Pieter A F M Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands; Central Military Hospital, Utrecht, the Netherlands
| | - Anne M May
- Department of Epidemiology, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nicolaas P A Zuithoff
- Department of Data Science and Biostatistics, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Linda W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Cho SS, Chung BH, Lee HE, Kang MY. Association between social jetlag and chronic kidney disease among the Korean working population. Sci Rep 2023; 13:5998. [PMID: 37045895 PMCID: PMC10097717 DOI: 10.1038/s41598-023-33130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
Social jetlag refers to the discrepancy between social time and the body's internal rhythm, which can lead to unfavorable health outcomes. However, no study has directly explored the relation between social jetlag and chronic kidney disease (CKD). This study aims to investigate the relationship between social jetlag and CKD in a representative population of South Korea. This study included 8259 currently economically active Korean population in the Korea National Health and Nutrition Examination Survey. Social jetlag was calculated as the difference between the midpoint of sleep time on weekdays and free days. The estimated glomerular filtration rate (eGFR) was calculated the by using the serum creatinine value according to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Participants with an eGFR less than 60 ml/min/1.73 m2 were defined as CKD cases. The estimated glomerular filtration rate decreased as social jetlag increased. Multiple logistic regression analysis showed that the adjusted odds ratio (95% confidence interval) of CKD for 1-2 h of social jetlag was 0.926 (0.660-1.299), while the odds ratio for more than 2 h was 2.042 (1.328-3.139) when less than 1 h was used as reference. This study found that social jetlag and risk of CKD were significantly related in the Korean working population.
Collapse
Affiliation(s)
- Seong-Sik Cho
- Department of Occupational and Environmental Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye-Eun Lee
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Mo-Yeol Kang
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
18
|
Ito H, Negoro H, Kono J, Hayata N, Miura T, Manabe Y, Miyazaki Y, Mishina M, Woo JT, Sakane N, Okuno H. Effectiveness and Safety of a Mixture of Nobiletin and Tangeretin in Nocturia Patients: A Randomized, Placebo-Controlled, Double-Blind, Crossover Study. J Clin Med 2023; 12:2757. [PMID: 37109094 PMCID: PMC10143228 DOI: 10.3390/jcm12082757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Nobiletin and tangeretin (NoT) are flavonoids derived from the peel of Citrus depressa, and they have been found to modulate circadian rhythms. Because nocturia can be considered a circadian rhythm disorder, we investigated the efficacy of NoT for treating nocturia. A randomized, placebo-controlled, double-blind, crossover study was conducted. The trial was registered with the Japan Registry of Clinical Trials (jRCTs051180071). Nocturia patients aged ≥50 years who presented nocturia more than 2 times on a frequency-volume chart were recruited. Participants received NoT or a placebo (50 mg once daily for 6 weeks), followed by a washout period of ≥2 weeks. The placebo and NoT conditions were then switched. Changes in nocturnal bladder capacity (NBC) were the primary endpoint, and changes in nighttime frequency and nocturnal polyuria index (NPi) were secondary endpoints. Forty patients (13 women) with an average age of 73.5 years were recruited for the study. Thirty-six completed the study, while four withdrew. No adverse events directly related to NoT were observed. NoT had little effect on NBC compared with the placebo. In contrast, NoT significantly changed nighttime frequency by -0.5 voids compared with the placebo (p = 0.040). The change in NPi from baseline to the end of NoT was significant (-2.8%, p = 0.048). In conclusion, NoT showed little change in NBC but resulted in decreased nighttime frequency with a tendency toward reduced NPi.
Collapse
Affiliation(s)
- Haruki Ito
- Department of Urology, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hiromitsu Negoro
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Jin Kono
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Hayata
- Department of Urology, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Takayoshi Miura
- Department of Urology, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yumi Manabe
- Department of Urology, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yu Miyazaki
- Department of Urology, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Mutsuki Mishina
- Department of Urology, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Je Tae Woo
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Hiroshi Okuno
- Department of Urology, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| |
Collapse
|
19
|
Dutta P, Sadria M, Layton AT. Influence of administration time and sex on natriuretic, diuretic, and kaliuretic effects of diuretics. Am J Physiol Renal Physiol 2023; 324:F274-F286. [PMID: 36701479 DOI: 10.1152/ajprenal.00296.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sex differences in renal function and blood pressure have been widely described across many species. Blood pressure dips during sleep and peaks in the early morning. Similarly, glomerular filtration rate, filtered electrolyte loads, urine volume, and urinary excretion all exhibit notable diurnal rhythms, which reflect, in part, the regulation of renal transporter proteins by circadian clock genes. That regulation is sexually dimorphic; as such, sex and time of day are not two independent regulators of kidney function and blood pressure. The objective of the present study was to assess the effect of sex and administration time on the natriuretic and diuretic effects of loop, thiazide, and K+-sparing diuretics, which are common treatments for hypertension. Loop diuretics inhibit Na+-K+-2Cl- cotransporters on the apical membrane of the thick ascending limb, thiazide diuretics inhibit Na+-Cl- cotransporters on the distal convoluted tubule, and K+-sparing diuretics inhibit epithelial Na+ channels on the connecting tubule and collecting duct. We simulated Na+ transporter inhibition using sex- and time-of-day-specific computational models of mouse kidney function. The simulation results highlighted significant sex and time-of-day differences in the drug response. Loop diuretics induced larger natriuretic and diuretic effects during the active phase. The natriuretic and diuretic effects of thiazide diuretics exhibited sex and time-of-day differences, whereas these effects of K+-sparing diuretics exhibited a significant time-of-day difference in females only. The kaliuretic effect depended on the type of diuretics and time of administration. The present computational models can be a useful tool in chronotherapy, to tailor drug administration time to match the body's diurnal rhythms to optimize the drug effect.NEW & NOTEWORTHY Sex influences cardiovascular disease, and the timing of onset of acute cardiovascular events exhibits circadian rhythms. Kidney function also exhibits sex differences and circadian rhythms. How do the natriuretic and diuretic effects of diuretics, a common treatment for hypertension that targets the kidneys, differ between the sexes? And how do these effects vary during the day? To answer these questions, we conducted computer simulations to assess the effects of loop, thiazide, and K+-sparing diuretics.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.,School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Lorenzo-Lozano MC, Blázquez-Manzanera AL, Carnicero JA. How kidney clock works: circadian pattern of eGFR based on a population data group. J Physiol Biochem 2023:10.1007/s13105-023-00948-2. [PMID: 36808081 DOI: 10.1007/s13105-023-00948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/03/2023] [Indexed: 02/20/2023]
Abstract
A circadian regulation of renal function it has been described in the last few years. An intradaily variation in glomerular filtration rate (eGFR) has also been discovered at the individual level. The aim of this study was to check if there exists a circadian pattern of eGFR at population data group level and to compare the population results with those described at individual level. We have studied a total of 446,441 samples analysed in the emergency laboratories of two Spanish hospitals between January 2015 and December 2019. We selected all the records of eGFR values between 60 and 140 mL/min/1.73 m2 using CKD-EPI formula from patients between 18 and 85 years. The intradaily intrinsic eGFR pattern was computed using the extraction time of day in four nested mixed linear and sinusoidal regression models. All models showed an intradaily eGFR pattern, but the estimated model coefficients differed depending on whether age was included. The inclusion of age improved the performance of the model. In this model, the acrophase occurred at 7:46 h. We describe the distribution of eGFR values depending on the time in two different populations. This distribution is adjusted to a circadian rhythm that behaves similarly to the individual rhythm. This pattern is similar in each of the years studied from each hospital as well as between both hospitals. The results found suggest the incorporation of the concept of "population circadian rhythm" into the scientific world.
Collapse
Affiliation(s)
- M C Lorenzo-Lozano
- Hospital Universitario de Toledo, Complejo Hospitalario Universitario de Toledo, Toledo, Spain. .,Spanish Research Group in Biological Rhythms and Laboratory Medicine, Toledo, Spain.
| | - A L Blázquez-Manzanera
- Spanish Research Group in Biological Rhythms and Laboratory Medicine, Toledo, Spain.,Hospital General Universitario Rafael Méndez, Lorca, Murcia, Spain.,Hospital General de Villarrobledo, Villarrobledo, Albacete, Spain
| | - J A Carnicero
- Spanish Research Group in Biological Rhythms and Laboratory Medicine, Toledo, Spain.,Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Tiwari A, Rathor P, Trivedi PK, Ch R. Multi-Omics Reveal Interplay between Circadian Dysfunction and Type2 Diabetes. BIOLOGY 2023; 12:301. [PMID: 36829576 PMCID: PMC9953493 DOI: 10.3390/biology12020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Type 2 diabetes is one of the leading threats to human health in the 21st century. It is a metabolic disorder characterized by a dysregulated glucose metabolism resulting from impaired insulin secretion or insulin resistance. More recently, accumulated epidemiological and animal model studies have confirmed that circadian dysfunction caused by shift work, late meal timing, and sleep loss leads to type 2 diabetes. Circadian rhythms, 24-h endogenous biological oscillations, are a fundamental feature of nearly all organisms and control many physiological and cellular functions. In mammals, light synchronizes brain clocks and feeding is a main stimulus that synchronizes the peripheral clocks in metabolic tissues, such as liver, pancreas, muscles, and adipose tissues. Circadian arrhythmia causes the loss of synchrony of the clocks of these metabolic tissues and leads to an impaired pancreas β-cell metabolism coupled with altered insulin secretion. In addition to these, gut microbes and circadian rhythms are intertwined via metabolic regulation. Omics approaches play a significant role in unraveling how a disrupted circadian metabolism causes type 2 diabetes. In the present review, we emphasize the discoveries of several genes, proteins, and metabolites that contribute to the emergence of type 2 diabetes mellitus (T2D). The implications of these discoveries for comprehending the circadian clock network in T2D may lead to new therapeutic solutions.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Priya Rathor
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Prabodh Kumar Trivedi
- Department of Biotechnology, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
| | - Ratnasekhar Ch
- Metabolomics Lab, CSIR-Central Institute of Medicinal & Aromatic Plants (CIMAP), Lucknow 226015, India
- Academy of Council of Scientific and Industrial Research (ACSIR), Gaziabad 201002, India
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
22
|
Cortés-Ríos J, Rodriguez-Fernandez M. Understanding the dosing-time-dependent antihypertensive effect of valsartan and aspirin through mathematical modeling. Front Endocrinol (Lausanne) 2023; 14:1110459. [PMID: 36967780 PMCID: PMC10031009 DOI: 10.3389/fendo.2023.1110459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/11/2023] Open
Abstract
Chronopharmacology of arterial hypertension impacts the long-term cardiovascular risk of hypertensive subjects. Therefore, clinical and computational studies have proposed optimizing antihypertensive medications' dosing time (Ta). However, the causes and mechanisms underlying the Ta-dependency antihypertensive effect have not been elucidated. Here we propose using a Ta- dependent effect model to understand and predict the antihypertensive effect of valsartan and aspirin throughout the day in subjects with grade I or II essential hypertension. The model based on physiological regulation mechanisms includes a periodic function for each parameter that changes significantly after treatment. Circadian variations of parameters depending on the dosing time allowed the determination of regulation mechanisms dependent on the circadian rhythm that were most relevant for the action of each drug. In the case of valsartan, it is the regulation of vasodilation and systemic vascular resistance. In the case of aspirin, the antithrombotic effect generates changes in the sensitivity of systemic vascular resistance and heart rate to changes in physical activity. Dosing time-dependent models predict a more significant effect on systemic vascular resistance and blood pressure when administering valsartan or aspirin at bedtime. However, circadian dependence on the regulation mechanisms showed different sensitivity of their circadian parameters and shapes of functions, presenting different phase shifts and amplitude. Therefore, different mechanisms of action and pharmacokinetic properties of each drug can generate different profiles of Ta-dependence of antihypertensive effect and optimal dosing times.
Collapse
|
23
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
24
|
Layton AT, Gumz ML. Sex differences in circadian regulation of kidney function of the mouse. Am J Physiol Renal Physiol 2022; 323:F675-F685. [PMID: 36264883 PMCID: PMC11905794 DOI: 10.1152/ajprenal.00227.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Kidney function is regulated by the circadian clock. Not only do glomerular filtration rate and urinary excretion oscillate during the day, but the expressions of several renal transporter proteins also exhibit circadian rhythms. Interestingly, the circadian regulation of these transporters appears to be sexually dimorphic. Thus, the goal of the present study was to investigate the mechanisms by which the kidney function of the mouse is modulated by sex and time of day. To accomplish this, we developed the first computational models of epithelial water and solute transport along the mouse nephrons that represent the effects of sex and the circadian clock on renal hemodynamics and transporter activity. We conducted simulations to study how the circadian control of renal transport genes affects overall kidney function and how that process differs between male and female mice. Simulation results predicted that tubular transport differs substantially among segments, with relative variations in water and Na+ reabsorption along the proximal tubules and thick ascending limb tracking that of glomerular filtration rate. In contrast, relative variations in distal segment transport were much larger, with Na+ reabsorption almost doubling during the active phase. Oscillations in Na+ transport drive K+ transport variations in the opposite direction. Model simulations of basic helix-loop-helix ARNT like 1 (BMAL1) knockout mice predicted a significant reduction in net Na+ reabsorption along the distal segments in both sexes, but more so in males than in females. This can be attributed to the reduction of mean epithelial Na+ channel activity in males only, a sex-specific effect that may lead to a reduction in blood pressure in BMAL1-null males.NEW & NOTEWORTHY How does the circadian control of renal transport genes affect overall kidney function, and how does that process differ between male and female mice? How does the differential circadian regulation of the expression levels of key transporter genes impact the transport processes along different nephron segments during the day? And how do those effects differ between males and females? We built computational models of mouse kidney function to answer these questions.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
25
|
Zietara A, Spires DR, Juffre A, Costello HM, Crislip GR, Douma LG, Levchenko V, Dissanayake LV, Klemens CA, Nikolaienko O, Geurts AM, Gumz ML, Staruschenko A. Knockout of the Circadian Clock Protein PER1 (Period1) Exacerbates Hypertension and Increases Kidney Injury in Dahl Salt-Sensitive Rats. Hypertension 2022; 79:2519-2529. [PMID: 36093781 PMCID: PMC9669134 DOI: 10.1161/hypertensionaha.122.19316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Circadian rhythms play an essential role in physiological function. The molecular clock that underlies circadian physiological function consists of a core group of transcription factors, including the protein PER1 (Period1). Studies in mice show that PER1 plays a role in the regulation of blood pressure and renal sodium handling; however, the results are dependent on the strain being studied. Using male Dahl salt-sensitive (SS) rats with global knockout of PER1 (SSPer1-/-), we aim to test the hypothesis that PER1 plays a key role in the regulation of salt-sensitive blood pressure. METHODS The model was generated using CRISPR/Cas9 and was characterized using radiotelemetry and measures of renal function and circadian rhythm. RESULTS SSPer1-/- rats had similar mean arterial pressure when fed a normal 0.4% NaCl diet but developed augmented hypertension after three weeks on a high-salt (4% NaCl) diet. Despite being maintained on a normal 12:12 light:dark cycle, SSPer1-/- rats exhibited desynchrony mean arterial pressure rhythms on a high-salt diet, as evidenced by increased variability in the time of peak mean arterial pressure. SSPer1-/- rats excrete less sodium after three weeks on the high-salt diet. Furthermore, SSPer1-/- rats exhibited decreased creatinine clearance, a measurement of renal function, as well as increased signs of kidney tissue damage. SSPer1-/- rats also exhibited higher plasma aldosterone levels. CONCLUSIONS Altogether, our findings demonstrate that loss of PER1 in Dahl SS rats causes an array of deleterious effects, including exacerbation of the development of salt-sensitive hypertension and renal damage.
Collapse
Affiliation(s)
- Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Denisha R. Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexandria Juffre
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Hannah M. Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - G. Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Lauren G. Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
| | - Lashodya V. Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, USA
| | - Oksana Nikolaienko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michelle L. Gumz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Fang Y, Son S, Yang J, Oh S, Jo SK, Cho W, Kim MG. Perturbation of Circadian Rhythm Is Associated with Increased Prevalence of Chronic Kidney Disease: Results of the Korean Nationwide Population-Based Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5732. [PMID: 35565131 PMCID: PMC9102791 DOI: 10.3390/ijerph19095732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Disturbances in circadian rhythms cause several health problems, such as psychosis, metabolic syndrome, and cancer; however, their effect on kidney disease remains unclear. This study aimed to evaluate the association between chronic kidney disease (CKD) and sleep disturbance in a Korean adult population. A total of 17,408 participants who completed the National Health and Nutrition Examination Survey from 2016 to 2018 were assessed for their sleep patterns and renal function. CKD was defined as an estimated glomerular filtration rate ≤ 60 mL/min/1.73 m² or a positive dipstick urinalysis. Sleep onset time and sleep duration showed significant differences between the control and CKD groups (p < 0.001). After adjusting for the covariates, sleep onset time rather than sleep duration was independently associated with incidence of CKD, and this association was more significant in people who were older, in women, and in those with low body mass index and no comorbidities. When comparing the prevalence of newly diagnosed CKD according to sleep onset time in a population with no CKD risk factors or no history of CKD, the early bedtime group showed an independent association with incidence of new CKD (odds ratio (OR), 1.535; 95% confidence interval (CI), 1.011−2.330) even after adjusting for covariates. Impaired circadian rhythm along with sleep disturbance could be associated with CKD development; therefore, sleep disturbance might be an important therapeutic target for CKD.
Collapse
Affiliation(s)
- Yina Fang
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Serhim Son
- Department of Biostatistics, Korea University College of Medicine, Seoul 02842, Korea;
| | - Jihyun Yang
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Sewon Oh
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Sang-Kyung Jo
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Wonyong Cho
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| | - Myung-Gyu Kim
- Department of Internal Medicine, Korea University Anam Hospital, Seoul 02841, Korea; (Y.F.); (J.Y.); (S.O.); (S.-K.J.); (W.C.)
| |
Collapse
|
27
|
Douma LG, Costello HM, Crislip GR, Cheng KY, Lynch IJ, Juffre A, Barral D, Masten S, Roig E, Beguiristain K, Li W, Bratanatawira P, Wingo CS, Gumz ML. Kidney-specific KO of the circadian clock protein PER1 alters renal Na + handling, aldosterone levels, and kidney/adrenal gene expression. Am J Physiol Renal Physiol 2022; 322:F449-F459. [PMID: 35129370 PMCID: PMC9169971 DOI: 10.1152/ajprenal.00385.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Dominique Barral
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sarah Masten
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Emilio Roig
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Kevin Beguiristain
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Wendy Li
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Phillip Bratanatawira
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Charles S Wingo
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Bryk AA, Blagonravov ML, Goryachev VA, Chibisov SM, Azova MM, Syatkin SP. Daytime Exposure to Blue Light Alters Cardiovascular Circadian Rhythms, Electrolyte Excretion and Melatonin Production. PATHOPHYSIOLOGY 2022; 29:118-133. [PMID: 35366294 PMCID: PMC8954103 DOI: 10.3390/pathophysiology29010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022] Open
Abstract
Artificial light is characterized by certain features of its impact on the body in terms of its spectral distribution of power, duration of exposure and intensity. Short waves, perceived as blue light, are the strongest synchronizing agent for the circadian system. In the present work, we investigated the features of the circadian rhythms of blood pressure (BP), heart rate (HR), the excretion of electrolytes and the secretion of melatonin in normotensive (Wistar–Kyoto) and hypertensive (SHR) rats under the action of monochromatic blue light in the daytime period. It was found that the exposure of Wistar–Kyoto rats to monochromatic blue light was accompanied by a significant decrease in nighttime and 24 h systolic BP. The most remarkable changes are characteristic of the HR in SHR rats under monochromatic light. A significant decrease in HR in each time period was found, but the predominance of nighttime over daytime values remained in SHR animals. There was also a significant increase in the mesor of the HR in SHR rats. Additionally, the amplitude of diastolic BP and HR, as well as the range of oscillations in HR, were significantly increased compared with the standard light pattern. In contrast to SHR rats, the regulation of the circadian rhythms in Wistar–Kyoto rats was more flexible and presented more changes, which may be aimed at the adaptation of the body to environmental conditions. For Wistar–Kyoto rats, an increase in the level of excreted electrolytes was observed under the action of monochromatic light, but no similar changes were found in SHR rats. For Wistar–Kyoto rats, a significant decrease in the urine concentration of aMT6s in the daytime and nighttime periods is characteristic, which results in the loss of the circadian rhythm. In SHR rats, there was a significant decrease in the nighttime content of aMT6s in the urine, while the daytime concentration, on the contrary, increased. The obtained data demonstrate that prolonged exposure to monochromatic blue light in the daytime period affects the circadian structure of the rhythms of the cardiovascular system, the rhythm of electrolyte excretion and the production of epiphyseal melatonin in wild-type and hypertensive animals. In SHR rats, the rhythms of BP and HR exhibit a more rigid pattern.
Collapse
Affiliation(s)
- Anna A. Bryk
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
- Correspondence:
| | - Mikhail L. Blagonravov
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| | - Vyacheslav A. Goryachev
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| | - Sergey M. Chibisov
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| | - Madina M. Azova
- Department of Biology and General Genetics, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
| | - Sergey P. Syatkin
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (M.L.B.); (V.A.G.); (S.M.C.); (S.P.S.)
| |
Collapse
|
29
|
Imamura M, Sasaki H, Shinto T, Tahara Y, Makino S, Kuwahara M, Tada A, Abe N, Michie M, Shibata S. Association Between Na, K, and Lipid Intake in Each Meal and Blood Pressure. Front Nutr 2022; 9:853118. [PMID: 35308273 PMCID: PMC8931534 DOI: 10.3389/fnut.2022.853118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide, and one of the most significant risk factors for CVDs is high blood pressure. Blood pressure is associated with various nutrients, such as sodium, potassium, and cholesterol. However, research focusing on the timing of intake of these nutrients and blood pressure has not been conducted. In this study, we used dietary data and a questionnaire asking about the sleep, physical activity, and blood pressure, collected from the food-log app “Asken” (total N = 2,402), to investigate the relationship between the dietary data of nutrient intake in the breakfast, lunch, and dinner and blood pressure. Daily total intake of various nutrients such as sodium, sodium-to-potassium ratio, total energy, lipid, carbohydrate, and saturated fat showed a significant association with blood pressure depending on the meal timing. From multiple regression analysis, eliminating the confounding factors, lunch sodium-to-potassium ratio, dinner energy, lipid, cholesterol, saturated fat, and alcohol intake were positively associated with blood pressure, whereas breakfast protein and lunch fiber intake showed a negative association with blood pressure. Our results suggest that nutrient intake timing is also an important factor in the prevention of high blood pressure. Our study provides possibilities to prevent hypertension by changing the timing of nutrient intake, especially sodium, together with potassium and lipids. However, because our research was limited to food-log app users, broader research regarding the general population needs to be conducted.
Collapse
Affiliation(s)
- Momoko Imamura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takae Shinto
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Saneyuki Makino
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mai Kuwahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- *Correspondence: Shigenobu Shibata
| |
Collapse
|
30
|
Obata F, Ozuru R, Tsuji T, Matsuba T, Fujii J. Stx2 Induces Differential Gene Expression and Disturbs Circadian Rhythm Genes in the Proximal Tubule. Toxins (Basel) 2022; 14:toxins14020069. [PMID: 35202097 PMCID: PMC8874938 DOI: 10.3390/toxins14020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes proximal tubular defects in the kidney. However, factors altered by Shiga toxin (Stx) within the proximal tubules are yet to be shown. We determined Stx receptor Gb3 in murine and human kidneys and confirmed the receptor expression in the proximal tubules. Stx2-injected mouse kidney tissues and Stx2-treated human primary renal proximal tubular epithelial cell (RPTEC) were collected and microarray analysis was performed. We compared murine kidney and RPTEC arrays and selected common 58 genes that are differentially expressed vs. control (0 h, no toxin-treated). We found that the most highly expressed gene was GDF15, which may be involved in Stx2-induced weight loss. Genes associated with previously reported Stx2 activities such as src kinase Yes phosphorylation pathway activation, unfolded protein response (UPR) and ribotoxic stress response (RSR) showed differential expressions. Moreover, circadian clock genes were differentially expressed, suggesting Stx2-induced renal circadian rhythm disturbance. Circadian rhythm-regulated proximal tubular Na+-glucose transporter SGLT1 (SLC5A1) was down-regulated, indicating proximal tubular functional deterioration, and mice developed glucosuria confirming proximal tubular dysfunction. Stx2 alters gene expression in murine and human proximal tubules through known activities and newly investigated circadian rhythm disturbance, which may result in proximal tubular dysfunctions.
Collapse
Affiliation(s)
- Fumiko Obata
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
- Correspondence:
| | - Ryo Ozuru
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Takahiro Tsuji
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
| | - Takashi Matsuba
- Division of Infectious Disease Control and Prevention, Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan;
| | - Jun Fujii
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
| |
Collapse
|
31
|
Xing L, Wu S, Shi Y, Yue F, Wei L, Russell R, Zhang D. Chronic constant light exposure aggravates high fat diet-induced renal injury in rats. Front Endocrinol (Lausanne) 2022; 13:900392. [PMID: 35966094 PMCID: PMC9372432 DOI: 10.3389/fendo.2022.900392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity-related kidney disease is now recognized as a global health issue, with a substantial number of patients developing progressive renal failure and end-stage renal disease. Interestingly, recent studies indicate light pollution is a novel environmental risk factor for chronic kidney disease. However, the impact of light pollution on obesity-related kidney disease remains largely unknown, with its underlying mechanism insufficiently explained. Renal hypoxia induced factor 1α (HIF1α) is critical in the development of glomerulosclerosis and renal fibrosis. The present study explored effects of constant light exposure on high fat diet (HFD) -induced renal injury and its association with HIF1α signal pathway. Thirty-two male Sprague Dawley rats were divided into four groups according to diet (HFD or normal chow diet) and light cycles (light/dark or constant light). After 16 weeks treatment, rats were sacrificed and pathophysiological assessments were performed. In normal chow fed rats, constant light exposure led to glucose abnormalities and dyslipidemia. In HFD fed rats, constant light exposure exacerbated obesity, glucose abnormalities, insulin resistance, dyslipidemia, renal functional decline, proteinuria, glomerulomegaly, renal inflammation and fibrosis. And, constant light exposure caused an increase in HIF1α and a decrease in prolyl hydroxylase domain 1 (PHD1) and PHD2 expression in kidneys of HFD-fed rats. Then, we demonstrated that BMAL1 bound directly to the promoters of PHD1 in mouse podocyte clone 5 cell line (MPC5) by ChIP assays. In conclusion, chronic constant light exposure aggravates HFD-induced renal injuries in rats, and it is associated with activation of HIF1α signal pathway.
Collapse
Affiliation(s)
- Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dongmei Zhang,
| |
Collapse
|
32
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
33
|
Soliman RH, Pollock DM. Circadian Control of Sodium and Blood Pressure Regulation. Am J Hypertens 2021; 34:1130-1142. [PMID: 34166494 PMCID: PMC9526808 DOI: 10.1093/ajh/hpab100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
The attention for the control of dietary risk factors involved in the development of hypertension, includes a large effort on dietary salt restrictions. Ample studies show the beneficial role of limiting dietary sodium as a lifestyle modification in the prevention and management of essential hypertension. Not until the past decade or so have studies more specifically investigated diurnal variations in renal electrolyte excretion, which led us to the hypothesis that timing of salt intake may impact cardiovascular health and blood pressure regulation. Cell autonomous molecular clocks as the name implies, function independently to maintain optimum functional rhythmicity in the face of environmental stressors such that cellular homeostasis is maintained at all times. Our understanding of mechanisms influencing diurnal patterns of sodium excretion and blood pressure has expanded with the discovery of the circadian clock genes. In this review, we discuss what is known about circadian regulation of renal sodium handling machinery and its influence on blood pressure regulation, with timing of sodium intake as a potential modulator of the kidney clock.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
34
|
Mishra R, Bethunaickan R, Berthier CC, Yi Z, Strohl JJ, Huerta PT, Zhang W, Davidson A. Reversible dysregulation of renal circadian rhythm in lupus nephritis. Mol Med 2021; 27:99. [PMID: 34488619 PMCID: PMC8419890 DOI: 10.1186/s10020-021-00361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have found disruption of expression of major transcriptional regulators of circadian rhythm in the kidneys of several mouse models of lupus nephritis. Here we define the consequence of this disturbance with respect to circadian gene expression and renal homeostatic function in a mouse model of lupus nephritis. METHODS Molecular profiling of kidneys from 47 young and 41 nephritic female NZB/W F1 mice was performed at 4 hourly intervals over a 24 h period. Disruption of major circadian transcriptional regulators was confirmed by qPCR. Molecular data was normalized and analyzed for rhythmicity using RAIN analysis. Serum aldosterone and glucose and urine sodium and potassium were measured at 4 hourly intervals in pre-nephritic and nephritic mice and blood pressure was measured every 4 h. Analyses were repeated after induction of complete remission of nephritis using combination cyclophosphamide and costimulatory blockade. RESULTS We show a profound alteration of renal circadian rhythms in mice with lupus nephritis affecting multiple renal pathways. Using Cosinor analysis we identified consequent alterations of renal homeostasis and metabolism as well as blood pressure dipper status. This circadian dysregulation was partially reversed by remission induction therapy. CONCLUSIONS Our studies indicate the role of inflammation in causing the circadian disruption and suggest that screening for loss of normal blood pressure dipping should be incorporated into LN management. The data also suggest a potential role for circadian agonists in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Rakesh Mishra
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ramalingam Bethunaickan
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Celine C Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhengzi Yi
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA
| | - Joshua J Strohl
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Patricio T Huerta
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA.
| | - Anne Davidson
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
35
|
Increased angiotensin II formation in the brain modulates cardiovascular homeostasis and erythropoiesis. Clin Sci (Lond) 2021; 135:1353-1367. [DOI: 10.1042/cs20210072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Abstract
In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In the present study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wild-types. Agt-Tg has altered peripheral renin–angiotensin system and vasomotor sympathetic tone homeostasis because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression and reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool to study not only brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.
Collapse
|
36
|
Zhang J, Liu C, Liang Q, Zheng F, Guan Y, Yang G, Chen L. Postnatal deletion of Bmal1 in mice protects against obstructive renal fibrosis via suppressing Gli2 transcription. FASEB J 2021; 35:e21530. [PMID: 33813752 DOI: 10.1096/fj.202002452r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Circadian clock is involved in regulating most renal physiological functions, including water and electrolyte balance and blood pressure homeostasis, however, the role of circadian clock in renal pathophysiology remains largely unknown. Here we aimed to investigate the role of Bmal1, a core clock component, in the development of renal fibrosis, the hallmark of pathological features in many renal diseases. The inducible Bmal1 knockout mice (iKO) whose gene deletion occurred in adulthood were used in the study. Analysis of the urinary water, sodium and potassium excretion showed that the iKO mice exhibit abolished diurnal variations. In the model of renal fibrosis induced by unilateral ureteral obstruction, the iKO mice displayed significantly decreased tubulointerstitial fibrosis reflected by attenuated collagen deposition and mitigated expression of fibrotic markers α-SMA and fibronectin. The hedgehog pathway transcriptional effectors Gli1 and Gli2, which have been reported to be involved in the pathogenesis of renal fibrosis, were significantly decreased in the iKO mice. Mechanistically, ChIP assay and luciferase reporter assay revealed that BMAL1 bound to the promoter of and activate the transcription of Gli2, but not Gli1, suggesting that the involvement of Bmal1 in renal fibrosis was possibly mediated via Gli2-dependent mechanisms. Furthermore, treatment with TGF-β increased Bmal1 in cultured murine proximal tubular cells. Knockdown of Bmal1 abolished, while overexpression of Bmal1 increased, Gli2 and the expression of fibrosis-related genes. Collectively, these results revealed a prominent role of the core clock gene Bmal1 in tubulointerstitial fibrosis. Moreover, we identified Gli2 as a novel target of Bmal1, which may mediate the adverse effect of Bmal1 in obstructive nephropathy.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Chengcheng Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qing Liang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
ElDash RM, Raslan MA, Shaheen SM, Sabri NA. The effect of morning versus evening administration of empagliflozin on its pharmacokinetics and pharmacodynamics characteristics in healthy adults: a two-way crossover, non-randomised trial. F1000Res 2021; 10:321. [PMID: 34123370 PMCID: PMC8167502 DOI: 10.12688/f1000research.51114.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Empagliflozin is an SGLT2 inhibitor approved for use in patients with diabetes mellitus type 2 (DMT2) with or without other cardiovascular disease. Empagliflozin is taken once daily without rationale on the optimal timing for administration. This study aimed to determine the chronopharmacological effects of morning vs evening administration of empagliflozin (10 mg) in healthy Egyptian adults, by investigating the pharmacokinetics and pharmacodynamics parameters of empagliflozin depending on the intake time. Methods: An open label, sequential, two-way crossover trial comprised of two periods with a washout period of 7 days. All participants received a single oral dose of empagliflozin (JARDIANCE ®; 10 mg film coated tablet) in the evening, and after a seven-day washout period, the morning. Pharmacokinetics parameters (primary endpoints: t max (h), C max (ng/ml), AUC 0-t (ng.h/ml); secondary endpoints: AUC 0 to ∞(ng.h/ml)) were assessed. Method validation was done prior to injection in LC/MS/MS and samples were processed by Liquid-Liquid extraction. The pharmacodynamic profile (UGE 0-24) was determined after method validation (glucose hexokinase method). Results: T max increased by 35% in the evening phase compared to the morning phase, while C max decreased by -6.5% in the evening dose compared to the morning dose. Additionally, AUC 0 to ∞ increased in the evening phase by 8.25% compared to the morning phase. The mean cumulative amount of glucose excreted (UGE ( 0-24)) increased by 43% in the evening dose compared to the morning dose Conclusion: Despite the difference in pharmacokinetics parameters between evening and morning doses, C max, AUC 0-t, AUC 0-∞, didn't differ on the bioequivalence level. In addition, as UGE ( 0-24) didn't statistically differ, thus, we can conclude that there is no statistical significance between the morning and evening doses. Trial registration: Clinal Trials.gov, ID: NCT03895229 (registered on 29 th March 2019).
Collapse
Affiliation(s)
- Rana M. ElDash
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | | | - Sara M. Shaheen
- Clinical Pharmacy Department, Faculty of Pharmacy, AinShms University, Cairo, 11566, Egypt
| | - Nagwa Ali Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, AinShms University, Cairo, 11566, Egypt
| |
Collapse
|
38
|
Sun Q, Zeng C, Du L, Dong C. Mechanism of circadian regulation of the NRF2/ARE pathway in renal ischemia-reperfusion. Exp Ther Med 2021; 21:190. [PMID: 33488799 PMCID: PMC7812573 DOI: 10.3892/etm.2021.9622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathway has been shown to provide strong protection against oxidative stress injury induced by renal ischemia-reperfusion (IR). However, the endogenous regulatory mechanism of the NRF2/ARE pathway in renal IR injury is incompletely understood. A rat model of renal IR was established by occlusion of the bilateral renal pedicle for 45 min, followed by reperfusion for 24 h. Renal injury was assessed by light microscopy and levels of serum creatinine, blood urea nitrogen and neutrophil gelatinase-associated lipocalin was measured using enzyme-linked immunosorbent assay. Renal oxidative stress was also evaluated by measuring superoxide dismutase and malondialdehyde in renal tissues. Protein expression levels of brain and muscle ARNT-like 1 (BMAL1), nuclear factor erythroid 2-related factor 2 (NRF2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), glutamate-cysteine ligase modifier (GCLM) and heme oxygenase 1 (HO1) in the kidney were determined by western blotting and immunohistochemistry. Reverse transcription-quantitative PCR was used to evaluate rhythmic transcription of the core clock genes (CLOCK and BMAL1) and the NRF2 gene. The nature of the binding of BMAL1 to the promoter regions in the NRF2 gene was assessed by chromatin immunoprecipitation assays in rat kidneys. BMAL1 was found to bind to the promoter of the NRF2 gene through an E-BOX element associated with strongly rhythmic activation of NRF2 in both the normal kidney and those exposed to IR. The ARE-regulated anti-oxidative stress protein was affected by the circadian rhythm of the NRF2 gene. As the NRF2 level was at a circadian nadir, the expression of the proteins NQO1, GCLM and HO1 was weakened, resulting in more serious renal oxidative stress injury and pathological and functional impairment induced by IR. It can be concluded that the circadian rhythm of the NRF2/ARE pathway controlled by the circadian clock is essential for regulating antioxidant stress in renal IR injury, which might prompt new therapeutic strategies associated with the diurnal variability of human kidney disease, including renal transplantation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin 300192, P.R. China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin 300192, P.R. China
| |
Collapse
|
39
|
Hill AM, Crislip GR, Stowie A, Ellis I, Ramsey A, Castanon-Cervantes O, Gumz ML, Davidson AJ. Environmental circadian disruption suppresses rhythms in kidney function and accelerates excretion of renal injury markers in urine of male hypertensive rats. Am J Physiol Renal Physiol 2020; 320:F224-F233. [PMID: 33356955 DOI: 10.1152/ajprenal.00421.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nontraditional work schedules, such as shift work, have been associated with numerous health issues, including cardiovascular and metabolic disease. These work schedules can chronically misalign environmental timing cues with internal circadian clock systems in the brain and in peripheral organs, leading to dysfunction of those systems and their associated biological processes. Environmental circadian disruption in the kidney may be an important factor in the increased incidence of hypertension and adverse health outcomes in human shift workers. The relationship between renal rhythmicity and injury resilience is not well understood, especially in the context of environmental, rather than genetic, manipulations of the circadian system. We conducted a longitudinal study to determine whether chronic shifting of the light cycle that mimics shift work schedules would disrupt output rhythms of the kidney and accelerate kidney injury in salt-loaded male spontaneously hypertensive, stroke-prone rats. We observed that chronic shifting of the light-dark (LD) cycle misaligned and decreased the amplitude of urinary volume rhythms as the kidney phase-shifted to match each new lighting cycle. This schedule also accelerated glomerular and tubular injury marker excretion, as quantified by nephrin and KIM-1 compared with rats kept in a static LD cycle. These data suggest that disrupted rhythms in the kidney may decrease resilience and contribute to disease development in systems dependent on renal and cardiovascular functions.
Collapse
Affiliation(s)
- Atlantis M Hill
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - G Ryan Crislip
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Adam Stowie
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Ivory Ellis
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Anne Ramsey
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Oscar Castanon-Cervantes
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Michelle L Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alec J Davidson
- Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
40
|
Gonçalves C, Abreu S. Sodium and Potassium Intake and Cardiovascular Disease in Older People: A Systematic Review. Nutrients 2020; 12:nu12113447. [PMID: 33182820 PMCID: PMC7697211 DOI: 10.3390/nu12113447] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/09/2023] Open
Abstract
This review aims to examine the relationship of sodium and potassium intake and cardiovascular disease (CVD) among older people. Methods: We performed a literature search using PubMed and Web of Science (January 2015 to July 2020) without language restriction. Observational and experimental studies that reported the relationship between sodium, potassium, or sodium-to-potassium ratio with CVD among older adults aged higher than 60 years were included. The authors independently screened all identified studies, extracted information, and assessed the quality of included studies. Risk of bias was assessed using the Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS) for observational studies and the revised Cochrane risk-of-bias tool (RoB 2 tool) for randomized trials. Results: We included 12 studies (6 prospective cohort studies, 5 cross-sectional studies, and 1 experimental study). Five of the studies reported on sodium-to-potassium ratio (n = 5), and the others on potassium and/or sodium intake. Cardiovascular events (e.g., stroke and heart failure) were the most reported outcome (n = 9). Of the 12 studies included, five observational studies had low bias risk and the randomized controlled trial was judged as uncertain risk of bias. We found inconsistent results for the effect of the reduction of sodium intake in this population for lower risk of CVD. We found that both the increase of potassium intake and the decrease of sodium-to-potassium ratio were associated with lower risk of hypertension and CVD, particularly stroke. Conclusion: The present review suggests that both higher potassium and lower sodium-to-potassium ratio are associated with lower risk of CVD.
Collapse
Affiliation(s)
- Carla Gonçalves
- CIAFEL—Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal;
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, 5001-801 Vila Real, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4099-002 Porto, Portugal
- Correspondence: ; Tel.: +351-22-507-4320
| | - Sandra Abreu
- CIAFEL—Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal;
- Faculty of Psychology, Education and Sports, Lusófona University of Porto, 4000-098 Porto, Portugal
| |
Collapse
|
41
|
Reitz CJ, Alibhai FJ, de Lima-Seolin BG, Nemec-Bakk A, Khaper N, Martino TA. Circadian mutant mice with obesity and metabolic syndrome are resilient to cardiovascular disease. Am J Physiol Heart Circ Physiol 2020; 319:H1097-H1111. [PMID: 32986958 DOI: 10.1152/ajpheart.00462.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome commonly underlie cardiovascular disease. ClockΔ19/Δ19 mice fed a normal diet develop obesity and metabolic syndrome; however, it is not known whether they develop or are resilient to cardiovascular disease. We found that ClockΔ19/Δ19 mice do not develop cardiac dysfunction, despite their underlying conditions. Moreover, in contrast to wild-type controls fed a high-fat diet (HFD), ClockΔ19/Δ19 HFD mice still do not develop cardiovascular disease. Indeed, ClockΔ19/Δ19 HFD mice have preserved heart weight despite their obesity, no cardiomyocyte hypertrophy, and preserved heart structure and function, even after 24 wk of a HFD. To determine why ClockΔ19/Δ19 mice are resilient to cardiac dysfunction despite their underlying obesity and metabolic conditions, we examined global cardiac gene expression profiles by microarray and bioinformatics analyses, revealing that oxidative stress pathways were involved. We examined the pathways in further detail and found that 1) SIRT-dependent oxidative stress pathways were not directly involved in resilience; 2) 4-hydroxynonenal (4-HNE) increased in wild-type HFD but not ClockΔ19/Δ19 mice, suggesting less reactive oxygen species in ClockΔ19/Δ19 mice; 3) cardiac catalase (CAT) and glutathione peroxidase (GPx) increased, suggesting strong antioxidant defenses in the hearts of ClockΔ19/Δ19 mice; and 4) Pparγ was upregulated in the hearts of ClockΔ19/Δ19 mice; this circadian-regulated gene drives transcription of CAT and GPx, providing a molecular basis for resilience in the ClockΔ19/Δ19 mice. These findings shed new light on the circadian regulation of oxidative stress and demonstrate an important role for the circadian mechanism in resilience to cardiovascular disease.NEW & NOTEWORTHY We examined whether obesity and metabolic syndrome underlie the development of cardiac dysfunction in circadian mutant ClockΔ19/Δ19 mice. Surprisingly, we demonstrate that although ClockΔ19/Δ19 mice develop metabolic dysfunction, they are protected from cardiac hypertrophy, left ventricular remodeling, and diastolic dysfunction, in contrast to wild-type controls, even when challenged with a chronic high-fat diet. These findings shed new light on the circadian regulation of oxidative stress pathways, which can mediate resilience to cardiovascular disease.
Collapse
Affiliation(s)
- Cristine J Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Faisal J Alibhai
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bruna Gazzi de Lima-Seolin
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ashley Nemec-Bakk
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Tami A Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Vahabi B, Jabr R, Fry C, McCloskey K, Everaert K, Agudelo CW, Monaghan TF, Rahnama'i MS, Panicker JN, Weiss JP. ICI-RS 2019 nocturia think tank: How can experimental science guide us in understanding the pathophysiology of nocturia? Neurourol Urodyn 2020; 39 Suppl 3:S88-S95. [PMID: 31922620 DOI: 10.1002/nau.24274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The following is a report on the proceedings of the 2019 International Consultation on Incontinence-Research Society nocturia think tank (NTT). OBJECTIVES The objectives of the 2019 NTT were as follows: (a) to evaluate the role of urothelium in the pathophysiology of nocturia; (b) to determine whether nocturia is a circadian disorder; (c) to discuss the role of melatonin in nocturia; (d) to consider ambulatory urodynamic monitoring in evaluating patients with nocturia; (e) to explore studies of water handling in human compartments utilizing heavy water; and (f) to explore whether basic science is the key to understanding the treatment options for diminished bladder capacity in patients with nocturia. METHODS A compendium of discussions of the role of experimental science in understanding the pathophysiology of nocturia is described herein. RESULTS AND CONCLUSIONS Translational science will play an increasing role in understanding the pathophysiology of nocturia, which may result in improved treatment strategies.
Collapse
Affiliation(s)
- Bahareh Vahabi
- Department of Applied Sciences, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Rita Jabr
- Department of Cardiac Electrophysiology, University of Surrey, Guildford, Surrey, UK
| | - Chris Fry
- Department of Applied Sciences, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Karen McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Karel Everaert
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Christina W Agudelo
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Thomas F Monaghan
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Mohammad S Rahnama'i
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jalesh N Panicker
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Jeffrey P Weiss
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
43
|
Tsuchiya Y, Umemura Y, Yagita K. Circadian clock and cancer: From a viewpoint of cellular differentiation. Int J Urol 2020; 27:518-524. [PMID: 32223039 DOI: 10.1111/iju.14231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
Abstract
The circadian clock controls and adapts diverse physiological and behavioral processes according to Earth's 24-h cycle of environmental changes. The master pacemaker of the mammalian circadian clock resides in the hypothalamic suprachiasmatic nucleus, but almost all cells throughout the body show circadian oscillations in gene expression patterns and associated functions. Recent studies have shown that the circadian clock gradually develops during embryogenesis. Embryonic stem cells and induced pluripotent stem cells do not show circadian oscillations of gene expression, but gradually develop circadian clock oscillation during differentiation; thus, the developmental program of circadian clock emergence appears closely associated with cellular differentiation. Like embryonic stem cells, certain cancer cell types also lack the circadian clock. Given this similarity between embryonic stem cells and cancer cells, interest is growing in the contributions of circadian clock dysfunction to dedifferentiation and cancer development. In this review, we summarize recent advances in our understanding of circadian clock emergence during ontogenesis, and discuss possible associations with cellular differentiation and carcinogenesis. Considering the multiple physiological functions of circadian rhythms, circadian abnormalities might contribute to a host of diseases, including cancer. Insights on circadian function could lead to the identification of biomarkers for cancer diagnosis and prognosis, as well as novel targets for treatment.
Collapse
Affiliation(s)
- Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
44
|
Xu Y, Zhou X, Zheng Y, Guan H, Fu C, Xiao J, Ye Z. The association of urinary uric acid excretion with ambulatory blood pressure values in patients with chronic kidney disease. Clin Hypertens 2020; 26:4. [PMID: 32082613 PMCID: PMC7023683 DOI: 10.1186/s40885-020-0136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To analyze the association between hypertension and urinary uric acid excretion in patients with chronic kidney disease (CKD). METHODS We screened 87 patients who had been admitted at the Dept of Nephrology, Huadong hospital between April 2017 to April 2019 who had completed 24-h ambulatory blood pressure monitoring and retained 24-h urine biochemical test specimens, thirty adult patients (age ≤ 65 years) with CKD 1-2 stages were recruited in the study. Pearson's correlation analysis and multiple linear regression analysis were used to study the correlation of urinary uric acid excretion with ambulatory blood pressure values and the association of morning mean diastolic pressure (mMDP), night mean diastolic pressure (nMDP) and CV of dMSP (coefficient of variation of day mean systolic pressure) with fractional excretion of uric acid (FEua) and uric acid clearance rate (Cur). Independent T test was used to compare the differences of blood pressure values in FEua1 (FEua< 6.0%) and FEua2 (FEua≥6.0%) or Cur1 (Cur < 6.2 ml/min/1.73 m2) and Cur2 (Cur ≥ 6.2 ml/min/1.73m2) groups according to the median of FEua or Cur, respectively. RESULTS After adjusting for confounding factors, multiple linear regression analysis showed that FEua was positively associated with the mMDP and nMDP, Cur was positively associated with CV of dMSP. Levels of mMDP and nMDP in FEua1 group was lower than that in FEua2 group (both P < 0.05), level of CV of dMSP in Cur2 group were higher than that in Cur1 group (P < 0.01). CONCLUSIONS We demonstrated that there is a positive correlation of FEua with morning and night mean diastolic pressure separately and Cur is positively related to CV of dMSP in CKD population. Monitoring the trend of urinary uric acid, may have a role in the early detection for hypertension or relative risks in the population of CKD.
Collapse
Affiliation(s)
- Ying Xu
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
| | - Xun Zhou
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
| | - Yuqi Zheng
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
| | - Haochen Guan
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan’an Road, Shanghai, 200040 People’s Republic of China
| |
Collapse
|
45
|
Soliman RH, Johnston JG, Gohar EY, Taylor CM, Pollock DM. Greater natriuretic response to ENaC inhibition in male versus female Sprague-Dawley rats. Am J Physiol Regul Integr Comp Physiol 2020; 318:R418-R427. [PMID: 31913682 DOI: 10.1152/ajpregu.00060.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genes for the epithelial sodium channel (ENaC) subunits are expressed in a circadian manner, but whether this results in time-of-day differences in activity is not known. Recent data show that protein expression of ENaC subunits is higher in kidneys from female rats, yet females are more efficient in excreting an acute salt load. Thus, our in vivo study determined whether there is a time-of-day difference as well as a sex difference in the response to ENaC inhibition by benzamil. Our results showed that the natriuretic and diuretic responses to a single dose of benzamil were significantly greater in male compared with female rats whether given at the beginning of the inactive period [Zeitgeber time 0 (ZT0), 7 AM] or active period (ZT12, 7 PM). However, the response to benzamil was not significantly different between ZT0 and ZT12 dosing in either male or female rats. There was no difference in renal cortical α-ENaC protein abundance between ZT0 and ZT12 or males and females. Given previous reports of flow-induced stimulation of endothelin-1 (ET-1) production and sex differences in the renal endothelin system, we measured urinary ET-1 excretion to assess the effects of increased urine flow on intrarenal ET-1. ET-1 excretion was significantly increased following benzamil administration in both sexes, but this increase was significantly greater in females. These results support the hypothesis that ENaC activity is less prominent in maintaining Na+ balance in females independent of renal ET-1. Because ENaC subunit genes and protein expression vary by time of day and are greater in female rat kidneys, this suggests a clear disconnect between ENaC expression and channel activity.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jermaine G Johnston
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eman Y Gohar
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Crystal M Taylor
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
46
|
Zhang D, Pollock DM. Diurnal Regulation of Renal Electrolyte Excretion: The Role of Paracrine Factors. Annu Rev Physiol 2019; 82:343-363. [PMID: 31635525 DOI: 10.1146/annurev-physiol-021119-034446] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many physiological processes, including most kidney-related functions, follow specific rhythms tied to a 24-h cycle. This is largely because circadian genes operate in virtually every cell type in the body. In addition, many noncanonical genes have intrinsic circadian rhythms, especially within the liver and kidney. This new level of complexity applies to the control of renal electrolyte excretion. Furthermore, there is growing evidence that paracrine and autocrine factors, especially the endothelin system, are regulated by clock genes. We have known for decades that excretion of electrolytes is dependent on time of day, which could play an important role in fluid volume balance and blood pressure control. Here, we review what is known about the interplay between paracrine and circadian control of electrolyte excretion. The hope is that recognition of paracrine and circadian factors can be considered more deeply in the future when integrating with well-established neuroendocrine control of excretion.
Collapse
Affiliation(s)
- Dingguo Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| |
Collapse
|
47
|
Berndt N, Patzak A, Holzhütter HG. Metabolic modelling of kidney diseases: Lessons learned from the liver. Acta Physiol (Oxf) 2019; 227:e13350. [PMID: 31348847 DOI: 10.1111/apha.13350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Nikolaus Berndt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Computational and Imaging Science in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
48
|
Myung J, Wu MY, Lee CY, Rahim AR, Truong VH, Wu D, Piggins HD, Wu MS. The Kidney Clock Contributes to Timekeeping by the Master Circadian Clock. Int J Mol Sci 2019; 20:ijms20112765. [PMID: 31195684 PMCID: PMC6600447 DOI: 10.3390/ijms20112765] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/11/2023] Open
Abstract
The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.
Collapse
Affiliation(s)
- Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan.
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan.
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10672, Taiwan.
| | - Chun-Ya Lee
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
| | - Amalia Ridla Rahim
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan.
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Vuong Hung Truong
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 11031, Taiwan.
- Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Laboratory of Braintime, Taipei Medical University, Taipei 11031 & Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Dean Wu
- Department of Neurology, Shuang Ho Hospital, New Taipei City 23561, Taiwan.
- Department of Neurology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hugh David Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
49
|
Duglan D, Lamia KA. Clocking In, Working Out: Circadian Regulation of Exercise Physiology. Trends Endocrinol Metab 2019; 30:347-356. [PMID: 31054802 PMCID: PMC6545246 DOI: 10.1016/j.tem.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
Research over the past century indicates that the daily timing of physical activity impacts on both immediate performance and long-term training efficacy. Recently, several molecular connections between circadian clocks and exercise physiology have been identified. Circadian clocks are protein-based oscillators that enable anticipation of daily environmental cycles. Cell-autonomous clocks are present in almost all cells of the body, and their timing is set by a variety of internal and external signals, including hormones and dietary intake. Improved understanding of the relationship between molecular clocks and exercise will benefit professional athletes and public health guidelines for the general population. We discuss here the role of circadian clocks in exercise, and explore time-of-day effects and the proposed molecular and physiological mechanisms.
Collapse
Affiliation(s)
- Drew Duglan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Sleep disorders, nocturnal blood pressure, and cardiovascular risk: A translational perspective. Auton Neurosci 2019; 218:31-42. [DOI: 10.1016/j.autneu.2019.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
|