1
|
Zeng HX, Qin SJ, Andersson J, Li SP, Zeng QG, Li JH, Wu QZ, Meng WJ, Oudin A, Kanninen KM, Jalava P, Dong GH, Zeng XW. The emerging roles of particulate matter-changed non-coding RNAs in the pathogenesis of Alzheimer's disease: A comprehensive in silico analysis and review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125440. [PMID: 39631655 DOI: 10.1016/j.envpol.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Research on epigenetic‒environmental interactions in the development of Alzheimer's disease (AD) has accelerated rapidly in recent decades. Numerous studies have demonstrated the contribution of ambient particulate matter (PM) to the onset of AD. Emerging evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs, circular RNAs, and microRNAs, play a role in the pathophysiology of AD. In this review, we provide an overview of PM-altered ncRNAs in the brain, with emphasis on their potential roles in the pathogenesis of AD. These results suggest that these PM-altered ncRNAs are involved in the regulation of amyloid-beta pathology, microtubule-associated protein Tau pathology, synaptic dysfunction, damage to the blood‒brain barrier, microglial dysfunction, dysmyelination, and neuronal loss. In addition, we utilized in silico analysis to explore the biological functions of PM-altered ncRNAs in the development of AD. This review summarizes the knowns and unknowns of PM-altered ncRNAs in AD pathogenesis and discusses the current dilemma regarding PM-altered ncRNAs as promising biomarkers of AD. Altogether, this is the first thorough review of the connection between PM exposure and ncRNAs in AD pathogenesis, which may offer novel insights into the prevention, diagnosis, and treatment of AD associated with ambient PM exposure.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Manrique A, Clarke K, Bisesi S, Arosemena FA, Coker ES, Sabo-Attwood T. The Adverse Health Effects of Air Pollution from Sugarcane Burning: A Scoping Review of Observational and Experimental Evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:16002. [PMID: 39883532 PMCID: PMC11781560 DOI: 10.1289/ehp14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Sugarcane burning is an agricultural practice that is implemented to increase sugar yields. However, sugarcane burning produces air pollutants associated with adverse health outcomes. This review summarizes the current knowledge of the defined exposures and health effects associated with sugarcane burning and identifies research gaps. METHODS A scoping review was conducted using PubMed, Scopus, and Web-of-Science to identify peer-reviewed literature on health and exposure investigations associated with air pollution from burning sugarcane. Studies were eligible if they included both an air pollution measurement and a health outcome assessment in human workers and surrounding communities or animal studies associated with sugarcane burning. RESULTS A total of 24 studies passed our inclusion criteria, including 19 observational and five experimental studies. All observational studies were conducted in Brazil or the United States with the majority focused on respiratory (65%, 15/24), cardiovascular (13% 3/24), and renal (13%, 3/24) health outcomes. The most frequently assessed air pollutants were particulate matter [with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) and with aerodynamic diameter ≤ 10 μ m (PM 10 )] and total suspended particulates (TSP). Of the observational studies, 42% (8/19) were prospective cohorts, and 58% (11/19) employed an ecological design and applied variable exposure assessment methods. The experimental studies all used rodent models with varied exposure routes and pollutants. DISCUSSION This review supports a well-documented link between air pollution from sugarcane burning and adverse health effects in workers and neighboring communities with respiratory, renal, and cardiovascular health effects; however, several knowledge gaps were identified, including the need for expansion of studies geographically, application of more advanced exposure science to characterize and quantify sugarcane emission components, probing of emerging health effects (i.e., kidney disease) and associated biomarkers, and evaluation of vulnerable populations that neighbor sugarcane operations. Furthermore, pairing exposure measurements and health assessments in the same study would increase our knowledge and better inform policies to improve the health of workers and communities impacted by sugarcane burning. https://doi.org/10.1289/EHP14456.
Collapse
Affiliation(s)
- Andres Manrique
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Kayan Clarke
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Sarah Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Farah A. Arosemena
- Southeastern Coastal Center for Agricultural Health and Safety, University of Florida, Gainesville, Florida, USA
| | - Eric S. Coker
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Southeastern Coastal Center for Agricultural Health and Safety, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
4
|
Du X, Tao Q, Fan S, Ren J, Dong Y, Li G, He S, Cao X, Zhu Y. Traditional Mongolian medicine Wu-Lan thirteen-flavor decoction protects rat from hypertension-induced renal injury via aryl hydrocarbon receptor-mediated pathway. Drug Dev Ind Pharm 2024; 50:952-967. [PMID: 39565140 DOI: 10.1080/03639045.2024.2432596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Wu-Lan Thirteen-Flavour decoction (WLTd), a traditional Mongolian medicine, has been used for treating hypertension in clinical practice, but the chemical basis and underlying mechanisms remain unknown. METHODS The main components of WLTd were identified and quantified using HPLC and UPLC-MS/MS techniques. A compound-target-disease network was constructed using network pharmacology analysis to forecast the potential anti-hypertension targets. In vivo animal and in vitro cellular experiments were performed to validate the efficacy and molecular mechanisms of renal protection of WLTd and its main active components in spontaneous hypertension. RESULTS A total of 136 active compounds in WLTd were collected through relevant databases, and network pharmacology analysis identified that the aryl hydrocarbon receptor (AhR) signaling pathway may serve as a potential anti-hypertension targets. Eight of the active components, including vitexin, kaempferol, toosendanin, ursolic acid, matrine, oxymatrine, gardenoside and quercetin, were identified and quantified by HPLC and UPLC-MS/MS. WLTd effectively lowered the mean blood pressure (159.16 ± 13.91 vs 135 ± 13.37 mmHg), reduced the BUN (391.55 ± 59.96 vs 240.88 ± 51.15 mmol/L) and creatinine (1.78 ± 0.41 vs 0.67 ± 0.34 nmol/L) levels, and reduced hypertension-induced renal damage in SHR. AhR and related key gene expression changes predicted by network pharmacology analysis were validated by immunohistochemistry, RT-qPCR, and Western blot analyses. In vitro, studies also showed that WLTd up-regulated AhR expression in angiotensin II-induced HEK293 cell injury. CONCLUSIONS Wu-Lan Thirteen-Flavour decoction effectively protects hypertension-induced renal injury by regulating the Aryl Hydrocarbon Receptor signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Du
- State Key Laboratory of Component-Based Chinese Medicine and Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Inner Mongolia Key laboratory of Chinese & Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Qianqian Tao
- State Key Laboratory of Component-Based Chinese Medicine and Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siwen Fan
- State Key Laboratory of Component-Based Chinese Medicine and Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Ren
- Wuhai Inspection and Testing Center, Wuhai, China
| | - Yu Dong
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Gang Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Shuang He
- State Key Laboratory of Component-Based Chinese Medicine and Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodong Cao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine and Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Lin YC, Fan KC, Wu CD, Pan WC, Chen JC, Chao YP, Lai YJ, Chiu YL, Chuang YF. Yearly change in air pollution and brain aging among older adults: A community-based study in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 190:108876. [PMID: 39002330 DOI: 10.1016/j.envint.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Air pollution is recognized as a modifiable risk factor for dementia, and recent evidence suggests that improving air quality could attenuate cognitive decline and reduce dementia risk. However, studies have yet to explore the effects of improved air quality on brain structures. This study aims to investigate the impact of air pollution reduction on cognitive functions and structural brain differences among cognitively normal older adults. METHODS Four hundred and thirty-one cognitively normal older adults were from the Epidemiology of Mild Cognitive Impairment study in Taiwan (EMCIT), a community-based cohort of adults aged 60 and older, between year 2017- 2021. Annual concentrations of PM2.5, NO2, O3, and PM10 at participants' residential addresses during the 10 years before enrollment were estimated using ensemble mixed spatial models. The yearly rate of change (slope) in air pollutants was estimated for each participant. Cognitive functions and structural brain images were collected during enrollment. The relationships between the rate of air pollution change and cognitive functions were examined using linear regression models. For air pollutants with significant findings in relation to cognitive function, we further explored the association with brain structure. RESULTS Overall, all pollutant concentrations, except O3, decreased over the 10-year period. The yearly rates of change (slopes) in PM2.5 and NO2 were correlated with better attention (PM2.5: r = -0.1, p = 0.047; NO2: r = -0.1, p = 0.03) and higher white matter integrity in several brain regions. These regions included anterior thalamic radiation, superior longitudinal fasciculus, inferior longitudinal fasciculus, corticospinal tract, and inferior fronto-occipital fasciculus. CONCLUSIONS Greater rate of reduction in air pollution was associated with better attention and attention-related white matter integrity. These results provide insight into the mechanism underlying the relationship between air pollution, brain health, and cognitive aging among older adults.
Collapse
Affiliation(s)
- Ying-Cen Lin
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kang-Chen Fan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan; Research Center for Precision Environmental Medicine, Koahsiung Medical University, Koahsiung, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiu-Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Yi-Ping Chao
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yen-Jun Lai
- Division of Medical Imaging, Department of Radiology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yen-Ling Chiu
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan; Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; International Health Program, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei, Taiwan; Health Innovation Center, National Yang Ming Chao Tung Univeristy, Taipei, Taiwan.
| |
Collapse
|
6
|
Nie B, Liu X, Lei C, Liang X, Zhang D, Zhang J. The role of lysosomes in airborne particulate matter-induced pulmonary toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170893. [PMID: 38342450 DOI: 10.1016/j.scitotenv.2024.170893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
An investigation of the potential role of lysosomes in airborne particulate matter (APM) induced health risks is essential to fully comprehend the pathogenic mechanisms of respiratory diseases. It is commonly accepted that APM-induced lung injury is caused by oxidative stress, inflammatory responses, and DNA damage. In addition, there exists abundant evidence that changes in lysosomal function are essential for cellular adaptation to a variety of particulate stimuli. This review emphasizes that disruption of the lysosomal structure/function is a key step in the cellular metabolic imbalance induced by APMs. After being ingested by cells, most particles are localized within lysosomes. Thus, lysosomes become the primary locus where APMs accumulate, and here they undergo degradation and release toxic components. Recent studies have provided incontrovertible evidence that a wide variety of APMs interfere with the normal function of lysosomes. After being stimulated by APMs, lysosome rupture leads to a loss of lysosomal acidic conditions and the inactivation of proteolytic enzymes, promoting an inflammatory response by activating the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. Moreover, APMs interfere with autophagosome production or block autophagic flux, resulting in autophagy dysfunction. Additionally, APMs disrupt the normal function of lysosomes in iron metabolism, leading to disruption on iron homeostasis. Therefore, understanding the impacts of APM exposure from the perspective of lysosomes will provide new insights into the detrimental consequences of air pollution.
Collapse
Affiliation(s)
- Bingxue Nie
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chengying Lei
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xue Liang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Daoqiang Zhang
- Weihai Central Hospital Central Laboratory, Weihai 264400, Shandong, China.
| | - Jie Zhang
- The First Affiliated Hospital of Shandong First Medical University, Biomedical Sciences College, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
7
|
Whitworth KW, Rector-Houze AM, Chen WJ, Ibarluzea J, Swartz M, Symanski E, Iniguez C, Lertxundi A, Valentin A, González-Safont L, Vrijheid M, Guxens M. Relation of prenatal and postnatal PM 2.5 exposure with cognitive and motor function among preschool-aged children. Int J Hyg Environ Health 2024; 256:114317. [PMID: 38171265 DOI: 10.1016/j.ijheh.2023.114317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The literature informing susceptible periods of exposure on children's neurodevelopment is limited. We evaluated the impacts of pre- and postnatal fine particulate matter (PM2.5) exposure on children's cognitive and motor function among 1303 mother-child pairs in the Spanish INMA (Environment and Childhood) Study. Random forest models with temporal back extrapolation were used to estimate daily residential PM2.5 exposures that we averaged across 1-week lags during the prenatal period and 4-week lags during the postnatal period. The McCarthy Scales of Children's Abilities (MSCA) were administered around 5 years to assess general cognitive index (GCI) and several subscales (verbal, perceptual-performance, memory, fine motor, gross motor). We applied distributed lag nonlinear models within the Bayesian hierarchical framework to explore periods of susceptibility to PM2.5 on each MSCA outcome. Effect estimates were calculated per 5 μg/m3 increase in PM2.5 and aggregated across adjacent statistically significant lags using cumulative β (βcum) and 95% Credible Intervals (95%CrI). We evaluated interactions between PM2.5 with fetal growth and child sex. We did not observe associations of PM2.5 exposure with lower GCI scores. We found a period of susceptibility to PM2.5 on fine motor scores in gestational weeks 1-9 (βcum = -2.55, 95%CrI = -3.53,-1.56) and on gross motor scores in weeks 7-17 (βcum = -2.27,95%CrI = -3.43,-1.11) though the individual lags for the latter were only borderline statistically significant. Exposure in gestational week 17 was weakly associated with verbal scores (βcum = -0.17, 95%CrI = -0.26,-0.09). In the postnatal period (from age 0.5-1.2 years), we observed a window of susceptibility to PM2.5 on lower perceptual-performance (β = -2.42, 95%CrI = -3.37,-1.46). Unexpected protective associations were observed for several outcomes with exposures in the later postnatal period. We observed no evidence of differences in susceptible periods by fetal growth or child sex. Preschool-aged children's motor function may be particularly susceptible to PM2.5 exposures experienced in utero whereas the first year of life was identified as a period of susceptibility to PM2.5 for children's perceptual-performance.
Collapse
Affiliation(s)
- Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Alison M Rector-Houze
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, 1200 Pressler St., Houston, TX, 77030, USA
| | - Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jesus Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, Donostia-San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, Av. Navarra, 4, 20013, Donostia-San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), Campus Gipuzkoa, Av. Tolosa, 70, 20018, Donostia-San Sebastian, Spain
| | - Michael Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, 1200 Pressler St., Houston, TX, 77030, USA
| | - Elaine Symanski
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Carmen Iniguez
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, Calle Dr Moliner, 50, 46100, València, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, Av. De Catalunya, 21, 46020, València, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, Donostia-San Sebastian, Spain; Department of Preventive Medicine and Public Health, Universidad del País Vasco (UPV/EHU), Barrio Sarriena, s/n, 48940, Leioa, Spain
| | - Antonia Valentin
- Barcelona Institute of Global Health (ISGlobal), C/del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Llucia González-Safont
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, Av. De Catalunya, 21, 46020, València, Spain; Nursing and Chiropody Faculty of Valencia University, Av. De Blasko Ibanez, 13, 46010, Valencia, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), C/del Dr. Aiguader, 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Placa de la Merce, 12, 08002, Barcelona, Spain
| | - Monica Guxens
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), C/del Dr. Aiguader, 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Placa de la Merce, 12, 08002, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre (Erasmus MC), Dr. Moleaterplein 40, 30115 GD, Rotterdam, Netherlands
| |
Collapse
|
8
|
Sant'Anna MB, Kimura LF, Vieira WF, Zambelli VO, Novaes LS, Hösch NG, Picolo G. Environmental factors and their impact on chronic pain development and maintenance. Phys Life Rev 2024; 48:176-197. [PMID: 38320380 DOI: 10.1016/j.plrev.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Collapse
Affiliation(s)
| | - Louise Faggionato Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Willians Fernando Vieira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
9
|
Jäntti H, Jonk S, Gómez Budia M, Ohtonen S, Fagerlund I, Fazaludeen MF, Aakko-Saksa P, Pebay A, Lehtonen Š, Koistinaho J, Kanninen KM, Jalava PI, Malm T, Korhonen P. Particulate matter from car exhaust alters function of human iPSC-derived microglia. Part Fibre Toxicol 2024; 21:6. [PMID: 38360668 PMCID: PMC10870637 DOI: 10.1186/s12989-024-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. RESULTS Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml-1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. CONCLUSIONS Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steffi Jonk
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Gómez Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Fagerlund
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Alice Pebay
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
10
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
11
|
Fiter RJ, Murphy LJ, Gong MN, Cleven KL. The impact of air pollution on asthma: clinical outcomes, current epidemiology, and health disparities. Expert Rev Respir Med 2023; 17:1237-1247. [PMID: 38247719 DOI: 10.1080/17476348.2024.2307545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Air pollution has been shown to have a significant impact on morbidity and mortality of respiratory illnesses including asthma. AREAS COVERED Outdoor air pollution consists of a mixture of individual pollutants including vehicle traffic and industrial pollution. Studies have implicated an array of individual components of air pollution, with PM2.5, NO2, SO2, and ozone being the most classically described, and newer literature implicating other pollutants such as black carbon and volatile organic compounds. Epidemiological and cohort studies have described incidence and prevalence of pollution-related asthma and investigated both acute and chronic air pollution exposure as they relate to asthma outcomes. There is an increasing body of literature tying disparities in pollution exposure to clinical outcomes. In this narrative review, we assessed the published research investigating the association of pollution with asthma outcomes, focusing on the adult population and health care disparities. EXPERT OPINION Pollution has multiple deleterious effects on respiratory health but there is a lack of data on individualized pollution monitoring, making it difficult to establish a temporal relationship between exposure and symptoms, thereby limiting our understanding of safe exposure levels. Future research should focus on more personalized monitoring and treatment plans for mitigating exposure.
Collapse
Affiliation(s)
- Ryan J Fiter
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Lila J Murphy
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michelle N Gong
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Krystal L Cleven
- Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Finch CE. Air pollution, dementia, and lifespan in the socio-economic gradient of aging: perspective on human aging for planning future experimental studies. FRONTIERS IN AGING 2023; 4:1273303. [PMID: 38034419 PMCID: PMC10683094 DOI: 10.3389/fragi.2023.1273303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 12/02/2023]
Abstract
Air pollution (AirPoll) accelerates human aging, as assessed by increased adult mortality and earlier onset of cardiovascular diseases, and dementia. Socio-economic strata (SES) of wealth and education have parallel differences of mortality and these diseases. Children from impoverished homes differ in brain development at birth and in risk of early fat excess and hypertension. To further enhance the healthspan, biogerontologists may consider a wider range of environmental exposures from gestation through later life morbidity that comprise the Gero-Exposome. Experimental studies with rodents and nematodes document shared transcriptional responses to AirPoll. In rodents, AirPoll exposure activates gene systems for body-wide detoxification through Nrf2 and NFkB transcription factors that mediate multiple aging processes. Gestational environmental factors include maternal diet and exposure to AirPoll and cigarette smoke. Correspondingly, gestational exposure of mice to AirPoll increased adult body fat, impaired glucose clearance, and decreased adult neurogenesis in the hippocampus, a brain region damaged in dementia. Nematode larvae also respond to AirPoll with Alzheimer relevant responses. These experimental approaches could identify to interventions for expanded human health and longevity across SES gradients.
Collapse
Affiliation(s)
- Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Koenigsberg SH, Chang CJ, Ish J, Xu Z, Kresovich JK, Lawrence KG, Kaufman JD, Sandler DP, Taylor JA, White AJ. Air pollution and epigenetic aging among Black and White women in the US. ENVIRONMENT INTERNATIONAL 2023; 181:108270. [PMID: 37890265 PMCID: PMC10872847 DOI: 10.1016/j.envint.2023.108270] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND DNA methylation-based measures of biological aging have been associated with air pollution and may link pollutant exposures to aging-related health outcomes. However, evidence is inconsistent and there is little information for Black women. OBJECTIVE We examined associations of ambient particulate matter <2.5 μm and <10 μm in diameter (PM2.5 and PM10) and nitrogen dioxide (NO2) with DNA methylation, including epigenetic aging and individual CpG sites, and evaluated whether associations differ between Black and non-Hispanic White (NHW) women. METHODS Validated models were used to estimate annual average outdoor residential exposure to PM2.5, PM10, and NO2 in a sample of self-identified Black (n=633) and NHW (n=3493) women residing in the contiguous US. We used sampling-weighted generalized linear regression to examine the effects of pollutants on six epigenetic aging measures (primary: DunedinPACE, GrimAgeAccel, and PhenoAgeAccel; secondary: Horvath intrinsic epigenetic age acceleration [EAA], Hannum extrinsic EAA, and skin & blood EAA) and epigenome-wide associations for individual CpG sites. Wald tests of nested models with and without interaction terms were used to examine effect measure modification by race/ethnicity. RESULTS Black participants had higher median air pollution exposure than NHW participants. GrimAgeAccel was associated with both PM10 and NO2 among Black participants, (Q4 versus Q1, PM10: β=1.09, 95% CI: 0.16-2.03; NO2: β=1.01, 95% CI 0.08-1.94) but not NHW participants (p-for-heterogeneity: PM10=0.10, NO2=0.20). In Black participants, we also observed a monotonic exposure-response relationship between NO2 and DunedinPACE (Q4 versus Q1, NO2: β=0.029, 95% CI: 0.004-0.055; p-for-trend=0.03), which was not observed in NHW participants (p-for-heterogeneity=0.09). In the EWAS, pollutants were significantly associated with differential methylation at 19 CpG sites in Black women and one in NHW women. CONCLUSIONS In a US-wide cohort study, our findings suggest that air pollution is associated with DNA methylation alterations consistent with higher epigenetic aging among Black, but not NHW, women.
Collapse
Affiliation(s)
- Sarah H Koenigsberg
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 123 W. Franklin St., Chapel Hill, NC 27517, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jennifer Ish
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jacob K Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA; Departments of Cancer Epidemiology and Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
14
|
Park J, Kang C, Min J, Kim E, Song I, Jang H, Kwon D, Oh J, Moon J, Kim H, Lee W. Association of long-term exposure to air pollution with chronic sleep deprivation in South Korea: A community-level longitudinal study, 2008-2018. ENVIRONMENTAL RESEARCH 2023; 228:115812. [PMID: 37030407 DOI: 10.1016/j.envres.2023.115812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Although there are many findings about the effects of fine particulate matter (PM2.5) and sleep deprivation on health respectively, the association between PM2.5 and chronic sleep deprivation has rarely been investigated. Thus, we aimed to investigate this association using a nationwide survey in South Korea. METHOD We examined the association between long-term exposure to PM2.5 and chronic sleep deprivation using a national cross-sectional health survey covering the entire 226 districts in inland South Korea from 2008 to 2018, with a machine learning-based national air pollution prediction model with 1 km2 spatial resolution. RESULTS Chronic sleep deprivation was positively associated with PM2.5 in the total population (odds ratio (OR): 1.09, 95% confidence interval (CI): 1.05-1.13) and sub-population (low, middle, high population density areas with OR: 1.127, 1.09, and 1.059, respectively). The association was consistently observed in both sexes (males with OR: 1.09, females with OR: 1.09)) and was more pronounced in the elderly population (OR: 1.12) than in the middle-aged (OR: 1.07) and young (OR: 1.09) populations. CONCLUSIONS Our results are consistent with the hypothesis regarding the relationship between long-term PM2.5 exposure and chronic sleep deprivation, and the study provides quantitative evidence for public health interventions to improve air quality that can affect chronic sleep conditions.
Collapse
Affiliation(s)
- Jinah Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Cinoo Kang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jieun Min
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Ganseo-gu, Seoul, 07804, Republic of Korea.
| | - Ejin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Insung Song
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyemin Jang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Dohoon Kwon
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jieun Oh
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jeongmin Moon
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Ho Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Whanhee Lee
- Data Science, School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, South Korea.
| |
Collapse
|
15
|
Mettakoonpitak J, Sawatdichai N, Thepnuan D, Siripinyanond A, Henry CS, Chantara S. Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples. Mikrochim Acta 2023; 190:241. [PMID: 37243836 DOI: 10.1007/s00604-023-05819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
The potential reach of point-of-care (POC) diagnostics into daily routines for exposure to reactive oxygen species (ROS) and Cu in aerosolized particulate matter (PM) demands that microfluidic paper-based analytical devices (μPADs) take into consideration the simple detection of these toxic PM components. Here, we propose μPADs with a dual-detection system for simultaneous ROS and Cu(II) detection. For colorimetric ROS detection, the glutathione (GSH) assay with a folding design to delay the reaction yielded complete ROS and GSH oxidation, and improved homogeneity of color development relative to using the lateral flow pattern. For electrochemical Cu(II) determination, 1,10-phenanthroline/Nafion modified graphene screen-printed electrodes showed ability to detect Cu(II) down to pg level being low enough to be applied to PM analysis. No intra- and inter-interference affecting both systems were found. The proposed μPADs obtained LODs for 1,4-naphthoquinone (1,4-NQ), used as the ROS representative, and Cu(II) of 8.3 ng and 3.6 pg, respectively and linear working ranges of 20 to 500 ng for ROS and 1 × 10-2 to 2 × 102 ng for Cu(II). Recovery of the method was between 81.4 and 108.3% for ROS and 80.5-105.3% for Cu(II). Finally, the sensors were utilized for simultaneous ROS and Cu(II) determination in PM samples and the results statistically agreed with those using the conventional methods at 95% confidence.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Nalatthaporn Sawatdichai
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Duangduean Thepnuan
- Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
16
|
Yalamanchili J, Hennigan CJ, Reed BE. Measurement artifacts in the dithiothreitol (DTT) oxidative potential assay caused by interactions between aqueous metals and phosphate buffer. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131693. [PMID: 37245366 DOI: 10.1016/j.jhazmat.2023.131693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Metals in particulate matter (PM) are hypothesized to have enhanced toxicity based on their ability to catalyze reactive oxygen species (ROS) formation. Acellular assays are used to measure the oxidative potential (OP) of PM and its individual components. Many OP assays, including the dithiothreitol (DTT) assay, use a phosphate buffer matrix to simulate biological conditions (pH 7.4 and 37 °C). Prior work from our group observed transition metal precipitation in the DTT assay, consistent with thermodynamic equilibria. In this study, we characterized the effects of metal precipitation on OP measured by the DTT assay. Metal precipitation was affected by aqueous metal concentrations, ionic strength, and phosphate concentrations in ambient PM sampled in Baltimore, MD and a standard PM sample (NIST SRM-1648a, Urban Particulate Matter). Critically, differences in metal precipitation induced differing OP responses of the DTT assay as a function of phosphate concentration in all PM samples analyzed. These results indicate that comparison of DTT assay results obtained at differing phosphate buffer concentrations is highly problematic. Further, these results have implications for other chemical and biological assays that use phosphate buffer for pH control and their use to infer PM toxicity.
Collapse
Affiliation(s)
- Jayashree Yalamanchili
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Christopher J Hennigan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | - Brian E Reed
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
17
|
Feng B, Wang W, Zhou B, Zhou Y, Wang J, Liao F. Mapping the long-term associations between air pollutants and COVID-19 risks and the attributable burdens in the continental United States. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121418. [PMID: 36898647 PMCID: PMC9994533 DOI: 10.1016/j.envpol.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Numerous studies have investigated the associations between COVID-19 risks and long-term exposure to air pollutants, revealing considerable heterogeneity and even contradictory regional results. Studying the spatial heterogeneity of the associations is essential for developing region-specific and cost-effective air-pollutant-related public health policies for the prevention and control of COVID-19. However, few studies have investigated this issue. Using the USA as an example, we constructed single/two-pollutant conditional autoregressions with random coefficients and random intercepts to map the associations between five air pollutants (PM2.5, O3, SO2, NO2, and CO) and two COVID-19 outcomes (incidence and mortality) at the state level. The attributed cases and deaths were then mapped at the county level. This study included 3108 counties from 49 states within the continental USA. The county-level air pollutant concentrations from 2017 to 2019 were used as long-term exposures, and the county-level cumulative COVID-19 cases and deaths through May 13, 2022, were used as outcomes. Results showed that considerably heterogeneous associations and attributable COVID-19 burdens were found in the USA. The COVID-19 outcomes in the western and northeastern states appeared to be unaffected by any of the five pollutants. The east of the USA bore the greatest COVID-19 burdens attributable to air pollution because of its high pollutant concentrations and significantly positive associations. PM2.5 and CO were significantly positively associated with COVID-19 incidence in 49 states on average, whereas NO2 and SO2 were significantly positively associated with COVID-19 mortality. The remaining associations between air pollutants and COVID-19 outcomes were not statistically significant. Our study provided implications regarding where a major concern should be placed on a specific air pollutant for COVID-19 control and prevention, as well as where and how to conduct additional individual-based validation research in a cost-effective manner.
Collapse
Affiliation(s)
- Benying Feng
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
| | - Wei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
| | - Ying Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
| | - Jinyu Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
| | - Fang Liao
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
18
|
Tang J, Chen A, He F, Shipley M, Nevill A, Coe H, Hu Z, Zhang T, Kan H, Brunner E, Tao X, Chen R. Association of air pollution with dementia: a systematic review with meta-analysis including new cohort data from China. ENVIRONMENTAL RESEARCH 2023; 223:115048. [PMID: 36529331 DOI: 10.1016/j.envres.2022.115048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
It remains unclear whether a total exposure to air pollution (AP) is associated with an increased risk of dementia. Little is known on the association in low- and middle-income countries. Two cohort studies in China (in Anhui cohort 1402 older adults aged ≥ 60 followed up for 10 years; in Zhejiang cohort 6115 older adults followed up for 5 years) were conducted to examine particulate matter - PM2.5 associated with all dementia and air quality index (AQI) with Alzheimer's disease, respectively. A systematic literature review and meta-analysis was performed following worldwide literature searched until May 20, 2020 to identify 15 population-based cohort studies examining the association of AP with dementia (or any specific type of dementia) through PubMed, MEDLINE, PsycINFO, SocINDEX, CINHAL, and CNKI. The cohort studies in China showed a significantly increased relative risk (RR) of dementia in relation to AP exposure; in Anhui cohort the adjusted RR was 2.14 (95% CI 1.00-4.56) in people with PM2.5 exposure at ≥ 64.5 μg/m3 versus <63.5 μg/m3 and in Zhejiang cohort the adjusted RR was 2.28 (1.07-4.87) in AQI>90 versus ≤ 80. The systematic review revealed that all 15 studies were undertaken in high income countries/regions, with inconsistent findings. While they had reasonably good overall quality of studies, seven studies did not adjust smoking in analysis and 13 did not account for depression. Pooling all eligible data demonstrated that dementia risk increased with the total AP exposure (1.13, 1.08-1.19). Data analysis of air pollutants showed that the RR significantly increased with PM2.5 (1.06, 1.03-1.10 in 2nd tertile exposure; 1.13, 1.07-1.19 in 3rd tertile versus 1st tertile), PM10 (1.05, 0.86-1.29; 1.62, 0.60-4.36), carbon monoxide (1.69, 0.72-3.93; 1.52, 1.35-1.71), nitrogen dioxide (1.06, 1.03-1.09; 1.18, 1.10-1.28) and nitrogen oxides (1.09, 1.04-1.15; 1.26, 1.13-1.41), but not ozone. Controlling air pollution and targeting on specific pollutants would reduce dementia globally.
Collapse
Affiliation(s)
- Jie Tang
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK; Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Anthony Chen
- Faculty of Sciences and Technology, Middlesex University, UK
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Martin Shipley
- Department of Epidemiology and Public Health, University College London, UK
| | - Alan Nevill
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Hugh Coe
- Centre for Atmospheric Science, University of Manchester, UK
| | - Zhi Hu
- School of Health Administration, Anhui Medical University, China
| | - Tao Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Haidong Kan
- School of Public Health, Fudan University, China
| | - Eric Brunner
- Department of Epidemiology and Public Health, University College London, UK
| | - Xuguang Tao
- Division of Occupational and Environmental Medicine, Johns Hopkins School of Medicine, John Hopkins University, USA
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK; Division of Occupational and Environmental Medicine, Johns Hopkins School of Medicine, John Hopkins University, USA.
| |
Collapse
|
19
|
Zhang H, D'Agostino C, Tulisiak C, Thorwald MA, Bergkvist L, Lindquist A, Meyerdirk L, Schulz E, Becker K, Steiner JA, Cacciottolo M, Kwatra M, Rey NL, Escobar Galvis ML, Ma J, Sioutas C, Morgan TE, Finch CE, Brundin P. Air pollution nanoparticle and alpha-synuclein fibrils synergistically decrease glutamate receptor A1, depending upon nPM batch activity. Heliyon 2023; 9:e15622. [PMID: 37128335 PMCID: PMC10148131 DOI: 10.1016/j.heliyon.2023.e15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Background Epidemiological studies have variably linked air pollution to increased risk of Parkinson's disease (PD). However, there is little experimental evidence for this association. Alpha-synuclein (α-syn) propagation plays central roles in PD and glutamate receptor A1 (GluA1) is involved in memory and olfaction function. Methods Each mouse was exposed to one of three different batches of nano-particulate matter (nPM) (300 μg/m3, 5 h/d, 3 d/week), collected at different dates, 2017-2019, in the same urban site. After these experiments, these nPM batches were found to vary in activity. C57BL/6 female mice (3 mo) were injected with pre-formed murine α-synuclein fibrils (PFFs) (0.4 μg), which act as seeds for α-syn aggregation. Two exposure paradigms were used: in Paradigm 1, PFFs were injected into olfactory bulb (OB) prior to 4-week nPM (Batch 5b) exposure and in Paradigm 2, PFFs were injected at 4th week during 10-week nPM exposure (Batches 7 and 9). α-syn pSer129, microglia Iba1, inflammatory cytokines, and Gria1 expression were measured by immunohistochemistry or qPCR assays. Results As expected, α-syn pSer129 was detected in ipsilateral OB, anterior olfactory nucleus, amygdala and piriform cortex. One of the three batches of nPM caused a trend for elevated α-syn pSer129 in Paradigm 1, but two other batches showed no effect in Paradigm 2. However, the combination of nPM and PFF significantly decreased Gria1 mRNA in both the ipsi- and contra-lateral OB and frontal cortex for the most active two nPM batches. Neither nPM nor PFFs alone induced responses of microglia Iba1 and expression of Gria1 in the OB and cortex. Conclusion Exposures to ambient nPM had weak effect on α-syn propagation in the brain in current experimental paradigms; however, nPM and α-syn synergistically downregulated the expression of Gria1 in both OB and cortex.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, USA
- Corresponding author.
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | - Max A. Thorwald
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | | | | | - Emily Schulz
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | | | - Mohit Kwatra
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | - Jiyan Ma
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | |
Collapse
|
20
|
Akhlaq S, Ara SA, Ahmad B, Fazil M, Akram U, Haque M, Khan AA. Interventions of Unani medicine for maintenance of health with special reference to air quality: an evidence-based review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:85-96. [PMID: 34883008 DOI: 10.1515/reveh-2021-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This article aims to discuss the impact of air quality on human health, measures to achieve the goal of good indoor air quality and proposed benefits of interventions of Unani Medicine with an evidence-based approach. CONTENT The significance of air quality on the health of the community cannot be denied. Recent evidences from WHO illustrated data on severe air pollutants and their impacts on human health ranges from minor upper respiratory irritation to chronic respiratory ailments including lung carcinoma and heart disease associated with premature mortality and reduced life expectancy. In Unani Medicine, air has been included in the list of factors, which are six in number and play the central role in prevention of diseases and maintenance of health. Air is considered as the medium of most of the extrinsic factors such as chemical and biological pollutants affecting health and their exposure results in short and long-term health issues. The literature of Unani Medicine proposes many simple and effective measures, which help to improve indoor and outdoor air quality. The goal of outdoor clean air is achieved through implementation of measures to tackle the source of pollution, while indoor clean air is attained through various means e.g., fumigation with herbal drugs. Hence, an extensive literature survey on Unani reserve was conducted to collect information about the concept of air discussed under the heading of six essential factors and its implication in prevention of diseases and maintenance of health. Further, research databases such as Pub Med, Google Scholar, and Science-Direct were broadly searched for evidence on the efficacy of herbals mentioned in Unani literature for the indoor air purification and subsequent air quality improvement. SUMMARY AND OUTLOOK Recent studies showed good air quality leads to decrease in mortality, particularly of respiratory and cardiovascular deaths whereas poor air quality results in a variety of diseases. Unani scholars prescribed several regimens such as Bukhoor (Fumigation), Sa'oot (Nasal instillation) and use of Abeer (Perfumes) and Nadd (Incense) for the improvement of air quality. Likewise various herbal fumigants and sprays containing drugs like mī'a sā'ila (Liquidambar orientalis Mill.), mastagi (Pistacia lentiscus L.), mushk (Moschus moschiferus L.), loban (Styrax benzoides W. G. Craib), ābnoos (Diospyros ebenum J. Koenig ex Retz), zā'fran (Crocus sativus L.) and sirka (vinegar) etc. has been well explained and used exclusively for air purification and improvement of AQI. Therefore, in the present scenario of altered air quality, we forward certain measures described in Unani system of medicine for health promotion and protection. Scientific evidence on several drugs reveal the presence of a number of pharmacologically active substances, which may provide a new approach into the purification of air.
Collapse
|
21
|
Cai J, Shen Y, Zhao Y, Meng X, Niu Y, Chen R, Quan G, Li H, Groeger JA, Du W, Hua J, Kan H. Early-Life Exposure to PM 2.5 and Sleep Disturbances in Preschoolers from 551 Cities of China. Am J Respir Crit Care Med 2023; 207:602-612. [PMID: 36170612 DOI: 10.1164/rccm.202204-0740oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Air pollution has been linked with sleep disturbance in adults, but the association in children remains unclear. Objectives: To examine the associations of prenatal and postnatal exposure to fine particulate matter (particulate matter ⩽2.5 μm in aerodynamic diameter; PM2.5) with sleep quality and sleep disturbances among children in 551 Chinese cities. Methods: A total of 1,15,023 children aged 3-7 years from the Chinese National Cohort of Motor Development were included. Sleep quality was measured using the Children's Sleep Habits Questionnaire (CSHQ). PM2.5 exposure was estimated using a satellite-based model. Generalized additive mixed models with Gaussian and binomial distributions were used to examine the associations of PM2.5 exposure with CSHQ scores and risk of sleep disturbance, respectively, adjusting for demographic characteristics and temporal trends. Measurements and Main Results: Early-life PM2.5 exposure was associated with higher total CSHQ score, and the association was stronger for exposure at age 0-3 years (change of CSHQ score per interquartile range increase of PM2.5 = 0.46; 95% confidence interval [CI], 0.29-0.63) than during pregnancy (0.22; 95% CI, 0.12-0.32). The associations were more evident in sleep-disordered breathing and daytime sleepiness. Postnatal PM2.5 exposure was associated with increased risk of sleep disturbance (adjusted odds ratio for per-interquartile range increase of PM2.5 exposure at age 0-3 years, 1.10; 95% CI, 1.04-1.15), but no associations were found for prenatal exposure. Children who were exclusively breastfed for <6 months and had neonatal ICU admission may be more vulnerable to sleep disturbance related to PM2.5 exposure. Conclusions: PM2.5 exposure can impair sleep quality in preschool children.
Collapse
Affiliation(s)
- Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yang Shen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yan Zhao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Guangbin Quan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and
| | - John A Groeger
- Department of Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Wenchong Du
- Department of Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Jing Hua
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Kritikos M, Diminich ED, Meliker J, Mielke M, Bennett DA, Finch CE, Gandy SE, Carr MA, Yang X, Kotov R, Kuan P, Bromet EJ, Clouston SAP, Luft BJ. Plasma amyloid beta 40/42, phosphorylated tau 181, and neurofilament light are associated with cognitive impairment and neuropathological changes among World Trade Center responders: A prospective cohort study of exposures and cognitive aging at midlife. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12409. [PMID: 36911360 PMCID: PMC9994167 DOI: 10.1002/dad2.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 03/14/2023]
Abstract
Introduction World Trade Center (WTC) responders are experiencing a high risk of mild cognitive impairment (MCI) and dementia, though the etiology remains inadequately characterized. This study investigated whether WTC exposures and chronic post-traumatic stress disorder (PTSD) were correlated with plasma biomarkers characteristic of Alzheimer's disease (AD) neuropathology. Methods Eligible participants included WTC-exposed individuals with a baseline cognitive assessment and available plasma sample. We examined levels of the amyloid beta (Aβ)40/42 ratio, phosphorylated tau 181 (p-tau181), and neurofilament light chain (NfL) and associations with a WTC exposures (duration on site ≥15 weeks, dust cloud), the PTSD Symptom Checklist for Diagnostic and Statistical Manual of Mental Disorders, 4th edition PTSD, and classification of amyloid/tau/neurodegeneration (AT[N]) profiles. Multinomial logistic regressions assessed whether biomarkers predicted increased risk of MCI or dementia. Results Of 1179 eligible responders, 93.0% were male, mean (standard deviation) age 56.6 years (7.8). Aβ40/42, p-tau181, and NfL intercorrelated and increased with age. In subgroup analyses of responders with available neuroimaging data (n = 75), Aβ40/42 and p-tau181 were further associated with decreased hippocampal volume (Spearman's ρ = -0.3). Overall, 58.08% of responders with dementia had ≥1 elevated biomarker, and 3.45% had elevations across all biomarkers. In total, 248 (21.05%) had MCI and 70 (5.94%) had dementia. Increased risk of dementia was associated with plasma AT(N) profile T+ or A+N+. Exposure on site ≥15 weeks was independently associated with T+ (adjusted risk ratio [aRR] = 1.03 [1.01-1.05], P = 0.009), and T+N+ profile (aRR = 2.34 [1.12-4.87]). The presence of PTSD was independently associated with risk of A+ (aRR = 1.77 [1.11-2.82]). Discussion WTC exposures and chronic PTSD are associated with plasma biomarkers consistent with neurodegenerative disease.
Collapse
Affiliation(s)
- Minos Kritikos
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Erica D. Diminich
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Jaymie Meliker
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Michelle Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush UniversityChicagoIllinoisUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sam E. Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Psychiatry and Mount Sinai Alzheimer's Disease Research CenterIcahn School of Medicine, Mount SinaiNew YorkNew YorkUSA
| | - Melissa A. Carr
- Department of MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Xiaohua Yang
- Department of MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Roman Kotov
- Department of PsychiatryRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Pei‐Fen Kuan
- Department of Applied MathematicsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Evelyn J. Bromet
- Department of PsychiatryRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Sean A. P. Clouston
- Program in Public Health and Department of FamilyPopulation, and Preventive MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Benjamin J. Luft
- Department of MedicineRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
23
|
Shang M, Tang M, Xue Y. Neurodevelopmental toxicity induced by airborne particulate matter. J Appl Toxicol 2023; 43:167-185. [PMID: 35995895 DOI: 10.1002/jat.4382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Airborne particulate matter (PM), the primary component associated with health risks in air pollution, can negatively impact human health. Studies have shown that PM can enter the brain by inhalation, but data on the exact quantity of particles that reach the brain are unknown. Particulate matter exposure can result in neurotoxicity. Exposure to PM poses a greater health risk to infants and children because their nervous systems are not fully developed. This review paper highlights the association between PM and neurodevelopmental toxicity (NDT). Exposure to PM can induce oxidative stress and inflammation, potentially resulting in blood-brain barrier damage and increased susceptibility to development of neurodevelopmental disorders (NDD), such as autism spectrum disorders and attention deficit disorders. In addition, human and animal exposure to PM can induce microglia activation and epigenetic alterations and alter the neurotransmitter levels, which may increase risks for development of NDD. However, the systematic comparisons of the effects of PM on NDD at different ages of exposure are deficient. The elucidation of PM exposure risks and NDT in children during the early developmental stages are of great importance. The synthesis of current research may help to identify markers and mechanisms of PM-induced neurodevelopmental toxicity, allowing for the development of strategies to prevent permanent damage of developing brain.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Tsai LJ, Yuan TH, Shie RH, Chiang CH, Chan CC. Association between ambient air pollution exposure and insomnia among adults in Taipei City. Sci Rep 2022; 12:19064. [PMID: 36351973 PMCID: PMC9646727 DOI: 10.1038/s41598-022-21964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
Ambient air pollution was known to cause central nervous system diseases and depressive symptoms. In this study, we examined the associations between air pollution exposure and the prevalence of insomnia in Taipei City of Taiwan. We applied the health information system of electrical medical records of Taipei City Hospital to collect a total of 5108 study subjects (insomniacs N = 912 and non-insomniacs N = 4196) over 18 years old from the family medicine and internal medicine outpatients of six branches of Taipei City Hospital. These patients were grouped into insomniacs and non-insomniacs following the primary insomnia diagnosis (ICD9:780.52, 780.54, 307.41, 307.42, ICD10: G47.00, G47.01, G47.09, F51.01, F51.09) and the prescription times of anxiolytics and hypnotics. We estimated one-year average concentrations of PM2.5, ozone, and NOx before the first date of insomnia diagnosis and the last date of outpatient visit for insomniacs and non-insomniacs, respectively, by using the data of nearest air quality monitoring stations relative to study subjects' residential addresses. Logistic regression analysis was employed to examine the independent effects of air pollution concentrations on the risk of insomnia. One-year average PM2.5, ozone, and NOx levels for insomniacs was significantly higher than those of non-insomniacs. After adjusting for confounding factors, increase each 1(μg/m3) in one-year average PM2.5 showed a statistically significant association with insomnia (the odds ratio 1.610, 95% CI [1.562,1.660]). As to multi pollutants, one-year average PM2.5 (1.624, [1.570, 1.681] and ozone (1.198, [1.094, 1.311]) exposure showed a significant association with insomnia. Subgroup analysis revealed that the influence of PM2.5 and ozone on insomnia have significant risks in people with major chronic disease. This study demonstrated a positive association between PM2.5 and ozone exposure and the prevalence of hypnotic-treated insomnia. Especially, the people with major chronic diseases were with obvious effect of PM2.5 and ozone on risk of insomnia.
Collapse
Affiliation(s)
- Liang-Ju Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No.17, Xu-Zhou Rd., Taipei, 10055, Taiwan
- Department of Family Medicine, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Ruei-Hao Shie
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ching-Han Chiang
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No.17, Xu-Zhou Rd., Taipei, 10055, Taiwan.
| |
Collapse
|
25
|
Armas FV, D’Angiulli A. Neuroinflammation and Neurodegeneration of the Central Nervous System from Air Pollutants: A Scoping Review. TOXICS 2022; 10:666. [PMID: 36355957 PMCID: PMC9698785 DOI: 10.3390/toxics10110666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this scoping review, we provide a selective mapping of the global literature on the effects of air pollution on the life-span development of the central nervous system. Our synthesis first defines developmental neurotoxicants and the model effects of particulate matter. We then discuss air pollution as a test bench for neurotoxicants, including animal models, the framework of systemic inflammation in all affected organs of the body, and the cascade effects on the developing brain, with the most prevalent neurological structural and functional outcomes. Specifically, we focus on evidence on magnetic resonance imaging and neurodegenerative diseases, and the links between neuronal apoptosis and inflammation. There is evidence of a developmental continuity of outcomes and effects that can be observed from utero to aging due to severe or significant exposure to neurotoxicants. These substances alter the normal trajectory of neurological aging in a propulsive way towards a significantly higher rate of acceleration than what is expected if our atmosphere were less polluted. The major aggravating role of this neurodegenerative process is linked with the complex action of neuroinflammation. However, most recent evidence learned from research on the effects of COVID-19 lockdowns around the world suggests that a short-term drastic improvement in the air we breathe is still possible. Moreover, the study of mitohormesis and vitagenes is an emerging area of research interest in anti-inflammatory and antidegenerative therapeutics, which may have enormous promise in combatting the deleterious effects of air pollution through pharmacological and dietary interventions.
Collapse
Affiliation(s)
| | - Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
26
|
Li G, Zhao H, Hu M, He J, Yang W, Zhang H, Zhu Z, Zhu J, Huang F. Short-term exposure to six air pollutants and cause-specific cardiovascular mortality of nine counties or districts in Anhui Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75072-75085. [PMID: 35648349 DOI: 10.1007/s11356-022-21128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Recently, the burden of cardiovascular disease (CVD) has attracted global attention. Meanwhile, CVD has become the leading cause of death in China. Some epidemiological studies have indicated that ambient air pollution may contribute to increased mortality from CVD diseases. Many studies have found a strong association between air pollutants and the risk of CVD deaths in some big cities, but few have focused on the effects of six pollutants in rural areas. Our study aimed to investigate the effects of six air pollutants (CO, NO2, O3, PM2.5, PM10, and SO2) on CVD deaths of rural areas in Anhui Province and to further clarify which populations were susceptible to air pollution. First, the generalized additive models were combined with the distributed lag nonlinear models to evaluate the individual effects of air pollution on CVD deaths in each area. Then, random-effects models were used to aggregate the associations between air pollutants and CVD mortality risk in nine regions. Overall, all six pollutants had a statistically significant effect on the risk of CVD deaths on the lag 07 days. The associations between PM2.5, PM10, and SO2 and daily CVD deaths were strongest, with maximum cumulative RR (lag 07) of 1.91 (1.64-2.18), 2.27 (1.50-3.05), and 2.13 (1.44-2.82). In general, we found that six air pollutants were the important risk factors for CVD and specific CVD deaths in Anhui Province. The elderly were susceptible to PM2.5, PM10, and SO2.
Collapse
Affiliation(s)
- Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wanjun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhenyu Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jinliang Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Shushan District, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
27
|
Skuland T, Grytting VS, Låg M, Jørgensen RB, Snilsberg B, Leseman DLAC, Kubátová A, Emond J, Cassee FR, Holme JA, Øvrevik J, Refsnes M. Road tunnel-derived coarse, fine and ultrafine particulate matter: physical and chemical characterization and pro-inflammatory responses in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:45. [PMID: 35787286 PMCID: PMC9251916 DOI: 10.1186/s12989-022-00488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traffic particulate matter (PM) comprises a mixture of particles from fuel combustion and wear of road pavement, tires and brakes. In countries with low winter temperatures the relative contribution of mineral-rich PM from road abrasion may be especially high due to use of studded tires during winter season. The aim of the present study was to sample and characterize size-fractioned PM from two road tunnels paved with different stone materials in the asphalt, and to compare the pro-inflammatory potential of these fractions in human bronchial epithelial cells (HBEC3-KT) in relation to physicochemical characteristics. METHODS The road tunnel PM was collected with a vacuum pump and a high-volume cascade impactor sampler. PM was sampled during winter, both during humid and dry road surface conditions, and before and after cleaning the tunnels. Samples were analysed for hydrodynamic size distribution, content of elemental carbon (EC), organic carbon (OC) and endotoxin, and the capacity for acellular generation of reactive oxygen species. Cytotoxicity and pro-inflammatory responses were assessed in HBEC3-KT cells after exposure to coarse (2.5-10 μm), fine (0.18-2.5 μm) and ultrafine PM (≤ 0.18 μm), as well as particles from the respective stone materials used in the pavement. RESULTS The pro-inflammatory potency of the PM samples varied between road tunnels and size fractions, but showed more marked responses than for the stone materials used in asphalt of the respective tunnels. In particular, fine samples showed significant increases as low as 25 µg/mL (2.6 µg/cm2) and were more potent than coarse samples, while ultrafine samples showed more variable responses between tunnels, sampling conditions and endpoints. The most marked responses were observed for fine PM sampled during humid road surface conditions. Linear correlation analysis showed that particle-induced cytokine responses were correlated to OC levels, while no correlations were observed for other PM characteristics. CONCLUSIONS The pro-inflammatory potential of fine road tunnel PM sampled during winter season was high compared to coarse PM. The differences between the PM-induced cytokine responses were not related to stone materials in the asphalt. However, the ratio of OC to total PM mass was associated with the pro-inflammatory potential.
Collapse
Affiliation(s)
- Tonje Skuland
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.
| | - Vegard Sæter Grytting
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Marit Låg
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Rikke Bræmming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | - Daan L A C Leseman
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Jessica Emond
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Flemming R Cassee
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jørn A Holme
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Johan Øvrevik
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066, 0316, Blindern, Oslo, Norway
| | - Magne Refsnes
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| |
Collapse
|
28
|
Wang H, Zhang H, Li J, Liao J, Liu J, Hu C, Sun X, Zheng T, Xia W, Xu S, Wang S, Li Y. Prenatal and early postnatal exposure to ambient particulate matter and early childhood neurodevelopment: A birth cohort study. ENVIRONMENTAL RESEARCH 2022; 210:112946. [PMID: 35167848 DOI: 10.1016/j.envres.2022.112946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Adverse impacts of prenatal or postnatal ambient particulate matter exposure have been identified on offspring neurodevelopment. However, it is unclear whether the effect in the two exposure periods is different for early childhood neurodevelopment. This study aimed to evaluate and compare the associations of prenatal and early postnatal exposure to ambient particulate matter with offspring neurodevelopment at 2 years of age and to identify which period was more sensitive to the effects of ambient particulate matter on offspring neurodevelopment. A total of 1331 mother-child pairs from a birth cohort were included in this study from October 2013 to September 2014 in Wuhan, China. The concentrations of ambient daily fine particulate matter (PM2.5) and particulate matter less than 10 μm in aerodynamic diameter (PM10) at each participant's home address during pregnancy and the first two years after birth were estimated by land-use regression models (LUR). Offspring neurodevelopment was measured by the Chinese revision of Bayley Scale of Infant Development (BSID-CR) for each child at 2 years of age. Mental developmental index (MDI) and psychomotor developmental index (PDI) from the BSID-CR were used as outcome variables. A generalized estimating equation (GEE) model was used to estimate the associations of prenatal and postnatal PM2.5 and PM10 exposure with offspring neurodevelopment. After adjusting for potential confounders, we found that both prenatal and early postnatal exposure to PM2.5 and PM10 were associated with decreased offspring MDI and PDI scores. Compared with prenatal exposure, the associations of early postnatal exposure to PM2.5 and PM10 with offspring MDI and PDI were stronger. This study indicates that exposure to ambient particulate matters, mainly during early postnatal period and to a lesser extent prenatally, is associated with impaired offspring neurodevelopment.
Collapse
Affiliation(s)
- Hanjin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiaqiang Liao
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shiqiong Wang
- Wuhan Medical & Healthcare Center for Women and Children, Wuhan 430000, Hubei, People's Republic of China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
29
|
O’Day PA, Pattammattel A, Aronstein P, Leppert VJ, Forman HJ. Iron Speciation in Respirable Particulate Matter and Implications for Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7006-7016. [PMID: 35235749 PMCID: PMC9179659 DOI: 10.1021/acs.est.1c06962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter (PM) air pollution poses a major global health risk, but the role of iron (Fe) is not clearly defined because chemistry at the particle-cell interface is often not considered. Detailed spectromicroscopy characterizations of PM2.5 samples from the San Joaquin Valley, CA identified major Fe-bearing components and estimated their relative proportions. Iron in ambient PM2.5 was present in spatially and temporally variable mixtures, mostly as Fe(III) oxides and phyllosilicates, but with significant fractions of metallic iron (Fe(0)), Fe(II,III) oxide, and Fe(III) bonded to organic carbon. Fe(0) was present as aggregated, nm-sized particles that comprised up to ∼30% of the Fe spectral fraction. Mixtures reflect anthropogenic and geogenic particles subjected to environmental weathering, but reduced Fe in PM originates from anthropogenic sources, likely as abrasion products. Possible mechanistic pathways involving Fe(0) particles and mixtures of Fe(II) and Fe(III) surface species may generate hydrogen peroxide and oxygen-centered radical species (hydroxyl, hydroperoxyl, or superoxide) in Fenton-type reactions. From a health perspective, PM mixtures with reduced and oxidized Fe will have a disproportionate effect in cellular response after inhalation because of their tendency to shuttle electrons and produce oxidants and electrophiles that induce inflammation and oxidative stress.
Collapse
Affiliation(s)
- Peggy A. O’Day
- Life
and Environmental Sciences Department and the Sierra Nevada Research
Institute, University of California, Merced, California 95343, United States
- Environmental
Systems Graduate Program, University of
California, Merced, 95343, United States
| | - Ajith Pattammattel
- Life
and Environmental Sciences Department and the Sierra Nevada Research
Institute, University of California, Merced, California 95343, United States
- NSLS
II, Brookhaven National Laboratory, Upton, New York 11973 United States
| | - Paul Aronstein
- Environmental
Systems Graduate Program, University of
California, Merced, 95343, United States
| | - Valerie J. Leppert
- Materials
Science and Engineering Department, University
of California, Merced, California 95343, United States
| | - Henry Jay Forman
- Life
and Environmental Sciences Department and the Sierra Nevada Research
Institute, University of California, Merced, California 95343, United States
- Leonard
Davis School of Gerontology, University
of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
30
|
Impact of COVID-19 Lockdown on Oxidative Potential of Particulate Matter: Case of Athens (Greece). TOXICS 2022; 10:toxics10060280. [PMID: 35736890 PMCID: PMC9229565 DOI: 10.3390/toxics10060280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022]
Abstract
This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol OP. For this, daily particulate matter (PM) samples at an urban background site were collected and analyzed with a chemical (acellular) assay based on Dithiothreitol (DTT) during the COVID-19 restriction period in Athens (Greece). The obtained time-series of OP, PM2.5, organic matter (OM) and SO42− of the pre-, post- and lockdown periods were also compared to the data of the same time periods during the years 2017–2019. Even though all traffic-related emissions have been significantly reduced during the lockdown period (by 30%), there is no reduction in water-soluble OP, organics and sulfate concentrations of aerosol during 2020. The results reveal that the decrease in traffic was not sufficient to drive any measurable change on OP, suggesting that other sources—such as biomass burning and secondary aerosol from long-range transport, which remained unchanged during the COVID lockdown—are the main contributors to OP in Athens, Greece.
Collapse
|
31
|
Caumo S, Yera AB, Vicente A, Alves C, Roubicek DA, de Castro Vasconcellos P. Particulate matter-bound organic compounds: levels, mutagenicity, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31293-31310. [PMID: 35001282 DOI: 10.1007/s11356-021-17965-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Increased industrialization and consumption of fossil fuels in the Metropolitan Region of São Paulo (MRSP), Brazil, have caused a growth of the particulate matter emissions to the atmosphere and an increase in population health problems. Particulate and gaseous phase samples were collected in different short campaigns (2015, 2016, and 2017) near an urban-industrial area. Organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAH), and its derivatives (nitro and oxy-PAH), n-alkanes, hopanes, and pesticides were determined. The Salmonella/microsome test confirmed the mutagenic activity of these samples. Among PAH, benzo(a)pyrene was detected as one of the most abundant compounds. Benzo(a)pyrene equivalent concentrations for PAH and nitro-PAH, and the associated risk of lung cancer, showed values above those recommended in the literature. The profile of n-alkanes confirmed the predominance of anthropogenic sources. Pesticide concentrations and estimated risks, such as the daily inhalation exposure and hazard quotient, suggest that exposure to these compounds in this area may be dangerous to human health.
Collapse
Affiliation(s)
- Sofia Caumo
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Aleinnys B Yera
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Deborah A Roubicek
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, São Paulo, Brazil
| | | |
Collapse
|
32
|
Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7811-7836. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Airborne particulate matter (PM) exerts huge negative impacts on human health worldwide, not only targeting the respiratory system but more importantly inducing and aggravating associated chronic diseases like asthma, lung cancer, atherosclerosis, diabetes mellitus and Alzheimer diseases. Food-derived bioactive compounds like vitamins, dietary polyphenols, omega-3 polyunsaturated fatty acids and sulforaphane are feasible alternative therapeutic approaches against PM-mediated potential health damages, drawing great attention in recent years. In this review, the association between PM exposure and risks of developing chronic diseases, and the detailed mechanisms underlying the detrimental effects of PM will be discussed. Subsequently, principal food-derived bioactive compounds, with emphasize on the preventative or protective effects against PM, along with potential mechanisms will be elucidated. This comprehensive review will discuss and present current research findings to reveal the nutritional intervention as a preventative or therapeutic strategy against ambient air pollution, thereby lowering the risk of developing chronic diseases.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Clouston SAP, Hall CB, Kritikos M, Bennett DA, DeKosky S, Edwards J, Finch C, Kreisl WC, Mielke M, Peskind ER, Raskind M, Richards M, Sloan RP, Spiro A, Vasdev N, Brackbill R, Farfel M, Horton M, Lowe S, Lucchini RG, Prezant D, Reibman J, Rosen R, Seil K, Zeig-Owens R, Deri Y, Diminich ED, Fausto BA, Gandy S, Sano M, Bromet EJ, Luft BJ. Cognitive impairment and World Trade Centre-related exposures. Nat Rev Neurol 2022; 18:103-116. [PMID: 34795448 PMCID: PMC8938977 DOI: 10.1038/s41582-021-00576-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
On 11 September 2001 the World Trade Center (WTC) in New York was attacked by terrorists, causing the collapse of multiple buildings including the iconic 110-story 'Twin Towers'. Thousands of people died that day from the collapse of the buildings, fires, falling from the buildings, falling debris, or other related accidents. Survivors of the attacks, those who worked in search and rescue during and after the buildings collapsed, and those working in recovery and clean-up operations were exposed to severe psychological stressors. Concurrently, these 'WTC-affected' individuals breathed and ingested a mixture of organic and particulate neurotoxins and pro-inflammogens generated as a result of the attack and building collapse. Twenty years later, researchers have documented neurocognitive and motor dysfunctions that resemble the typical features of neurodegenerative disease in some WTC responders at midlife. Cortical atrophy, which usually manifests later in life, has also been observed in this population. Evidence indicates that neurocognitive symptoms and corresponding brain atrophy are associated with both physical exposures at the WTC and chronic post-traumatic stress disorder, including regularly re-experiencing traumatic memories of the events while awake or during sleep. Despite these findings, little is understood about the long-term effects of these physical and mental exposures on the brain health of WTC-affected individuals, and the potential for neurocognitive disorders. Here, we review the existing evidence concerning neurological outcomes in WTC-affected individuals, with the aim of contextualizing this research for policymakers, researchers and clinicians and educating WTC-affected individuals and their friends and families. We conclude by providing a rationale and recommendations for monitoring the neurological health of WTC-affected individuals.
Collapse
Affiliation(s)
- Sean A P Clouston
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Charles B Hall
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minos Kritikos
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, USA
| | - Steven DeKosky
- Evelyn F. and William L. McKnight Brain Institute and Florida Alzheimer's Disease Research Center, Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jerri Edwards
- Department of Psychiatry and Behavioral Neuroscience, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Caleb Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | - Michelle Mielke
- Specialized Center of Research Excellence on Sex Differences, Department of Neurology, Department of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Elaine R Peskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Murray Raskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing, Population Health Sciences, University College London, London, UK
| | - Richard P Sloan
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Avron Spiro
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Department of Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Center, Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Brackbill
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Mark Farfel
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Lowe
- The World Trade Center Mental Health Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - David Prezant
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University Langone Health, New York, NY, USA
| | - Rebecca Rosen
- World Trade Center Environmental Health Center, Department of Psychiatry, New York University, New York, NY, USA
| | - Kacie Seil
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Rachel Zeig-Owens
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yael Deri
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erica D Diminich
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Bernadette A Fausto
- Center for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Mary Sano
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
34
|
Catalytic role of formaldehyde in particulate matter formation. Proc Natl Acad Sci U S A 2022; 119:2113265119. [PMID: 35101978 PMCID: PMC8833171 DOI: 10.1073/pnas.2113265119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Formaldehyde (HCHO), the simplest and most abundant carbonyl in the atmosphere, contributes to particulate matter (PM) formation via two in-cloud processing pathways. First, in a catalytic pathway, HCHO reacts with hydrogen peroxide (H2O2) to form hydroxymethyl hydroperoxide (HMHP), which rapidly oxidizes dissolved sulfur dioxide (SO2,aq) to sulfate, regenerating HCHO. Second, HCHO reacts with dissolved SO2,aq to form hydroxymethanesulfonate (HMS), which upon oxidation with the hydroxyl radical (OH) forms sulfate and also reforms HCHO. Chemical transport model simulations using rate coefficients from laboratory studies of the reaction rate of HMHP with SO2,aq show that the HMHP pathways reduce the SO2 lifetime by up to a factor of 2 and contribute up to ∼18% of global sulfate. This contribution rises to >50% in isoprene-dominated regions such as the Amazon. Combined with recent results on HMS, this work demonstrates that the one-carbon molecules HMHP and HCHO contribute significantly to global PM, with HCHO playing a crucial catalytic role.
Collapse
|
35
|
Finch CE, Haghani A. Gene-Environment Interactions and Stochastic Variations in the Gero-Exposome. J Gerontol A Biol Sci Med Sci 2021; 76:1740-1747. [PMID: 33580247 PMCID: PMC8436990 DOI: 10.1093/gerona/glab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The limited heritability of human life spans suggests an important role for gene-environment (G × E) interactions across the life span (T), from gametes to geronts. Multilevel G × E × T interactions of aging phenotypes are conceptualized in the Gero-Exposome as Exogenous and Endogenous domains. Stochastic variations in the Endogenous domain contribute to the diversity of aging phenotypes, shown for the diversity of inbred Caenorhabditis elegans life spans in the same culture environment, and for variegated gene expression of somatic cells in nematodes and mammals. These phenotypic complexities can be analyzed as 3-way interactions of gene, environment, and stochastic variations, the Tripartite Phenotype of Aging. Single-cell analyses provide tools to explore this broadening frontier of biogerontology.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Dornsife College, University of Southern California, Los Angeles, CA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
36
|
Liu Q, Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Babadjouni R, Huuskonen M, Montagne A, Baertsch H, Zhang H, Chen JC, Mack WJ, Walcott BP, Zlokovic BV, Sioutas C, Morgan TE, Finch CE, Mack WJ. Air Pollution Particulate Matter Exposure and Chronic Cerebral Hypoperfusion and Measures of White Matter Injury in a Murine Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87006. [PMID: 34424052 PMCID: PMC8382048 DOI: 10.1289/ehp8792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to ambient air pollution particulate matter (PM) is associated with increased risk of dementia and accelerated cognitive loss. Vascular contributions to cognitive impairment are well recognized. Chronic cerebral hypoperfusion (CCH) promotes neuroinflammation and blood-brain barrier weakening, which may augment neurotoxic effects of PM. OBJECTIVES This study examined interactions of nanoscale particulate matter (nPM; fine particulate matter with aerodynamic diameter ≤ 200 nm ) and CCH secondary to bilateral carotid artery stenosis (BCAS) in a murine model to produce white matter injury. Based on other air pollution interactions, we predicted synergies of nPM with BCAS. METHODS nPM was collected using a particle sampler near a Los Angeles, California, freeway. Mice were exposed to 10 wk of reaerosolized nPM or filtered air (FA) for 150 h. CCH was induced by BCAS surgery. Mice (C57BL/6J males) were randomized to four exposure paradigms: a) FA, b) nPM, c) FA + BCAS , and d) nPM + BCAS . Behavioral outcomes, white matter injury, glial cell activation, inflammation, and oxidative stress were assessed. RESULTS The joint nPM + BCAS group exhibited synergistic effects on white matter injury (2.3× the additive nPM and FA + BCAS scores) with greater loss of corpus callosum volume on T2 magnetic resonance imaging (MRI) (30% smaller than FA group). Histochemical analyses suggested potential microglial-specific inflammatory responses with synergistic effects on corpus callosum C5 immunofluorescent density and whole brain nitrate concentrations (2.1× and 3.9× the additive nPM and FA + BCAS effects, respectively) in the joint exposure group. Transcriptomic responses (RNA-Seq) showed greater impact of nPM + BCAS than individual additive effects, consistent with changes in proinflammatory pathways. Although nPM exposure alone did not alter working memory, the nPM + BCAS cohort demonstrated impaired working memory when compared to the FA + BCAS group. DISCUSSION Our data suggest that nPM and CCH contribute to white matter injury in a synergistic manner in a mouse model. Adverse neurological effects may be aggravated in a susceptible population exposed to air pollution. https://doi.org/10.1289/EHP8792.
Collapse
Affiliation(s)
- Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Kristina Shkirkova
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Michelle Connor
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arati Patel
- Department of Neurological Surgery, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Robin Babadjouni
- Department of Neurological Surgery, Cedars-Sinai, Los Angeles, California, USA
| | - Mikko Huuskonen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, California, USA
| | - Axel Montagne
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, California, USA
| | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Jiu-Chiuan Chen
- Department of Preventative Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Wendy J. Mack
- Department of Preventative Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Brian P. Walcott
- Department of Neurosurgery, Northshore Neurological Institute, Evanston, Illinois, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, California, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
37
|
Zhu C, Maharajan K, Liu K, Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. ENVIRONMENTAL RESEARCH 2021; 198:111281. [PMID: 33961825 PMCID: PMC8096764 DOI: 10.1016/j.envres.2021.111281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.
Collapse
Affiliation(s)
- Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
38
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Haghani A, Thorwald M, Morgan TE, Finch CE. The APOE gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. Alzheimers Dement 2021; 17:175-190. [PMID: 33215813 PMCID: PMC7914175 DOI: 10.1002/alz.12230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Little is known of gene-environment interactions for Alzheimer's disease (AD) risk factors. Apolipoprotein E (APOE) and neighbors on chromosome 19q13.3 have variants associated with risks of AD, but with unknown mechanism. This study describes novel links among the APOE network, air pollution, and age-related diseases. Mice exposed to air pollution nano-sized particulate matter (nPM) had coordinate responses of Apoe-Apoc1-Tomm40 in the cerebral cortex. In humans, the AD vulnerable hippocampus and amygdala had stronger age decline in APOE cluster expression than the AD-resistant cerebellum and hypothalamus. Using consensus weighted gene co-expression network, we showed that APOE has a conserved co-expressed network in rodent and primate brains. SOX1, which has AD-associated single nucleotide polymorphisms, was among the co-expressed genes in the human hippocampus. Humans and mice shared 87% of potential binding sites for transcription factors in APOE cluster promoter, suggesting similar inducibility and a novel link among environment, APOE cluster, and risk of AD.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Dornsife College, University of Southern California, Los Angeles, CA
| |
Collapse
|
40
|
Iaccarino L, La Joie R, Lesman-Segev OH, Lee E, Hanna L, Allen IE, Hillner BE, Siegel BA, Whitmer RA, Carrillo MC, Gatsonis C, Rabinovici GD. Association Between Ambient Air Pollution and Amyloid Positron Emission Tomography Positivity in Older Adults With Cognitive Impairment. JAMA Neurol 2021; 78:197-207. [PMID: 33252608 DOI: 10.1001/jamaneurol.2020.3962] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Amyloid-β (Aβ) deposition is a feature of Alzheimer disease (AD) and may be promoted by exogenous factors, such as ambient air quality. Objective To examine the association between the likelihood of amyloid positron emission tomography (PET) scan positivity and ambient air quality in individuals with cognitive impairment. Design, Setting, and Participants This cross-sectional study used data from the Imaging Dementia-Evidence for Amyloid Scanning Study, which included more than 18 000 US participants with cognitive impairment who received an amyloid PET scan with 1 of 3 Aβ tracers (fluorine 18 [18F]-labeled florbetapir, 18F-labeled florbetaben, or 18F-labeled flutemetamol) between February 16, 2016, and January 10, 2018. A sample of older adults with mild cognitive impairment (MCI) or dementia was selected. Exposures Air pollution was estimated at the patient residence using predicted fine particulate matter (PM2.5) and ground-level ozone (O3) concentrations from the Environmental Protection Agency Downscaler model. Air quality was estimated at 2002 to 2003 (early, or approximately 14 [range, 13-15] years before amyloid PET scan) and 2015 to 2016 (late, or approximately 1 [range, 0-2] years before amyloid PET scan). Main Outcomes and Measures Primary outcome measure was the association between air pollution and the likelihood of amyloid PET scan positivity, which was measured as odds ratios (ORs) and marginal effects, adjusting for demographic, lifestyle, and socioeconomic factors and medical comorbidities, including respiratory, cardiovascular, cerebrovascular, psychiatric, and neurological conditions. Results The data set included 18 178 patients, of which 10 991 (60.5%) had MCI and 7187 (39.5%) had dementia (mean [SD] age, 75.8 [6.3] years; 9333 women [51.3%]). Living in areas with higher estimated biennial PM2.5 concentrations in 2002 to 2003 was associated with a higher likelihood of amyloid PET scan positivity (adjusted OR, 1.10; 95% CI, 1.05-1.15; z score = 3.93; false discovery rate [FDR]-corrected P < .001; per 4-μg/m3 increments). Results were similar for 2015 to 2016 data (OR, 1.15; 95% CI, 1.05-1.26, z score = 3.14; FDR-corrected P = .003). An average marginal effect (AME) of +0.5% (SE = 0.1%; z score, 3.93; 95% CI, 0.3%-0.7%; FDR-corrected P < .001) probability of amyloid PET scan positivity for each 1-μg/m3 increase in PM2.5 was observed for 2002 to 2003, whereas an AME of +0.8% (SE = 0.2%; z score = 3.15; 95% CI, 0.3%-1.2%; FDR-corrected P = .002) probability was observed for 2015 to 2016. Post hoc analyses showed no effect modification by sex (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.04; z score = 1.13; FDR-corrected P = .56]; 2015-2016: β = 1.02 [95% CI, 0.98-1.07; z score = 0.91; FDR-corrected P = .56]) or clinical stage (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.03; z score = 0.77; FDR-corrected P = .58]; 2015-2016: β = 1.03; 95% CI, 0.99-1.08; z score = 1.46; FDR-corrected P = .47]). Exposure to higher O3 concentrations was not associated with amyloid PET scan positivity in both time windows. Conclusions and Relevance This study found that higher PM2.5 concentrations appeared to be associated with brain Aβ plaques. These findings suggest the need to consider airborne toxic pollutants associated with Aβ pathology in public health policy decisions and to inform individual lifetime risk of developing AD and dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Eunice Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco
| | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Bruce E Hillner
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - Barry A Siegel
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Rachel A Whitmer
- Division of Research, Kaiser Permanente, Oakland, California.,Department of Public Health Sciences, University of California, Davis, Davis
| | - Maria C Carrillo
- Medical and Scientific Relations Division, Alzheimer's Association, Chicago, Illinois
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island.,Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| |
Collapse
|
41
|
Rönkkö TJ, Hirvonen MR, Happo MS, Ihantola T, Hakkarainen H, Martikainen MV, Gu C, Wang Q, Jokiniemi J, Komppula M, Jalava PI. Inflammatory responses of urban air PM modulated by chemical composition and different air quality situations in Nanjing, China. ENVIRONMENTAL RESEARCH 2021; 192:110382. [PMID: 33130172 DOI: 10.1016/j.envres.2020.110382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The health risks of air pollutants and ambient particulate matter (PM) are widely known. PM composition and toxicity have shown substantial spatiotemporal variability. Yet, the connections between PM composition and toxicological and health effects are vaguely understood. This is a crucial gap in knowledge that needs to be addressed in order to establish air quality guidelines and limit values that consider the chemical composition of PM instead of the current assumption of equal toxicity per inhaled dose. Here, we demonstrate further evidence for varying toxicological effects of urban PM at equal mass concentrations, and estimate how PM composition and emission source characteristics influenced this variation. We exposed a co-culture model mimicking alveolar epithelial cells and macrophages with size-segregated urban ambient PM collected before, during, and after the Nanjing Youth Olympic Games 2014. We measured the release of a set of cytokines, cell cycle alterations, and genotoxicity, and assessed the spatiotemporal variations in these responses by factorial multiple regression analysis. Additionally, we investigated how a previously identified set of emission sources and chemical components affected these variations by mixed model analysis. PM-exposure induced cytokine signaling, most notably by inducing dose-dependent increases of macrophage-regulating GM-CSF and proinflammatory TNFα, IL-6, and IL-1β concentrations, modest dose-dependent increase for cytoprotective VEGF-A, but very low to no responses for anti-inflammatory IL-10 and immunoregulatory IFNγ, respectively. We observed substantial differences in proinflammatory cytokine production depending on PM sampling period, location, and time of day. The proinflammatory response correlated positively with cell cycle arrest in G1/G0 phase and loss of cellular metabolic activity. Furthermore, PM0.2 caused dose-dependent increases in sub-G1/G0 cells, suggesting increased DNA degradation and apoptosis. Variations in traffic and oil/fuel combustion emissions contributed substantially to the observed spatiotemporal variations of toxicological responses.
Collapse
Affiliation(s)
- Teemu J Rönkkö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Maija-Riitta Hirvonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko S Happo
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland; Ramboll Finland Oy, Itsehallintokuja 3, FI-02601, Espoo, Finland
| | - Tuukka Ihantola
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Henri Hakkarainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Maria-Viola Martikainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Cheng Gu
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Qin'geng Wang
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Jorma Jokiniemi
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi I Jalava
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
42
|
Finch CE, Morgan TE. Developmental Exposure to Air Pollution, Cigarettes, and Lead: Implications for Brain Aging. ACTA ACUST UNITED AC 2020. [DOI: 10.1146/annurev-devpsych-042320-044338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain development is impaired by maternal exposure to airborne toxins from ambient air pollution, cigarette smoke, and lead. Shared postnatal consequences include gray matter deficits and abnormal behaviors as well as elevated blood pressure. These unexpectedly broad convergences have implications for later life brain health because these same airborne toxins accelerate brain aging. Gene-environment interactions are shown for ApoE alleles that influence the risk of Alzheimer disease. The multigenerational trace of these toxins extends before fertilization because egg cells are formed in the grandmaternal uterus. The lineage and sex-specific effects of grandmaternal exposure to lead and cigarettes indicate epigenetic processes of relevance to future generations from our current and recent exposure to airborne toxins.
Collapse
Affiliation(s)
- Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| | - Todd E. Morgan
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| |
Collapse
|
43
|
Wang Y, Liu X, Chen G, Tu R, Abdulai T, Qiao D, Liu X, Dong X, Luo Z, Wang Y, Li R, Huo W, Yu S, Guo Y, Li S, Wang C. Association of long-term exposure to ambient air pollutants with prolonged sleep latency: The Henan Rural Cohort Study. ENVIRONMENTAL RESEARCH 2020; 191:110116. [PMID: 32846171 DOI: 10.1016/j.envres.2020.110116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Prolonged sleep latency is associated with far-reaching public health consequences. Although evidence about the effect of air pollution on sleep problem has been shown, the effect on sleep latency remained unknown. The study aimed to analyze the association between long-term exposure to air pollution and prolonged sleep latency in rural China. METHODS In all, 27935 participants were included in the study from Henan Rural Cohort Study. A satellite-based spatiotemporal model was used to evaluate the 3-year average concentration of air pollutants at the home address of participants before the baseline survey. Air pollutants included NO2 (nitrogen dioxide), PM1 (particulate matter with aerodynamic diameters ≤1 μm), PM2.5 (particulate matter with aerodynamic diameters ≤ 2.5 μm), and PM10 (particulate matter with aerodynamic diametes ≤ 10 μm). A logistic regression model was conducted to assess the odds ratio (OR) and 95% confidence interval (95% CI) between air pollutants and prolonged sleep latency. RESULTS There were 5825 (20.85%) participants with prolonged sleep latency. The average concentration of NO2, PM1, PM2.5, and PM10 were 38.22 (2.54) μg/m3, 56.29 (1.75) μg/m3, 72.30 (1.87) μg/m3, and 130.01 (4.58) μg/m3. The odds ratio (95%CI) of prolonged sleep latency with an IQR increase of NO2, PM1, PM2.5, and PM10 were 1.59 (1.33-1.90), 1.23 (1.13-1.33), 1.28 (1.13-1.45) and 1.43 (1.22-1.67). The stratified analysis showed the effect of air pollutants was stronger among those with stroke. CONCLUSION Long-term exposure to NO2, PM1, PM2.5 and PM10 were associated with prolonged sleep latency. The adverse impact of air pollution should be considered when treating sleep problems.
Collapse
Affiliation(s)
- Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tanko Abdulai
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yikang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Songcheng Yu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
44
|
Oxidative Potential Induced by Ambient Particulate Matters with Acellular Assays: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8111410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acellular assays of oxidative potential (OP) induced by ambient particulate matters (PMs) are of great significance in screening for toxicity in PMs. In this review, several typical OP measurement techniques, including the respiratory tract lining fluid assay (RTLF), ascorbate depletion assay (AA), dithiothreitol assay (DTT), chemiluminescent reductive acridinium triggering (CRAT), dichlorofluorescin assay (DCFH) and electron paramagnetic/spin resonance assay (EPR/ESR) are discussed and their sensitivity to different PMs species composition, PMs size distribution and seasonality is compared. By comparison, the DTT assay tends to be the preferred method providing a more comprehensive measurement with transition metals and quinones accumulated in the fine PMs fraction. Specific transition metals (i.e., Mn, Cu, Fe) and quinones are found to contribute OPDTT directly whereas the redox properties of PMs species may be changed by the interactions between themselves. The selection of the appropriate OP measurement methods and the accurate analysis of the relationship between the methods and PM components is conducive to epidemiological researches which are related with oxidative stress induced by PMs exposure.
Collapse
|
45
|
Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. Air Pollution and Dementia: A Systematic Review. J Alzheimers Dis 2020; 70:S145-S163. [PMID: 30775976 PMCID: PMC6700631 DOI: 10.3233/jad-180631] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Both air pollution and dementia are current and growing global issues. There are plausible links between exposure to specific air pollutants and dementia. Objective: To systematically review the evidence base with respect to the relationship between air pollution and later cognitive decline and dementia. Methods: Medline, Embase, and PsychINFO® were searched from their inception to September 2018, for publications reporting on longitudinal studies of exposure to air pollution and incident dementia or cognitive decline in adults. Studies reporting on exposure to tobacco smoke including passive smoking or on occupational exposure to pollutants were excluded. Using standard Cochrane methodology, two readers identified relevant abstracts, read full text publications, and extracted data into structured tables from relevant papers, as defined by inclusion and exclusion criteria. Papers were also assessed for validity. CRD42018094299 Results: From 3,720 records, 13 papers were found to be relevant, with studies from the USA, Canada, Taiwan, Sweden, and the UK. Study follow-up ranged from one to 15 years. Pollutants examined included particulate matter ≤2.5 μ (PM2.5), nitrogen dioxide (NO2), nitrous oxides (NOx), carbon monoxide (CO), and ozone. Studies varied in their methodology, population selection, assessment of exposure to pollution, and method of cognitive testing. Greater exposure to PM2.5, NO2/NOx, and CO were all associated with increased risk of dementia. The evidence for air pollutant exposure and cognitive decline was more equivocal. Conclusion: Evidence is emerging that greater exposure to airborne pollutants is associated with increased risk of dementia.
Collapse
Affiliation(s)
- Ruth Peters
- University of New South Wales, Australia.,Neuroscience Research Australia, Australia
| | - Nicole Ee
- Neuroscience Research Australia, Australia
| | - Jean Peters
- School for Health and Related Research, University of Sheffield, UK
| | - Andrew Booth
- School for Health and Related Research, University of Sheffield, UK
| | - Ian Mudway
- MRC-PHE Centre for Environment and Health, NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, London, UK
| | - Kaarin J Anstey
- University of New South Wales, Australia.,Neuroscience Research Australia, Australia
| |
Collapse
|
46
|
Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Barisano G, Baertsch H, Liu Q, Morgan TE, Sioutas C, Mack WJ. Effects of ambient particulate matter on vascular tissue: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:319-350. [PMID: 32972334 PMCID: PMC7758078 DOI: 10.1080/10937404.2020.1822971] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fine and ultra-fine particulate matter (PM) are major constituents of urban air pollution and recognized risk factors for cardiovascular diseases. This review examined the effects of PM exposure on vascular tissue. Specific mechanisms by which PM affects the vasculature include inflammation, oxidative stress, actions on vascular tone and vasomotor responses, as well as atherosclerotic plaque formation. Further, there appears to be a greater PM exposure effect on susceptible individuals with pre-existing cardiovascular conditions.
Collapse
Affiliation(s)
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Michelle Connor
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Arati Patel
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | | | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
47
|
Canivet L, Denayer FO, Dubot P, Garçon G, Lo Guidice JM. Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J Appl Toxicol 2020; 41:203-215. [PMID: 32767597 DOI: 10.1002/jat.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
Air pollution is a public health issue and the toxicity of ambient particulate matter (PM) is well-recognized. Although it does not mostly contribute to the total mass of PM, increasing evidence indicates that the ultrafine fraction has generally a greater toxicity than the others do. A better knowledge of the underlying mechanisms involved in the pathological disorders related to nanoparticles (NPs) remains essential. Hence, the goal of this study was to determine better whether the exposure to a relatively low dose of well-characterized iron-rich NPs (Fe-NPs) might alter some critical toxicological endpoints in a relevant primary culture model of human bronchial epithelial cells (HBECs). We sought to use Fe-NPs representative of those frequently found in the industrial smokes of metallurgical industries. After having noticed the effective internalization of Fe-NPs, oxidative, inflammatory, DNA repair, and apoptotic endpoints were investigated within HBECs, mainly through transcriptional screening. Taken together, these results revealed that, despite it only produced relatively low levels of reactive oxygen species without any significant oxidative damage, low-dose Fe-NPs quickly significantly deregulated the transcription of some target genes closely involved in the proinflammatory response. Although this inflammatory process seemed to stay under control over time in case of this acute scenario of exposure, the future study of its evolution after a scenario of repeated exposure could be very interesting to evaluate the toxicity of Fe-NPs better.
Collapse
Affiliation(s)
- Ludivine Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Franck-Olivier Denayer
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Pierre Dubot
- CNRS UMR 7182, Métaux et céramiques à microstructure contrôlée, Institut de Chimie et des Matériaux, Paris Est, Thiais, France
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| |
Collapse
|
48
|
Haghani A, Johnson RG, Woodward NC, Feinberg JI, Lewis K, Ladd-Acosta C, Safi N, Jaffe AE, Sioutas C, Allayee H, Campbell DB, Volk HE, Finch CE, Morgan TE. Adult mouse hippocampal transcriptome changes associated with long-term behavioral and metabolic effects of gestational air pollution toxicity. Transl Psychiatry 2020; 10:218. [PMID: 32636363 PMCID: PMC7341755 DOI: 10.1038/s41398-020-00907-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Gestational exposure to air pollution increases the risk of autism spectrum disorder and cognitive impairments with unresolved molecular mechanisms. This study exposed C57BL/6J mice throughout gestation to urban-derived nanosized particulate matter (nPM). Young adult male and female offspring were studied for behavioral and metabolic changes using forced swim test, fat gain, glucose tolerance, and hippocampal transcriptome. Gestational nPM exposure caused increased depressive behaviors, decreased neurogenesis in the dentate gyrus, and increased glucose tolerance in adult male offspring. Both sexes gained fat and body weight. Gestational nPM exposure induced 29 differentially expressed genes (DEGs) in adult hippocampus related to cytokine production, IL17a signaling, and dopamine degradation in both sexes. Stratification by sex showed twofold more DEGs in males than females (69 vs 37), as well as male-specific enrichment of DEGs mediating serotonin signaling, endocytosis, Gαi, and cAMP signaling. Gene co-expression analysis (WCGNA) identified a module of 43 genes with divergent responses to nPM between the sexes. Chronic changes in 14 DEGs (e.g., microRNA9-1) were associated with depressive behaviors, adiposity and glucose intolerance. These genes enriched neuroimmune pathways such as HMGB1 and TLR4. Based on cerebral cortex transcriptome data of neonates, we traced the initial nPM responses of HMGB1 pathway. In vitro, mixed glia responded to 24 h nPM with lower HMGB1 protein and increased proinflammatory cytokines. This response was ameliorated by TLR4 knockdown. In sum, we identified transcriptional changes that could be associated with air pollution-mediated behavioral and phenotypic changes. These identified genes merit further mechanistic studies for therapeutic intervention development.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Richard G Johnson
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jason I Feinberg
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristy Lewis
- Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nikoo Safi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Andrew E Jaffe
- Lieber Institute of Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hooman Allayee
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel B Campbell
- Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Haghani A, Arpawong TE, Kim JK, Lewinger JP, Finch CE, Crimmins E. Female vulnerability to the effects of smoking on health outcomes in older people. PLoS One 2020; 15:e0234015. [PMID: 32497122 PMCID: PMC7272024 DOI: 10.1371/journal.pone.0234015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is among the leading risk factors for mortality and morbidity. While men have a higher smoking prevalence, mechanistic experiments suggest that women are at higher risk for health problems due to smoking. Moreover, the comparison of smoking effects on multiple conditions and mortality for men and women has not yet been done in a population-based group with race/ethnic diversity. We used proportional hazards models and restricted mean survival time to assess differences in smoking effects by sex for multiple health outcomes using data from the U.S. Health and Retirement Study (HRS), a population-representative cohort of individuals aged 50+ (n = 22,708, 1992-2014). Men had experienced more smoking pack-years than women (22.0 vs 15.6 average pack-years). Age of death, onset of lung disorders, heart disease, stroke, and cancer showed dose-dependent effects of smoking for both sexes. Among heavy smokers (>28 pack-years) women had higher risk of earlier age of death (HR = 1.3, 95%CI:1.03-1.65) and stroke (HR = 1.37, 95%CI:1.02-1.83). Risk of cancer and heart disease did not differ by sex for smokers. Women had earlier age of onset for lung disorders (HR = 2.83, 95%CI:1.74-4.6), but men risk due to smoking were higher (Smoking-Sex interaction P<0.02) than women. Passive smoke exposure increased risk of earlier heart disease (HR = 1.33, 95%CI:1.07-1.65) and stroke (HR:1.54, 95%CI:1.07-2.22) for non-smokers, mainly in men. Smoking cessation after 15 years partially attenuated the deleterious smoking effects for all health outcomes. In sum, our results suggest that women are more vulnerable to ever smoking for earlier death and risk of stroke, but less vulnerable for lung disorders. From an epidemiological perspective, sex differences in smoking effects are important considerations that could underlie sex differences in health outcomes. These findings also encourage future mechanistic experiments to resolve potential mechanisms of sex-specific cigarette smoke toxicity.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Juan Pablo Lewinger
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Eileen Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
50
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|