1
|
Qian M, Zhu Y, Lin W, Lian H, Xia Y, Papadimos T, Wang J. PICK1 overexpression ameliorates endotoxin-induced acute lung injury by regulating mitochondrial quality control via maintaining Nrf-2 stabilization through activating the PI3K/Akt/GSK-3β pathway and disrupting the E3 ubiquitin ligase adapter β-TrCP. Int Immunopharmacol 2025; 156:114685. [PMID: 40286782 DOI: 10.1016/j.intimp.2025.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Mitochondria are important targets for preventing oxidative damage during the progression of sepsis-induced lung injury. Numerous studies have pointed out that maintaining the stabilization of Nrf-2, thereby activating its transcription, may combat pathological inflammation by sustaining the integrity of mitochondrial function. Our previous study found that protein interaction with C-kinase 1 (PICK1) deficiency disrupts the physiological anti-inflammatory mechanism by affecting Nrf-2 transcription. However, whether PICK1 participates in mitochondrial quality control regulation through Nrf-2 has not been explored, and the underlying interaction between PICK1 and Nrf-2 has not been fully elucidated. We found that PICK1 decreased mitochondria-derived ROS, upregulated MnSOD activity in endotoxin-induced acute lung injury mice, improved mitochondrial membrane potential, and restored the damaged structure of mitochondria in LPS-stimulated macrophages. Through in-depth studies, we demonstrated that PICK1 maintains the stability of Nrf-2 by preserving mitochondrial dynamic equilibrium, facilitating mitochondrial biogenesis, and participating in mitophagy by activating the PI3K/AKT/GSK-3β pathway. PICK1 also inhibits the β-TrCP-mediated ubiquitination of Nrf-2. Thus, PICK1 offers an unexplored alternative to current Nrf-2 activators by acting as a Nrf-2 activator that may have therapeutic value against septic inflammation. Our study demonstrated the protective effects of PICK1 overexpression in endotoxin-associated ALI. PICK1 overexpression and the subsequent PI3K/AKT/Nrf-2/HO-1 pathway-dependent and E3 ubiquitin ligase adapter β-TrCP-mediated mitochondrial quality control contribute to lung repair, which offers an unexplored alternative to current Nrf-2 activators by acting as a Nrf-2 activator that may have therapeutic value against septic inflammation.
Collapse
Affiliation(s)
- Meizi Qian
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou 325000, Zhejiang, China
| | - Yurun Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Wen Lin
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Huidan Lian
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China
| | - Yun Xia
- The Ohio State University Wexner Medical Center, Department of Anesthesiology, Columbus, OH, USA
| | - Thomas Papadimos
- The University of Toledo Medical Center, Department of Anesthesiology, Toledo, OH, USA.
| | - Junlu Wang
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
2
|
Huang Y, Wang J, Chen S, Dai Z, Chen X, Li X, Xu R, Yu B, Liu C, Chen X, Zhang P, Xu Y, Zhang X. Red cell distribution width related to the severity of the disease in patients with AECOPD. Biomark Med 2025; 19:177-186. [PMID: 40071342 PMCID: PMC11916365 DOI: 10.1080/17520363.2025.2468152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
AIMS This research aims to elucidate the association between red cell distribution width (RDW) and the severity of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). PATIENTS & METHODS This retrospective study enrolled patients with AECOPD and healthy controls. A comprehensive meta-analysis was further conducted by systematically searching PubMed, Embase, and the Cochrane Library up to 27 April 2023. RESULTS Univariate logistic regression analysis indicated that elevated RDW levels were significantly associated with AECOPD (p = 0.016). The pooled results yielded a diagnostic sensitivity of 0.76 (95% CI: 0.70-0.81) and specificity of 0.53 (95% CI: 0.38-0.68) for RDW in predicting AECOPD severity. CONCLUSION Elevated RDW levels exhibit a linear positive correlation with AECOPD severity, further supported by meta-analysis.
Collapse
Affiliation(s)
- Yiben Huang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianing Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zicong Dai
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xuanyang Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinran Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruizi Xu
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Yu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Liu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianjing Chen
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengfei Zhang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yage Xu
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodiao Zhang
- Department of Respiratory and Critical Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
He S, Ye H, Wang Q, He Y, Liu X, Song J, Zhao C, Hu Y, Luo L, Guo Y, Liu Q. Ginsenoside Rb1 targets to HO-1 to improve sepsis by inhibiting ferroptosis. Free Radic Biol Med 2025; 226:13-28. [PMID: 39510452 DOI: 10.1016/j.freeradbiomed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Sepsis remains the leading cause of mortality among Intensive Care Unit (ICU) patients, with its pathogenesis and treatment not yet fully elucidated. Ferroptosis plays a critical role in sepsis, suggesting that ferroptosis-related genes may serve as potential therapeutic targets. This study aims to identify key ferroptosis-related genes in sepsis and explore targeted therapeutics. Through differential expression analysis of the GSE13940 and GSE26440 datasets, heme oxygenase-1 (HO-1) was identified as a hub gene associated with ferroptosis. Additionally, single-cell analysis of the GSE175453 dataset revealed a significant upregulation of HO-1 expression in monocyte lineages during sepsis. The cecal ligation and puncture (CLP) method was employed to induce sepsis in a mouse model, lung and intestinal tissues exhibited typical ferroptosis characteristics, with a significant increase in HO-1 expression. However, treatment with the HO-1 inhibitor zinc protoporphyrin (ZNPP) significantly ameliorated ferroptosis in CLP-induced lung and intestinal tissues, as well as in lipopolysaccharide (LPS)-induced THP-1 cells. Subsequently, molecular docking, surface plasmon resonance (SPR), and microscale thermophoresis (MST) experiments demonstrated that ginsenoside Rb1 specifically targets HO-1, identifying K18A as the key binding residue. Finally, experiments conducted both in vitro and in vivo verified that ginsenoside Rb1 significantly reduces HO-1 expression, inhibits ferroptosis in sepsis-induced lung, and intestinal tissues and THP-1 cells, and improves sepsis-induced pulmonary and intestinal damage. In conclusion, this study identifies HO-1 as a key ferroptosis target in sepsis and suggests ginsenoside Rb1 as a potential novel HO-1 inhibitor for the therapeutic approach of sepsis-induced organ dysfunction.
Collapse
Affiliation(s)
- Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yidong He
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Yahui Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| |
Collapse
|
4
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Lv H, Yu J, Qian X, Shu J, Qian Q, Shen L, Shi D, Tao Z, Fan G, Zhuang B, Lu B. USP7 upregulated by TGF-β1 promotes ferroptosis via inhibiting LATS1-YAP axis in sepsis-induced acute lung injury. iScience 2024; 27:109667. [PMID: 38966570 PMCID: PMC11223090 DOI: 10.1016/j.isci.2024.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Accepted: 04/02/2024] [Indexed: 07/06/2024] Open
Abstract
Our work aimed to investigate the interactive roles of transforming growth factor β1 (TGF-β1), ubiquitin-specific-processing protease 7 (USP7), and Yes-associated protein (YAP) in ferroptosis during sepsis-secondary acute lung injury (ALI). Our study demonstrated that ferroptosis was aggravated by TGF-β1 in both cellular and animal models of acute lung injury. Additionally, YAP upregulated glutathione peroxidase 4 (GPX4) and SLC7A11 by regulating the binding of TEAD4 to GPX4/SLC7A11 promoters. Furthermore, large tumor suppressor kinase 1 (LATS1) knockdown resulted in YAP expression stimulation, while USP7 downregulated YAP via deubiquitinating and stabilizing LATS1/2. YAP overexpression or USP7/LATS1 silencing reduced ferroptosis process, which regulated YAP through a feedback loop. However, TGF-β1 annulled the repression of ferroptosis by YAP overexpression or LATS1/USP7 knockdown. By elucidating the molecular interactions between TGF-β1, USP7, LATS1/2, and YAP, we identified a new regulatory axis of ferroptosis in sepsis-secondary ALI. Our study sheds light on the pathophysiology of ferroptosis and proposes a potential therapeutic approach for sepsis-induced ALI.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Jing Yu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Jun Shu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Luhong Shen
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Dongfang Shi
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Zhengzheng Tao
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
- Soochow University School of Medicine, Suzhou, Jiangsu Province 215031, P.R. China
| | - Bufeng Zhuang
- Department of Thoracic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| |
Collapse
|
6
|
Meng S, Liu J, Wang Z, Fan Y, Pei S, Wang E, Song Y, Cui Y, Xie K. Inhibition of Golgi stress alleviates sepsis-induced cardiomyopathy by reducing inflammation and apoptosis. Int Immunopharmacol 2024; 133:112103. [PMID: 38648713 DOI: 10.1016/j.intimp.2024.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Sepsis is often accompanied by multiple organ dysfunction, in which the incidence of cardiac injury is about 60%, and is closely related to high mortality. Recent studies have shown that Golgi stress is involved in liver injury, kidney injury, and lung injury in sepsis. However, whether it is one of the key mechanisms of sepsis-induced cardiomyopathy (SIC) is still unclear. The aim of this study is to investigate whether Golgi stress mediates SIC and the specific mechanism. METHODS Sepsis model of male C57BL/6J mice was established by cecal ligation and puncture. To observe the effect of Golgi stress on SIC, mice were injected with Golgi stimulant (Brefeldin A) or Golgi inhibitor (Glutathione), respectively. The 7-day survival rate of mice were recorded, and myocardial injury indicators including cardiac function, myocardial enzymes, myocardial pathological tissue score, myocardial inflammatory factors, and apoptosis were detected. The morphology of Golgi was observed by immunofluorescence, and the Golgi stress indices including GM-130, GOLPH3 and Goligin97 were detected by WB and qPCR. RESULTS After CLP, the cardiac function of mice was impaired and the levels of myocardial enzymes were significantly increased. Golgi stress was accompanied by increased myocardial inflammation and apoptosis. Moreover, the expressions of morphological proteins GM-130 and Golgin97 were decreased, and the expression of stress protein GOLPH3 was increased. In addition, Brefeldin A increased 7-day mortality and the above indicators in mice. The use of glutathione improves all of the above indicators. CONCLUSION Golgi stress mediates SIC, and the inhibition of Golgi stress can improve SIC by inhibiting apoptosis and inflammation.
Collapse
Affiliation(s)
- Shuqi Meng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jianfeng Liu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhiwei Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuaijie Pei
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Enquan Wang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
7
|
Liu R, Wang Q, Li Y, Wan R, Yang P, Yang D, Tang J, Lu J. Ginsenoside Rg1 Alleviates Sepsis-Induced Acute Lung Injury by Reducing FBXO3 Stability in an m 6A-Dependent Manner to Activate PGC-1α/Nrf2 Signaling Pathway. AAPS J 2024; 26:47. [PMID: 38622374 DOI: 10.1208/s12248-024-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated. METHODS Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP. RESULTS Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1's mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats. CONCLUSION Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.
Collapse
Affiliation(s)
- Rong Liu
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China.
| | - Qiang Wang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650034, Yunnan Province, People's Republic of China
| | - Ruixue Wan
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Dexing Yang
- Department of Emergency Room of Internal, The First People's Hospital of Yunnan Province, Kunming, 650034, Yunnan Province, People's Republic of China
| | - Jiefu Tang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Jiafei Lu
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| |
Collapse
|
8
|
Wang H, Ma T, Bao Q, Zhu L, Ying T, Yu Y. Knockdown of protein interacting with C α kinase 1 aggravates sepsis-induced acute liver injury by regulating the TLR4/NF-κB pathway. Sci Rep 2023; 13:11913. [PMID: 37488153 PMCID: PMC10366226 DOI: 10.1038/s41598-023-38852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
Acute liver injury (ALI) may manifest at any phase of sepsis, yet an explicit therapeutic approach remains elusive. In this study, LPS and cecum ligation and puncture (CLP) were utilized to establish an inflammatory cell model and a murine model of sepsis-induced liver injury, respectively, aiming to explore the potential protective effect of protein interacting with C α kinase 1 (PICK1) on sepsis-induced ALI and its underlying mechanisms. In both the cell supernatant and the murine whole blood, the concentrations of inflammatory factors were quantified by ELISA, while the protein and mRNA expressions of PICK1, cleaved-PARP-1, caspase1, TLR4, IκBα, and NF-κB were assessed via western blot and qRT-PCR. The outcomes revealed that the knockdown of PICK1 increased the levels of inflammatory factors and apoptosis, alongside activation of TLR4/NF-κB signaling pathway-related factors in both in vivo and in vitro models. Moreover, the murine liver samples were subjected to Hematoxylin-Eosin (HE) staining for assessment of histopathological morphology. The HE staining and liver injury scoring results manifested a markedly exacerbated hepatic damage in PICK1 knockout mice as compared to WT mice following CLP. Furthermore, the liver macrophages were isolated from murine livers, and the expression and activity of the factors associated with the TLR4/NF-κB signaling pathway were verified through RT-qPCR and western blot, and EMSA assay demonstrated an augmented NF-κB activity subsequent to PICK1 knockout. Finally, the expression and localization of PICK1 in macrophages were further scrutinized via immunofluorescence, and the interaction between PICK1 and TLR4 was identified through co-immunoprecipitation. In conclusion, the knockdown of PICK1 appeared to modulate inflammatory factors by activating the TLR4/NF-κB signaling pathway, thereby exacerbating hepatic damage induced by sepsis.
Collapse
Affiliation(s)
- Huijun Wang
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China
| | - Ting Ma
- Department of Anesthesia, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Qianqian Bao
- Department of Operating Room, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Lijun Zhu
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China
| | - Tingting Ying
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China
| | - Yulong Yu
- Department of Anesthesia, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150, Ximen Street, Linhai City, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
9
|
Long F, Hu L, Chen Y, Duan X, Xie K, Feng J, Wang M. RBM3 is associated with acute lung injury in septic mice and patients via the NF-κB/NLRP3 pathway. Inflamm Res 2023; 72:731-744. [PMID: 36781430 DOI: 10.1007/s00011-023-01705-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Sepsis refers to host response disorders caused by infection, leading to life-threatening organ dysfunction. RNA-binding motif protein 3 (RBM3) is an important cold-shock protein that is upregulated in response to mild hypothermia or hypoxia. In this study, we aimed to investigate whether RBM3 is involved in sepsis-associated acute lung injury (ALI). Intraperitoneal injection of LPS (10 mg/kg) was performed in wild type (WT) and RBM3 knockout (KO, RBM3-/-) mice to establish an in vivo sepsis model. An NLRP3 inflammasome inhibitor, MCC950 (50 mg/kg), was injected intraperitoneally 30 min before LPS treatment. Serum, lung tissues, and BALF were collected 24 h later for further analysis. In addition, we also collected serum from sepsis patients and healthy volunteers to detect their RBM3 expression. The results showed that the expression of RBM3 in the lung tissues of LPS-induced sepsis mice and the serum of patients with sepsis was significantly increased and positively correlated with disease severity. In addition, RBM3 knockout (KO) mice had a low survival rate, and RBM3 KO mice had more severe lung damage, inflammation, lung cell apoptosis, and oxidative stress than WT mice. LPS treatment significantly increased the levels of nucleotide binding and oligomerization domain-like receptor family 3 (NLRP3) inflammasomes and mononuclear cell nuclear factor-κB (NF-κB) in the lung tissues of RBM3 KO mice. However, these levels were only slightly elevated in WT mice. Interestingly, MCC950 improved LPS-induced acute lung injury in WT and RBM3 KO mice but inhibited the expression of NLRP3, caspase-1, and IL-1β. In conclusion, RBM3 was overexpressed in sepsis patients and LPS-induced mice. RBM3 gene deficiency aggravated sepsis-associated ALI through the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Feiyu Long
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liren Hu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yingxu Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiaoxia Duan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Maohua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
10
|
Li Y, Feng L, Bai L, Jiang H. Study of Therapeutic Mechanisms of Puerarin against Sepsis-Induced Myocardial Injury by Integrating Network Pharmacology, Bioinformatics Analysis, and Experimental Validation. Crit Rev Immunol 2023; 43:25-42. [PMID: 37824375 DOI: 10.1615/critrevimmunol.2023050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Myocardial injury is the most prevalent and serious complication of sepsis. The potential of puerarin (Pue) to treat sepsis-induced myocardial injury (SIMI) has been recently reported. Nevertheless, the specific anti-SIMI mechanisms of Pue remain largely unclear. Integrating network pharmacology, bioinformatics analysis, and experimental validation, we aimed to clarify the anti-SIMI mechanisms of Pue, thereby furnishing novel therapeutic targets. Pue-associated targets were collected from HIT, GeneCards, SwissTargetPrediction, SuperPred, and CTD databases. SIMI-associated targets were acquired from GeneCards and DisGeNET. Differentially expressed genes (DEGs) were identified from GEO database. Potential anti-SIMI targets of Pue were determined using VennDiagram. ClusterProfiler was employed for GO and KEGG analyses. STRING database and Cytoscape were used for protein-protein interaction (PPI) network construction, and cytoHubba was used for hub target screening. PyMOL and AutoDock were utilized for molecular docking. An in vitro SIMI model was built to further verify the therapeutic mechanisms of Pue. Seventy-three Pue-SIMI-DEG intersecting target genes were obtained. GO and KEGG analyses revealed that the targets were principally concentrated in cellular response to chemical stress, response to oxidative stress (OS), and insulin and neurotrophin signaling pathways. Through PPI analysis and molecular docking, AKT1, CASP3, TP53, and MAPK3 were identified as the pivotal targets. In vivo experiments indicated that Pue promoted cell proliferation, downregulated AKT1, CASP3, TP53, and MAPK3, and inhibited inflammation, myocardial injury, OS, and apoptosis in the cell model. Pue might inhibit inflammation, myocardial injury, OS, and apoptosis to treat SIMI by reducing AKT1, CASP3, TP53, and MAPK3.
Collapse
Affiliation(s)
- Yin Li
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Lei Feng
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Lin Bai
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Hao Jiang
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| |
Collapse
|
11
|
Yang L, Zhang YM, Guo MN, Zhang H, Zhu XY, Xu C, Liu YJ. Matrine Attenuates Lung Injury by Modulating Macrophage Polarization and Suppressing Apoptosis. J Surg Res 2023; 281:264-274. [PMID: 36219938 DOI: 10.1016/j.jss.2022.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Persistent lung inflammation is a characteristic of sepsis-induced lung injury. Matrine, the active ingredient from Sophora flavescens, has exhibited anti-inflammatory activities. This study investigated the effects of prophylactic administration of matrine on macrophage polarization, apoptosis, and tissue injury in a cecal ligation and puncture (CLP)-induced murine lung injury model. METHODS Mice were randomly allocated into four groups: Sham, CLP, Sham + Matrine, and CLP + Matrine. Lung tissues were collected at 24 h post-CLP. Histopathology and immunofluorescence analysis were performed to evaluate lung injury and macrophage infiltration in the lung, respectively. Caspase-3 activities, TUNEL staining, and anti-apoptotic proteins were examined to assess apoptosis. To determine the mechanism of action of matrine, protein levels of Sirtuin 1 (SIRT1), nuclear factor κB (NF-κB), p53 and the messenger RNA levels of p53-mediated proapoptotic genes were examined to elucidate the associated signaling pathways. RESULTS Histopathological evaluation showed that matrine prophylaxis attenuated sepsis-induced lung injury. Matrine prophylaxis attenuated sepsis-induced infiltration of the total population of macrophages in the lung. Matrine inhibited M1 macrophage infiltration, but increased M2 macrophage infiltration, thus resulting in a decrease in the proportion of M1 to M2 macrophages in septic lung. Sepsis-induced lung injury was associated with apoptotic cell death as evidenced by increases in caspase-3 activity, TUNEL-positive cells, and decreases in antiapoptotic proteins, all of which were reversed by matrine prophylaxis. Matrine restored sepsis-induced downregulation of SIRT1 and deacetylation of NF-κB p65 subunit and p53, thus inactivating NF-κB pathway and suppressing p53-induced proapoptotic pathway in septic lung. CONCLUSIONS In summary, this study demonstrated that matrine exhibited pro-M2 macrophage polarization and antiapoptotic effects in sepsis-induced lung injury, which might be, at least partly, due to the modulation of SIRT1/NF-κB and SIRT1/p53 pathways.
Collapse
Affiliation(s)
- Lu Yang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China; Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi-Min Zhang
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Meng-Nan Guo
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Chang Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
12
|
Tian F, Lei J, Ni Y, Zhong D, Xie N, Ma J, Wang H, Si S, Wu Y, Jiang T. Regulation of CD18 stability by SIGIRR-modulated ubiquitination: new insights into the relationship between innate immune response and acute lung injury. FEBS J 2022; 290:2721-2743. [PMID: 36527283 DOI: 10.1111/febs.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Inappropriate accumulation of alveolar macrophages (AMs) and subsequent excessive production of immune responses play critical roles in the pathogenesis of acute lung injury (ALI), but the core negative regulators governing innate signalling in AMs are ill defined. We have previously shown that single immunoglobin IL-1 receptor-related protein (SIGIRR), a negative regulator of IL-1 receptor and Toll-like receptor signalling, inhibits lipopolysaccharide (LPS)-induced inflammatory responses in AMs. To address the biological relevance of SIGIRR in vivo, we generated a murine ALI model via intratracheal instillation of LPS. Intriguingly, SIGIRR expression was observed to be decreased in resident and recruited macrophages during ALI. This decrease was associated with parallel induction in CD18 protein levels in LPS-challenged lung tissues. Through intranasal injection of SIGIRR lentiviral particles studies, we showed that the overexpression of SIGIRR attenuated recruitment of macrophages and neutrophils, decreased production of inflammatory cytokines and ameliorated pathological changes in lungs. Whilst exploring the basis for this phenotype, SIGIRR was found to be coexpressed with CD18 in AMs, and SIGIRR potentiated the instability of CD18 protein via enhancement of its ubiquitination and proteasome degradation. Conversely, by using CD18-/- mice, we further observed that CD18 deletion completely abolished the therapeutic effects of overexpression of SIGIRR on LPS-induced ALI. Mover, overexpression of CD18 in AMs promoted adhesion to ECM components, enhanced TLR4-mediated inflammasome activation and thereby potentiated IL-1β production. These data collectively identify SIGIRR/CD18 as a key negative regulatory circuit maintaining innate immune homeostasis in AMs along the pathogenesis of ALI.
Collapse
Affiliation(s)
- Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Daixing Zhong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Nianlin Xie
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun Ma
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Haiqiang Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shaokui Si
- Department of Respiration, Third Hospital of Baoji, Baoji, China
| | - Yumei Wu
- Department of Pharmacy, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
13
|
Gong H, Chen Y, Chen M, Li J, Zhang H, Yan S, Lv C. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:1043859. [PMID: 36452899 PMCID: PMC9701739 DOI: 10.3389/fmed.2022.1043859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2023] Open
Abstract
The introduction of the Sepsis 3.0 guidelines in 2016 improved our understanding of sepsis diagnosis and therapy. Personalized treatment strategies and nursing methods for sepsis patients are recommended in the "Save Sepsis Campaign" in 2021. However, mortality in sepsis patients remains high. Patients with sepsis-related acute respiratory distress syndrome account for around 30% of them, with fatality rates ranging from 30 to 40%. Pathological specimens from individuals with sepsis-related ARDS frequently demonstrate widespread alveolar damage, and investigations have revealed that pulmonary epithelial and pulmonary endothelial injury is the underlying cause. As a result, the purpose of this work is to evaluate the mechanism and research progress of pulmonary epithelial and pulmonary endothelial damage in sepsis-related ARDS, which may provide new directions for future research, diagnosis, and therapy.
Collapse
Affiliation(s)
- Huankai Gong
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yao Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meiling Chen
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Jiankang Li
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hong Zhang
- Emergency and Trauma College, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- School of Public Health, Hainan Medical University, Haikou, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Wang J, Zhu Q, Li R, Zhang J, Ye X, Li X. YAP1 protects against septic liver injury via ferroptosis resistance. Cell Biosci 2022; 12:163. [PMID: 36182901 PMCID: PMC9526934 DOI: 10.1186/s13578-022-00902-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background The liver plays crucial roles in sepsis and is one of the major targets for sepsis-related injuries. Ferroptosis, a newly emerged form of lytic cell death, has been implicated in sepsis related organ failure. Yes-associated protein1 (YAP1), a key regulator of the Hippo signaling pathway, may be involved in ferroptosis development. This study aimed to elucidate the role of YAP1 in septic liver injury through regulating ferroptosis, especially ferritinophagy-mediated ferroptosis. Results Cecal ligation and puncture (CLP) models were constructed in control (Yap1flfl) and liver-conditional knockout mice (Yap1fl/fl Alb-Cre) to induce septic liver injury, while LO2 cells with or without YAP1 overexpression/deletion were stimulated by lipopolysaccharide (LPS) in vitro. Our study showed YAP1 knockdown aggravated CLP-induced liver injury and inflammation, as well as accelerated hepatocyte ferroptosis, revealed by down-regulated expression of GPX4, FTH1 and SLC7A11, along with up-regulated expression of SFXN1 and NCOA4. Consistently, YAP1 deficiency aggravated LO2 cells ferroptosis, but YAP1 overexpression alleviated LPS-induced LO2 ferritinophagy, as evidenced by reduced mitochondrial ROS and Fe2+, along with down-regulated expression of SFXN1 and NCOA4. Further co-IP assay verified that YAP1 disrupted the interaction between NCOA4 and FTH1, thus prevent the degradation of ferritin to Fe2+, further reduced the ROS production and suppressed ferroptosis. Conclusion YAP1 inhibits ferritinophagy-mediated ferroptosis in hepatocytes, and YAP1 deficiency aggravates sepsis-induced liver injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00902-7.
Collapse
Affiliation(s)
- Jin Wang
- grid.413247.70000 0004 1808 0969Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Qian Zhu
- grid.413247.70000 0004 1808 0969Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Rui Li
- grid.413247.70000 0004 1808 0969Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Jing Zhang
- grid.413247.70000 0004 1808 0969Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Xujun Ye
- grid.413247.70000 0004 1808 0969Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Xinyi Li
- grid.413247.70000 0004 1808 0969Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| |
Collapse
|
15
|
Li Y, Yan J, Zhao Q, Zhang Y, Zhang Y. ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Front Pharmacol 2022; 13:904314. [PMID: 36210815 PMCID: PMC9537618 DOI: 10.3389/fphar.2022.904314] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sorafenib is the unique recommended molecular-targeted drug for advanced hepatocellular carcinoma, but its clinical use is limited due to cardiotoxicity. As sorafenib is an efficient ferroptosis inducer, the pathogenesis of this compound to ferroptosis-mediated cardiotoxicity is worth further study. Mice were administered 30 mg/kg sorafenib intraperitoneally for 2 weeks to induce cardiac dysfunction and Ferrostatin-1 (Fer-1) was used to reduce ferroptosis of mice with sorafenib-induced cardiotoxicity. Sorafenib reduced levels of anti-ferroptotic markers involving Slc7a11 and glutathione peroxidase 4 (GPX4), increased malonaldehyde malondialdehyde, apart from causing obvious mitochondria damage, which was alleviated by Fer-1. In vitro experiments showed that Fer-1 inhibited lipid peroxidation and injury of H9c2 cardiomyoblasts induced by sorafenib. Both in vitro and in vivo experiments confirmed that the expression of Slc7a11 was down regulated in sorafenib-induced cardiotoxicity, which can be partially prevented by treatment with Fer-1. Overexpression of Slc7a11 protected cells from ferroptosis, while knock-down of Slc7a11 made cardiomyoblasts sensitive to ferroptosis caused by sorafenib. Finally, by comparing data from the GEO database, we found that the expression of ATF3 was significantly increased in sorafenib treated human cardiomyocytes. In addition, we demonstrated that ATF3 suppressed Slc7a11 expression and promoted ferroptosis. Based on these findings, we concluded that ATF3/Slc7a11 mediated ferroptosis is one of the key mechanisms leading to sorafenib-induced cardiotoxicity. Targeting ferroptosis may be a novel therapeutic approach for preventing sorafenib-induced cardiotoxicity in the future.
Collapse
Affiliation(s)
- Yilan Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jingru Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Qianqian Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- *Correspondence: Yao Zhang,
| |
Collapse
|
16
|
The Pretreatment of Xiaoqinglong Decoction Alleviates Inflammation and Oxidative Damage and Up-Regulates Angiotensin-Converting Enzyme 2 in Lipopolysaccharide-Induced Septic Acute Lung Injury Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2421198. [PMID: 36193122 PMCID: PMC9526646 DOI: 10.1155/2022/2421198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Xiaoqinglong decoction (XQLD), a classic prescription of Traditional Chinese Medicine, has already been used clinically to cure acute lung injury (ALI), but its mechanism remains unclear. This subject aimed to explore the preventive role of XQLD in septic ALI rats besides its effects on angiotensin-converting enzyme (ACE)2 and its downstream factors. After, respectively, administrated with different concentrations of XQLD (6.25 g/kg/d, 12.5 g/kg/d, 25 g/kg/d) for 5 days and dexamethasone (DEX, 1 mg/kg) for 0.5 h, the rat models of ALI were established by intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) for 24 h. All rats were evaluated by lung function test, arterial blood gas analysis, morphological observation, lung wet/dry (W/D) ratio, and the lung injury score. The levels of malonaldehyde (MDA), superoxide dismutase (SOD), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and angiotensin (Ang) (1–7) in the lung were measured through biochemical and ELISA kits. The expressions of angiotensin-converting enzyme (ACE)2, mitochondrial assembly receptor (MasR), and nuclear factor (NF)-κB in lung tissue were detected by qRT-PCR and western blotting. Positive reaction cells of MasR were observed by immunohistochemistry. The results show that XQLD significantly ameliorated septic lung injury including edema and hemorrhage, as well as improved pulmonary function and arterial blood gas. Furthermore, XQLD markedly decreased the levels of IL-1β, TNF-α, MDA, and NF-κB while increased the levels of SOD, Ang (1–7), ACE2, and MasR in septic ALI rats. Pearson correlation showed that the expressions of ACE2 were inversely related to IL-1β, TNF-α, MDA, and NF-κB and positively correlated with SOD contents. Our data indicated that XQLD pretreatment alleviated inflammation and oxidative damage in septic ALI rats, which might be related to the up-regulation of ACE2-Ang (1–7)-MasR axis and inhibition of the NF-κB pathway.
Collapse
|
17
|
Wang X, Kong C, Liu P, Zhou B, Geng W, Tang H. Therapeutic Effects of Retinoic Acid in Lipopolysaccharide-Induced Cardiac Dysfunction: Network Pharmacology and Experimental Validation. J Inflamm Res 2022; 15:4963-4979. [PMID: 36105385 PMCID: PMC9467448 DOI: 10.2147/jir.s358374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Sepsis, which is deemed as a systemic inflammation reaction syndrome in the face of infectious stimuli, is the primary cause of death in ICUs. Sepsis-induced cardiomyopathy (SIC) may derive from systemic inflammation reaction and oxidative stress. Retinoic acid (RA) is recognized by its beneficial roles in terms of the immunoresponse to infections and antioxygen actions. However, the treatment efficacy and potential causal links of RA in SIC are still elusive. Methods By virtue of the STITCH database, we identified the targets of RA. Differentially expressed genes in SIC were acquired from the GEO database. The PPI network of intersected targets was established. GO and KEGG pathway enrichment analysis was completed. Hub genes were analyzed by cytoHubba plug-in. In the process of experimental validation, a mouse sepsis model was established by lipopolysaccharide (LPS), and the treated mice were intraperitoneally injected with RA or Dexamethasone (DEX) 60 min prior to LPS injections. Survival conditions, cardiac functions and antioxidant levels of the mice were assessed. Cardiac inflammation and injury were detected by HE and TUNEL. The levels of key genes and signal pathway expression were analyzed by RT-PCR and Western blot. Results PPARA, ITGAM, VCAM-1, IGF-1 and IL-6 were identified as key therapeutic targets of RA by network pharmacology. PI3K-Akt signaling pathway is the main regulatory pathway of RA. In vivo researches unraveled that RA can improve the survival rate and cardiac function of LPS-treated mice, inhibit inflammatory factors and myocardial injury, and regulate the expression of key therapeutic targets and key pathways, which is PI3K-Akt signaling pathway. Conclusion Network pharmacological method offers a predicative strategy to explore the treatment efficacy and causal links of RA in endotoxemic myocarditis. Through experimental verification, we discover that RA can reduce lipopolysaccharide-induced cardiac dysfunction by regulating the PI3K-Akt signaling pathway and key genes.
Collapse
Affiliation(s)
- Xi Wang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Chang Kong
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Pan Liu
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Baofeng Zhou
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Wujun Geng
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
| | - Hongli Tang
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, People’s Republic of China
- Correspondence: Hongli Tang; Wujun Geng, Doctor’s Degree, Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang, 325000, People’s Republic of China, Tel +86 13587436057; +86 15325502139, Fax +86 0577-88069555, Email ;
| |
Collapse
|
18
|
Zhang J, Zheng Y, Wang Y, Wang J, Sang A, Song X, Li X. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis. Front Immunol 2022; 13:884362. [PMID: 35979359 PMCID: PMC9376389 DOI: 10.3389/fimmu.2022.884362] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a phospholipid peroxidation-mediated and iron-dependent cell death form, involved in sepsis-induced organ injury and other lung diseases. Yes-associated protein 1 (YAP1), a key regulator of the Hippo signaling pathway, could target multiple ferroptosis regulators. Herein, this study aimed to explore the involvement of ferroptosis in the etiopathogenesis of sepsis-induced acute lung injury (ALI) and demonstrate that YAP1 could disrupt ferritinophagy and moderate sepsis-induced ALI. Cecal ligation and puncture (CLP) models were constructed in wild-type (WT) and pulmonary epithelium-conditional knockout (YAP1f/f) mice to induce ALI, while MLE-12 cells with or without YAP1 overexpression were stimulated by lipopolysaccharide (LPS) in vitro. In-vivo modes showed that YAP1 knockout aggravated CLP-induced ALI and also accelerated pulmonary ferroptosis, as presented by the downregulated expression of GPX4, FTH1, and SLC7A11, along with the upregulated expression of SFXN1 and NCOA4. Transcriptome research identified these key genes and ferroptosis pathways involved in sepsis-induced ALI. In-vitro modes consistently verified that YAP1 deficiency boosted the ferrous iron accumulation and mitochondrial dysfunction in response to LPS. Furthermore, the co-IP assay revealed that YAP1 overexpression could prevent the degradation of ferritin to a mass of Fe2+ (ferritinophagy) via disrupting the NCOA4–FTH1 interaction, which blocked the transport of cytoplasmic Fe2+ into the mitochondria via the mitochondrial membrane protein (SFXN1), further reducing the generation of mitochondrial ROS. Therefore, these findings revealed that YAP1 could inhibit ferroptosis in a ferritinophagy-mediated manner, thus alleviating sepsis-induced ALI, which may provide a new approach to the therapeutic orientation for sepsis-induced ALI.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongping Zheng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aming Sang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xuemin Song, ; Xinyi Li,
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xuemin Song, ; Xinyi Li,
| |
Collapse
|
19
|
McCulley DJ, Jensen EA, Sucre JMS, McKenna S, Sherlock LG, Dobrinskikh E, Wright CJ. Racing against time: leveraging preclinical models to understand pulmonary susceptibility to perinatal acetaminophen exposures. Am J Physiol Lung Cell Mol Physiol 2022; 323:L1-L13. [PMID: 35503238 PMCID: PMC9208439 DOI: 10.1152/ajplung.00080.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Over the past decade, clinicians have increasingly prescribed acetaminophen (APAP) for patients in the neonatal intensive care unit (NICU). Acetaminophen has been shown to reduce postoperative opiate burden, and may provide similar efficacy for closure of the patent ductus arteriosus (PDA) as nonsteroidal anti-inflammatory drugs (NSAIDs). Despite these potential benefits, APAP exposures have spread to increasingly less mature infants, a highly vulnerable population for whom robust pharmacokinetic and pharmacodynamic data for APAP are lacking. Concerningly, preclinical studies suggest that perinatal APAP exposures may result in unanticipated adverse effects that are unique to the developing lung. In this review, we discuss the clinical observations linking APAP exposures to adverse respiratory outcomes and the preclinical data demonstrating a developmental susceptibility to APAP-induced lung injury. We show how clinical observations linking perinatal APAP exposures to pulmonary injury have been taken to the bench to produce important insights into the potential mechanisms underlying these findings. We argue that the available data support a more cautious approach to APAP use in the NICU until large randomized controlled trials provide appropriate safety and efficacy data.
Collapse
Affiliation(s)
- David J McCulley
- Division of Neonatology, Department of Pediatrics, University of California, San Diego, California
| | - Erik A Jensen
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
20
|
Liu T, Chen S, Ruan K, Zhang S, He K, Li J, Chen M, Yin J, Sun M, Wang X, Wang Y, Lu Z, Rao H. A handheld multifunctional smartphone platform integrated with 3D printing portable device: On-site evaluation for glutathione and azodicarbonamide with machine learning. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128091. [PMID: 34952493 DOI: 10.1016/j.jhazmat.2021.128091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Azodicarbonamide (ADA) in flour can be easily decomposed to semi-carbazide and biuret, exhibiting strong genotoxicity in vitro and carcinogenicity. Glutathione (GSH) can be conjugated with some ketone-containing compounds and unsaturated aldehydes to form toxic metabolites. Here, a novel ratio fluorescence probe based on blue emitting biomass-derived carbon dots (BCDs) and yellow emitting 2,3-diaminophenazine (OxOPD) was prepared for the bifunctional determination of glutathione (GSH) and ADA. This strategy includes three processes: (1) Ag+ oxidizes o-phenylenediamine (OPD) to produce OxOPD. The peak at 562 nm was enhanced, and the peak at 442 nm was reduced due to fluorescence resonance energy transfer (FRET), (2) glutathione binds Ag+ and inhibits the production of OxOPD, (3) ADA oxidizes GSH to form GSSG, resulting in the release of Ag+ by GSH. Therefore, the newly designed ratio fluorescence probe can be based on the intensity ratio (I442/I562) changes and significant fluorescent color changes to detect GSH and ADA. Moreover, a smartphone WeChat applet and a yolov3-assisted deep learning classification model have been developed to quickly detect GSH and ADA on-site based on an image processing algorithm. These results indicate that smartphone ratiometric fluorescence sensing combined with machine learning has broad prospects for biomedical analysis.
Collapse
Affiliation(s)
- Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Suru Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Kun Ruan
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shuxin Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Keqiao He
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jian Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Maoting Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jiajian Yin
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
21
|
Sun Y, Yuan K, Mo X, Chen X, Deng Y, Liu C, Yuan Y, Nie J, Zhang Y. Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione. Talanta 2022; 238:122999. [PMID: 34857332 DOI: 10.1016/j.talanta.2021.122999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022]
Abstract
This work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as ∼3.5 and ∼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human serum and urine samples are also satisfactory.
Collapse
Affiliation(s)
- Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Kaijing Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xiaomei Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xuejiang Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yanan Deng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Chang Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| |
Collapse
|
22
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
23
|
Wang H, Luo J, Li A, Su X, Fang C, Xie L, Wu Y, Wen F, Liu Y, Wang T, Zhong Y, Ma L. Proteomic and phosphorylated proteomic landscape of injured lung in juvenile septic rats with therapeutic application of umbilical cord mesenchymal stem cells. Front Immunol 2022; 13:1034821. [PMID: 36341346 PMCID: PMC9635340 DOI: 10.3389/fimmu.2022.1034821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) is the most common complication of sepsis. Intravenous injection of HUMSCs can regulate the level of circulating endothelial cytokines and alleviate lung injury in juvenile septic rats. In this study, we performed proteomic and phosphorylated proteomic analysis of lung tissue of juvenile septic rats after Human Umbilical Cord Mesenchymal Stem Cells (HUMSCs) intervention for the first time, and screened the potential proteins and pathways of HUMSCs for therapeutic effect. The 4D proteome quantitative technique was used to quantitatively analyze the lung tissues of septic rats 24 hours (3 biological samples) and 24 hours after HUMSCs intervention (3 biological samples). A total of 213 proteins were identified as differentially expressed proteins, and 971 phosphorylation sites changed significantly. Based on the public database, we analyzed the functional enrichment of these proteins and phosphorylated proteins. In addition, Tenascin-C may be the key differential protein and ECM receptor interaction pathway may be the main signal pathway by using various algorithms to analyze the protein-protein interaction network. Phosphorylation analysis showed that tight junction pathway was closely related to immune inflammatory reaction, and EGFR interacted most, which may be the key differential phosphorylated protein. Finally, 123 conserved motifs of serine phosphorylation site (pS) and 17 conserved motifs of threonine (pT) phosphorylation sites were identified by motif analysis of phosphorylation sites. Results from proteomics and phosphorylated proteomics, the potential new therapeutic targets of HUMSCs in alleviating lung injury in juvenile septic rats were revealed.
Collapse
Affiliation(s)
- Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Junlin Luo
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Aijia Li
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing Su
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chuiqin Fang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lichun Xie
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Hospital of Guangzhou Medical University), Guangzhou, China
| | - Yi Wu
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yong Zhong
- Department of Pediatrics, The Southeast General Hospital of Dongguan, Dongguan, China
| | - Lian Ma
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Hospital of Guangzhou Medical University), Guangzhou, China
- Department of Hematology and Oncology, Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, China
| |
Collapse
|
24
|
Mo Y, Wang L, Ren M, Xie W, Ye X, Zhou B, Zhang A, Dai Q, Wang J. Electroacupuncture prevents LPS- induced neuroinflammation via upregulation of PICK-TLR4 complexes in the microglia of hippocampus. Brain Res Bull 2021; 177:295-304. [PMID: 34673136 DOI: 10.1016/j.brainresbull.2021.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis caused by neuroinflammation. Electroacupuncture (EA) can be used to treat SAE, but the underlying mechanism is not clear. Lack of PICK1 further aggravates the inflammatory response in mice with sepsis. Therefore, we sought to investigate whether PICK1 is involved in the protective effects of electroacupuncture to SAE. In this study, mice were treated with EA after lipopolysaccharide (LPS) treatment. Behavioral tests; microglial activity of hippocampus; neuron survival and the inflammatory factors PICK1 and TLR4, as well as TLR4-related proteins, such as ERK, JNK, and P38, were assessed after EA treatment. PICK1, TLR4, and TLR4-related proteins, as well as PICK1-TLR4 complex levels were assessed in BV2 cells treated with LPS, PICK1 siRNA, or PICK1 polypeptide. The results indicated that EA could improve neurological assessment and reduce activation of microglial and TLR4 and expression of proinflammatory cytokines. EA also reduced the expression of TLR4 and phosphorylation of ERK/JNK/P38 while, increased the expression of PICK1 and TLR4 complexes. PICK1 knockdown further promoted the expression of TLR4 and phosphorylation of ERK/JNK/P38 in BV2 cells, but this effect was reversed by PICK1 polypeptides. These results suggest that EA may reduce neuroinflammation responses, decrease inflammatory factors, and finally, protect SAE by increasing the formation of PICK1-TLR4 complexes in microglia.
Collapse
Affiliation(s)
- Yunchang Mo
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Wang
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miao Ren
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjing Xie
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Ye
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingbing Zhou
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anqi Zhang
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinxue Dai
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junlu Wang
- The department of Anesthesiology and Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
25
|
Schenz J, Obermaier M, Uhle S, Weigand MA, Uhle F. Low-Density Granulocyte Contamination From Peripheral Blood Mononuclear Cells of Patients With Sepsis and How to Remove It - A Technical Report. Front Immunol 2021; 12:684119. [PMID: 34484182 PMCID: PMC8416421 DOI: 10.3389/fimmu.2021.684119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Elucidating the mechanisms contributing to the dysregulated host response to infection as part of the syndrome is a current challenge in sepsis research. Peripheral blood mononuclear cells are widely used in immunological studies. Density gradient centrifugation, a common method, is of limited use for blood drawn from patients with sepsis. A significant number of low-density granulocytes co-purify contributing to low purity of isolated peripheral blood mononuclear cells. Whole blood anticoagulated with lithium heparin was drawn from patients with sepsis (n=14) and healthy volunteers (n=11). Immediately after drawing, the plasma fraction was removed and PBMC were isolated from the cellular fraction by density gradient centrifugation. Samples derived from patients with sepsis were subsequently incubated with cluster of differentiation 15 MicroBeads and granulocytes were depleted using magnetic-activated cell sorting. Core cellular functions as antigen presentation and cytokine secretion were analyzed in cells isolated from healthy volunteers (n=3) before and after depletion to confirm consistent functionality. We report here that depleting CD15+ cells after density gradient centrifugation is a feasible way to get rid of the low-density granulocyte contamination. Afterwards, the purity of isolated, functionally intact peripheral blood mononuclear cells is comparable to healthy volunteers. Information on the isolation purity and identification of the containing cell types are necessary for good comparability between different studies. Depletion of CD15+ cells after density gradient centrifugation is an easy but highly efficient way to gain a higher quality and more reliability in studies using peripheral blood mononuclear cells from septic patients without affecting the functionality of the cells.
Collapse
Affiliation(s)
- Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Obermaier
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sandra Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
MicroRNA-23a-5p Is Involved in the Regulation of Lipopolysaccharide-Induced Acute Lung Injury by Targeting HSP20/ASK1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9942557. [PMID: 34422215 PMCID: PMC8376430 DOI: 10.1155/2021/9942557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Inflammation and oxidative stress contribute to the progression of acute lung injury (ALI). MicroRNA-23a-5p (miR-23a-5p) has been reported to regulate inflammation and oxidative stress; however, its role in ALI is still poorly elucidated. Mice were intravenously treated with the miR-23a-5p antagomir, agomir, or the negative controls for 3 consecutive days and then received a single intratracheal injection of lipopolysaccharide (LPS, 5 mg/kg) to induce ALI. Pulmonary function, bronchoalveolar lavage fluids (BALFs), arterial blood gas, and molecular biomarkers associated with inflammation and oxidative stress were analyzed. In addition, murine peritoneal macrophages were isolated and treated with LPS to verify the role of miR-23a-5p in vitro. We detected an elevation of miR-23a-5p expression in the lungs from ALI mice. The miR-23a-5p antagomir was prevented, whereas the miR-23a-5p agomir aggravated inflammation, oxidative stress, lung tissue injury, and pulmonary dysfunction in LPS-treated mice. Besides, the miR-23a-5p antagomir also reduced the productions of proinflammatory cytokines and free radicals in LPS-treated primary macrophages, which were further augmented in cells following the miR-23a-5p agomir treatment. Additional findings demonstrated that the miR-23a-5p agomir exacerbated LPS-induced ALI via activating apoptosis signal-regulating kinase 1 (ASK1), and that pharmacological or genetic inhibition of ASK1 significantly repressed the deleterious effects of the miR-23a-5p agomir. Moreover, we proved that the miR-23a-5p agomir activated ASK1 via directly reducing heat shock protein 20 (HSP20) expression. miR-23a-5p is involved in the regulation of LPS-induced inflammation, oxidative stress, lung tissue injury, and pulmonary dysfunction by targeting HSP20/ASK1, and it is a valuable therapeutic candidate for the treatment of ALI.
Collapse
|
27
|
Fu H, Zhang J, Huang M. Topiroxostat ameliorates oxidative stress and inflammation in sepsis-induced lung injury. ACTA ACUST UNITED AC 2021; 75:425-431. [PMID: 32589612 DOI: 10.1515/znc-2020-0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 11/15/2022]
Abstract
Sepsis-induced lung injury was the most common cause of death in patients. Topiroxostat, a novel xanthine oxidoreductase inhibitors, possessed obvious organ protectives effects. Xanthine oxidase played a vital role in acute lung injury. The study aimed to investigate the roles of Topiroxostat in sepsis-induced lung injury. The sepsis rats were established using cecum ligation and perforation. The lung damage induced by sepsis was evaluated by Hematoxylin and Eosin staining and lung tissue wet to dry ratio. The oxidative stress was detected by measurement of reactive oxygen species, malondialdehyde, myeloperoxidase and superoxide dismutase (SOD). The pro-inflammatory mediators, tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and monocyte chemotactic protein 1, were measured by Enzyme-Linked Immunosorbent Assay. The cell apoptosis in lung was detected by TUNNEL staining and western blot analysis of apoptosis-related proteins including pro-apoptosis proteins, Bax, cleaved caspase9, cleaved caspase3 and anti-apoptosis protein Bcl2. The results showed that Topiroxostat significantly reduced lung damage, along with decreased oxidative stress, inflammation response and apoptosis in sepsis rats. Topiroxostat exerted markedly protective effects in sepsis-induced lung injury and could be an antioxidant in treating sepsis-induced lung injury.
Collapse
Affiliation(s)
- Haiying Fu
- Emergency Department, Tong Ren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Emergency Department, Tong Ren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mayu Huang
- Emergency Department, Tong Ren Hospital Shanghai Jiao Tong University School of Medicine, 1111 Xian xia Road Changning District, Shanghai, China
| |
Collapse
|
28
|
Zhang X, Zheng C, Gao Z, Chen H, Li K, Wang L, Zheng Y, Li C, Zhang H, Gong M, Zhang H, Meng Y. SLC7A11/xCT Prevents Cardiac Hypertrophy by Inhibiting Ferroptosis. Cardiovasc Drugs Ther 2021; 36:437-447. [PMID: 34259984 DOI: 10.1007/s10557-021-07220-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Systemic hypertension may induce adverse hypertrophy of the left cardiac ventricle. Pathological cardiac hypertrophy is a common cause of heart failure. We investigated the significance of ferroptosis repressor xCT in hypertrophic cardiomyopathy. METHODS xCT expression in angiotensin II (Ang II)-treated mouse hearts and rat cardiomyocytes was determined using qRT-PCR and Western blotting. Cardiac hypertrophy was induced by Ang II infusion in xCT knockout mice and their wildtype counterparts. Blood pressure, cardiac pump function, and pathological changes of cardiac remodeling were analyzed in these mice. Cell death, oxidative stress, and xCT-mediated ferroptosis were examined in Ang II-treated rat cardiomyocytes. RESULTS After Ang II infusion, xCT was downregulated at day 1 but upregulated at day 14 at both mRNA and protein levels. It was also decreased in Ang II-treated cardiomyocytes, but not in cardiofibroblasts. Inhibition of xCT exacerbated cardiomyocyte hypertrophy and boosted the levels of ferroptosis biomarkers Ptgs2, malondialdehyde, and reactive oxygen species induced by Ang II, while overexpression of xCT opposed these detrimental effects. Furthermore, knockout of xCT aggravated Ang II-mediated mouse cardiac fibrosis, hypertrophy, and dysfunction. Ferrostatin-1, a ferroptosis inhibitor, alleviated the exacerbation of cardiomyocyte hypertrophy caused by inhibiting xCT in cultured rat cells or ablating xCT in mice. CONCLUSION xCT acts as a suppressor in Ang II-mediated cardiac hypertrophy by blocking ferroptosis. Positive modulation of xCT may therefore represent a novel therapeutic approach against cardiac hypertrophic diseases.
Collapse
Affiliation(s)
- Xiyu Zhang
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Cuiting Zheng
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Hongyu Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingling Wang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Chunjia Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Hongjia Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Beijing Aortic Disease Center, Beijing Laboratory for Cardiovascular Precision Medicine, and Beijing Engineering Research Center of Vascular Prostheses, Capital Medical University, Beijing, China
| | - Ming Gong
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Beijing Aortic Disease Center, Beijing Laboratory for Cardiovascular Precision Medicine, and Beijing Engineering Research Center of Vascular Prostheses, Capital Medical University, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yan Meng
- Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Dou Q, Tong H, Yang Y, Zhang H, Gan H. PICK1 Deficiency Exacerbates Sepsis-Associated Acute Kidney Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9884297. [PMID: 34307672 PMCID: PMC8285178 DOI: 10.1155/2021/9884297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022]
Abstract
We performed in vitro and in vivo experiments to explore the role of protein kinase C-binding protein 1 (PICK1), an intracellular transporter involved in oxidative stress-related neuronal diseases, in sepsis-related acute kidney injury (AKI). Firstly, PCR, western blotting, and immunohistochemistry were used to observe the expression of PICK1 after lipopolysaccharide- (LPS-) induced AKI. Secondly, by inhibiting PICK1 in vivo and silencing PICK1 in vitro, we further explored the effect of PICK1 on AKI. Finally, the relationship between PICK1 and oxidative stress and the related mechanisms were explored. We found that the expression of PICK1 was increased in LPS-induced AKI models both in vitro and in vivo. PICK1 silencing significantly aggravated LPS-induced apoptosis, accompanied by ROS production in renal tubular epithelial cells. FSC231, a PICK1-specific inhibitor, aggravated LPS-induced kidney injury. Besides, NAC (N-acetylcysteine), a potent ROS scavenger, significantly inhibited the PICK1-silencing-induced apoptosis. In conclusion, PICK1 might protect renal tubular epithelial cells from LPS-induced apoptosis by reducing excessive ROS, making PICK1 a promising preventive target in LPS-induced AKI.
Collapse
Affiliation(s)
- Qian Dou
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Han Zhang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
30
|
Liu Q, Wu J, Zhang X, Li X, Wu X, Zhao Y, Ren J. Circulating mitochondrial DNA-triggered autophagy dysfunction via STING underlies sepsis-related acute lung injury. Cell Death Dis 2021; 12:673. [PMID: 34218252 PMCID: PMC8254453 DOI: 10.1038/s41419-021-03961-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
The STING pathway and its induction of autophagy initiate a potent immune defense response upon the recognition of pathogenic DNA. However, this protective response is minimal, as STING activation worsens organ damage, and abnormal autophagy is observed during progressive sepsis. Whether and how the STING pathway affects autophagic flux during sepsis-induced acute lung injury (sALI) are currently unknown. Here, we demonstrate that the level of circulating mtDNA and degree of STING activation are increased in sALI patients. Furthermore, STING activation was found to play a pivotal role in mtDNA-mediated lung injury by evoking an inflammatory storm and disturbing autophagy. Mechanistically, STING activation interferes with lysosomal acidification in an interferon (IFN)-dependent manner without affecting autophagosome biogenesis or fusion, aggravating sepsis. Induction of autophagy or STING deficiency alleviated lung injury. These findings provide new insights into the role of STING in the regulatory mechanisms behind extrapulmonary sALI.
Collapse
Affiliation(s)
- Qinjie Liu
- Research Institute of General Surgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical school of Nanjing University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, China.
- Research Institute of General Surgery, Jinling Hospital, Nanjing, China.
| |
Collapse
|
31
|
Li W, Hou G, Lv J, Lin F, Song G, Li R. MicroRNA-30d-5p ameliorates lipopolysaccharide-induced acute lung injury via activating AMPKα. Immunopharmacol Immunotoxicol 2021; 43:431-442. [PMID: 34157933 DOI: 10.1080/08923973.2021.1933517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Acute lung injury (ALI) is a devastating lung disease characterized by uncontrolled pulmonary inflammation and oxidative stress. Currently, no effective therapeutic strategies are available for ALI and its prognosis remains poor. The present study aims to investigate the role and potential mechanism of microRNA-30d-5p (miR-30d-5p) in the progression of ALI. METHODS Mice were intravenously treated with miR-30d-5p agomir, antagomir or their respective controls for 3 consecutive days and then were exposed to a single intratracheal injection of lipopolysaccharide (LPS) for 12 h at a dosage of 5 mg/kg to induce ALI. To inhibit adenosine monophosphate-activated protein kinase α (AMPKα) or phosphodiesterase 4 D (PDE4D), compound C (CpC) and rolipram were used. RESULTS miR-30d-5p expression in the lungs was significantly inhibited by LPS treatment. miR-30d-5p agomir significantly alleviated, while miR-30d-5p antagomir aggravated pulmonary inflammation, oxidative damage, and dysfunction in ALI mice. Besides, we found that miR-30d-5p agomir ameliorated LPS-induced ALI via activating AMPKα and that the inhibition of AMPKα by CpC completely abolished these beneficial effects of miR-30d-5p agomir. Further findings validated that PDE4D downregulation was required for the activation of AMPKα by miR-30d-5p agomir. CONCLUSION miR-30d-5p ameliorates LPS-induced ALI via activating AMPKα and it is a valuable therapeutic candidate in the treatment of ALI.
Collapse
Affiliation(s)
- Weixin Li
- Department of Pulmonary and Critical Care Medicine, The First People' s Hospital of Jiangxia District, Wuhan, China
| | - Guoqiang Hou
- Department of Thoracic Surgery, Yangxin People's Hospital, Huangshi, China
| | - Jianfa Lv
- Department of Thoracic Surgery, Hanchuan People's Hospital, Hanchuan, China
| | - Feng Lin
- Department of Thoracic Surgery, Macheng People's Hospital, Macheng, China
| | - Gan Song
- Department of Thoracic Surgery, Macheng People's Hospital, Macheng, China
| | - Ruiyun Li
- Department of Pulmonary and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Qu M, Zhang H, Chen Z, Sun X, Zhu S, Nan K, Chen W, Miao C. The Role of Ferroptosis in Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:651552. [PMID: 34026785 PMCID: PMC8137978 DOI: 10.3389/fmed.2021.651552] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is a newly discovered type of regulated cell death that is different from apoptosis, necrosis and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation, which induces cell death. Iron, lipid and amino acid metabolism is associated with ferroptosis. Ferroptosis is involved in the pathological development of various diseases, such as neurological diseases and cancer. Recent studies have shown that ferroptosis is also closely related to acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS), suggesting that it can be a novel therapeutic target. This article mainly introduces the metabolic mechanism related to ferroptosis and discusses its role in ALI/ARDS to provide new ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Zhou Y, Li K, Du Y, Wu Z, Wang H, Zhang X, Yang Y, Chen L, Hao K, Wang Z, Lyu J. Protein interacting with C-kinase 1 is involved in epithelial-mesenchymal transformation and suppresses progress of gastric cancer. Med Oncol 2021; 38:34. [PMID: 33660148 DOI: 10.1007/s12032-021-01483-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/17/2021] [Indexed: 01/06/2023]
Abstract
Protein interacting with C-kinase 1 (PICK1) is a 415-aa multidomain scaffold protein encoded by the PICK1 gene. Accumulating evidence suggests that PICK1 is involved in the progression of cancer. However, the role of PICK1 in gastric cancer (GC) remains largely unknown. Using integrated analysis of publicly available GC transcriptome data from the Gene Expression Omnibus (GEO) database and immunohistochemistry analysis of samples obtained from clinical GC patients, we found that PICK1 expression was significantly down-regulated in gastric tumor tissues in comparison with adjacent normal tissues. Our analyses also revealed that decreased expression of PICK1 conferred a disadvantage on overall survival time in GC patients. Additionally, PICK1 expression showed a strong association with the epithelial-mesenchymal transition (EMT) pathway, and PICK1 might represent a functional bridge for EMT. Moreover, PICK1 expression was significantly decreased in the EMT subtype of GC and was negatively correlated with the expression of fibronectin 1 (FN1) and myosin light chain 9 (MYL9) mRNAs. Thus, our study provides evidence that PICK1 is a promising biomarker for the molecular etiology of GC.
Collapse
Affiliation(s)
- Ying Zhou
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaiqiang Li
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yaoqiang Du
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhaoyu Wu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yexiaoqing Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Linjie Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhen Wang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China. .,Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China. .,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
34
|
Li X, Ding D, Chen W, Liu Y, Pan H, Hu J. Growth differentiation factor 11 mitigates cardiac radiotoxicity via activating AMPKα. Free Radic Res 2021; 55:176-185. [PMID: 33557626 DOI: 10.1080/10715762.2021.1885653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac radiotoxicity largely impedes the therapeutic benefits of radiotherapy to malignancies. Growth differentiation factor 11 (GDF11) is implicated in the pathogenesis of cardiac diseases under different pathological conditions. This study aims to investigate the role and underlying mechanisms of GDF11 on cardiac radiotoxicity. Mice were injected with cardiotropic adeno-associated virus 9 carrying the full-length mouse GDF11 gene or negative control under a cTnT promoter from the tail vein, and then received a single dose of 20 Gray (Gy) whole-heart irradiation (WHI) for 16 weeks to imitate cardiac radiotoxicity. Compound C (CC, 20 mg/kg) was intraperitoneally injected every two days at 1 week before WHI stimulation to inhibit 5' AMP-activated protein kinase α (AMPKα). Cardiac GDF11 expression was significantly suppressed at both the protein and mRNA levels. GDF11 overexpression decreased oxidative stress, apoptosis, and fibrosis in radiated hearts, thereby mitigating cardiac radiotoxicity, and dysfunction. Further detection revealed that GDF11 activated AMPKα to reduce radiation-induced oxidative damage and that AMPKα inhibition by CC offset the cardioprotective effects by GDF11. GDF11 mitigates cardiac radiotoxicity via activating AMPKα and it is a promising candidate to treat cardiac radiotoxicity.
Collapse
Affiliation(s)
- Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Dong Ding
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Wei Chen
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
| |
Collapse
|
35
|
Xu B, Wang H, Chen Z. Puerarin Inhibits Ferroptosis and Inflammation of Lung Injury Caused by Sepsis in LPS Induced Lung Epithelial Cells. Front Pediatr 2021; 9:706327. [PMID: 34422728 PMCID: PMC8371381 DOI: 10.3389/fped.2021.706327] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Ferroptosis is a new type of programmed cell death, which plays an important role in lung injury caused by sepsis. Studies have reported that Puerarin (Pue) can treat lung injury caused by sepsis in children, but whether it plays a role by regulating iron death has not been reported. Methods: LPS induced human alveolar epithelial cell A549 to form a model of lung injury caused by sepsis. MTT detected the effect of Pue on A549 cell viability and the effect of Pue on LPS-induced A549 cell viability. The effects of Pue on LPS-induced inflammatory cytokines TNF-α, IL-8, IL-1β in A549 cells were determined by ELISA assay. The expression level of MDA was detected by TBARS colorimetric quantitative detection kit. GSH kit was used to detect the expression of GSH in cells. The iron kit detected the total iron level and the expression level of ferric divalent ions in the cells. DCFH-DA fluorescent probe was used to detect ROS levels. Western blot was used to detect the expression of ferroptosis-related proteins in cells. Results: Pue alleviated LPS-induced injury and inflammatory response in A549 cells, and Pue reduced the expression of ROS, MDA and GSH in LPS-induced A549 cells. In addition, Pue reduced total iron levels and ferrous ion levels in LPS-induced A549 cells, and decreased the expression of iron ferroptosis-related proteins. Conclusion: Puerarin inhibited ferroptosis and inflammation of lung injury caused by sepsis in children in LPS induced lung epithelial cells.
Collapse
Affiliation(s)
- Baiye Xu
- Department of Pediatrics, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Haidao Wang
- Department of Pediatrics, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhen Chen
- Department of Pediatrics, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
36
|
Li J, Liu L, Zhou X, Lu X, Liu X, Li G, Long J. Melatonin Attenuates Sepsis-Induced Acute Lung Injury Through Improvement of Epithelial Sodium Channel-Mediated Alveolar Fluid Clearance Via Activation of SIRT1/SGK1/Nedd4-2 Signaling Pathway. Front Pharmacol 2020; 11:590652. [PMID: 33362546 PMCID: PMC7759566 DOI: 10.3389/fphar.2020.590652] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury is characterized by alveolar vascular barrier injury, and protein-rich pulmonary oedema. Alveolar fluid clearance is closely related to the prognosis of patients with acute lung injury. Melatonin has been shown to have a protective effect on multiple organ injury induced by sepsis. In this study we investigated the effect of melatonin on alveolar fluid clearance (AFC) and explored its potential mechanisms in sepsis-induced acute lung injury. The cecal ligation and puncture was adopted to establish mouse sepsis model. Morphological changes of lung tissues with the hematoxylin staining were observed. AFC and lung wet/dry weight ratio were measured to assess pulmonary edema. Inflammatory mediators in bronchoalveolar lavage fluid were analyzed via enzyme-linked immunosorbent assay. NAD+/NADH and SIRT1 activity were measured by colorimetric assay kit. The protein expressions of epithelial sodium channel (ENaC), silent information regulator1 (SIRT1), SGK1 and Nedd4-2 were immunoblotted by western blot in vivo and in vitro. The distribution of α-ENaC and SIRT1 was detected by immunofluorescence. We found that melatonin attenuated sepsis induced lung injury, improved survival rate, enhanced alveolar fluid clearance, improved SIRT1 activity, increased protein expressions of SIRT1 and ENaC, and activated SGK1/Nedd4-2 pathway. Furthermore, SIRT1 inhibitor EX527 counteracted the effects of melatonin on alveolar fluid clearance and ENaC. These results revealed that melatonin enhanced ENaC-mediated AFC via the SIRT1/SGK1/Nedd4-2 signaling pathway. Our study demonstrated that melatonin might provide a novel therapeutic strategy for sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Longfei Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiaojun Zhou
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xianzhou Lu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xianrong Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Guojuan Li
- Department of Endocrinology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jianwu Long
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
37
|
Zhao S, Chen F, Yin Q, Wang D, Han W, Zhang Y. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol 2020; 11:571810. [PMID: 33324236 PMCID: PMC7723971 DOI: 10.3389/fphys.2020.571810] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 10 years, the crisis of sepsis has remained a great challenge. According to data from 2016, the sepsis-related mortality rate remains high. In addition, sepsis consumes extensive medical resources in intensive care units, and anti-inflammatory agents fail to improve sepsis-associated hyperinflammation and symptoms of immunosuppression. The specific immune mechanism of sepsis remains to be elucidated. Reactive oxygen species (ROS) are triggered by energy metabolism and respiratory dysfunction in sepsis, which not only cause oxidative damage to tissues and organelles, but also directly and indirectly promote NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. NLRP3 inflammasomes enlarge the inflammatory response and trigger apoptosis of immune cells to exacerbate sepsis progression. Inhibiting the negative effects of ROS and NLRP3 inflammasomes therefore provides the possibility of reversing the excessive inflammation during sepsis. In this review, we describe the interaction of ROS and NLRP3 inflammasomes during sepsis, provide prevention strategies, and identify fields that need further study.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Fan Chen
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Liu Z, Lv X, Song E, Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol 2020; 407:115241. [DOI: 10.1016/j.taap.2020.115241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
|
39
|
Nrf2 and STAT3 Alleviates Ferroptosis-Mediated IIR-ALI by Regulating SLC7A11. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5146982. [PMID: 33014271 PMCID: PMC7520693 DOI: 10.1155/2020/5146982] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Acute lung injury (ALI) has gained increased attention in the field of critical illness research and is associated with a fatality rate of approximately 50%. Nuclear factor erythroid 2-related factor2 (Nrf2) is a key regulator of intracellular oxidation homeostasis and also functions as an antioxidant. It has been reported that Nrf2 associated antioxidant stress is closely related to ferroptosis inhibition. Signal transducer and activator of transcription 3 (STAT3) is activated into phosphorylated STAT3 (pSTAT3) in response to tissue damage and serves as a warning signal to enhance the inflammatory response. In this study, an intestinal ischemia/reperfusion-induced acute lung injury (IIR-ALI) model was established in C57BL/6 mice to investigate the role of Nrf2 in regulating IIR-ALI-associated ferroptosis. Compared with those in the IIR-ALI group, the injection of Fe (15 mg/kg) or ferrostatin-1 (5 mg/kg) (ferroptosis promoter and inhibitor, respectively) via the tail vein could aggravate or alleviate lung injury and pulmonary edema, respectively. Nrf2 was increased in IIR-ALI and promoted the phosphorylation of STAT3 to amplify downstream signals. An in vitro oxygen-glucose deprivation and reoxygenation (OGD-R) model was established in MLE12 cells to imitate the ischemia/reperfusion condition. The cells were transfected with lentiviruses to increase or downregulate the levels of STAT3. We found that Nrf2 and STAT3 played key roles in ferroptosis by regulating SLC7A11, which improved the pathological processes associated with ALI.
Collapse
|
40
|
Epithelial Dysfunction in Lung Diseases: Effects of Amino Acids and Potential Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:57-70. [PMID: 32761570 DOI: 10.1007/978-3-030-45328-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung diseases affect millions of individuals all over the world. Various environmental factors, such as toxins, chemical pollutants, detergents, viruses, bacteria, microbial dysbiosis, and allergens, contribute to the development of respiratory disorders. Exposure to these factors activates stress responses in host cells and disrupt lung homeostasis, therefore leading to dysfunctional epithelial barriers. Despite significant advances in therapeutic treatments for lung diseases in the last two decades, novel interventional targets are imperative, considering the side effects and limited efficacy in patients treated with currently available drugs. Nutrients, such as amino acids (e.g., arginine, glutamine, glycine, proline, taurine, and tryptophan), peptides, and bioactive molecules, have attracted more and more attention due to their abilities to reduce oxidative stress, inhibit apoptosis, and regulate immune responses, thereby improving epithelial barriers. In this review, we summarize recent advances in amino acid metabolism in the lungs, as well as multifaceted functions of amino acids in attenuating inflammatory lung diseases based on data from studies with both human patients and animal models. The underlying mechanisms for the effects of physiological amino acids are likely complex and involve cell signaling, gene expression, and anti-oxidative reactions. The beneficial effects of amino acids are expected to improve the respiratory health and well-being of humans and other animals. Because viruses (e.g., coronavirus) and environmental pollutants (e.g., PM2.5 particles) induce severe damage to the lungs, it is important to determine whether dietary supplementation or intravenous administration of individual functional amino acids (e.g., arginine-HCl, citrulline, N-acetylcysteine, glutamine, glycine, proline and tryptophan) or their combinations to affected subjects may alleviate injury and dysfunction in this vital organ.
Collapse
|
41
|
Xie X, Peng Z, Hua X, Wang Z, Deng K, Yang X, Huang H. Selectively monitoring glutathione in human serum and growth-associated living cells using gold nanoclusters. Biosens Bioelectron 2019; 148:111829. [PMID: 31710959 DOI: 10.1016/j.bios.2019.111829] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023]
Abstract
Glutathione (GSH) plays a variety of vital functions in biological systems. Growth-associated change of GSH level in cells might be critical for cell survival and monitoring of GSH in living cells are of great significance for understanding the dynamic link between GSH and some diseases. In this work, chitason micelles templated gold nanoclusters (CM-Au NCs) emitting red fluorescence were prepared with a simple and rapid method, which shows interesting phenomenon of aggregation induced emission (AIE) affected by the size of the chitosan micelles. The unique CM-Au NCs can be used to develop turn-off fluorescent probe for detecting GSH in human serum and living cells based on the reverse process of AIE of CM-Au NCs, completely different from the principle of aggregation caused quenching (ACQ) effect, which can distinguish GSH from other biothiols (cysteine and homocysteine) and quantitatively detect GSH concentration of human serum in healthy people and cancer patients with high sensitivity. The practical application of fluorescent CM-Au NCs for cellular imaging and detecting GSH level indicates ultra-trace changes of GSH levels in normal and cancer cells could be monitored at different growth stages, which reveals that the levels of GSH in cancer cells was always higher than that of normal cells. Compared with commercial GSH assay kits for detection GSH in human serum and living cells, the proposed method was verified to be accuracy and precision. The results not only reflect the changes of GSH during cell growth at different stages, but also demonstrate the feasibility of reverse process of AIE of CM-Au NCs for detection GSH. This strategy would provide a platform to understand the dynamic link between GSH and disease to clarify the disease mechanism.
Collapse
Affiliation(s)
- Xiaoxue Xie
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhenqi Peng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinyi Hua
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhifang Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiumei Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
42
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
43
|
Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway. Biomed Pharmacother 2019; 115:108971. [PMID: 31102910 DOI: 10.1016/j.biopha.2019.108971] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
Sepsis, as life-threatening organ dysfunction caused by a dysregulated host response to infection, is characterized by the extensive release of cytokines and other mediators. Sini decoction (SND), a traditional Chinese prescription medicine, has been used clinically for the treatment of sepsis. But its explicit mechanism of action is still unclear. The present study aims to evaluate the potential protective effects of SND on sepsis-induced acute lung injury (ALI). After SND intervention, the lung tissues of each experimental group were collected. H&E sections were used to observe the pathological changes of lung tissue, and alveolar lavage fluid was collected to detect the infiltration of inflammatory cells. Level of inflammatory factors in lung tissue were analyzed by qRT-PCR. The change of Renin angiotensin system (RAS), as well as downstream MAPK/NF-κB signaling pathways were measured by Western blot. For in vitro experiments, human umbilical vein endothelial cells (HUVECs) were pretreated with lipopolysaccharide (LPS) and treated with SND. Subsequently, the expression levels of RAS and MAPK/NF-κB signaling pathways were measured by Western blot. In vivo, we found that SND significantly attenuated sepsis-induced pathological injury in the lung. SND also inhibited LPS-mediated inflammatory cell infiltration, the expression of pro-apoptotic proteins and the production of IL-6, IL-1β, TNF-α and MCP-1. In vitro, experiments using a co-culture of HUVECs with SND showed that there was a decrease in pro-apoptotic protein and pro-inflammatory mediator. In this research, we also found that SND protective action could be attributed to the regulation of renin-angiotensin system (RAS). MAPKs and NF-κB pathways. To conclude, our study demonstrated that SND ameliorates sepsis-induced-ALI via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway.
Collapse
|
44
|
Liu J, Chen Q, Liu S, Yang X, Zhang Y, Huang F. Sini decoction alleviates E. coli induced acute lung injury in mice via equilibrating ACE-AngII-AT1R and ACE2-Ang-(1-7)-Mas axis. Life Sci 2018; 208:139-148. [DOI: 10.1016/j.lfs.2018.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022]
|