1
|
Hayes E, Alhulaefi S, Siervo M, Whyte E, Kimble R, Matu J, Griffiths A, Sim M, Burleigh M, Easton C, Lolli L, Atkinson G, Mathers JC, Shannon OM. Inter-individual differences in the blood pressure lowering effects of dietary nitrate: a randomised double-blind placebo-controlled replicate crossover trial. Eur J Nutr 2025; 64:101. [PMID: 39992469 PMCID: PMC11850510 DOI: 10.1007/s00394-025-03616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Dietary nitrate supplementation increases nitric oxide (NO) bioavailability and reduces blood pressure (BP). Inter-individual differences in these responses are suspected but have not been investigated using robust designs, e.g., replicate crossover, and appropriate statistical models. We examined the within-individual consistency of the effects of dietary nitrate supplementation on NO biomarkers and BP, and quantified inter-individual response differences. METHODS Fifteen healthy males visited the laboratory four times. On two visits, participants consumed 140 ml nitrate-rich beetroot juice (~ 14.0mmol nitrate) and, on the other two visits, they consumed 140 ml nitrate-depleted beetroot juice (~ 0.03mmol nitrate). Plasma nitrate and nitrite concentrations were measured 2.5 h post-supplementation. BP was measured pre- and 2.5 h post-supplementation. Between-replicate correlations were quantified for the placebo-adjusted post-supplementation plasma nitrate and nitrite concentrations and pre-to-post changes in BP. Within-participant linear mixed models and a meta-analytic approach estimated participant-by-condition treatment response variability. RESULTS Nitrate-rich beetroot juice supplementation elevated plasma nitrate and nitrite concentrations and reduced systolic (mean:-7mmHg, 95%CI: -3 to -11mmHg) and diastolic (mean:-6mmHg, 95%CI: -2 to -9mmHg) BP versus placebo. The participant-by-condition interaction response variability from the mixed model was ± 7mmHg (95%CI: 3 to 9mmHg) for systolic BP and consistent with the treatment effect heterogeneity t = ± 7mmHg (95%CI: 5 to 12mmHg) derived from the meta-analytic approach. The between-replicate correlations were moderate-to-large for plasma nitrate, nitrite and systolic BP (r = 0.55 to 0.91). CONCLUSIONS The effects of dietary nitrate supplementation on NO biomarkers and systolic BP varied significantly from participant to participant. The causes of this inter-individual variation deserve further investigation. TRIAL REGISTRATION https://clinicaltrials.gov/study/NCT05514821 .
Collapse
Affiliation(s)
- Eleanor Hayes
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Northumbria University, Newcastle upon Tyne, UK
| | - Shatha Alhulaefi
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Nutrition, Taif University, Taif, 21944, Saudi Arabia
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
- Curtin Dementia Centre of Excellence, Enable Institute, Curtin University, Perth, Australia
| | - Eleanor Whyte
- Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Rachel Kimble
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Jamie Matu
- School of Health, Leeds Beckett University, Leeds, UK
| | | | - Marc Sim
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Chris Easton
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Lorenzo Lolli
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Greg Atkinson
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - John C Mathers
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Shannon
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Al-Maweri SA, Al-Mashraqi AA, Al-Qadhi G, Al-Hebshi N, Ba-Hattab R. The association between the oral microbiome and hypertension: a systematic review. J Oral Microbiol 2025; 17:2459919. [PMID: 39902217 PMCID: PMC11789219 DOI: 10.1080/20002297.2025.2459919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Background This study systematically reviewed the available evidence regarding the potential association between oral microbiota and hypertension. Methods A comprehensive search of online databases was conducted by two independent investigators for all relevant articles. All observational studies that assessed the association between oral microbiota and hypertension were included. Quality appraisal was conducted using the NOS tool. Results A total of 17 studies comprising 6007 subjects were included. The studies varied with respect to sample type and microbial analysis method. All studies, except one, found significant differences in microbial composition between hypertensive and normotensive subjects. However, there were substantial inconsistencies regarding the specific differences identified. Still, a few taxa were repeatedly found enriched in hypertension including Aggregatibacter, Kingella, Lautropia, and Leptotrachia besides the red complex periodontal pathogens. When considering only studies that controlled for false discovery rates and confounders, Atopobium, Prevotella, and Veillonella were identified as consistently associated with hypertension. Conclusion There are significant differences in the oral microbiome between hypertensive and normotensive subjects. Despite the heterogeneity between the included studies, a subset of microbial taxa seems to be consistently enriched in hypertension. Further studies are highly recommended to explore this association. Registration PROSPERO database (ID: CRD42023495005).
Collapse
Affiliation(s)
| | | | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Aden, Yemen
| | - Nezar Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Raidan Ba-Hattab
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Boulares A, Jdidi H, Bragazzi NL. Impact of Mouthwash-Induced Oral Microbiome Disruption on Alzheimer's Disease Risk: A Perspective Review. Int Dent J 2025; 75:45-50. [PMID: 39379282 PMCID: PMC11806309 DOI: 10.1016/j.identj.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 10/10/2024] Open
Abstract
The widespread use of mouthwashes, particularly those containing chlorhexidine (CHX), has raised concerns about their impact on the oral microbiome and potential systemic health effects. This perspective review examines the current evidence linking CHX mouthwash use to disruptions in the oral microbiome and explores the potential indirect implications for Alzheimer's disease (AD) risk. CHX mouthwash is effective in reducing dental plaque and gingival inflammation, but it also significantly alters the composition of the oral microbiome, decreasing the abundance of nitrate-reducing bacteria critical for nitric oxide (NO) production. This disruption can lead to increased blood pressure, a major risk factor for AD. Given the established connection between hypertension and AD, the long-term use of CHX mouthwash may indirectly contribute to the onset of AD. However, the relationship between CHX mouthwash use and AD remains largely indirect, necessitating further longitudinal and cohort studies to investigate whether a direct causal link exists. The review aims to highlight the importance of maintaining a balanced oral microbiome for both oral and systemic health and calls for more research into safer oral hygiene practices and their potential impacts on neurodegenerative disease risk.
Collapse
Affiliation(s)
- Ayoub Boulares
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Hela Jdidi
- Laboratory Mobility, Faculty of Sport Sciences-STAPS, Aging & Exercise-ER20296, University of Poitiers, Poitiers, France
| | - Nicola Luigi Bragazzi
- Department of Food and Drugs, Human Nutrition Unit (HNU), Medical School, University of Parma, Parma, Italy; Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Tripodi G, Lombardo M, Kerav S, Aiello G, Baldelli S. Nitric Oxide in Parkinson's Disease: The Potential Role of Dietary Nitrate in Enhancing Cognitive and Motor Health via the Nitrate-Nitrite-Nitric Oxide Pathway. Nutrients 2025; 17:393. [PMID: 39940251 PMCID: PMC11819985 DOI: 10.3390/nu17030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremor, rigidity, and bradykinesia. The pathological hallmarks of PD include Lewy bodies and mechanisms like oxidative/nitrosative stress, chronic inflammation, and mitochondrial dysfunction. Nitric oxide (NO), produced by nitric oxide synthase (NOS) isoforms, plays a dual role in neuroprotection and neurodegeneration. Excessive NO production exacerbates neuroinflammation and oxidative/nitrosative damage, contributing to dopaminergic cell death. This review explores NO's role in PD pathogenesis and investigates dietary nitrate as a therapeutic strategy to regulate NO levels. METHODS A literature review of studies addressing the role of NO in PD was conducted using major scientific databases, including PubMed, Scopus, and Web of Science, using keywords such as "nitric oxide", "NOSs", "Parkinson's disease", and "nitrate neuroprotection in PD". Studies on nitrate metabolism via the nitrate-nitrite-NO pathway and its effects on PD hallmarks were analyzed. Studies regarding the role of nitrosamine formation in PD, which are mainly formed during the nitrification process of amines (nitrogen-containing compounds), often due to chemical reactions in the presence of nitrite or nitrate, were also examined. In particular, nitrate has been shown to induce oxidative stress, affect the mitochondrial function, and contribute to inflammatory phenomena in the brain, another factor closely related to the pathogenesis of PD. RESULTS Excessive NO production, particularly from iNOS and nNOS, was strongly associated with neuroinflammation and oxidative/nitrosative stress, amplifying neuronal damage in PD. Dietary nitrate was shown to enhance NO bioavailability through the nitrate-nitrite-NO pathway, mitigating inflammation and oxidative/nitrosative damage. CONCLUSIONS Dysregulated NO production contributes significantly to PD progression via inflammatory and oxidative/nitrosative pathways. Dietary nitrate, by modulating NO levels, offers a promising therapeutic strategy to counteract these pathological mechanisms. Further clinical trials are warranted to establish its efficacy and optimize its use in PD management.
Collapse
Affiliation(s)
- Gianluca Tripodi
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
| | - Sercan Kerav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye;
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
| | - Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
5
|
Dubois M, Delcourt B, Ortis M, Bougault V, Doglio A, Bertrand MF. Correlation Between the Oral Microbiota and Sports Practice: A Systematic Review. Cureus 2025; 17:e78168. [PMID: 40026959 PMCID: PMC11868821 DOI: 10.7759/cureus.78168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
The impact of sports on oral health has been the subject of extensive investigation, with the majority of studies indicating a deterioration in oral health. However, the composition of the oral microbiota in athletes and its impact remains unclear. The objective of this review is to investigate the potential correlation between athletic activity and alterations in the oral microbiota. A comprehensive electronic search was conducted up to November 2024 across three different databases (PubMed, the Cochrane Library, and Scopus) with the objective of identifying studies that evaluate the association between oral microbiota and physical activity. Two independent blinding review authors were involved in study selection, data extraction, and bias assessment using the National Institutes of Health's (NIH) study quality assessment tools. A total of 147 records were screened, and five eligible studies were included. Recent studies have demonstrated that individuals who engage in regular physical activity exhibit distinctive oral microbial composition in comparison to those with sedentary lifestyles or low levels of physical activity. Three studies have demonstrated that the athlete's oral microbiota is modified, with an increase in the genera Rothia, Stenotrophomonas, and Veillonella, and a decrease in the genus Gemella. The Streptococcus genus is often modified in athletes according to four studies. This review provided an analysis of the scientific evidence indicating that the oral microbiota of athletes is modified. But to date, there is no scientific evidence to clearly determine the impact of sports on these variations. More homogeneous studies with the limitation of bias are needed to better understand the link between sports and oral microbiota.
Collapse
Affiliation(s)
- Margaux Dubois
- Laboratory of Oral Microbiology, Immunotherapy, and Health, University Côte d'Azur, Nice, FRA
- Department of Odontology, University Côte d'Azur, Nice, FRA
- Institute of Oral and Dental Medicine, Centre Hospitalier Universitaire de Nice (CHU de Nice), Nice, FRA
| | | | - Morgane Ortis
- Laboratory of Oral Microbiology, Immunotherapy, and Health, University Côte d'Azur, Nice, FRA
| | - Valérie Bougault
- Laboratory of Human Motricity, Expertise, Sport, and Health (LAMHESS), University Côte d'Azur, Nice, FRA
| | - Alain Doglio
- Laboratory of Oral Microbiology, Immunotherapy, and Health, University Côte d'Azur, Nice, FRA
- Institute of Cell and Gene Therapy, Centre Hospitalier Universitaire de Nice (CHU de Nice), Nice, FRA
| | - Marie-France Bertrand
- Department of Odontology, University Côte d'Azur, Nice, FRA
- Institute of Oral and Dental Medicine, Centre Hospitalier Universitaire de Nice (CHU de Nice), Nice, FRA
- Laboratory of Oral Microbiology, Immunotherapy, and Health, University Côte d'Azur, Nice, FRA
| |
Collapse
|
6
|
Bescos R, Gallardo-Alfaro L, Ashor A, Rizzolo-Brime L, Siervo M, Casas-Agustench P. Nitrate and nitrite bioavailability in plasma and saliva: Their association with blood pressure - A systematic review and meta-analysis. Free Radic Biol Med 2025; 226:70-83. [PMID: 39522567 DOI: 10.1016/j.freeradbiomed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, we conducted a systematic review and meta-analysis to determine plasma and salivary nitrate (NO3-) and nitrite (NO2-) concentrations under resting and fasting conditions in different type of individuals and their association with blood pressure levels. A total of 77 studies, involving 1918 individuals aged 19-74 years (males = 906; females = 1012), which measured plasma and/or salivary NO3- and NO2- using the chemiluminescence technique, were included. Mean plasma NO3- and NO2- concentrations were 33.9 μmol/L and 158.3 nmol/L, respectively. Subgroup analyses revealed lower plasma NO3- and NO2- concentrations in individuals with cardiometabolic risk (NO3-: 21.2 μmol/L; 95 % CI, 13.4-29.0; NO2-: 122.8 nmol/L; 95 % CI, 75.3-138.9) compared to healthy (NO3-: 33.9 μmol/L; 95 % CI, 29.9-37.9; NO2-: 159.5 nmol/L; 95 % CI, 131.8-187.1; P < 0.01) and trained individuals (NO3-: 43.0 μmol/L; 95 % CI, 13.2-72.9; NO2-: 199.3 nmol/L; 95 % CI, 117.6-281; P < 0.01). Mean salivary NO3- and NO2- concentrations were 546.2 μmol/L and 197.8 μmol/L, respectively. Salivary NO3-, but no NO2-, concentrations were higher in individuals with cardiometabolic risk (680.0 μmol/L; 95 % CI, 510.2-849.8; P = 0.001) compared to healthy individuals (535.9 μmol/L; 95 % CI, 384.2-687.6). A significant positive association (coefficient, 15.4 [95 % CI, 0.255 to 30.5], P = 0.046) was observed between salivary NO3- and diastolic blood pressure (DBP). These findings suggest that the health status is positively associated with plasma NO3- and NO2- concentrations, but the circulatory levels of these anions are not associated with blood pressure. Only salivary NO3- showed a significant positive association with DBP.
Collapse
Affiliation(s)
- Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom.
| | - Laura Gallardo-Alfaro
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; RICAPPS- Red de Investigación Cooperativa de Atención Primaria y Promoción de la Salud - Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Ammar Ashor
- Department of Internal Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Lucia Rizzolo-Brime
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Patricia Casas-Agustench
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom
| |
Collapse
|
7
|
Simpson A, Johnston W, Carda-Diéguez M, Mira A, Easton C, Henriquez FL, Culshaw S, Rosier BT, Burleigh M. Periodontal treatment causes a longitudinal increase in nitrite-producing bacteria. Mol Oral Microbiol 2024; 39:491-506. [PMID: 39169836 DOI: 10.1111/omi.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The oral microbiome-dependent nitrate (NO3 -)-nitrite (NO2 -)-nitric oxide (NO) pathway may help regulate blood pressure. NO2 --producing bacteria in subgingival plaque are reduced in relative abundance in patients with untreated periodontitis compared with periodontally healthy patients. In periodontitis patients, the NO2 --producing bacteria increase several months after periodontal treatment. The early effects of periodontal treatment on NO2 --producing bacteria and the NO3 --NO2 --NO pathway remain unknown. The aim of this study was to determine how periodontal treatment affects the oral NO2 --producing microbiome and salivary NO3 - and NO2 - levels over time. METHODS The subgingival microbiota of 38 periodontitis patients was analysed before (baseline [BL]) and 1, 7 and 90 days after periodontal treatment. Changes in NO2 --producing bacteria and periodontitis-associated bacteria were determined by 16s rRNA Illumina sequencing. Saliva samples were collected at all-time points to determine NO3 - and NO2 - levels using gas-phase chemiluminescence. RESULTS A significant increase was observed in the relative abundance of NO2 --producing species between BL and all subsequent timepoints (all p < 0.001). Periodontitis-associated species decreased at all timepoints, relative to BL (all p < 0.02). NO2 --producing species negatively correlated with periodontitis-associated species at all timepoints, with this relationship strongest 90 days post-treatment (ρ = -0.792, p < 0.001). Despite these findings, no significant changes were found in salivary NO3 - and NO2 - over time (all p > 0.05). CONCLUSIONS Periodontal treatment induced an immediate increase in the relative abundance of health-associated NO2 --producing bacteria. This increase persisted throughout periodontal healing. Future studies should test the effect of periodontal treatment combined with NO3 - intake on periodontal and cardiovascular health.
Collapse
Affiliation(s)
- Annabel Simpson
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK
| | - William Johnston
- School of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Miguel Carda-Diéguez
- Department of Health and Genomics, Centre for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Centre for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Chris Easton
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK
| | - Fiona L Henriquez
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bob T Rosier
- Department of Health and Genomics, Centre for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK
| |
Collapse
|
8
|
Bowles EF, Burleigh M, Mira A, Van Breda SGJ, Weitzberg E, Rosier BT. Nitrate: "the source makes the poison". Crit Rev Food Sci Nutr 2024:1-27. [PMID: 39213282 DOI: 10.1080/10408398.2024.2395488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in the role of dietary nitrate in human health and disease has grown exponentially in recent years. However, consensus is yet to be reached as to whether consuming nitrate from various food sources is beneficial or harmful to health. Global authorities continue to recommend an acceptable daily intake (ADI) of nitrate of 3.7 mg/kg-bw/day due to concerns over its carcinogenicity. This is despite evidence showing that nitrate consumption from vegetable sources, exceeding the ADI, is associated with decreased cancer prevalence and improvements in cardiovascular, oral, metabolic and neurocognitive health. This review examines the paradox between dietary nitrate and health and disease and highlights the key role of the dietary source and food matrix in moderating this interaction. We present mechanistic and epidemiological evidence to support the notion that consuming vegetable-derived nitrate promotes a beneficial increase in nitric oxide generation and limits toxic N-nitroso compound formation seen with high intakes of nitrate added during food processing or present in contaminated water. We demonstrate the need for a more pragmatic approach to nitrate-related nutritional research and guidelines. Ultimately, we provide an overview of our knowledge in this field to facilitate the various therapeutic applications of dietary nitrate, whilst maintaining population safety.
Collapse
Affiliation(s)
- E F Bowles
- Department of Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - M Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - A Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - S G J Van Breda
- Department of Toxicogenomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
9
|
Hung JH, Zhang SM, Huang SL. Nitrate promotes the growth and the production of short-chain fatty acids and tryptophan from commensal anaerobe Veillonella dispar in the lactate-deficient environment by facilitating the catabolism of glutamate and aspartate. Appl Environ Microbiol 2024; 90:e0114824. [PMID: 39082806 PMCID: PMC11337843 DOI: 10.1128/aem.01148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Veillonella spp. are nitrate-reducing bacteria with anaerobic respiratory activity that reduce nitrate to nitrite. They are obligate anaerobic, Gram-negative cocci that ferment lactate as the main carbon source and produce short-chain fatty acids (SCFAs). Commensal Veillonella reside in the human body site where lactate level is, however, limited for Veillonella growth. In this study, nitrate was shown to promote the anaerobic growth of Veillonella in the lactate-deficient media. We aimed to investigate the underlying mechanisms and the metabolism involved in nitrate respiration. Nitrate (15 mM) was demonstrated to promote Veillonella dispar growth and viability in the tryptone-yeast extract medium containing 0.5 mM L-lactate. Metabolite and transcriptomic analyses revealed nitrate enabled V. dispar to actively utilize glutamate and aspartate from the medium and secrete tryptophan. Glutamate or aspartate was further supplemented to a medium to investigate individual catabolism during nitrate respiration. Notably, nitrate was demonstrated to elevate SCFA production in the glutamate-supplemented medium, and further increase tryptophan production in the aspartate-supplemented medium. We proposed that the increased consumption of glutamate provided reducing power for nitrate respiration and aspartate served as a substrate for fumarate formation. Both glutamate and aspartate were incorporated into the central metabolic pathways via reverse tricarboxylic acid cycle and were linked with the increased production of acetate, propionate, and tryptophan. This study provides further understanding of the promoted growth and metabolic mechanisms by commensal V. dispar utilizing nitrate and specific amino acids to adapt to the lactate-deficient environment.IMPORTANCENitrate is a pivotal ecological factor influencing microbial community and metabolism. Dietary nitrate provides health benefits including anti-diabetic and anti-hypertensive effects via microbial-derived metabolites such as nitrite. Unraveling the impacts of nitrate on the growth and metabolism of human commensal bacteria is imperative to comprehend the intricate roles of nitrate in regulating microbial metabolism, community, and human health. Veillonella are lactate-utilizing, nitrate-reducing bacteria that are frequently found in the human body site where lactate levels are low and nitrate is at millimolar levels. Here, we comprehensively described the metabolic strategies employed by V. dispar to thrive in the lactate-deficient environment using nitrate respiration and catabolism of specific amino acids. The elevated production of SCFAs and tryptophan from amino acids during nitrate respiration of V. dispar further suggested the potential roles of nitrate and Veillonella in the promotion of human health.
Collapse
Affiliation(s)
- Jia-He Hung
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
| | - Shi-Min Zhang
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
| |
Collapse
|
10
|
Chen L, Li X, Liu J, Hou Z, Wei Y, Chen M, Wang B, Cao H, Qiu R, Zhang Y, Ji X, Zhang P, Xue M, Qiu L, Wang L, Li H. Distinctive subgingival microbial signatures in older adults with different levels of cognitive function. J Clin Periodontol 2024; 51:1066-1080. [PMID: 38769711 DOI: 10.1111/jcpe.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
AIM To examine association between subgingival microbial signatures and levels of cognitive impairment in older adults. MATERIALS AND METHODS We analysed subgingival plaque samples and 16S ribosomal RNA sequences for microbiota among 165 participants (normal controls [NCs]: 40, subjective cognitive decline [SCD]: 40, mild cognitive impairment [MCI]: 49 and dementia: 36). RESULTS The bacterial richness was lower among individuals with worse cognitive function, and subgingival microbial communities differed significantly among the four groups. Declining cognitive function was associated with decreasing relative abundance of genera Capnocytophaga, Saccharibacteria_genera_incertae_sedis, Lautropia and Granulicatella, and increasing abundance of genus Porphyromonas. Moreover, there were differentially abundant genera among the groups. Random forest model based on subgingival microbiota could distinguish between cognitive impairment and NC (AUC = 0.933, 95% confidence interval 0.873-0.992). Significant correlations were observed between oral microbiota and sex, Montreal Cognitive Assessment (MoCA) score and Mini-Mental State Examination score. Partial correlation analysis showed that Leptotrichia and Burkholderia were closely negatively associated with the MoCA score after adjusting for multiple covariates. Gene function was not significantly different between SCD and NC groups, whereas three homozygous genes were altered in MCI patients and two in dementia patients. CONCLUSIONS This is the first study to demonstrate an association between the composition, function and metabolic pathways of subgingival microbiota and different levels of cognitive function among older individuals. Future cohort studies should assess its diagnostic usefulness for cognitive impairment.
Collapse
Affiliation(s)
- Lili Chen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nursing, Fujian Provincial Hospital, Fuzhou, China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Yongbao Wei
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mingfeng Chen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Huizhen Cao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Rongyan Qiu
- Department of Surgery, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Yuping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Mianxiang Xue
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Linlin Qiu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Linlin Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Rowland SN, O'Donnell E, James LJ, Da Boit M, Fujii N, Arnold JT, Lloyd AB, Eglin CM, Shepherd AI, Bailey SJ. Nitrate ingestion blunts the increase in blood pressure during cool air exposure: a double-blind, placebo-controlled, randomized, crossover trial. J Appl Physiol (1985) 2024; 136:1364-1375. [PMID: 38572540 PMCID: PMC11365552 DOI: 10.1152/japplphysiol.00593.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Cold exposure increases blood pressure (BP) and salivary flow rate (SFR). Increased cold-induced SFR would be hypothesized to enhance oral nitrate delivery for reduction to nitrite by oral anaerobes and to subsequently elevate plasma [nitrite] and nitric oxide bioavailability. We tested the hypothesis that dietary nitrate supplementation would increase plasma [nitrite] and lower BP to a greater extent in cool compared with normothermic conditions. Twelve males attended the laboratory on four occasions. Baseline measurements were completed at 28°C. Subsequently, participants ingested 140 mL of concentrated nitrate-rich (BR; ∼13 mmol nitrate) or nitrate-depleted (PL) beetroot juice. Measurements were repeated over 3 h at either 28°C (Norm) or 20°C (Cool). Mean skin temperature was lowered compared with baseline in PL-Cool and BR-Cool. SFR was greater in BR-Norm, PL-Cool, and BR-Cool than PL-Norm. Plasma [nitrite] at 3 h was higher in BR-Cool (592 ± 239 nM) versus BR-Norm (410 ± 195 nM). Systolic BP (SBP) at 3 h was not different between PL-Norm (117 ± 6 mmHg) and BR-Norm (113 ± 9 mmHg). SBP increased above baseline at 1, 2, and 3 h in PL-Cool but not BR-Cool. These results suggest that BR consumption is more effective at increasing plasma [nitrite] in cool compared with normothermic conditions and blunts the rise in BP following acute cool air exposure, which might have implications for attenuating the increased cardiovascular strain in the cold.NEW & NOTEWORTHY Compared with normothermic conditions, acute nitrate ingestion increased plasma [nitrite], a substrate for oxygen-independent nitric oxide generation, to a greater extent during cool air exposure. Systolic blood pressure was increased during cool air exposure in the placebo condition with this cool-induced blood pressure increase attenuated after acute nitrate ingestion. These findings improve our understanding of environmental factors that influence nitrate metabolism and the efficacy of nitrate supplementation to lower blood pressure.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mariasole Da Boit
- Health and Life Sciences, School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Ibaraki, Japan
| | - Josh T Arnold
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Clare M Eglin
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony I Shepherd
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
12
|
Rowland SN, James LJ, O'Donnell E, Bailey SJ. Influence of acute dietary nitrate supplementation timing on nitrate metabolism, central and peripheral blood pressure and exercise tolerance in young men. Eur J Appl Physiol 2024; 124:1381-1396. [PMID: 38040982 PMCID: PMC11055761 DOI: 10.1007/s00421-023-05369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Dietary nitrate (NO3-) supplementation can lower systolic blood pressure (SBP) and improve exercise performance. Salivary flow rate (SFR) and pH are key determinants of oral NO3- reduction and purported to peak in the afternoon. We tested the hypotheses that NO3--rich beetroot juice (BR) would increase plasma [nitrite] ([NO2-]), lower SBP and improve exercise performance to a greater extent in the afternoon (AFT) compared to the morning (MORN) and evening (EVE). METHOD Twelve males completed six experimental visits in a repeated-measures, crossover design. NO3--depleted beetroot juice (PL) or BR (~ 13 mmol NO3-) were ingested in the MORN, AFT and EVE. SFR and pH, salivary and plasma [NO3-] and [NO2-], brachial SBP and central SBP were measured pre and post supplementation. A severe-intensity exercise tolerance test was completed to determine cycling time to exhaustion (TTE). RESULTS There were no between-condition differences in mean SFR or salivary pH. The elevation in plasma [NO2-] after BR ingestion was not different between BR-MORN, BR-AFT and BR-EVE. Brachial SBP was unchanged following BR supplementation in all conditions. Central SBP was reduced in BR-MORN (- 3 ± 4 mmHg), BR-AFT (- 4 ± 3 mmHg), and BR-EVE (- 2 ± 3 mmHg), with no differences between timepoints. TTE was not different between BR and PL at any timepoint. CONCLUSION Acute BR supplementation was ineffective at improving TTE and brachial SBP and similarly effective at increasing plasma [NO2-] and lowering central SBP across the day, which may have implications for informing NO3- supplementation strategies.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
- Department of Cardiovascular Science, University of Leicester, Leicester, UK.
| |
Collapse
|
13
|
Willmott T, Serrage HJ, Cottrell EC, Humphreys GJ, Myers J, Campbell PM, McBain AJ. Investigating the association between nitrate dosing and nitrite generation by the human oral microbiota in continuous culture. Appl Environ Microbiol 2024; 90:e0203523. [PMID: 38440981 PMCID: PMC11022587 DOI: 10.1128/aem.02035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
The generation of nitrite by the oral microbiota is believed to contribute to healthy cardiovascular function, with oral nitrate reduction to nitrite associated with systemic blood pressure regulation. There is the potential to manipulate the composition or activities of the oral microbiota to a higher nitrate-reducing state through nitrate supplementation. The current study examined microbial community composition and enzymatic responses to nitrate supplementation in sessile oral microbiota grown in continuous culture. Nitrate reductase (NaR) activity and nitrite concentrations were not significantly different to tongue-derived inocula in model biofilms. These were generally dominated by Streptococcus spp., initially, and a single nitrate supplementation resulted in the increased relative abundance of the nitrate-reducing genera Veillonella, Neisseria, and Proteus spp. Nitrite concentrations increased concomitantly and continued to increase throughout oral microbiota development. Continuous nitrate supplementation, over a 7-day period, was similarly associated with an elevated abundance of nitrate-reducing taxa and increased nitrite concentration in the perfusate. In experiments in which the models were established in continuous low or high nitrate environments, there was an initial elevation in nitrate reductase, and nitrite concentrations reached a relatively constant concentration over time similar to the acute nitrate challenge with a similar expansion of Veillonella and Neisseria. In summary, we have investigated nitrate metabolism in continuous culture oral biofilms, showing that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of putatively NaR-producing taxa.IMPORTANCEClinical evidence suggests that blood pressure regulation can be promoted by nitrite generated through the reduction of supplemental dietary nitrate by the oral microbiota. We have utilized oral microbiota models to investigate the mechanisms responsible, demonstrating that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of nitrate-reducing taxa.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hannah J. Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elizabeth C. Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J. Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jenny Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Paul M. Campbell
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Chai X, Liu L, Chen F. Oral nitrate-reducing bacteria as potential probiotics for blood pressure homeostasis. Front Cardiovasc Med 2024; 11:1337281. [PMID: 38638884 PMCID: PMC11024454 DOI: 10.3389/fcvm.2024.1337281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide and poses a major risk factor for cardiovascular diseases and chronic kidney disease. Research has shown that nitric oxide (NO) is a vasodilator that regulates vascular tension and the decrease of NO bioactivity is considered one of the potential pathogenesis of essential hypertension. The L-arginine-nitric oxide synthase (NOS) pathway is the main source of endogenous NO production. However, with aging or the onset of diseases, the function of the NOS system becomes impaired, leading to insufficient NO production. The nitrate-nitrite-NO pathway allows for the generation of biologically active NO independent of the NOS system, by utilizing endogenous or dietary inorganic nitrate and nitrite through a series of reduction cycles. The oral cavity serves as an important interface between the body and the environment, and dysbiosis or disruption of the oral microbiota has negative effects on blood pressure regulation. In this review, we explore the role of oral microbiota in maintaining blood pressure homeostasis, particularly the connection between nitrate-reducing bacteria and the bioavailability of NO in the bloodstream and blood pressure changes. This review aims to elucidate the potential mechanisms by which oral nitrate-reducing bacteria contribute to blood pressure homeostasis and to highlight the use of oral nitrate-reducing bacteria as probiotics for oral microbiota intervention to prevent hypertension.
Collapse
Affiliation(s)
- Xiaofen Chai
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
15
|
Rosier BT, Johnston W, Carda-Diéguez M, Simpson A, Cabello-Yeves E, Piela K, Reilly R, Artacho A, Easton C, Burleigh M, Culshaw S, Mira A. Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability. Int J Oral Sci 2024; 16:1. [PMID: 38177101 PMCID: PMC10767001 DOI: 10.1038/s41368-023-00266-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
Collapse
Affiliation(s)
- Bob T Rosier
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - William Johnston
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miguel Carda-Diéguez
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Annabel Simpson
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Elena Cabello-Yeves
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Krystyna Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert Reilly
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alejandro Artacho
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Chris Easton
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain.
- CIBER Center for Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
16
|
Cato LE, McKay AKA, L’Heureux JE, Vanhatalo A, Jones AM, Askew CD, Slater GJ, Burke LM. Low Carbohydrate, High Fat Diet Alters the Oral Microbiome without Negating the Nitrite Response to Beetroot Juice Supplementation. Nutrients 2023; 15:5123. [PMID: 38140382 PMCID: PMC10745889 DOI: 10.3390/nu15245123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A low carbohydrate, high fat (LCHF) diet in athletes increases fat oxidation but impairs sports performance, potentially due to impaired exercise economy. Dietary nitrate supplementation can improve exercise economy via an increase in nitric oxide production, which is initiated by the reduction of nitrate to nitrite within the oral cavity. This reaction is dependent on the presence of nitrate-reducing oral bacteria, which can potentially be altered by dietary changes, including a LCHF diet. This study explored the effect of a LCHF diet on the oral microbiome and subsequent changes to plasma nitrite concentration following nitrate supplementation. Following five days of LCHF or high carbohydrate (HCHO) control dietary intervention, highly trained male race walkers consumed 140 mL beetroot juice containing 8.4 mmol nitrate; they then provided (a) blood samples for plasma nitrate and nitrite analysis and (b) saliva samples for 16S rRNA sequencing of the oral microbiome. The LCHF diet (n = 13) reduced oral bacterial diversity and changed the relative abundance of the genera Neisseria (+10%), Fusobacteria (+3%), Prevotella (-9%), and Veillonella (-4%), with no significant changes observed following the HCHO diet (n = 11). Following beetroot juice ingestion, plasma nitrite concentrations were higher for the LCHF diet compared to the HCHO diet (p = 0.04). However, the absence of an interaction with the trial (pre-post) (p = 0.71) suggests that this difference was not due to the dietary intervention. In summary, we found an increase in plasma nitrate and nitrite concentrations in response to nitrate supplementation independent of diet. This suggests the oral microbiome is adaptive to dietary changes and can maintain a nitrate reduction capacity despite a decrease in bacterial diversity following the LCHF diet.
Collapse
Affiliation(s)
- Louise E. Cato
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Alannah K. A. McKay
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.K.A.M.); (L.M.B.)
| | - Joanna E. L’Heureux
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Anni Vanhatalo
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Andrew M. Jones
- University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK; (J.E.L.); (A.V.); (A.M.J.)
| | - Christopher D. Askew
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Gary J. Slater
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (C.D.A.); (G.J.S.)
| | - Louise M. Burke
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.K.A.M.); (L.M.B.)
| |
Collapse
|
17
|
Baty JJ, Stoner SN, McDaniel MS, Huffines JT, Edmonds SE, Evans NJ, Novak L, Scoffield JA. An oral commensal attenuates Pseudomonas aeruginosa-induced airway inflammation and modulates nitrite flux in respiratory epithelium. Microbiol Spectr 2023; 11:e0219823. [PMID: 37800950 PMCID: PMC10715204 DOI: 10.1128/spectrum.02198-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Respiratory infections are a leading cause of morbidity and mortality in people with cystic fibrosis (CF). These infections are polymicrobial in nature with overt pathogens and other colonizing microbes present. Microbiome data have indicated that the presence of oral commensal bacteria in the lungs is correlated with improved outcomes. We hypothesize that one oral commensal, Streptococcus parasanguinis, inhibits CF pathogens and modulates the host immune response. One major CF pathogen is Pseudomonas aeruginosa, a Gram-negative, opportunistic bacterium with intrinsic drug resistance and an arsenal of virulence factors. We have previously shown that S. parasanguinis inhibits P. aeruginosa in vitro in a nitrite-dependent manner through the production of reactive nitrogen intermediates. In this study, we demonstrate that while this mechanism is evident in a cell culture model of the CF airway, an alternative mechanism by which S. parasanguinis may improve outcomes for people with CF is through immunomodulation.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa S. McDaniel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua T. Huffines
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara E. Edmonds
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas J. Evans
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Antonello G, Blostein F, Bhaumik D, Davis E, Gögele M, Melotti R, Pramstaller P, Pattaro C, Segata N, Foxman B, Fuchsberger C. Smoking and salivary microbiota: a cross-sectional analysis of an Italian alpine population. Sci Rep 2023; 13:18904. [PMID: 37919319 PMCID: PMC10622503 DOI: 10.1038/s41598-023-42474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
The oral microbiota plays an important role in the exogenous nitrate reduction pathway and is associated with heart and periodontal disease and cigarette smoking. We describe smoking-related changes in oral microbiota composition and resulting potential metabolic pathway changes that may explain smoking-related changes in disease risk. We analyzed health information and salivary microbiota composition among 1601 Cooperative Health Research in South Tyrol participants collected 2017-2018. Salivary microbiota taxa were assigned from amplicon sequences of the 16S-V4 rRNA and used to describe microbiota composition and predict metabolic pathways. Aerobic taxa relative abundance decreased with daily smoking intensity and increased with years since cessation, as did inferred nitrate reduction. Former smokers tended to be more similar to Never smokers than to Current smokers, especially those who had quit for longer than 5 years. Cigarette smoking has a consistent, generalizable association on oral microbiota composition and predicted metabolic pathways, some of which associate in a dose-dependent fashion. Smokers who quit for longer than 5 years tend to have salivary microbiota profiles comparable to never smokers.
Collapse
Affiliation(s)
- Giacomo Antonello
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Freida Blostein
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Deesha Bhaumik
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Elyse Davis
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Gögele
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Roberto Melotti
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter Pramstaller
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Betsy Foxman
- School of Public Health - Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
19
|
Willmott T, Ormesher L, McBain AJ, Humphreys GJ, Myers JE, Singh G, Lundberg JO, Weitzberg E, Nihlen C, Cottrell EC. Altered Oral Nitrate Reduction and Bacterial Profiles in Hypertensive Women Predict Blood Pressure Lowering Following Acute Dietary Nitrate Supplementation. Hypertension 2023; 80:2397-2406. [PMID: 37702047 DOI: 10.1161/hypertensionaha.123.21263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The efficacy of dietary nitrate supplementation to lower blood pressure (BP) in pregnant women is highly variable. We aimed to investigate whether differences in oral microbiota profiles and oral nitrate-reducing capacity may explain interindividual differences in BP lowering following nitrate supplementation. METHODS Participants recruited for this study were both pregnant and nonpregnant women, with or without hypertension (n=55). Following an overnight fast, plasma, saliva, and tongue scraping samples were collected for measurement of nitrate/nitrite concentrations, oral NaR (nitrate reductase) activity, and microbiota profiling using 16S rRNA gene sequencing. Baseline BP was measured, followed by the administration of a single dose of dietary nitrate (400 mg nitrate in 70 mL beetroot juice). Post-nitrate intervention, plasma and salivary nitrate/nitrite concentrations and BP were determined 2.5 hours later. RESULTS Women with hypertension had significantly lower salivary nitrite concentrations (P=0.006) and reduced abundance of the nitrate-reducing taxa Veillonella(P=0.007) compared with normotensive women. Oral NaR activity was not significantly different in pregnant versus nonpregnant women (P=0.991) but tended to be lower in hypertensive compared with normotensive women (P=0.099). Oral NaR activity was associated with both baseline diastolic BP (P=0.050) and change in diastolic BP following acute nitrate intake (P=0.01, adjusted for baseline BP). CONCLUSIONS The abundance and activity of oral nitrate-reducing bacteria impact both baseline BP as well as the ability of dietary nitrate supplementation to lower BP. Strategies to increase oral nitrate-reducing capacity could lower BP and enhance the efficacy of dietary nitrate supplementation, in pregnancy as well as in nonpregnant adults. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03930693.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Laura Ormesher
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jenny E Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gurdeep Singh
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre (G.S.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Carina Nihlen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
20
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Murugesan S, Al Khodor S. Salivary microbiome and hypertension in the Qatari population. J Transl Med 2023; 21:454. [PMID: 37422685 PMCID: PMC10329805 DOI: 10.1186/s12967-023-04247-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The prevalence of hypertension in Qatar is 33 percent of the adult population. It is postulated that the salivary microbiome can regulate blood pressure (BP). However, limited investigations exist to prove this hypothesis. Therefore, we examined the difference in the salivary microbiome composition between hypertensive and normotensive Qatari subjects. METHODS A total of 1190 Qatar Genome Project (QGP) participants (Mean age = 43 years) were included in this study. BP for all participants was classified into Normal (n = 357), Stage1 (n = 336), and Stage2: (n = 161) according to the American Heart Association guidelines. 16S-rRNA libraries were sequenced and analyzed using QIIME-pipeline, and PICRUST was used to predict functional metabolic routes. Machine Learning (ML) strategies were applied to identify salivary microbiome-based predictors of hypertension. RESULTS Differential abundant analysis (DAA) revealed that Bacteroides and Atopobium were the significant members of the hypertensive groups. Alpha and beta diversity indices indicated dysbiosis between the normotensive and hypertensive groups. ML-based prediction models revealed that these markers could predict hypertension with an AUC (Area under the curve) of 0.89. Functional predictive analysis disclosed that Cysteine and Methionine metabolism and the sulphur metabolic pathways involving the renin-angiotensin system were significantly higher in the normotensive group. Therefore, members of Bacteroides and Atopobium can serve as predictors of hypertension. Likewise, Prevotella, Neisseria, and Haemophilus can be the protectors that regulate BP via nitric acid synthesis and regulation of the renin-angiotensin system. CONCLUSION It is one of the first studies to assess salivary microbiome and hypertension as disease models in a large cohort of the Qatari population. Further research is needed to confirm these findings and validate the mechanisms involved.
Collapse
Affiliation(s)
- Selvasankar Murugesan
- Maternal and Child Health Division, Research Department, Sidra Medicine, 26999, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Department, Sidra Medicine, 26999, Doha, Qatar.
| |
Collapse
|
22
|
Grosicki GJ, Flatt AA, Cross BL, Vondrasek JD, Blumenburg WT, Lincoln ZR, Chall A, Bryan A, Patel RP, Ricart K, Linder BA, Sanchez SO, Watso JC, Robinson AT. Acute beetroot juice reduces blood pressure in young Black and White males but not females. Redox Biol 2023; 63:102718. [PMID: 37120928 PMCID: PMC10172749 DOI: 10.1016/j.redox.2023.102718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
A complex interplay of social, lifestyle, and physiological factors contribute to Black Americans having the highest blood pressure (BP) in America. One potential contributor to Black adult's higher BP may be reduced nitric oxide (NO) bioavailability. Therefore, we sought to determine whether augmenting NO bioavailability with acute beetroot juice (BRJ) supplementation would reduce resting BP and cardiovascular reactivity in Black and White adults, but to a greater extent in Black adults. A total of 18 Black and 20 White (∼equal split by biological sex) young adults completed this randomized, placebo-controlled (nitrate (NO3-)-depleted BRJ), crossover design study. We measured heart rate, brachial and central BP, and arterial stiffness (via pulse wave velocity) at rest, during handgrip exercise, and during post-exercise circulatory occlusion. Compared with White adults, Black adults exhibited higher pre-supplementation resting brachial and central BP (Ps ≤0.035; e.g., brachial systolic BP: 116(11) vs. 121(7) mmHg, P = 0.023). Compared with placebo, BRJ (∼12.8 mmol NO3-) reduced resting brachial systolic BP similarly in Black (Δ-4±10 mmHg) and White (Δ-4±7 mmHg) adults (P = 0.029). However, BRJ supplementation reduced BP in males (Ps ≤ 0.020) but not females (Ps ≥ 0.299). Irrespective of race or sex, increases in plasma NO3- were associated with reduced brachial systolic BP (ρ = -0.237, P = 0.042). No other treatment effects were observed for BP or arterial stiffness at rest or during physical stress (i.e., reactivity); Ps ≥ 0.075. Despite young Black adults having higher resting BP, acute BRJ supplementation reduced systolic BP in young Black and White adults by a similar magnitude, an effect that was driven by males.
Collapse
Affiliation(s)
- Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Andrew A. Flatt
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Brett L. Cross
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Joseph D. Vondrasek
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Wesley T. Blumenburg
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Zoe R. Lincoln
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Amy Chall
- Department of Diagnostic and Therapeutic Services, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Anna Bryan
- Department of Diagnostic and Therapeutic Services, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Rakesh P. Patel
- Department for Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina Ricart
- Department for Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Braxton A. Linder
- Neurovascular Physiology Laboratory, Auburn University, Auburn, AL, USA
| | - Sofia O. Sanchez
- Neurovascular Physiology Laboratory, Auburn University, Auburn, AL, USA
| | - Joseph C. Watso
- Cardiovascular and Applied Physiology Laboratory, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
23
|
Alsharif NS, Clifford T, Alhebshi A, Rowland SN, Bailey SJ. Effects of Dietary Nitrate Supplementation on Performance during Single and Repeated Bouts of Short-Duration High-Intensity Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Antioxidants (Basel) 2023; 12:1194. [PMID: 37371924 DOI: 10.3390/antiox12061194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Inorganic nitrate (NO3-) has emerged as a potential ergogenic aid over the last couple of decades. While recent systematic reviews and meta-analyses have suggested some small positive effects of NO3- supplementation on performance across a range of exercise tasks, the effect of NO3- supplementation on performance during single and repeated bouts of short-duration, high-intensity exercise is unclear. This review was conducted following PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception to January 2023. A paired analysis model for cross-over trials was incorporated to perform a random effects meta-analysis for each performance outcome and to generate standardized mean differences (SMD) between the NO3- and placebo supplementation conditions. The systematic review and meta-analysis included 27 and 23 studies, respectively. Time to reach peak power (SMD: 0.75, p = 0.02), mean power output (SMD: 0.20, p = 0.02), and total distance covered in the Yo-Yo intermittent recovery level 1 test (SMD: 0.17, p < 0.0001) were all improved after NO3- supplementation. Dietary NO3- supplementation had small positive effects on some performance outcomes during single and repeated bouts of high-intensity exercise. Therefore, athletes competing in sports requiring single or repeated bouts of high-intensity exercise may benefit from NO3- supplementation.
Collapse
Affiliation(s)
- Nehal S Alsharif
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Abrar Alhebshi
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
24
|
Zhang SM, Huang SL. The Commensal Anaerobe Veillonella dispar Reprograms Its Lactate Metabolism and Short-Chain Fatty Acid Production during the Stationary Phase. Microbiol Spectr 2023; 11:e0355822. [PMID: 36975840 PMCID: PMC10100942 DOI: 10.1128/spectrum.03558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Veillonella spp. are obligate, anaerobic, Gram-negative bacteria found in the human oral cavity and gut. Recent studies have indicated that gut Veillonella promote human homeostasis by producing beneficial metabolites, specifically short-chain fatty acids (SCFAs), by lactate fermentation. The gut lumen is a dynamic environment with fluctuating nutrient levels, so the microbes present shifting growth rates and significant variations of gene expression. The current knowledge of lactate metabolism by Veillonella has focused on log phase growth. However, the gut microbes are mainly in the stationary phase. In this study, we investigated the transcriptomes and major metabolites of Veillonella dispar ATCC 17748T during growth from log to stationary phases with lactate as the main carbon source. Our results revealed that V. dispar reprogrammed its lactate metabolism during the stationary phase. Lactate catabolic activity and propionate production were significantly decreased during the early stationary phase but were partially restored during the stationary phase. The propionate/acetate production ratio was lowered from 1.5 during the log phase to 0.9 during the stationary phase. Pyruvate secretion was also greatly decreased during the stationary phase. Furthermore, we have demonstrated that the gene expression of V. dispar is reprogrammed during growth, as evidenced by the distinct transcriptomes present during the log, early stationary, and stationary phases. In particular, propionate metabolism (the propanediol pathway) was downregulated during the early stationary phase, which explains the decrease in propionate production during the stationary phase. The fluctuations in lactate fermentation during the stationary phase and the associated gene regulation expand our understanding of the metabolism of commensal anaerobes in changing environments. IMPORTANCE Short-chain fatty acids produced by gut commensal bacteria play an important role in human physiology. Gut Veillonella and the metabolites acetate and propionate, produced by lactate fermentation, are associated with human health. Most gut bacteria in humans are in the stationary phase. Lactate metabolism by Veillonella spp. during the stationary phase is poorly understood and was therefore the focus of the study. To this end, we used a commensal anaerobic bacterium and explored its short-chain fatty acid production and gene regulation in order to provide a better understanding of lactate metabolism dynamics during nutrient limitation.
Collapse
Affiliation(s)
- Shi-Min Zhang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Yangming Campus, Taipei, Taiwan
| |
Collapse
|
25
|
Kadach S, Park JW, Stoyanov Z, Black MI, Vanhatalo A, Burnley M, Walter PJ, Cai H, Schechter AN, Piknova B, Jones AM. 15 N-labeled dietary nitrate supplementation increases human skeletal muscle nitrate concentration and improves muscle torque production. Acta Physiol (Oxf) 2023; 237:e13924. [PMID: 36606507 DOI: 10.1111/apha.13924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Dietary nitrate (NO3 - ) supplementation increases nitric oxide bioavailability and can enhance exercise performance. We investigated the distribution and metabolic fate of ingested NO3 - at rest and during exercise with a focus on skeletal muscle. METHODS In a randomized, crossover study, 10 healthy volunteers consumed 12.8 mmol 15 N-labeled potassium nitrate (K15 NO3 ; NIT) or potassium chloride placebo (PLA). Muscle biopsies were taken at baseline, at 1- and 3-h post-supplement ingestion, and immediately following the completion of 60 maximal intermittent contractions of the knee extensors. Muscle, plasma, saliva, and urine samples were analyzed using chemiluminescence to determine absolute [NO3 - ] and [NO2 - ], and by mass spectrometry to determine the proportion of NO3 - and NO2 - that was 15 N-labeled. RESULTS Neither muscle [NO3 - ] nor [NO2 - ] were altered by PLA. Following NIT, muscle [NO3 - ] (but not [NO2 - ]) was elevated at 1-h (from ~35 to 147 nmol/g, p < 0.001) and 3-h, with almost all of the increase being 15 N-labeled. There was a significant reduction in 15 N-labeled muscle [NO3 - ] from pre- to post-exercise. Relative to PLA, mean muscle torque production was ~7% greater during the first 18 contractions following NIT. This improvement in torque was correlated with the pre-exercise 15 N-labeled muscle [NO3 - ] and the magnitude of decline in 15 N-labeled muscle [NO3 - ] during exercise (r = 0.66 and r = 0.62, respectively; p < 0.01). CONCLUSION This study shows, for the first time, that skeletal muscle rapidly takes up dietary NO3 - , the elevated muscle [NO3 - ] following NO3 - ingestion declines during exercise, and muscle NO3 - dynamics are associated with enhanced torque production during maximal intermittent muscle contractions.
Collapse
Affiliation(s)
- Stefan Kadach
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Zdravko Stoyanov
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Matthew I Black
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
26
|
Cocksedge SP, Causer AJ, Winyard PG, Jones AM, Bailey SJ. Oral Temperature and pH Influence Dietary Nitrate Metabolism in Healthy Adults. Nutrients 2023; 15:nu15030784. [PMID: 36771490 PMCID: PMC9919366 DOI: 10.3390/nu15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that the increases in salivary and plasma [NO2-] after dietary NO3- supplementation would be greater when oral temperature and pH were independently elevated, and increased further when oral temperature and pH were elevated concurrently. Seven healthy males (mean ± SD, age 23 ± 4 years) ingested 70 mL of beetroot juice concentrate (BR, which provided ~6.2 mmol NO3-) during six separate laboratory visits. In a randomised crossover experimental design, salivary and plasma [NO3-] and [NO2-] were assessed at a neutral oral pH with a low (TLo-pHNorm), intermediate (TMid-pHNorm), and high (THi-pHNorm) oral temperature, and when the oral pH was increased at a low (TLo-pHHi), intermediate (TMid-pHHi), and high (THi-pHHi) oral temperature. Compared with the TMid-pHNorm condition (976 ± 388 µM), the mean salivary [NO2-] 1-3 h post BR ingestion was higher in the TMid-pHHi (1855 ± 423 µM), THi-pHNorm (1371 ± 653 µM), THi-pHHi (1792 ± 741 µM), TLo-pHNorm (1495 ± 502 µM), and TLo-pHHi (2013 ± 662 µM) conditions, with salivary [NO2-] also higher at a given oral temperature when the oral pH was increased (p < 0.05). Plasma [NO2-] was higher 3 h post BR ingestion in the TMid-pHHi, THi-pHHi, and TLo-pHHi conditions, but not the TLo-pHNorm and THi-pHNorm conditions, compared with TMid-pHNorm (p < 0.05). Therefore, despite ingesting the same NO3- dose, the increases in salivary [NO2-] varied depending on the temperature and pH of the oral cavity, while the plasma [NO2-] increased independently of oral temperature, but to a greater extent at a higher oral pH.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Adam J. Causer
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Paul G. Winyard
- Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
27
|
Liu T, Chen YC, Jeng SL, Chang JJ, Wang JY, Lin CH, Tsai PF, Ko NY, Ko WC, Wang JL. Short-term effects of Chlorhexidine mouthwash and Listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol 2023; 13:1056534. [PMID: 36816590 PMCID: PMC9932516 DOI: 10.3389/fcimb.2023.1056534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chlorhexidine (CHX) and essential oil containing mouthwashes like Listerine® can improve oral hygiene via suppressing oral microbes. In hospitalized patients, CHX mouthwash reduces the incidence of ventilator-associated pneumonia. However, CHX use was also associated with increased mortality, which might be related to nitrate-reducing bacteria. Currently, no study determines oral bacteria targeted by essential oils mouthwash in hospitalized patients using a metagenomic approach. Methods We recruited 87 hospitalized patients from a previous randomized control study, and assigned them to three mouthwash groups: CHX, Listerine, and normal saline (control). Before and after gargling the mouthwash twice a day for 5-7 days, oral bacteria were examined using a 16S rDNA approach. Results Alpha diversities at the genus level decreased significantly only for the CHX and Listerine groups. Only for the two groups, oral microbiota before and after gargling were significantly different, but not clearly distinct. Paired analysis eliminated the substantial individual differences and revealed eight bacterial genera (including Prevotella, Fusobacterium, and Selenomonas) with a decreased relative abundance, while Rothia increased after gargling the CHX mouthwash. After gargling Listerine, seven genera (including Parvimonas, Eubacterium, and Selenomonas) showed a decreased relative abundance, and the magnitudes were smaller compared to the CHX group. Fewer bacteria targeted by Listerine were reported to be nitrate-reducing compared to the CHX mouthwash. Discussion In conclusion, short-term gargling of the CHX mouthwash and Listerine altered oral microbiota in our hospitalized patients. The bacterial genera targeted by the CHX mouthwash and Listerine were largely different and the magnitudes of changes were smaller using Listerine. Functional alterations of gargling CHX and Listerine were also different. These findings can be considered for managing oral hygiene of hospitalized patients.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chin Chen
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jiu-Yao Wang
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Cheng-Han Lin
- Center of Allergy, Immunology and Microbiome (AIM), Department of Allergy and Immunology, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Ying Ko
- Department of Nursing, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Nursing, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,*Correspondence: Jiun-Ling Wang,
| |
Collapse
|
28
|
Melo-Dias S, Cabral M, Furtado A, Souto-Miranda S, Mendes MA, Cravo J, Almeida CR, Marques A, Sousa A. Responsiveness to pulmonary rehabilitation in COPD is associated with changes in microbiota. Respir Res 2023; 24:29. [PMID: 36698137 PMCID: PMC9875510 DOI: 10.1186/s12931-023-02339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Pulmonary Rehabilitation (PR) is one of the most cost-effective therapies for chronic obstructive pulmonary disease (COPD) management. There are, however, people who do not respond to PR and reasons for non-response are mostly unknown. PR is likely to change the airway microbiota and this could play a role in its responsiveness. In this study we have explored the association between PR effectiveness and specific alterations in oral microbiota and inflammation. METHODS A prospective longitudinal study was conducted. Data on exercise capacity, dyspnoea, impact of disease and 418 saliva samples were collected from 76 patients, half of whom participated in a 12-weeks PR programme. Responders and non-responders to PR (dyspnoea, exercise-capacity and impact of disease) were defined based on minimal clinically important differences. RESULTS Changes in microbiota, including Prevotella melaninogenica and Streptococcus were observed upon PR. Prevotella, previously found to be depleted in severe COPD, increased during the first month of PR in responders. This increase was negatively correlated with Streptococcus and Lautropia, known to be enriched in severe cases of COPD. Simultaneously, an anti-inflammatory commensal of the respiratory tract, Rothia, correlated strongly and negatively with several pro-inflammatory markers, whose levels were generally boosted by PR. Conversely, in non-responders, the observed decline in Prevotella correlated negatively with Streptococcus and Lautropia whose fluctuations co-occurred with several pro-inflammatory markers. CONCLUSIONS PR is associated with changes in oral microbiota. Specifically, PR increases salivary Prevotella melaninogenica and avoids the decline in Rothia and the increase in Streptococcus and Lautropia in responders, which may contribute to the benefits of PR.
Collapse
Affiliation(s)
- Sara Melo-Dias
- grid.7311.40000000123236065Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Lab3R – Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Miguel Cabral
- grid.7311.40000000123236065Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Andreia Furtado
- grid.7311.40000000123236065Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Sara Souto-Miranda
- grid.7311.40000000123236065Lab3R – Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal ,grid.5012.60000 0001 0481 6099Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Maria Aurora Mendes
- grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal ,Department of Pulmonology, Hospital Center of Baixo Vouga, Aveiro, Portugal
| | - João Cravo
- Department of Pulmonology, Hospital Center of Baixo Vouga, Aveiro, Portugal
| | - Catarina Rodrigues Almeida
- grid.7311.40000000123236065Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Alda Marques
- grid.7311.40000000123236065Lab3R – Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Sousa
- grid.7311.40000000123236065Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
29
|
Abstract
Oral commensal streptococci are primary colonizers of the oral cavity. These streptococci produce many adhesins, metabolites, and antimicrobials that modulate microbial succession and diversity within the oral cavity. Often, oral commensal streptococci antagonize cariogenic and periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis, respectively. Mechanisms of antagonism are varied and range from the generation of hydrogen peroxide, competitive metabolite scavenging, the generation of reactive nitrogen intermediates, and bacteriocin production. Furthermore, several oral commensal streptococci have been shown to alter the host immune response at steady state and in response to oral pathogens. Collectively, these features highlight the remarkable ability of oral commensal streptococci to regulate the structure and function of the oral microbiome. In this review, we discuss mechanisms used by oral commensal streptococci to interact with diverse oral pathogens, both physically and through the production of antimicrobials. Finally, we conclude by exploring the critical roles of oral commensal streptococci in modulating the host immune response and maintaining health and homeostasis.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
30
|
Miller GD, Collins S, Ives J, Williams A, Basu S, Kim-Shapiro DB, Berry MJ. Efficacy and Variability in Plasma Nitrite Levels during Long-Term Supplementation with Nitrate Containing Beetroot Juice. J Diet Suppl 2022; 20:885-910. [PMID: 36310089 PMCID: PMC10148922 DOI: 10.1080/19390211.2022.2137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long-term consumption of beetroot juice on efficacy of converting dietary nitrate to plasma nitrate and nitrite was investigated. Adults were randomized to consume either beetroot juice with 380 mg of nitrate (BR) or a beetroot juice placebo (PL) for 12-weeks. Plasma nitrate and nitrite were measured before and 90-minutes after consuming their intervention beverage. Percent change in nitrite across the 90 min was greater in BR (273.2 ± 39.9%) vs. PL (4.9 ± 36.9%). Long-term consumption of nitrate containing beetroot juice increased fasting nitrate and nitrite plasma levels compared to baseline.
Collapse
Affiliation(s)
- Gary D. Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Summer Collins
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - James Ives
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Allie Williams
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| | - Michael J. Berry
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC. 27109
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
31
|
Mollaie E, Asiaei S, Aryan H. Nitrite enhanced detection from saliva by simple geometrical modifications of paper-based micromixers. MICROFLUIDICS AND NANOFLUIDICS 2022; 26:88. [PMID: 36246785 PMCID: PMC9554860 DOI: 10.1007/s10404-022-02596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Dysregulation of nitric oxide (NO) and it's two relatively stable metabolites, nitrite, and nitrate, in SARS-CoV-2, are reported in infected populations, especially for nitrates levels > 68.4 μmol/L. In this paper, we measure the abnormal presence of nitrite in the saliva by developing a cheap μPAD for colorimetric detection through the modified Griess reaction. This includes a diazotization reaction between nitrite and Griess reagent, including Sulfanilamide and N-Naphthyl-ethylenediamine in an acidic medium, causing a pink Azo compound. The modifications are suggested by a numerical method model that couples the mass flux with the porosity medium equations (convection, diffusion and, dispersion) that improves the mixing process. The mixing index was quantified from the concentration deviation method via simulation of a homogeneous two-phase flow in a porous environment. Five μPAD designs were fabricated to verify the simulation results of mixing enhancement on the Griess reactants in saliva samples. The investigated geometries include straight, helical, zig-zag, square wave, and inclined jagged shapes fabricated by direct laser writing, suitable for low cost, mass fabrication. Inclined jagged micromixer exhibited the best performance with up to 40% improvement compared with the simple straight geometry. Deliberate geometrical modifications, exemplified here in a jagged micromixer on paper, cut the limit of detection (LOD) by at least half without impacting the linear detection range.
Collapse
Affiliation(s)
- Elham Mollaie
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sasan Asiaei
- Sensors and Integrated Bio-Microfluidics/MEMS Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hiwa Aryan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
- Clinical Research Development Center of Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Liddle L, Monaghan C, Burleigh MC, Baczynska KA, Muggeridge DJ, Easton C. Reduced nitric oxide synthesis in winter: A potential contributing factor to increased cardiovascular risk. Nitric Oxide 2022; 127:1-9. [PMID: 35792235 DOI: 10.1016/j.niox.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nitric oxide is a key signalling molecule that elicits a range of biological functions to maintain vascular homeostasis. A reduced availability of nitric oxide is implicated in the progression of cardiovascular diseases and increases the risk of pathogenic events. AIMS To compare the concentration of nitric oxide metabolites in healthy adults between winter and summer months. DESIGN An observational study of healthy adults (age 32 ± 9 years) living in central Scotland. METHODS Thirty-four healthy adults (13 females) were monitored for 7 days in summer and winter to record sunlight exposure (ultraviolet-A (UV-A) radiation), diet, and physical activity. At the end of each phase, blood pressure was measured, and samples of blood and saliva collected. The samples were analysed to determine the concentrations of plasma and salivary nitrate and nitrite and serum 25-hydroxyvitamin D (25(OH)D). RESULTS The participants maintained similar diets in each measurement phase but were exposed to more UV-A radiation (550%) and undertook more moderate-vigorous physical activity (23%) in the summer than in winter. Plasma nitrite (46%) and serum 25(OH)D (59%) were higher and blood pressure was lower in the summer compared to winter months. Plasma nitrite concentration was negatively associated with systolic, diastolic, and mean arterial blood pressure. CONCLUSIONS Plasma nitrite, an established marker of nitric oxide synthesis, is higher in healthy adults during the summer than in winter. This may be mediated by a greater exposure to UV-A which stimulates the release of nitric oxide metabolites from skin stores. While it is possible that seasonal variation in nitric oxide availability may contribute to an increased blood pressure in the winter months, the overall impact on cardiovascular health remains to be determined.
Collapse
Affiliation(s)
- Luke Liddle
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK; School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Christopher Monaghan
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK
| | - Mia C Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK
| | - Katarzyna A Baczynska
- Laser and Optical Radiation Dosimetry Group, Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, UK
| | | | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK.
| |
Collapse
|
33
|
Bryan NS, Burleigh MC, Easton C. The oral microbiome, nitric oxide and exercise performance. Nitric Oxide 2022; 125-126:23-30. [PMID: 35636654 DOI: 10.1016/j.niox.2022.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 12/15/2022]
Abstract
The human microbiome comprises ∼1013-1014 microbial cells which form a symbiotic relationship with the host and play a critical role in the regulation of human metabolism. In the oral cavity, several species of bacteria are capable of reducing nitrate to nitrite; a key precursor of the signaling molecule nitric oxide. Nitric oxide has myriad physiological functions, which include the maintenance of cardiovascular homeostasis and the regulation of acute and chronic responses to exercise. This article provides a brief narrative review of the research that has explored how diversity and plasticity of the oral microbiome influences nitric oxide bioavailability and related physiological outcomes. There is unequivocal evidence that dysbiosis (e.g. through disease) or disruption (e.g. by use of antiseptic mouthwash or antibiotics) of the oral microbiota will suppress nitric oxide production via the nitrate-nitrite-nitric oxide pathway and negatively impact blood pressure. Conversely, there is preliminary evidence to suggest that proliferation of nitrate-reducing bacteria via the diet or targeted probiotics can augment nitric oxide production and improve markers of oral health. Despite this, it is yet to be established whether purposefully altering the oral microbiome can have a meaningful impact on exercise performance. Future research should determine whether alterations to the composition and metabolic activity of bacteria in the mouth influence the acute responses to exercise and the physiological adaptations to exercise training.
Collapse
Affiliation(s)
- Nathan S Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mia C Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK.
| |
Collapse
|
34
|
Goh CE, Bohn B, Marotz C, Molinsky R, Roy S, Paster BJ, Chen C, Rosenbaum M, Yuzefpolskaya M, Colombo PC, Desvarieux M, Papapanou PN, Jacobs DR, Knight R, Demmer RT. Nitrite Generating and Depleting Capacity of the Oral Microbiome and Cardiometabolic Risk: Results from ORIGINS. J Am Heart Assoc 2022; 11:e023038. [PMID: 35574962 PMCID: PMC9238569 DOI: 10.1161/jaha.121.023038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background
The enterosalivary nitrate–nitrite–nitric oxide (NO
3
–NO
2
–NO) pathway generates NO following oral microbiota‐mediated production of salivary nitrite, potentially linking the oral microbiota to reduced cardiometabolic risk. Nitrite depletion by oral bacteria may also be important for determining the net nitrite available systemically. We examine if higher abundance of oral microbial genes favoring increased oral nitrite generation and decreased nitrite depletion is associated with a better cardiometabolic profile cross‐sectionally.
Methods and Results
This study includes 764 adults (mean [SD] age 32 [9] years, 71% women) enrolled in ORIGINS (Oral Infections, Glucose Intolerance, and Insulin Resistance Study). Microbial DNA from subgingival dental plaques underwent 16S rRNA gene sequencing; PICRUSt2 was used to estimate functional gene profiles. To represent the different components and pathways of nitrogen metabolism in bacteria, predicted gene abundances were operationalized to create summary scores by (1) bacterial nitrogen metabolic pathway or (2) biochemical product (NO
2
, NO, or ammonia [NH
3
]) formed by the action of the bacterial reductases encoded. Finally, nitrite generation‐to‐depletion ratios of gene abundances were created from the above summary scores. A composite cardiometabolic
Z
score was created from cardiometabolic risk variables, with higher scores associated with worse cardiometabolic health. We performed multivariable linear regression analysis with cardiometabolic
Z
score as the outcome and the gene abundance summary scores and ratios as predictor variables, adjusting for sex, age, race, and ethnicity in the simple adjusted model. A 1 SD higher NO versus NH
3
summary ratio was inversely associated with a −0.10 (false discovery rate
q
=0.003) lower composite cardiometabolic
Z
score in simple adjusted models. Higher NH
3
summary score (suggestive of nitrite depletion) was associated with higher cardiometabolic risk, with a 0.06 (false discovery rate
q
=0.04) higher composite cardiometabolic
Z
score.
Conclusions
Increased net capacity for nitrite generation versus depletion by oral bacteria, assessed through a metagenome estimation approach, is associated with lower levels of cardiometabolic risk.
Collapse
Affiliation(s)
- Charlene E. Goh
- Faculty of DentistryNational University of SingaporeSingapore
| | - Bruno Bohn
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Clarisse Marotz
- Department of PediatricsUniversity of California San DiegoLa JollaCA
| | - Rebecca Molinsky
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Sumith Roy
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNY
| | - Bruce J. Paster
- The Forsyth InstituteCambridgeMA
- Department of Oral Medicine, Infection, and ImmunityHarvard School of Dental MedicineBostonMA
| | - Ching‐Yuan Chen
- Division of PeriodonticsSection of Oral, Diagnostic and Rehabilitation SciencesCollege of Dental MedicineColumbia UniversityNew YorkNY
| | - Michael Rosenbaum
- Division of Molecular GeneticsDepartments of Pediatrics and MedicineColumbia UniversityNew YorkNY
| | - Melana Yuzefpolskaya
- Division of CardiologyDepartment of MedicineNew York Presbyterian HospitalColumbia UniversityNew YorkNY
| | - Paolo C. Colombo
- Division of CardiologyDepartment of MedicineNew York Presbyterian HospitalColumbia UniversityNew YorkNY
| | - Moïse Desvarieux
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNY
- INSERM UMR 1153Centre de Recherche Epidemiologie et Statistique Paris Sorbonne Cité (CRESS)METHODS CoreParisFrance
| | - Panos N. Papapanou
- Division of PeriodonticsSection of Oral, Diagnostic and Rehabilitation SciencesCollege of Dental MedicineColumbia UniversityNew YorkNY
| | - David R. Jacobs
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
| | - Rob Knight
- Department of Computer Science & EngineeringJacobs School of EngineeringUniversity of California San DiegoLa JollaCA
- Department of BioengineeringUniversity of California San DiegoLa JollaCA
- Center for Microbiome InnovationUniversity of California San DiegoLa JollaCA
| | - Ryan T. Demmer
- Division of Epidemiology and Community HealthSchool of Public HealthUniversity of MinnesotaMinneapolisMN
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNY
| |
Collapse
|
35
|
Altemani F, Barrett HL, Callaway LK, McIntyre HD, Dekker Nitert M. Reduced Abundance of Nitrate-Reducing Bacteria in the Oral Microbiota of Women with Future Preeclampsia. Nutrients 2022; 14:nu14061139. [PMID: 35334796 PMCID: PMC8953404 DOI: 10.3390/nu14061139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
The oral microbiota can contribute to the regulation of blood pressure by increasing the availability of nitric oxide through the reduction of nitrate to nitrite, which can be converted into nitric oxide in the stomach and then enter the circulation. It is unclear if the composition of the oral microbiota is different between women who do and do not develop preeclampsia. This study aimed to compare the composition of the buccal microbiota just prior to the development of symptoms at 36 weeks gestation in 12 women who developed late-onset preeclampsia and 24 matched women who remained normotensive throughout pregnancy by 16S rRNA gene amplicon sequencing. The abundance of the nitrate-reducing Veillonella spp V. parvula and V. dispar and a subunit of nitrate reductase narH was compared using real-time PCR. The abundance of bacteria was correlated with maternal blood pressure and dietary intake of nitrate-containing vegetables. The results showed that the abundance of nitrate-reducing bacteria including Veillonella, specifically V. parvula, and Prevotella was reduced in women who developed preeclampsia. Veillonella but not Prevotella abundance was negatively correlated with maternal blood pressure. The dietary intake of nitrate-containing vegetables did not differ between the groups and was not correlated with the abundance of Veillonella. There was no difference in the abundance of the nitrate reductase subunit narH between the groups. These results suggest that the abundance of nitrate-reducing bacteria is reduced in the oral microbiota of women who later develop preeclampsia, indicating a potential pathway for prevention.
Collapse
Affiliation(s)
- Faisal Altemani
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Helen L. Barrett
- Mater Research, The University of Queensland, Brisbane, QLD 4001, Australia; (H.L.B.); (H.D.M.)
| | - Leonie K. Callaway
- Department of Obstetric Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia;
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4006, Australia
| | - H. David McIntyre
- Mater Research, The University of Queensland, Brisbane, QLD 4001, Australia; (H.L.B.); (H.D.M.)
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence: ; Tel.: +61-73-365-4633
| |
Collapse
|
36
|
Kim HS, Son J, Lee D, Tsai J, Wang D, Chocron ES, Jeong S, Kittrell P, Murchison CF, Kennedy RE, Tobon A, Jackson CE, Pickering AM. Gut- and oral-dysbiosis differentially impact spinal- and bulbar-onset ALS, predicting ALS severity and potentially determining the location of disease onset. BMC Neurol 2022; 22:62. [PMID: 35189854 PMCID: PMC8862222 DOI: 10.1186/s12883-022-02586-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Prior studies on the role of gut-microbiome in Amyotrophic Lateral Sclerosis (ALS) pathogenesis have yielded conflicting results. We hypothesized that gut- and oral-microbiome may differentially impact two clinically-distinct ALS subtypes (spinal-onset ALS (sALS) vs. bulbar-onset ALS (bALS), driving disagreement in the field. METHODS ALS patients diagnosed within 12 months and their spouses as healthy controls (n = 150 couples) were screened. For eligible sALS and bALS patients (n = 36) and healthy controls (n = 20), 16S rRNA next-generation sequencing was done in fecal and saliva samples after DNA extractions to examine gut- and oral-microbiome differences. Microbial translocation to blood was measured by blood lipopolysaccharide-binding protein (LBP) and 16S rDNA levels. ALS severity was assessed by Revised ALS Functional Rating Scale (ALSFRS-R). RESULTS sALS patients manifested significant gut-dysbiosis, primarily driven by increased fecal Firmicutes/Bacteroidetes-ratio (F/B-ratio). In contrast, bALS patients displayed significant oral-dysbiosis, primarily driven by decreased oral F/B-ratio. For sALS patients, gut-dysbiosis (a shift in fecal F/B-ratio), but not oral-dysbiosis, was strongly associated with greater microbial translocation to blood (r = 0.8006, P < 0.0001) and more severe symptoms (r = 0.9470, P < 0.0001). In contrast, for bALS patients, oral-dysbiosis (a shift in oral F/B-ratio), but not gut-dysbiosis, was strongly associated with greater microbial translocation to blood (r = 0.9860, P < 0.0001) and greater disease severity (r = 0.9842, P < 0.0001). For both ALS subtypes, greater microbial translocation was associated with more severe symptoms (sALS: r = 0.7924, P < 0.0001; bALS: r = 0.7496, P = 0.0067). Importantly, both sALS and bALS patients displayed comparable oral-motor deficits with associations between oral-dysbiosis and severity of oral-motor deficits in bALS but not sALS. This suggests that oral-dysbiosis is not simply caused by oral/bulbar/respiratory symptoms but represents a pathological driver of bALS. CONCLUSIONS We found increasing gut-dysbiosis with worsening symptoms in sALS patients and increasing oral-dysbiosis with worsening symptoms in bALS patients. Our findings support distinct microbial mechanisms underlying two ALS subtypes, which have been previously grouped together as a single disease. Our study suggests correcting gut-dysbiosis as a therapeutic strategy for sALS patients and correcting oral-dysbiosis as a therapeutic strategy for bALS patients.
Collapse
Affiliation(s)
- Harper S Kim
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Son
- Department of Anesthesiology, University of California Irvine, Irvine, CA, USA
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Donghwan Lee
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Anesthesiology, Massachusetts General Hospital, Boston, MA, USA
| | - Joy Tsai
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Anesthesiology, Stanford University, Stanford, CA, USA
| | - Danny Wang
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Seongwoo Jeong
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pamela Kittrell
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Charles F Murchison
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard E Kennedy
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alejandro Tobon
- Department of Neurology, South Texas Veteran Health Care System, San Antonio, TX, USA
| | - Carlayne E Jackson
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Andrew M Pickering
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
37
|
Morou-Bermúdez E, Torres-Colón JE, Bermúdez NS, Patel RP, Joshipura KJ. Pathways Linking Oral Bacteria, Nitric Oxide Metabolism, and Health. J Dent Res 2022; 101:623-631. [PMID: 35081826 DOI: 10.1177/00220345211064571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nitrate-reducing oral bacteria have gained a lot of interest due to their involvement in nitric oxide (NO) synthesis and its important cardiometabolic outcomes. Consortia of nitrate-metabolizing oral bacteria associated with cardiometabolic health and cognitive function have been recently identified. Longitudinal studies and clinical trials have shown that chronic mouthwash use is associated with increased blood pressure and increased risk for prediabetes/diabetes and hypertension. Concurrently, recent studies are beginning to shed some light on the complexity of nitrate reduction pathways of oral bacteria, such as dissimilatory nitrate reduction to ammonium (DNRA), which converts nitrite into ammonium, and denitrification, which converts nitrite to NO, nitrous oxide, and dinitrogen. These pathways can affect the composition and metabolism of the oral microbiome; consequently, salivary nitrate and nitrite metabolism have been proposed as targets for probiotics and oral health. These pathways could also affect systemic NO levels because NO generated through denitrification can be oxidized back to nitrite in the saliva, thus facilitating flux along the NO3--NO2--NO pathway, while DNRA converts nitrite to ammonium, leading to reduced NO. It is, therefore, important to understand which pathway predominates under different oral environmental conditions, since the clinical consequences could be different for oral and systemic health. Recent studies show that oral hygiene measures such as tongue cleaning and dietary nitrate are likely to favor denitrifying bacteria such as Neisseria, which are linked with better cardiometabolic health. A vast body of literature demonstrates that redox potential, carbon-to-nitrate ratio, and nitrate-to-nitrite ratio are key environmental drivers of the competing denitrification and DNRA pathways in various natural and artificial ecosystems. Based on this information, a novel behavioral and microbial model for nitric oxide metabolism and health is proposed, which links lifestyle factors with oral and systemic health through NO metabolism.
Collapse
Affiliation(s)
- E Morou-Bermúdez
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - J E Torres-Colón
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - N S Bermúdez
- Department of Linguistics, Harvard University, Cambridge, MA, USA
| | - R P Patel
- Department of Pathology, University of Alabama at Birmingham and Center for Free Radical Biology, AL, USA
| | - K J Joshipura
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico.,T. H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| |
Collapse
|
38
|
Negrini TDC, Carlos IZ, Duque C, Caiaffa KS, Arthur RA. Interplay Among the Oral Microbiome, Oral Cavity Conditions, the Host Immune Response, Diabetes Mellitus, and Its Associated-Risk Factors-An Overview. FRONTIERS IN ORAL HEALTH 2022; 2:697428. [PMID: 35048037 PMCID: PMC8757730 DOI: 10.3389/froh.2021.697428] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review of the literature aimed to investigate the interplay between the oral microbiome, oral cavity conditions, and host immune response in Diabetes mellitus (DM). Moreover, this review also aimed to investigate how DM related risk factors, such as advanced age, hyperglycemia, hyperlipidemia, obesity, hypertension and polycystic ovary syndrome (PCOS), act in promoting or modifying specific mechanisms that could potentially perpetuate both altered systemic and oral conditions. We found that poorly controlled glycemic index may exert a negative effect on the immune system of affected individuals, leading to a deficient immune response or to an exacerbation of the inflammatory response exacerbating DM-related complications. Hyperglycemia induces alterations in the oral microbiome since poor glycemic control is associated with increased levels and frequencies of periodontal pathogens in the subgingival biofilm of individuals with DM. A bidirectional relationship between periodontal diseases and DM has been suggested: DM patients may have an exaggerated inflammatory response, poor repair and bone resorption that aggravates periodontal disease whereas the increased levels of systemic pro-inflammatory mediators found in individuals affected with periodontal disease exacerbates insulin resistance. SARS-CoV-2 infection may represent an aggravating factor for individuals with DM. Individuals with DM tend to have low salivary flow and a high prevalence of xerostomia, but the association between prevalence/experience of dental caries and DM is still unclear. DM has also been associated to the development of lesions in the oral mucosa, especially potentially malignant ones and those associated with fungal infections. Obesity plays an important role in the induction and progression of DM. Co-affected obese and DM individuals tend to present worse oral health conditions. A decrease in HDL and, an increase in triglycerides bloodstream levels seem to be associated with an increase on the load of periodontopathogens on oral cavity. Moreover, DM may increase the likelihood of halitosis. Prevalence of impaired taste perception and impaired smell recognition tend to be greater in DM patients. An important interplay among oral cavity microbiome, DM, obesity and hypertension has been proposed as the reduction of nitrate into nitrite, in addition to contribute to lowering of blood pressure, reduces oxidative stress and increases insulin secretion, being these effects desirable for the control of obesity and DM. Women with PCOS tend to present a distinct oral microbial composition and an elevated systemic response to selective members of this microbial community, but the association between oral microbiome, PCOS are DM is still unknown. The results of the studies presented in this review suggest the interplay among the oral microbiome, oral cavity conditions, host immune response and DM and some of the DM associated risk factors exist. DM individuals need to be encouraged and motivated for an adequate oral health care. In addition, these results show the importance of adopting multidisciplinary management of DM and of strengthening physicians-dentists relationship focusing on both systemic and on oral cavity conditions of DM patients.
Collapse
Affiliation(s)
- Thais de Cássia Negrini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Cristiane Duque
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Community Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
39
|
Kadach S, Piknova B, Black MI, Park JW, Wylie LJ, Stoyanov Z, Thomas SM, McMahon NF, Vanhatalo A, Schechter AN, Jones AM. Time course of human skeletal muscle nitrate and nitrite concentration changes following dietary nitrate ingestion. Nitric Oxide 2022; 121:1-10. [PMID: 35032643 PMCID: PMC8860874 DOI: 10.1016/j.niox.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Dietary nitrate (NO3−) ingestion can be beneficial for health and exercise performance. Recently, based on animal and limited human studies, a skeletal muscle NO3− reservoir has been suggested to be important in whole body nitric oxide (NO) homeostasis. The purpose of this study was to determine the time course of changes in human skeletal muscle NO3− concentration ([NO3− ) following the ingestion of dietary NO3−. Sixteen participants were allocated to either an experimental group (NIT: n = 11) which consumed a bolus of ~1300 mg (12.8 mmol) potassium nitrate (KNO3), or a placebo group (PLA: n = 5) which consumed a bolus of potassium chloride (KCl). Biological samples (muscle (vastus lateralis), blood, saliva and urine) were collected shortly before NIT or PLA ingestion and at intervals over the course of the subsequent 24 h. At baseline, no differences were observed for muscle [NO3−] and [NO2−] between NIT and PLA (P > 0.05). In PLA, there were no changes in muscle [NO3−] or [NO2−] over time. In NIT, muscle [NO3−] was significantly elevated above baseline (54 ± 29 nmol/g) at 0.5 h, reached a peak at 3 h (181 ± 128 nmol/g), and was not different to baseline from 9 h onwards (P > 0.05). Muscle [NO2−] did not change significantly over time. Following ingestion of a bolus of dietary NO3− skeletal muscle [NO3−] increases rapidly, reaches a peak at ~3 h and subsequently declines towards baseline values. Following dietary NO3− ingestion, human m. vastus lateralis [NO3−] expressed a slightly delayed pharmacokinetic profile compared to plasma [NO3−].
Collapse
Affiliation(s)
- Stefan Kadach
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew I Black
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lee J Wylie
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Zdravko Stoyanov
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Samantha M Thomas
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas F McMahon
- University of Queensland, School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Anni Vanhatalo
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew M Jones
- University of Exeter, College of Life and Environmental Sciences, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
40
|
Amaral AL, Mariano IM, Giolo JS, Dechichi JGC, Souza AVD, Batista JP, Souza TCFD, Caixeta DC, Peixoto LG, Teixeira RR, Espindola FS, Puga GM. Effects of combined exercise on salivary oxidative stress in hypertensive and normotensive postmenopausal women. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220012321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
42
|
Bahadoran Z, Mirmiran P, Carlström M, Ghasemi A. Inorganic nitrate: A potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide 2021; 116:38-46. [PMID: 34506950 DOI: 10.1016/j.niox.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022]
Abstract
Oral microbiota dysbiosis, concomitant with decreased abundance of nitrate (NO3-)-reducing bacteria, oral net nitrite (NO2-) production, and reduced nitric oxide (·NO) bioactivity, is associated with the development of cardiometabolic disorders. Therefore, restoring the oral microbiome to a health-associated state is suggested as a therapeutic approach to potentiate the NO3--NO2--·NO pathway and provide a backup resource for insufficient NO production in conditions including cardiovascular disease and type 2 diabetes mellitus (T2DM). The current review discusses how inorganic NO3- can improve the oral microbial community in patients with T2DM and act as a prebiotic. Both animal and human experiments indicated that inorganic NO3- modulates the oral microbiome by increasing the abundance of health-associated NO3--reducing bacteria (e.g., Neisseria and Rothia) and decreasing the plenty of species Prevotella and Veillonella, leading to oral NO2- accumulation and improved systemic ·NO availability. Supplementation with NO3- reduces caries- and periodontitis-associated bacteria and the pathogenic genus related to insulin resistance and glucose intolerance. In addition, inorganic NO3- may provide a more optimal environment for NO3- reductase activity in the oral cavity, as it increases salivary flow rate and prevents decreased pH by inhibiting acid-producing bacteria.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, Stockholm, SE-171 76, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
45
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
46
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
47
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Vanhatalo A, L'Heureux JE, Kelly J, Blackwell JR, Wylie LJ, Fulford J, Winyard PG, Williams DW, van der Giezen M, Jones AM. Network analysis of nitrate-sensitive oral microbiome reveals interactions with cognitive function and cardiovascular health across dietary interventions. Redox Biol 2021; 41:101933. [PMID: 33721836 PMCID: PMC7970425 DOI: 10.1016/j.redox.2021.101933] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Many oral bacteria reduce inorganic nitrate, a natural part of a vegetable-rich diet, into nitrite that acts as a precursor to nitric oxide, a regulator of vascular tone and neurotransmission. Aging is hallmarked by reduced nitric oxide production with associated detriments to cardiovascular and cognitive function. This study applied a systems-level bacterial co-occurrence network analysis across 10-day dietary nitrate and placebo interventions to test the stability of relationships between physiological and cognitive traits and clusters of co-occurring oral bacteria in older people. Relative abundances of Proteobacteria increased, while Bacteroidetes, Firmicutes and Fusobacteria decreased after nitrate supplementation. Two distinct microbiome modules of co-occurring bacteria, that were sensitive to nitrate supplementation, showed stable relationships with cardiovascular (Rothia-Streptococcus) and cognitive (Neisseria-Haemophilus) indices of health across both dietary conditions. A microbiome module (Prevotella-Veillonella) that has been associated with pro-inflammatory metabolism was diminished after nitrate supplementation, including a decrease in relative abundance of pathogenic Clostridium difficile. These nitrate-sensitive oral microbiome modules are proposed as potential pre- and probiotic targets to ameliorate age-induced impairments in cardiovascular and cognitive health.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter, UK.
| | | | - James Kelly
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Jamie R Blackwell
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Lee J Wylie
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter, UK
| | - Paul G Winyard
- College of Medicine and Health, University of Exeter, UK
| | | | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Norway
| | - Andrew M Jones
- College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
49
|
Ahmed KA, Kim K, Ricart K, Van Der Pol W, Qi X, Bamman MM, Behrens C, Fisher G, Boulton ME, Morrow C, O'Neal PV, Patel RP. Potential role for age as a modulator of oral nitrate reductase activity. Nitric Oxide 2021; 108:1-7. [PMID: 33321206 PMCID: PMC8085911 DOI: 10.1016/j.niox.2020.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Reduction of salivary nitrate to nitrite by oral nitrate reductase (NR) expressing bacteria has emerged as an integral pathway in regulating nitric oxide (NO) homeostasis and signaling. The oral microbiome is critical for this pathway. Variations in this pathway may underlie variable responses in the magnitude by which dietary or therapeutic nitrate modulates NO-signaling. The relationships between oral microbes and NR activity, and the factors that affect this relationship remain unclear however. Using a cross-sectional study design, the objective of this study was to determine the relationships between oral microbes and oral NR activity using a protocol that directly measures initial NR activity. Tongue swabs were collected from 28 subjects ranging in age from 21 to 73y. Initial NR activity showed a bell-shaped dependence with age, with activity peaking at ~40-50y and being lower but similar between younger (20-30y) and older (51-73) individuals. Microbiome relative abundance and diversity analyses, using 16s sequencing, demonstrated differences across age and identified both NR expressing and non-expressing bacteria in modulating initial NR activity. Finally, initial NR activity was measured in 3mo and 13mo old C57BL/6J mice. No differences in bacterial number were observed. However initial NR activity was significantly (80%) lower in 13mo old mice. Collectively, these data suggest that age is a variable in NR activity and may modulate responsiveness to dietary nitrate.
Collapse
Affiliation(s)
- Khandaker Ahtesham Ahmed
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kiyoung Kim
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Karina Ricart
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, USA
| | - Xiaoping Qi
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christian Behrens
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael E Boulton
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela V O'Neal
- College of Nursing, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
50
|
Sohail MU, Hedin L, Al-Asmakh M. Dysbiosis of the Salivary Microbiome is Associated with Hypertension and Correlated with Metabolic Syndrome Biomarkers. Diabetes Metab Syndr Obes 2021; 14:4641-4653. [PMID: 34858042 PMCID: PMC8630402 DOI: 10.2147/dmso.s325073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hypertension (HT) is an idiopathic disease with severe complications and a high incidence of global mortality. Although the disease shares characteristic features with diabetes and obesity, the complex interplay of endogenous and environmental factors is not well characterized. The oral microbiome has recently been studied to better understand the role of commensal microorganisms in metabolic disorders, including HT, although its role in disease etiology is unclear. METHODS To bridge this gap, we compared the oral microbiome and clinical chemistry of adult subjects enrolled at Qatar Biobank. Clinical chemistry was performed using Roche Cobas-6000 analyzer. Saliva samples were subjected to 16S rRNA sequencing using Illumina MiSeq platform. Cross-gender comparisons were made between control (males/females) (C-M and C-F) and HT (HT-M and HT-F) groups. RESULTS The HT groups had higher (p ≤ 0.05) BMI, plasma glucose, insulin, C-peptide, and alkaline phosphatase (ALP) concentrations. Triglycerides, cholesterol, LDL-cholesterol, and sodium ions were similar among the groups. The microbiome was predominantly occupied by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Firmicutes were higher (p ≤ 0.05) in the HT groups, whereas Proteobacteria was only higher in the C-F group. Prevotella and Veillonella were significantly higher in the HT groups and exhibited a positive correlation with blood pressure and hyperglycemia. In contrast to other studies, the mathematical summation of priori-select microbes reveals that nitrate-reducing microbes were higher in the HT groups compared with the controls. CONCLUSION In conclusion, these observations suggest a strong association of HT with microbial dysbiosis, where microbial species other than nitrate-reducing microbes contribute to blood pressure regulation. The findings affirm plausible microbial signatures of hypertension and suggest manipulating these microbes as a novel treatment modality. Future experiments are warranted for the mechanistic investigation of hypertension metagenomics and microbial activity.
Collapse
Affiliation(s)
| | - Lars Hedin
- The Royal Norwegian Ministry of Health and Care Services, Molde Kommune, 6413, Norway
| | - Maha Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Correspondence: Maha Al-Asmakh Tel +974 4403 4789Fax +974-4403-1351 Email
| |
Collapse
|