1
|
Trofin DM, Sardaru DP, Trofin D, Onu I, Tutu A, Onu A, Onită C, Galaction AI, Matei DV. Oxidative Stress in Brain Function. Antioxidants (Basel) 2025; 14:297. [PMID: 40227270 PMCID: PMC11939459 DOI: 10.3390/antiox14030297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress (OS) is an important factor in the pathophysiology of numerous neurodegenerative disorders, such as Parkinson's disease, multiple sclerosis, cerebrovascular pathology or Alzheimer's disease. OS also significantly influences progression among the various neurodegenerative disorders. The imbalance between the formation of reactive oxygen species (ROS) and the body's capacity to neutralize these toxic byproducts renders the brain susceptible to oxidative injury. Increased amounts of ROS can result in cellular malfunction, apoptosis and neurodegeneration. They also represent a substantial factor in mitochondrial dysfunction, a defining characteristic of neurodegenerative disorders. Comprehending the fundamental mechanisms of OS and its interactions with mitochondrial function, neuroinflammation and cellular protective pathways becomes essential for formulating targeted therapeutics to maintain brain health and reduce the impacts of neurodegeneration. We address recent highlights on the role of OS in brain function in terms of significance for neuronal health and the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniela-Marilena Trofin
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania
| | - Dragos-Petrica Sardaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Dan Trofin
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Ilie Onu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Andrei Tutu
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania
| | - Ana Onu
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania
| | - Cristiana Onită
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Daniela Viorelia Matei
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| |
Collapse
|
2
|
Bailey DM, Bain AR, Hoiland RL, Barak OF, Drvis I, Stacey BS, Iannetelli A, Davison GW, Dahl RH, Berg RMG, MacLeod DB, Dujic Z, Ainslie PN. Severe hypoxaemic hypercapnia compounds cerebral oxidative-nitrosative stress during extreme apnoea: Implications for cerebral bioenergetic function. J Physiol 2024; 602:5659-5684. [PMID: 38348606 DOI: 10.1113/jp285555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/16/2024] [Indexed: 11/01/2024] Open
Abstract
We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| | - Ryan L Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Otto F Barak
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
- Department of Sports Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Gareth W Davison
- Department of Exercise Biochemistry and Physiology, Sport and Exercise Science Research Institute, Ulster University Belfast, United Kingdom of Great Britain and Northern Ireland, Ulster, UK
| | - Rasmus H Dahl
- Department of Radiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ronan M G Berg
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
| | - Philip N Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- School of Health and Exercise Sciences, Faculty of Health and Social Development, Center for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
3
|
Oliveira DM, Rashid A, Brassard P, Silva BM. Exercise-induced potentiation of the acute hypoxic ventilatory response: Neural mechanisms and implications for cerebral blood flow. Exp Physiol 2024; 109:1844-1855. [PMID: 38441858 PMCID: PMC11633340 DOI: 10.1113/ep091330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 11/01/2024]
Abstract
A given dose of hypoxia causes a greater increase in pulmonary ventilation during physical exercise than during rest, representing an exercise-induced potentiation of the acute hypoxic ventilatory response (HVR). This phenomenon occurs independently from hypoxic blood entering the contracting skeletal muscle circulation or metabolic byproducts leaving skeletal muscles, supporting the contention that neural mechanisms per se can mediate the HVR when humoral mechanisms are not at play. However, multiple neural mechanisms might be interacting intricately. First, we discuss the neural mechanisms involved in the ventilatory response to hypoxic exercise and their potential interactions. Current evidence does not support an interaction between the carotid chemoreflex and central command. In contrast, findings from some studies support synergistic interactions between the carotid chemoreflex and the muscle mechano- and metaboreflexes. Second, we propose hypotheses about potential mechanisms underlying neural interactions, including spatial and temporal summation of afferent signals into the medulla, short-term potentiation and sympathetically induced activation of the carotid chemoreceptors. Lastly, we ponder how exercise-induced potentiation of the HVR results in hyperventilation-induced hypocapnia, which influences cerebral blood flow regulation, with multifaceted potential consequences, including deleterious (increased central fatigue and impaired cognitive performance), inert (unchanged exercise) and beneficial effects (protection against excessive cerebral perfusion).
Collapse
Affiliation(s)
- Diogo M. Oliveira
- Postgraduate Program in Translational Medicine, Department of MedicinePaulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
| | - Anas Rashid
- Postgraduate Program in Translational Medicine, Department of MedicinePaulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQCCanada
- Research Centre of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecQCCanada
| | - Bruno M. Silva
- Postgraduate Program in Translational Medicine, Department of MedicinePaulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
- Department of Physiology, Paulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
4
|
Aalkjær C, Fischer M, Bailey DM. Professor Niels Henry Secher: Celebrating success from boat to bench to bedside. Exp Physiol 2023; 108:1233-1234. [PMID: 37647131 PMCID: PMC10988488 DOI: 10.1113/ep091460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Affiliation(s)
- Christian Aalkjær
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Danish Cardiovascular AcademyAarhus CDenmark
| | - Mads Fischer
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesGlamorganUK
| |
Collapse
|
5
|
Stacey BS, Hoiland RL, Caldwell HG, Howe CA, Vermeulen T, Tymko MM, Vizcardo‐Galindo GA, Bermudez D, Figueroa‐Mujíica RJ, Gasho C, Tuaillon E, Hirtz C, Lehmann S, Marchi N, Tsukamoto H, Villafuerte FC, Ainslie PN, Bailey DM. Lifelong exposure to high-altitude hypoxia in humans is associated with improved redox homeostasis and structural-functional adaptations of the neurovascular unit. J Physiol 2023; 601:1095-1120. [PMID: 36633375 PMCID: PMC10952731 DOI: 10.1113/jp283362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
High-altitude (HA) hypoxia may alter the structural-functional integrity of the neurovascular unit (NVU). Herein, we compared male lowlanders (n = 9) at sea level (SL) and after 14 days acclimatization to 4300 m (chronic HA) in Cerro de Pasco (CdP), Péru (HA), against sex-, age- and body mass index-matched healthy highlanders (n = 9) native to CdP (lifelong HA). Venous blood was assayed for serum proteins reflecting NVU integrity, in addition to free radicals and nitric oxide (NO). Regional cerebral blood flow (CBF) was examined in conjunction with cerebral substrate delivery, dynamic cerebral autoregulation (dCA), cerebrovascular reactivity to carbon dioxide (CVRCO2 ) and neurovascular coupling (NVC). Psychomotor tests were employed to examine cognitive function. Compared to lowlanders at SL, highlanders exhibited elevated basal plasma and red blood cell NO bioavailability, improved anterior and posterior dCA, elevated anterior CVRCO2 and preserved cerebral substrate delivery, NVC and cognition. In highlanders, S100B, neurofilament light-chain (NF-L) and T-tau were consistently lower and cognition comparable to lowlanders following chronic-HA. These findings highlight novel integrated adaptations towards regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia. KEY POINTS: High-altitude (HA) hypoxia has the potential to alter the structural-functional integrity of the neurovascular unit (NVU) in humans. For the first time, we examined to what extent chronic and lifelong hypoxia impacts multimodal biomarkers reflecting NVU structure and function in lowlanders and native Andean highlanders. Despite lowlanders presenting with a reduction in systemic oxidative-nitrosative stress and maintained cerebral bioenergetics and cerebrovascular function during chronic hypoxia, there was evidence for increased axonal injury and cognitive impairment. Compared to lowlanders at sea level, highlanders exhibited elevated vascular NO bioavailability, improved dynamic regulatory capacity and cerebrovascular reactivity, comparable cerebral substrate delivery and neurovascular coupling, and maintained cognition. Unlike lowlanders following chronic HA, highlanders presented with lower concentrations of S100B, neurofilament light chain and total tau. These findings highlight novel integrated adaptations towards the regulation of the NVU in highlanders that may represent a neuroprotective phenotype underpinning successful adaptation to the lifelong stress of HA hypoxia.
Collapse
Affiliation(s)
- Benjamin S. Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| | - Ryan L. Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Cellular and Physiological Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hannah G. Caldwell
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Connor A. Howe
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Tyler Vermeulen
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Michael M. Tymko
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medicine, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Gustavo A. Vizcardo‐Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Daniella Bermudez
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Rómulo J. Figueroa‐Mujíica
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Christopher Gasho
- Division of Pulmonary and Critical CareLoma Linda University School of MedicineLoma LindaCAUSA
| | - Edouard Tuaillon
- Department of Infectious DiseasesUniversity of MontpellierMontpellierFrance
| | - Christophe Hirtz
- LBPC‐PPCUniversité de Montpellier, IRMB CHU de Montpellier, INM INSERMMontpellierFrance
| | - Sylvain Lehmann
- LBPC‐PPCUniversité de Montpellier, IRMB CHU de Montpellier, INM INSERMMontpellierFrance
| | - Nicola Marchi
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional GenomicsUniversity of MontpellierMontpellierFrance
| | - Hayato Tsukamoto
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLima 31Peru
| | - Philip N. Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia‐Okanagan CampusKelownaBritish ColumbiaCanada
| | - Damian M. Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| |
Collapse
|
6
|
Fall L, Stacey BS, Calverley T, Owens T, Thyer K, Griffiths R, Phillips R, Bailey DM. Acute high-intensity interval exercise is less pro-oxidative/thrombotic compared to isovolumic moderate-intensity steady-state exercise. J Physiol Biochem 2023; 79:35-46. [PMID: 36038705 DOI: 10.1007/s13105-022-00918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
While high-intensity interval training (HIIT) has emerged as a more time-efficient alternative to moderate-intensity steady-state exercise (MISS), the impact on systemic free radical formation and link to activated coagulation remains unknown. We recruited sixteen healthy males aged 21 ± 3 y who performed incremental cycle ergometry to determine peak oxygen uptake ([Formula: see text] PEAK). Participants were randomly assigned single blind to two separate groups (MISS: n = 8; HIIT: n = 8) matched for [Formula: see text] PEAK. HIIT participants completed five exercise cycles, each consisting of 3 min at 80%[Formula: see text] PEAK alternating with 3 min at 40% [Formula: see text] PEAK, whereas MISS participants performed an isovolumic bout of 30 min at 60% [Formula: see text] PEAK. Cephalic venous blood was assayed for ascorbate free radical (A•-, electron paramagnetic resonance spectroscopy) and clot fractal dimension (df, rheometry) at rest every hour over a 6-h period to determine critical difference (CD) and before/after submaximal/peak exercise. Submaximal MISS increased A• - and df to a greater extent compared to HIIT (P = 0.039 to 0.057) although elevations generally fell within CD boundaries (54.2% and 5.5% respectively). No further elevations were observed during peak exercise (P = 0.508 to 0.827) and no relationships were observed between A•- and df (r = 0.435 to - 0.121, P = 0.092 to 0.655). Collectively, these findings suggest that HIIT is less pro-oxidative/thrombotic compared to more traditional MISS, advocating its prescription in patients given the potential for superior vascular adaptive benefit.
Collapse
Affiliation(s)
- Lewis Fall
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK.,Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK.,Faculty of Life Sciences and Education, University of South Wales, CF37 4AT, Pontypridd, UK
| | - Thomas Calverley
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK.,Faculty of Life Sciences and Education, University of South Wales, CF37 4AT, Pontypridd, UK
| | - Thomas Owens
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK.,Faculty of Life Sciences and Education, University of South Wales, CF37 4AT, Pontypridd, UK
| | - Kaitlin Thyer
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Rhodri Griffiths
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Rhodri Phillips
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK. .,Faculty of Life Sciences and Education, University of South Wales, CF37 4AT, Pontypridd, UK.
| |
Collapse
|
7
|
Bailey DM, Bain AR, Hoiland RL, Barak OF, Drvis I, Hirtz C, Lehmann S, Marchi N, Janigro D, MacLeod DB, Ainslie PN, Dujic Z. Hypoxemia increases blood-brain barrier permeability during extreme apnea in humans. J Cereb Blood Flow Metab 2022; 42:1120-1135. [PMID: 35061562 PMCID: PMC9121528 DOI: 10.1177/0271678x221075967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Voluntary asphyxia imposed by static apnea challenges blood-brain barrier (BBB) integrity in humans through transient extremes of hypertension, hypoxemia and hypercapnia. In the present study, ten ultra-elite breath-hold divers performed two maximal dry apneas preceded by normoxic normoventilation (NX: severe hypoxemia and hypercapnia) and hyperoxic hyperventilation (HX: absence of hypoxemia with exacerbating hypercapnia) with measurements obtained before and immediately after apnea. Transcerebral exchange of NVU proteins (ELISA, Single Molecule Array) were calculated as the product of global cerebral blood flow (gCBF, duplex ultrasound) and radial arterial to internal jugular venous concentration gradients. Apnea duration increased from 5 m 6 s in NX to 15 m 59 s in HX (P = <0.001) resulting in marked elevations in gCBF and venous S100B, glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase-L1 and total tau (all P < 0.05 vs. baseline). This culminated in net cerebral output reflecting mildly increased BBB permeability and increased neuronal-gliovascular reactivity that was more pronounced in NX due to more severe systemic and intracranial hypertension (P < 0.05 vs. HX). These findings identify the hemodynamic stress to which the apneic brain is exposed, highlighting the critical contribution of hypoxemia and not just hypercapnia to BBB disruption.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, 6654University of South Wales, University of South Wales, Glamorgan, UK
| | - Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| | - Ryan L Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Otto F Barak
- School of Medicine, University of Split, Split, Croatia.,Faculty of Medicine, University of Novi Sad, Serbia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Christophe Hirtz
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Damir Janigro
- Department of Physiology, Case Western Reserve University, Cleveland, OH, USA.,FloTBI, Cleveland, OH, USA
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, 6654University of South Wales, University of South Wales, Glamorgan, UK.,Center for Heart Lung and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | - Zeljko Dujic
- School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
8
|
Rose GA, Davies RG, Appadurai IR, Williams IM, Bashir M, Berg RMG, Poole DC, Bailey DM. 'Fit for surgery': The relationship between cardiorespiratory fitness and postoperative outcomes. Exp Physiol 2022; 107:787-799. [PMID: 35579479 PMCID: PMC9545112 DOI: 10.1113/ep090156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022]
Abstract
New Findings What is the topic of this review? The relationships and physiological mechanisms underlying the clinical benefits of cardiorespiratory fitness (CRF) in patients undergoing major intra‐abdominal surgery. What advances does it highlight? Elevated CRF reduces postoperative morbidity/mortality, thus highlighting the importance of CRF as an independent risk factor. The vascular protection afforded by exercise prehabilitation can further improve surgical risk stratification and postoperative outcomes.
Abstract Surgery accounts for 7.7% of all deaths globally and the number of procedures is increasing annually. A patient's ‘fitness for surgery’ describes the ability to tolerate a physiological insult, fundamental to risk assessment and care planning. We have evolved as obligate aerobes that rely on oxygen (O2). Systemic O2 consumption can be measured via cardiopulmonary exercise testing (CPET) providing objective metrics of cardiorespiratory fitness (CRF). Impaired CRF is an independent risk factor for mortality and morbidity. The perioperative period is associated with increased O2 demand, which if not met leads to O2 deficit, the magnitude and duration of which dictates organ failure and ultimately death. CRF is by far the greatest modifiable risk factor, and optimal exercise interventions are currently under investigation in patient prehabilitation programmes. However, current practice demonstrates potential for up to 60% of patients, who undergo preoperative CPET, to have their fitness incorrectly stratified. To optimise this work we must improve the detection of CRF and reduce potential for interpretive error that may misinform risk classification and subsequent patient care, better quantify risk by expressing the power of CRF to predict mortality and morbidity compared to traditional cardiovascular risk factors, and improve patient interventions with the capacity to further enhance vascular adaptation. Thus, a better understanding of CRF, used to determine fitness for surgery, will enable both clinicians and exercise physiologists to further refine patient care and management to improve survival.
Collapse
Affiliation(s)
- George A Rose
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Richard G Davies
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Anaesthetics, University Hospital of Wales, Cardiff, UK
| | - Ian R Appadurai
- Department of Anaesthetics, University Hospital of Wales, Cardiff, UK
| | - Ian M Williams
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - Mohammad Bashir
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - Ronan M G Berg
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology and Nuclear Medicine, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark.,Centre for Physical Activity Research, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
| | - David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, USA
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
9
|
Bailey DM, Culcasi M, Filipponi T, Brugniaux JV, Stacey BS, Marley CJ, Soria R, Rimoldi SF, Cerny D, Rexhaj E, Pratali L, Salmòn CS, Jáuregui CM, Villena M, Villafuerte F, Rockenbauer A, Pietri S, Scherrer U, Sartori C. EPR spectroscopic evidence of iron-catalysed free radical formation in chronic mountain sickness: Dietary causes and vascular consequences. Free Radic Biol Med 2022; 184:99-113. [PMID: 35398201 DOI: 10.1016/j.freeradbiomed.2022.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic mountain sickness (CMS) is a high-altitude (HA) maladaptation syndrome characterised by elevated systemic oxidative-nitrosative stress (OXNOS) due to a free radical-mediated reduction in vascular nitric oxide (NO) bioavailability. To better define underlying mechanisms and vascular consequences, this study compared healthy male lowlanders (80 m, n = 10) against age/sex-matched highlanders born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 10) and without (CMS-, n = 10) CMS. Cephalic venous blood was assayed using electron paramagnetic resonance spectroscopy and reductive ozone-based chemiluminescence. Nutritional intake was assessed via dietary recall. Systemic vascular function and structure were assessed via flow-mediated dilatation, aortic pulse wave velocity and carotid intima-media thickness using duplex ultrasound and applanation tonometry. Basal systemic OXNOS was permanently elevated in highlanders (P = <0.001 vs. lowlanders) and further exaggerated in CMS+, reflected by increased hydroxyl radical spin adduct formation (P = <0.001 vs. CMS-) subsequent to liberation of free 'catalytic' iron consistent with a Fenton and/or nucleophilic addition mechanism(s). This was accompanied by elevated global protein carbonylation (P = 0.046 vs. CMS-) and corresponding reduction in plasma nitrite (P = <0.001 vs. lowlanders). Dietary intake of vitamins C and E, carotene, magnesium and retinol were lower in highlanders and especially deficient in CMS + due to reduced consumption of fruit and vegetables (P = <0.001 to 0.028 vs. lowlanders/CMS-). Systemic vascular function and structure were also impaired in highlanders (P = <0.001 to 0.040 vs. lowlanders) with more marked dysfunction observed in CMS+ (P = 0.035 to 0.043 vs. CMS-) in direct proportion to systemic OXNOS (r = -0.692 to 0.595, P = <0.001 to 0.045). Collectively, these findings suggest that lifelong exposure to iron-catalysed systemic OXNOS, compounded by a dietary deficiency of antioxidant micronutrients, likely contributes to the systemic vascular complications and increased morbidity/mortality in CMS+. TRIAL REGISTRY: ClinicalTrials.gov; No: NCT01182792; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK.
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Teresa Filipponi
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Julien V Brugniaux
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK; HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Rodrigo Soria
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Stefano F Rimoldi
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - David Cerny
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Emrush Rexhaj
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | | | | | | | | | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, 1117, Budapest, Hungary
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Urs Scherrer
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland; Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Claudio Sartori
- Department of Internal Medicine, University Hospital, UNIL-Lausanne, Switzerland
| |
Collapse
|
10
|
Ogoh S, Washio T, Stacey BS, Tsukamoto H, Iannetelli A, Owens TS, Calverley TA, Fall L, Marley CJ, Saito S, Watanabe H, Hashimoto T, Ando S, Miyamoto T, Bailey DM. Integrated respiratory chemoreflex-mediated regulation of cerebral blood flow in hypoxia: Implications for oxygen delivery and acute mountain sickness. Exp Physiol 2021; 106:1922-1938. [PMID: 34318560 DOI: 10.1113/ep089660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the central question of this study? To what extent do hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral oxygen delivery, with corresponding implications for susceptibility to acute mountain sickness? What is the main finding and its importance? We provide evidence for site-specific regulation of cerebral blood flow in hypoxia that preserves oxygen delivery in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. External carotid artery vasodilatation might prove to be an alternative haemodynamic risk factor that predisposes to acute mountain sickness. ABSTRACT The aim of the present study was to determine the extent to which hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral blood flow (CBF) and oxygen delivery (CDO2 ), with corresponding implications for the pathophysiology of the neurological syndrome, acute mountain sickness (AMS). Eight healthy men were randomly assigned single blind to 7 h of passive exposure to both normoxia (21% O2 ) and hypoxia (12% O2 ). The peripheral and central respiratory chemoreflex, internal carotid artery, external carotid artery (ECA) and vertebral artery blood flow (duplex ultrasound) and AMS scores (questionnaires) were measured throughout. A reduction in internal carotid artery CDO2 was observed during hypoxia despite a compensatory elevation in perfusion. In contrast, vertebral artery and ECA CDO2 were preserved, and the former was attributable to a more marked increase in perfusion. Hypoxia was associated with progressive activation of the peripheral respiratory chemoreflex (P < 0.001), whereas the central respiratory chemoreflex remained unchanged (P > 0.05). Symptom severity in participants who developed clinical AMS was positively related to ECA blood flow (Lake Louise score, r = 0.546-0.709, P = 0.004-0.043; Environmental Symptoms Questionnaires-Cerebral symptoms score, r = 0.587-0.771, P = 0.001-0.027, n = 4). Collectively, these findings highlight the site-specific regulation of CBF in hypoxia that maintains CDO2 selectively in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. Furthermore, ECA vasodilatation might represent a hitherto unexplored haemodynamic risk factor implicated in the pathophysiology of AMS.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.,Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Thomas S Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Thomas A Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Lewis Fall
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | | | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
11
|
Mrakic-Sposta S, Gussoni M, Montorsi M, Vezzoli A. Comment on Menzel et al. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice-Which to Use Regarding Disease Outcomes? Antioxidants 2021, 10, 414. Antioxidants (Basel) 2021; 10:antiox10060836. [PMID: 34073807 PMCID: PMC8225111 DOI: 10.3390/antiox10060836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Simona Mrakic-Sposta
- National Research Council—Institute of Clinical Physiology (CNR-IFC), 20162 Milan, Italy;
- Correspondence:
| | - Maristella Gussoni
- National Research Council—Institute of Chemical Sciences and Technologies “G. Natta”-SCITEC (CNR-SCITEC), 20133 Milan, Italy;
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 20122 Milan, Italy;
| | - Alessandra Vezzoli
- National Research Council—Institute of Clinical Physiology (CNR-IFC), 20162 Milan, Italy;
| |
Collapse
|
12
|
Janigro D, Bailey DM, Lehmann S, Badaut J, O'Flynn R, Hirtz C, Marchi N. Peripheral Blood and Salivary Biomarkers of Blood-Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front Neurol 2021; 11:577312. [PMID: 33613412 PMCID: PMC7890078 DOI: 10.3389/fneur.2020.577312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology Case Western Reserve University, Cleveland, OH, United States.,FloTBI Inc., Cleveland, OH, United States
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom
| | - Sylvain Lehmann
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Robin O'Flynn
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
13
|
Suzuki K, Washio T, Tsukamoto S, Kato K, Iwamoto E, Ogoh S. Habitual cigarette smoking attenuates shear-mediated dilation in the brachial artery but not in the carotid artery in young adults. Physiol Rep 2021; 8:e14369. [PMID: 32061192 PMCID: PMC7023886 DOI: 10.14814/phy2.14369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/22/2022] Open
Abstract
In the present study, we hypothesized that habitual cigarette smoking attenuates endothelial function in the cerebral circulation as well as that of the peripheral circulation in young adults. To test this hypothesis, we measured cerebrovascular and peripheral flow‐mediated dilation (FMD) in young smokers and nonsmokers in the present study. Ten healthy nonsmokers and 10 smokers participated in the study. We measured blood velocity and diameter in the brachial artery and internal carotid artery (ICA) using Doppler ultrasound. We identified shear‐mediated dilation in the brachial artery and ICA by the percentage change in peak diameter during hyperemia stimulation (reactive hyperemia and hypercapnia). We measured the baseline diameter and the shear rate area under the curve from the onset of hyperemia to peak dilation in the brachial artery and ICA, finding the measurements of the smokers and those of the nonsmokers did not differ (p > .05). In contrast to brachial FMD (5.07 ± 1.79% vs. 7.92 ± 3.01%; smokers vs. nonsmokers, p = .019), FMD in the ICA was not attenuated in the smokers compared with that of the nonsmokers (5.46 ± 2.32% vs. 4.57 ± 2.70%; p = .442). These findings indicate that in young healthy smokers, cerebral endothelial function was preserved, and the response of cerebral endothelial function to smoking was different from that of peripheral vasculature.
Collapse
Affiliation(s)
- Kazuya Suzuki
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shingo Tsukamoto
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Kazunori Kato
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| |
Collapse
|
14
|
Ogoh S, Washio T, Suzuki K, Iemitsu M, Hashimoto T, Iwamoto E, Bailey DM. Greater increase in internal carotid artery shear rate during aerobic interval compared to continuous exercise in healthy adult men. Physiol Rep 2021; 9:e14705. [PMID: 33463912 PMCID: PMC7814484 DOI: 10.14814/phy2.14705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
Interval exercise has been determined to be more effective than continuous exercise for achieving improvement in the cardiovascular function of individuals suffering from cardiovascular disease. However, whether interval exercise improves the cerebrovascular function remains unclear. As per our hypothesis, interval exercise induces a higher cerebrovascular shear rate (SR) than continuous exercise. In this study, 11 adult men randomly performed continuous exercise for 12 min or work-equivalent (57.6 kJ/exercise session) interval exercise of semi-recumbent cycling. The SR in the internal carotid artery (ICA) represents an index of the cerebrovascular SR, which was measured during both the exercises using Doppler ultrasonography. Both the aerobic exercise modes increased the ICA SR. Moreover, the average ICA SR of the interval exercise for the final 4 min of exercise or 2 min of recovery was significantly higher than that for continuous exercise (exercise, 351 ± 75 vs. 330 ± 61/s, p = .038; recovery, 327 ± 86 vs. 290 ± 56/s, p = .014). To our knowledge, this is the first study to show that aerobic interval exercise increased the ICA SR more than equivalent work volume of aerobic continuous exercise. Thus, aerobic interval exercise may be more effective at stimulating the cerebrovasculature, resulting in greater improvements in cerebrovascular function as compared to continuous aerobic exercise in healthy adult men. These findings provide some important information that would help enhance exercise therapy programs for patients with arteriosclerosis, especially in the cerebral circulation.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical EngineeringToyo UniversityKawagoe‐ShiJapan
- Neurovascular Research LaboratoryUniversity of South WalesPontypriddUK
| | - Takuro Washio
- Department of Biomedical EngineeringToyo UniversityKawagoe‐ShiJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Kazuya Suzuki
- Department of Biomedical EngineeringToyo UniversityKawagoe‐ShiJapan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | | | - Erika Iwamoto
- School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Damian M. Bailey
- Neurovascular Research LaboratoryUniversity of South WalesPontypriddUK
| |
Collapse
|
15
|
Bailey DM, Lanéelle D, Trihan JE, Marchi N, Stacey BS, Tamiya K, Washio T, Tuaillon E, Hirtz C, Lehmann S, Ogoh S, Normand H. Gravitational Transitions Increase Posterior Cerebral Perfusion and Systemic Oxidative-nitrosative Stress: Implications for Neurovascular Unit Integrity. Neuroscience 2020; 441:142-160. [PMID: 32502571 DOI: 10.1016/j.neuroscience.2020.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The present study examined if repeated bouts of micro- and hypergravity during parabolic flight (PF) alter structural integrity of the neurovascular unit (NVU) subsequent to free radical-mediated changes in regional cerebral perfusion. Six participants (5♂, 1♀) aged 29 ± 11 years were examined before, during and after a 3 h PF and compared to six sex and age-matched (27 ± 6 years) normogravity controls. Blood flow was measured in the anterior (middle cerebral artery, MCA; internal carotid artery, ICA) and posterior (vertebral artery, VA) circulation (duplex ultrasound) in-flight over the course of 15 parabolas. Venous blood was assayed for free radicals (electron paramagnetic resonance spectroscopy), nitric oxide (NO, ozone-based chemiluminescence) and NVU integrity (chemiluminescence/ELISA) in normogravity before and after exposure to 31 parabolas. While MCA velocity did not change (P > 0.05), a selective increase in VA flow was observed during the most marked gravitational transition from micro- to hypergravity (P < 0.05). Increased oxidative-nitrosative stress defined by a free radical-mediated reduction in NO and elevations in glio-vascular GFAP and S100ß were observed after PF (P < 0.05), the latter proportional to the increase in VA flow (r = 0.908, P < 0.05). In contrast, biomarkers of neuronal-axonal damage (neuron-specific enolase, neurofilament light-chain, ubiquitin carboxy-terminal hydrolase L1 and tau) did not change (P > 0.05). Collectively, these findings suggest that the cumulative effects of repeated gravitational transitions may promote minor blood-brain barrier disruption, potentially related to the combined effects of haemodynamic (posterior cerebral hyperperfusion) and molecular (systemic oxidative-nitrosative) stress.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK.
| | - Damien Lanéelle
- Service de Médecine Vasculaire, Centre Hospitalo-Universitaire, Caen, France; UNICAEN, INSERM, COMETE, GIP CYCERON, Normandie University, Caen, France
| | - Jean-Eudes Trihan
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Nicola Marchi
- UMR, Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (CNRS Unit Mixte de Recherche 5203; INSERM U1191), University of Montpellier, France
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Kazuki Tamiya
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Edouard Tuaillon
- Unit Mixte de Recherche, INSERM l'Etablissement Français du Sang, University of Montpellier 1, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK; Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Hervé Normand
- UNICAEN, INSERM, COMETE, GIP CYCERON, Normandie University, Caen, France; UNICAEN, COMETE, Caen, France; INSERM, U 1075 COMETE, Caen, France; Department of Clinical Physiology, Centre Hospitalier Universitaire de Caen, Caen, France
| |
Collapse
|
16
|
Calverley TA, Ogoh S, Marley CJ, Steggall M, Marchi N, Brassard P, Lucas SJE, Cotter JD, Roig M, Ainslie PN, Wisløff U, Bailey DM. HIITing the brain with exercise: mechanisms, consequences and practical recommendations. J Physiol 2020; 598:2513-2530. [PMID: 32347544 DOI: 10.1113/jp275021] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/15/2020] [Indexed: 01/30/2023] Open
Abstract
The increasing number of older adults has seen a corresponding growth in those affected by neurovascular diseases, including stroke and dementia. Since cures are currently unavailable, major efforts in improving brain health need to focus on prevention, with emphasis on modifiable risk factors such as promoting physical activity. Moderate-intensity continuous training (MICT) paradigms have been shown to confer vascular benefits translating into improved musculoskeletal, cardiopulmonary and cerebrovascular function. However, the time commitment associated with MICT is a potential barrier to participation, and high-intensity interval training (HIIT) has since emerged as a more time-efficient mode of exercise that can promote similar if not indeed superior improvements in cardiorespiratory fitness for a given training volume and further promote vascular adaptation. However, randomised controlled trials (RCTs) investigating the impact of HIIT on the brain are surprisingly limited. The present review outlines how the HIIT paradigm has evolved from a historical perspective and describes the established physiological changes including its mechanistic bases. Given the dearth of RCTs, the vascular benefits of MICT are discussed with a focus on the translational neuroprotective benefits including their mechanistic bases that could be further potentiated through HIIT. Safety implications are highlighted and components of an optimal HIIT intervention are discussed including practical recommendations. Finally, statistical effect sizes have been calculated to allow prospective research to be appropriately powered and optimise the potential for detecting treatment effects. Future RCTs that focus on the potential clinical benefits of HIIT are encouraged given the prevalence of cognitive decline in an ever-ageing population.
Collapse
Affiliation(s)
- Thomas A Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK.,Department of Biomedical Engineering, Faculty of Engineering, Toyo University, Saitama, Japan
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Martin Steggall
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Nicola Marchi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics, Montpellier, France
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Marc Roig
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Philip N Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, BC, Canada
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement and Nutrition Science, University of Queensland, Queensland, Australia
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| |
Collapse
|
17
|
Mrakic-Sposta S, Bosco G, Vezzoli A. Commentary on: "Targeted and untargeted metabolomics applied to occupational exposure to hyperbaric atmosphere". Toxicol Lett 2020; 330:71-72. [PMID: 32439579 DOI: 10.1016/j.toxlet.2020.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Simona Mrakic-Sposta
- National Research Council - Institute of Clinical Physiology (CNR-IFC), Milano, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Alessandra Vezzoli
- National Research Council - Institute of Clinical Physiology (CNR-IFC), Milano, Italy
| |
Collapse
|
18
|
Raven PB, Young BE, Fadel PJ. Arterial Baroreflex Resetting During Exercise in Humans: Underlying Signaling Mechanisms. Exerc Sport Sci Rev 2020; 47:129-141. [PMID: 30921029 DOI: 10.1249/jes.0000000000000190] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The arterial baroreflex (ABR) resets during exercise in an intensity-dependent manner to operate around a higher blood pressure with maintained sensitivity. This review provides a historical perspective of ABR resetting and the involvement of other neural reflexes in mediating exercise resetting. Furthermore, we discuss potential underlying signaling mechanisms that may contribute to exercise ABR resetting in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Peter B Raven
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
19
|
Tymko MM, Hoiland RL, Tremblay JC, Stembridge M, Dawkins TG, Coombs GB, Patrician A, Howe CA, Gibbons TD, Moore JP, Simpson LL, Steinback CD, Meah VL, Stacey BS, Bailey DM, MacLeod DB, Gasho C, Anholm JD, Bain AR, Lawley JS, Villafuerte FC, Vizcardo-Galindo G, Ainslie PN. The 2018 Global Research Expedition on Altitude Related Chronic Health (Global REACH) to Cerro de Pasco, Peru: an Experimental Overview. Exp Physiol 2020; 106:86-103. [PMID: 32237245 DOI: 10.1113/ep088350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Herein, a methodological overview of our research team's (Global REACH) latest high altitude research expedition to Peru is provided. What is the main finding and its importance? The experimental objectives, expedition organization, measurements and key cohort data are discussed. The select data presented in this manuscript demonstrate the haematological differences between lowlanders and Andeans with and without excessive erythrocytosis. The data also demonstrate that exercise capacity was similar between study groups at high altitude. The forthcoming findings from our research expedition will contribute to our understanding of lowlander and indigenous highlander high altitude adaptation. ABSTRACT In 2016, the international research team Global Research Expedition on Altitude Related Chronic Health (Global REACH) was established and executed a high altitude research expedition to Nepal. The team consists of ∼45 students, principal investigators and physicians with the common objective of conducting experiments focused on high altitude adaptation in lowlanders and in highlanders with lifelong exposure to high altitude. In 2018, Global REACH travelled to Peru, where we performed a series of experiments in the Andean highlanders. The experimental objectives, organization and characteristics, and key cohort data from Global REACH's latest research expedition are outlined herein. Fifteen major studies are described that aimed to elucidate the physiological differences in high altitude acclimatization between lowlanders (n = 30) and Andean-born highlanders with (n = 22) and without (n = 45) excessive erythrocytosis. After baseline testing in Kelowna, BC, Canada (344 m), Global REACH travelled to Lima, Peru (∼80 m) and then ascended by automobile to Cerro de Pasco, Peru (∼4300 m), where experiments were conducted over 25 days. The core studies focused on elucidating the mechanism(s) governing cerebral and peripheral vascular function, cardiopulmonary regulation, exercise performance and autonomic control. Despite encountering serious logistical challenges, each of the proposed studies was completed at both sea level and high altitude, amounting to ∼780 study sessions and >3000 h of experimental testing. Participant demographics and data relating to acid-base balance and exercise capacity are presented. The collective findings will contribute to our understanding of how lowlanders and Andean highlanders have adapted under high altitude stress.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, New Zealand
| | - Jonathan P Moore
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Lydia L Simpson
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Craig D Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria L Meah
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Duke University Medical Center, Durham, NC, USA
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anthony R Bain
- Department of Integrative Physiology, University of Colorado, Boulder, NC, USA.,Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Justin S Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
20
|
Tymko MM, Tremblay JC, Bailey DM, Green DJ, Ainslie PN. The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations. J Physiol 2019; 597:5759-5776. [PMID: 31677355 DOI: 10.1113/jp277191] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure to hypoxia elicits widespread physiological responses that are critical for successful acclimatization; however, these responses may induce apparent maladaptive consequences. For example, recent studies conducted in both the laboratory and the field (e.g. at high altitude) have demonstrated that endothelial function is reduced in hypoxia. Herein, we review the several proposed mechanism(s) pertaining to the observed reduction in endothelial function in hypoxia including: (i) changes in blood flow patterns (i.e. shear stress), (ii) increased inflammation and production of reactive oxygen species (i.e. oxidative stress), (iii) heightened sympathetic nerve activity, and (iv) increased red blood cell concentration and mass leading to elevated nitric oxide scavenging. Although some of these mechanism(s) have been examined in lowlanders, less in known about endothelial function in indigenous populations that have chronically adapted to environmental hypoxia for millennia (e.g. the Peruvian, Tibetan and Ethiopian highlanders). There is some evidence indicating that healthy Tibetan and Peruvian (i.e. Andean) highlanders have preserved endothelial function at high altitude, but less is known about the Ethiopian highlanders. However, Andean highlanders suffering from chronic mountain sickness, which is characterized by an excessive production of red blood cells, have markedly reduced endothelial function. This review will provide a framework and mechanistic model for vascular endothelial adaptation to hypoxia in lowlanders and highlanders. Elucidating the pathways responsible for vascular adaption/maladaptation to hypoxia has potential clinical implications for disease featuring low oxygen delivery (e.g. heart failure, pulmonary disease). In addition, a greater understanding of vascular function at high altitude will clinically benefit the global estimated 85 million high altitude residents.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
21
|
Effects of Resistance Exercise on Cerebral Redox Regulation and Cognition: An Interplay Between Muscle and Brain. Antioxidants (Basel) 2019; 8:antiox8110529. [PMID: 31698763 PMCID: PMC6912783 DOI: 10.3390/antiox8110529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
This review highlighted resistance training as an important training type for the brain. Most studies that use physical exercise for the prevention or treatment of neurodegenerative diseases have focused on aerobic physical exercise, revealing different behavioral, biochemical, and molecular effects. However, recent studies have shown that resistance training can also significantly contribute to the prevention of neurodegenerative diseases as well as to the maintenance, development, and recovery of brain activities through specific neurochemical adaptations induced by the training. In this scenario we observed the results of several studies published in different journals in the last 20 years, focusing on the effects of resistance training on three main neurological aspects: Neuroprotective mechanisms, oxidative stress, and cognition. Systematic database searches of PubMed, Web of Science, Scopus, and Medline were performed to identify peer-reviewed studies from the 2000s. Combinations of keywords related to brain disease, aerobic/resistance, or strength physical exercise were used. Other variables were not addressed in this review but should be considered for a complete understanding of the effects of training in the brain.
Collapse
|
22
|
Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, Katayama K. The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scand J Med Sci Sports 2019; 30:384-398. [PMID: 31605635 DOI: 10.1111/sms.13573] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Acute moderate intensity exercise has been shown to improve cognitive performance. In contrast, hypoxia is believed to impair cognitive performance. The detrimental effects of hypoxia on cognitive performance are primarily dependent on the severity and duration of exposure. In this review, we describe how acute exercise under hypoxia alters cognitive performance, and propose that the combined effects of acute exercise and hypoxia on cognitive performance are mainly determined by interaction among exercise intensity and duration, the severity of hypoxia, and duration of exposure to hypoxia. We discuss the physiological mechanism(s) of the interaction and suggest that alterations in neurotransmitter function, cerebral blood flow, and possibly cerebral metabolism are the primary candidates that determine cognitive performance when acute exercise is combined with hypoxia. Furthermore, acclimatization appears to counteract impaired cognitive performance during prolonged exposure to hypoxia although the precise physiological mechanism(s) responsible for this amelioration remain to be elucidated. This review has implications for sporting, occupational, and recreational activities at terrestrial high altitude where cognitive performance is essential. Further studies are required to understand physiological mechanisms that determine cognitive performance when acute exercise is performed in hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Mizuki Sudo
- Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yasuki Higaki
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
23
|
Harrell JW, Peltonen GL, Schrage WG. Reactive oxygen species and cyclooxygenase products explain the majority of hypoxic cerebral vasodilation in healthy humans. Acta Physiol (Oxf) 2019; 226:e13288. [PMID: 31033206 DOI: 10.1111/apha.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
AIM The role of reactive oxygen species (ROS) in human cerebral blood flow (CBF) during hypoxia is largely unknown. Additionally, it is unknown whether ROS interact with cyclooxygenase-derived signals during hypoxia to increase CBF. We hypothesized ROS inhibition would reduce hypoxic CBF, and combined inhibition of cyclooxygenase (COX) and ROS would decrease hypoxic CBF more than ROS suppression alone. METHODS We measured middle cerebral artery velocity with transcranial Doppler ultrasound in 12 healthy adults during normoxia and 2 isocapnic hypoxia trials. Intravenous ascorbic acid infusion during the first hypoxia trial suppressed ROS. Oral indomethacin inhibited COX between hypoxia trials. The second bout of hypoxia tested the combined effects of ROS and COX inhibition. Middle cerebral artery velocity was normalized for blood pressure as cerebrovascular conductance index. RESULTS Hypoxia increased cerebrovascular conductance index in both trials (P < 0.05). Ascorbic acid infusion did not alter cerebrovascular conductance index during hypoxia. Combined ascorbic acid and indomethacin significantly reduced hypoxia-mediated increases in cerebrovascular conductance index from 17 ± 2 to 4 ± 1 cm s-1 100 mm Hg-1 (P < 0.05). CONCLUSION ROS are not obligatory for hypoxic cerebral vasodilation. Current data indicate ROS and COX together may account for the majority of the increase in CBF through the middle cerebral artery during hypoxia. These data are the first to demonstrate compensatory hypoxic vasodilatory signalling in human cerebral circulation.
Collapse
Affiliation(s)
- John W. Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
| | - Garrett L. Peltonen
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
- Department of Kinesiology Western New Mexico University Silver City New Mexico
| | - William G. Schrage
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology University of Wisconsin‐Madison Madison Wisconsin
| |
Collapse
|
24
|
Bailey DM. Making sense of oxygen; quantum leaps with ‘physics‐iology’. Exp Physiol 2019; 104:453-457. [DOI: 10.1113/ep087546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory Faculty of Life Sciences and Education University of South Wales Pontypridd UK
| |
Collapse
|
25
|
Bailey DM, Brugniaux JV, Filipponi T, Marley CJ, Stacey B, Soria R, Rimoldi SF, Cerny D, Rexhaj E, Pratali L, Salmòn CS, Murillo Jáuregui C, Villena M, Smirl JD, Ogoh S, Pietri S, Scherrer U, Sartori C. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J Physiol 2019; 597:611-629. [PMID: 30397919 PMCID: PMC6332753 DOI: 10.1113/jp276898] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. We examined if exaggerated oxidative-inflammatory-nitrosative stress (OXINOS) and corresponding decrease in vascular nitric oxide bioavailability in patients with CMS (CMS+) is associated with impaired cerebrovascular function and adverse neurological outcome. Systemic OXINOS was markedly elevated in CMS+ compared to healthy HA (CMS-) and low-altitude controls. OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. These findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced systemic OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of more specialist neurological assessment and targeted support. ABSTRACT Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. The present cross-sectional study examined to what extent exaggerated systemic oxidative-inflammatory-nitrosative stress (OXINOS), defined by an increase in free radical formation and corresponding decrease in vascular nitric oxide (NO) bioavailability, is associated with impaired cerebrovascular function, accelerated cognitive decline and depression in CMS. Venous blood was obtained from healthy male lowlanders (80 m, n = 17), and age- and gender-matched HA dwellers born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 23) and without (CMS-, n = 14) CMS. We sampled blood for oxidative (electron paramagnetic resonance spectroscopy, HPLC), nitrosative (ozone-based chemiluminescence) and inflammatory (fluorescence) biomarkers. We employed transcranial Doppler ultrasound to measure cerebral blood flow (CBF) and reactivity. We utilised psychometric tests and validated questionnaires to assess cognition and depression. Highlanders exhibited elevated systemic OXINOS (P < 0.05 vs. lowlanders) that was especially exaggerated in the more hypoxaemic CMS+ patients (P < 0.05 vs. CMS-). OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. Collectively, these findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of specialist neurological assessment and support.
Collapse
Affiliation(s)
- Damian M. Bailey
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Julien V. Brugniaux
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
- HP2 Laboratory, INSERM U1042Grenoble Alpes UniversityGrenobleFrance
| | - Teresa Filipponi
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Christopher J. Marley
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Benjamin Stacey
- Neurovascular Research LaboratoryFaculty of Life Sciences and Education, University of South WalesUK
| | - Rodrigo Soria
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - Stefano F. Rimoldi
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - David Cerny
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | - Emrush Rexhaj
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
| | | | | | | | | | - Jonathan D. Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise ScienceUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | | | | | - Urs Scherrer
- Department of Cardiology and Clinical ResearchUniversity HospitalBernSwitzerland
- Facultad de Ciencias, Departamento de BiologíaUniversidad de TarapacáAricaChile
| | - Claudio Sartori
- Department of Internal MedicineUniversity HospitalUNIL‐LausanneSwitzerland
| |
Collapse
|
26
|
Bailey DM. Oxygen is rocket fuel for the human brain; a radical perspective! J Physiol 2018; 597:659-660. [PMID: 30488438 DOI: 10.1113/jp277475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| |
Collapse
|
27
|
Bailey DM. Oxygen, evolution and redox signalling in the human brain; quantum in the quotidian. J Physiol 2018; 597:15-28. [PMID: 30315729 DOI: 10.1113/jp276814] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Rising atmospheric oxygen (O2 ) levels provided a selective pressure for the evolution of O2 -dependent micro-organisms that began with the autotrophic eukaryotes. Since these primordial times, the respiring mammalian cell has become entirely dependent on the constancy of electron flow, with molecular O2 serving as the terminal electron acceptor in mitochondrial oxidative phosphorylation. Indeed, the ability to 'sense' O2 and maintain homeostasis is considered one of the most important roles of the central nervous system (CNS) and probably represented a major driving force in the evolution of the human brain. Today, modern humans have evolved with an oversized brain committed to a continually active state and, as a consequence, paradoxically vulnerable to failure if the O2 supply is interrupted. However, our pre-occupation with O2 , the elixir of life, obscures the fact that it is a gas with a Janus face, capable of sustaining life in physiologically controlled amounts yet paradoxically deadly to the CNS when in excess. A closer look at its quantum structure reveals precisely why; the triplet ground state diatomic O2 molecule is paramagnetic and exists in air as a free radical, constrained from reacting aggressively with the brain's organic molecules due to its 'spin restriction', a thermodynamic quirk of evolutionary fate. By further exploring O2 's free radical 'quantum quirkiness', including emergent (quantum) physiological phenomena, our understanding of precisely how the human brain senses O2 deprivation (hypoxia) and the elaborate redox-signalling defence mechanisms that defend O2 homeostasis has the potential to offer unique insights into the pathophysiology and treatment of human brain disease.
Collapse
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| |
Collapse
|
28
|
Bailey DM. RETRACTED ARTICLE: The quantum physiology of oxygen; from electrons to the evolution of redox signaling in the human brain. Bioelectron Med 2018; 4:13. [PMID: 32232089 PMCID: PMC7098224 DOI: 10.1186/s42234-018-0014-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Rising atmospheric oxygen (O2) levels provided a selective pressure for the evolution of O2-dependent micro-organisms that began with the autotrophic eukaryotes. Since these primordial times, the respiring mammalian cell has become entirely dependent on the constancy of electron flow with molecular O2 serving as the terminal electron acceptor in mitochondrial oxidative phosphorylation. Indeed, the ability to “sense” O2 and maintain homeostasis is considered one of the most important roles of the central nervous system (CNS) and likely represented a major driving force in the evolution of the human brain. Today, modern humans have evolved with an oversized brain committed to a continually active state and as a consequence, paradoxically vulnerable to failure if the O2 supply is interrupted. However, our pre-occupation with O2, the elixir of life, obscures the fact that it is a gas with a Janus Face, capable of sustaining life in physiologically controlled amounts yet paradoxically deadly to the CNS when in excess. A closer look at its quantum structure reveals precisely why; the triplet ground state diatomic O2 molecule is paramagnetic and exists in air as a free radical, constrained from reacting aggressively with the brain’s organic molecules due to its “spin restriction”, a thermodynamic quirk of evolutionary fate. By further exploring O2’s free radical “quantum quirkiness” including emergent quantum physiological phenomena, our understanding of precisely how the human brain senses O2 deprivation (hypoxia) and the elaborate redox-signaling defense mechanisms that defend O2 homeostasis has the potential to offer unique insights into the pathophysiology and treatment of human brain disease.
Collapse
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory, Alfred Russel Wallace Building, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT UK
| |
Collapse
|
29
|
Fall L, Brugniaux JV, Davis D, Marley CJ, Davies B, New KJ, McEneny J, Young IS, Bailey DM. Redox-regulation of haemostasis in hypoxic exercising humans: a randomised double-blind placebo-controlled antioxidant study. J Physiol 2018; 596:4879-4891. [PMID: 29989171 DOI: 10.1113/jp276414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In vitro evidence has identified that coagulation is activated by increased oxidative stress, though the link and underlying mechanism in humans have yet to be established. We conducted the first randomised controlled trial in healthy participants to examine if oral antioxidant prophylaxis alters the haemostatic responses to hypoxia and exercise given their synergistic capacity to promote free radical formation. Systemic free radical formation was shown to increase during hypoxia and was further compounded by exercise, responses that were attenuated by antioxidant prophylaxis. In contrast, antioxidant prophylaxis increased thrombin generation at rest in normoxia, and this was normalised only in the face of prevailing oxidation. Collectively, these findings suggest that human free radical formation is an adaptive phenomenon that serves to maintain vascular haemostasis. ABSTRACT In vitro evidence suggests that blood coagulation is activated by increased oxidative stress although the link and underlying mechanism in humans have yet to be established. We conducted the first randomised controlled trial to examine if oral antioxidant prophylaxis alters the haemostatic responses to hypoxia and exercise. Healthy males were randomly assigned double-blind to either an antioxidant (n = 20) or placebo group (n = 16). The antioxidant group ingested two capsules/day that each contained 500 mg of l-ascorbic acid and 450 international units (IU) of dl-α-tocopherol acetate for 8 weeks. The placebo group ingested capsules of identical external appearance, taste and smell (cellulose). Both groups were subsequently exposed to acute hypoxia and maximal physical exercise with venous blood sampled pre-supplementation (normoxia), post-supplementation at rest (normoxia and hypoxia) and following maximal exercise (hypoxia). Systemic free radical formation (electron paramagnetic resonance spectroscopic detection of the ascorbate radical (A•- )) increased during hypoxia (15,152 ± 1193 AU vs. 14,076 ± 810 AU at rest, P < 0.05) and was further compounded by exercise (16,569 ± 1616 AU vs. rest, P < 0.05), responses that were attenuated by antioxidant prophylaxis. In contrast, antioxidant prophylaxis increased thrombin generation as measured by thrombin-antithrombin complex, at rest in normoxia (28.7 ± 6.4 vs. 4.3 ± 0.2 μg mL-1 pre-intervention, P < 0.05) and was restored but only in the face of prevailing oxidation. Collectively, these findings are the first to suggest that human free radical formation likely reflects an adaptive response that serves to maintain vascular haemostasis.
Collapse
Affiliation(s)
- Lewis Fall
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| | | | - Danielle Davis
- Department of Sport Health and Nutrition, Leeds Trinity University, Leeds, UK
| | | | - Bruce Davies
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| | - Karl J New
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| | - Jane McEneny
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Ian S Young
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK
| |
Collapse
|