1
|
Zhao J, Jia H, Ma P, Zhu D, Fang Y. Multidimensional mechanisms of anxiety and depression in Parkinson's Disease: integrating neuroimaging, neurocircuits, and molecular pathways. Pharmacol Res 2025; 215:107717. [PMID: 40157405 DOI: 10.1016/j.phrs.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD) that significantly affect patients' quality of life. In recent years, our understanding of PD has advanced through multifaceted studies on the pathological mechanisms associated with anxiety and depression in PD. These classic psychiatric symptoms involve complex pathophysiology, with both distinct features and connections to the mechanisms underlying the aetiology of PD. Furthermore, the co-occurrence of anxiety and depression in PD blurs the boundaries between them. Therefore, a comprehensive summary of the pathogenic mechanisms associated with anxiety and depression will aid in better addressing the emergence of these classic psychiatric symptoms in PD. This article integrates neuroanatomical, neural projection, neurotransmitter, neuroinflammatory, brain-gut axis, neurotrophic, hypothalamic-pituitary-adrenal axis, and genetic perspectives to provide a comprehensive description of the core pathological alterations underlying anxiety and depression in PD, aiming to provide an up-to-date perspective and broader therapeutic prospects for PD patients suffering from anxiety or depression.
Collapse
Affiliation(s)
- Jihu Zhao
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Huafang Jia
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Deyuan Zhu
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yibin Fang
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Li X, Li W, Xie X, Fang T, Yang J, Shen Y, Wang Y, Wang H, Tao L, Zhang H. ROS Regulate Rotenone-induced SH-SY5Y Dopamine Neuron Death Through Ferroptosis-mediated Autophagy and Apoptosis. Mol Neurobiol 2025:10.1007/s12035-025-04824-6. [PMID: 40097764 DOI: 10.1007/s12035-025-04824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Rotenone, a plant-derived natural insecticide, is widely used to induce Parkinson's disease (PD) models. However, the mechanisms of rotenone-induced cell death remain unclear. Here, we found that rotenone (0.01, 0.1, or 1 μmol/L) suppressed SH-SY5Y dopamine neuron viability and led to PD-like pathological changes, such as reduced tyrosine hydroxylase (TH) but increased α-synuclein. Rotenone increased the levels of intracellular reactive oxygen species (ROS) and mitochondrial ROS, as well as the levels of the antioxidants nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), ultimately resulting in oxidative stress. Moreover, rotenone significantly downregulated the expression of GPX4 and xCT but upregulated the expression of COX2 and NCOA4, which are markers of ferroptosis. Furthermore, rotenone decreased phosphorylated mTOR level but increased Beclin-1, ATG5, LC3 and p62 expression, suggesting that rotenone enhances autophagy and reduces autophagy flux. Additionally, rotenone reduced Bcl-2 levels and the mitochondrial membrane potential (MMP) while promoting BAX and Caspase-3 expression, thus initiating cell apoptosis. N-acetylcysteine (NAC), a ROS scavenger, and ferrostatin-1 (Fer-1) and deferoxamine (DFO), two ferroptosis inhibitors, significantly eliminated rotenone-induced autophagy and apoptosis. Moreover, ML385, a specific inhibitor of Nrf2, suppressed rotenone-induced ferroptosis. Our results demonstrated that ROS might mediate rotenone-induced PD-like pathological changes by regulating iron death, autophagy, and apoptosis. Inhibiting ferroptosis blocked the rotenone-induced increase in autophagy and apoptosis. Thus, the ability of ROS to regulate rotenone-induced death through autophagy and apoptosis is dependent on ferroptosis. The findings require validation in multiple neuronal cell lines and in vivo.
Collapse
Affiliation(s)
- Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Weiran Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Qinghai University, Xining, China
| | - Xinying Xie
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ting Fang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jingwen Yang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yue Shen
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Liqing Tao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
3
|
Song X, Cheng M, Gu C, Wang F, Ma K, Wang C, She X, Cui B. Research progress in modulating the auditory system by the cochlear circadian clock system in response to noise exposure. Front Neurosci 2025; 19:1507363. [PMID: 40171535 PMCID: PMC11958988 DOI: 10.3389/fnins.2025.1507363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
The circadian clock is an endogenous system evolved to adapt to environmental changes. Recent studies confirmed that the cochlea exhibits circadian oscillations regulating auditory function. These oscillations are linked to brain-derived neurotrophic factor and glucocorticoid levels. Circadian rhythms influence cochlear sensitivity to noise by regulating the secretion of brain-derived neurotrophic factors and glucocorticoids. This study explores the regulatory mechanism of the circadian clock system, its impact on the auditory system, and its potential role in noise-induced hearing loss. Understanding the regulatory mechanisms of circadian rhythms in auditory function will provide new ideas for developing treatments for noise-induced hearing loss.
Collapse
Affiliation(s)
- Xiaoqiong Song
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
- Academy of Military Medical Sciences, Tianjin, China
| | - Mengzhu Cheng
- Academy of Military Medical Sciences, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
| | - Cui Gu
- Academy of Military Medical Sciences, Tianjin, China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fenghan Wang
- Academy of Military Medical Sciences, Tianjin, China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kefeng Ma
- Academy of Military Medical Sciences, Tianjin, China
| | - Chunping Wang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaojun She
- Academy of Military Medical Sciences, Tianjin, China
| | - Bo Cui
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
- Academy of Military Medical Sciences, Tianjin, China
| |
Collapse
|
4
|
Zhou A, Feng HY, Fan CN, Wang J, Yuan ZY, Xu GH, Li CF, Huang WF, Yi LT. Asiaticoside Attenuates Chronic Restraint Stress-Induced Hippocampal CA1 Neuronal Ferroptosis via Activating BDNF/Nrf2/GPX4 Signaling Pathway. Drug Des Devel Ther 2025; 19:793-810. [PMID: 39931216 PMCID: PMC11808218 DOI: 10.2147/dddt.s509208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Ferroptosis, characterized by iron-dependent lipid reactive oxygen species accumulation, plays a critical role in the pathophysiology of depression. Our research aims to elucidate the potential antidepressant mechanisms of asiaticoside, a bioactive compound known for its neuroprotective and immunomodulatory properties. Methods The antidepressant-like properties of asiaticoside in a model of chronic restraint stress (CRS)-induced depression in mice, with a particular focus on its interaction with ferroptosis-related pathways. Results The behavioral results revealed that asiaticoside significantly ameliorated CRS-induced depressive symptoms, as evidenced by increased sucrose preference and reduced immobility time. At the molecular level, asiaticoside enhanced the expression of brain-derived neurotrophic factor (BDNF), phosphorylated tropomyosin receptor kinase B (pTrkB), phosphorylated nuclear factor erythroid 2-related factor 2 (pNrf2), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11), indicating its neuroprotective and antioxidative effects. In addition, asiaticoside suppressed the expression of ferroptosis markers, including ferritin light chain (FLC) and transferrin receptor only in CA1 region. Transmission electron microscopy (TEM) further confirmed that asiaticoside preserved mitochondrial integrity in CA1 neuronal cells. Conclusion In conclusion, our findings suggest that asiaticoside exerts its antidepressant-like effects through the modulation of BDNF/Nrf2/GPX4 signaling pathway against neuronal ferroptosis in the hippocampal CA1 region.
Collapse
Affiliation(s)
- An Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, 361003, People’s Republic of China
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian Province, 361102, People’s Republic of China
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, People’s Republic of China
| | - Hao-Yinghua Feng
- College of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong province, 510006, People’s Republic of China
| | - Chu-Ning Fan
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, People’s Republic of China
| | - Jun Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, People’s Republic of China
| | - Zhong-Yu Yuan
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, People’s Republic of China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, Fujian Province, 361008, People’s Republic of China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, 361009, People’s Republic of China
| | - Wei-Feng Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, 361003, People’s Republic of China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, People’s Republic of China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian Province, 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian Province, 361021, People’s Republic of China
| |
Collapse
|
5
|
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev 2025; 83:e257-e272. [PMID: 38511504 DOI: 10.1093/nutrit/nuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CONTEXT Resveratrol (RV) is a natural compound found in grapes, wine, berries, and peanuts and has potential health benefits-namely, neurogenesis improvement. Neurogenesis, which is the process through which new neurons or nerve cells are generated in the brain, occurs in the subventricular zone and hippocampus and is influenced by various factors. RV has been shown to increase neural stem cell proliferation and survival, improving cognitive function in hippocampus-dependent tasks. Thus, to provide a convergent and unbiased conclusion of the available evidence on the correlation between the RV and neurogenesis, a systematic review needs to be undertaken meticulously and with appropriate attention. OBJECTIVE This study aimed to systematically review any potential connection between the RV and neurogenesis in animal models. DATA SOURCES AND EXTRACTION Based on the particular selection criteria, 8 original animal studies that investigated the relationship between RV and neurogenesis were included. Studies written in English and published in peer-reviewed journals with no restrictions on the starting date of publication on August 17, 2023, were searched in the Google Scholar and PubMed databases. Furthermore, data were extracted and analyzed independently by 2 researchers and then reviewed by a third researcher, and discrepancies were resolved by consensus. This project followed PRISMA reporting standards. DATA ANALYSIS In the studies analyzed in this review, there is a definite correlation between RV and neurogenesis, meaning that RV intake, irrespective of the mechanisms thereof, can boost neurogenesis in both the subventricular zone and hippocampus. CONCLUSION This finding, albeit with some limitations, provides a plausible indication of RV's beneficial function in neurogenesis. Indeed, RV intake may result in neurogenesis benefits-namely, cognitive function, mood regulation, stress resilience, and neuroprotection, potentially preventing cognitive decline.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| | - Fatemeh Hoseinpour
- Department of Occupational Therapy, Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
6
|
Jiao D, Yang Y, Wang K, Wang Y. Ferroptosis: a novel pathogenesis and therapeutic strategies for Parkinson disease: A review. Medicine (Baltimore) 2025; 104:e41218. [PMID: 39833092 PMCID: PMC11749581 DOI: 10.1097/md.0000000000041218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease, and its incidence is climbing every year, but there is still a lack of effective clinical treatments. In recent years, many studies have shown that ferroptosis plays a key role in the progression of PD. Most importantly, many cellular and animal studies and clinical trials have shown that episodes of PD can be alleviated by inhibiting the ferroptosis process, such as utilizing inhibitors, chelating agents, and others. Here, we review the role of ferroptosis, a new form of cell death, in the pathogenesis of PD, and summarize the therapeutic strategies for targeting ferroptosis in PD, hoping to provide new thinking for the study of PD pathogenesis and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Di Jiao
- School of Medicine, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Yang Yang
- School of Medicine, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Kejing Wang
- School of Medicine, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Yaomei Wang
- Department of Hematology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Güleç A, Türkoğlu S, Kocabaş R. The relationship between sphingomyelin and ceramide levels and soft neurological signs in ADHD. J Neural Transm (Vienna) 2025; 132:157-168. [PMID: 39249516 DOI: 10.1007/s00702-024-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD), characterized by attention deficit, hyperactivity, and impulsivity, has recently been associated with lipid metabolism. In particular, the roles of sphingomyelin, ceramide, andgalactosylceramidase in the pathophysiology of ADHD are being investigated. This study aims to explore the relationship between sphingolipid metabolism markers and soft neurological signs (SNS) in children diagnosed with ADHD who are not undergoing medication treatment. A cross-sectional analysis was conducted on 41 children and adolescents aged 7-12 years diagnosed with ADHD and 39 neurotypically developing controls. Plasma levels of ceramide, sphingomyelin, and galactosylceramidase were measuredusing Enzyme-Linked Immunosorbent Assay (ELISA). SNS were assessed using the Physical and Neurological Examination for Soft Signs (PANESS). Statistical analyses included Student's t-tests, Mann-Whitney U tests, and Multivariate Analysis ofCovariance (MANCOVA), along with logistic regression analysis. Plasma levels of ceramide and sphingomyelin in children with ADHD showed significant differences compared to the neurotypically developing control group; however, there were no significant differences in galactosylceramidase levels between the two groups. Positive correlations were found between plasma levels of ceramide and sphingomyelin and the PANESS subscales F1 (Total Gait and Station) and F3 (Total Dysrhythmia). Additionally, logistic regression analysis indicated that high ceramide levels were positively associated with ADHD. This study underscores a significant association between alterations in sphingolipid metabolism (specifically increased levels of ceramide and sphingomyelin) and the presence of SNS in children with ADHD. These findings elucidate the potential role of sphingolipid metabolism in the pathophysiology of ADHD and provide suggestions for future therapeutic research targeting sphingolipid metabolism in the treatment of ADHD.
Collapse
Affiliation(s)
- Ahmet Güleç
- Department of Child and Adolescent Psychiatry, 209th Sk. No:26, 10100 Altıeylül/Balıkesir -Balıkesir Ataturk City Hospital, Gaziosmanpasa, Turkey.
| | - Serhat Türkoğlu
- Department of Child and Adolescent Psychiatry, Selcuk University Faculty of Medicine, Selçuk University Rectorate, Alaeddin Keykubat Campus, Academia District, New Istanbul Street No: 369, Selçuklu-Konya, Postal Code: 42130, Turkey
| | - Ramazan Kocabaş
- Department of Biochemistry, Selcuk University Faculty of Medicine, Selcuk University, Selçuk University Rectorate, Alaeddin Keykubat Campus, Academia District, New Istanbul Street No: 369, Selçuklu-Konya, Postal Code: 42130, Turkey
| |
Collapse
|
8
|
Li T, Yan Q, Nan J, Huang X, Wang R, Zhang Y, Zhao X, Wang Q. LncRNA-MSTRG.19083.1 Targets NTRK2 as a miR-429-y Sponge to Regulate Circadian Rhythm via the cAMP Pathway in Yak Testis and Cryptorchidism. Int J Mol Sci 2024; 25:13553. [PMID: 39769319 PMCID: PMC11678581 DOI: 10.3390/ijms252413553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Long noncoding RNAs (LncRNAs) play essential roles in numerous biological processes in mammals, such as reproductive physiology and endocrinology. Cryptorchidism is a common male reproductive disease. Circadian rhythms are actively expressed in the reproductive system. In this study, a total of 191 LncRNAs were obtained from yak testes and cryptorchids. Then, we identified NTRK2's relationship to circadian rhythm and behavioral processes. Meanwhile, the ceRNA (LncRNA-MSTRG.19083.1/miR-429-y/NTRK2) network was constructed, and its influence on circadian rhythm was revealed. The results showed that NTRK2 and LncRNA-MSTRG.19083.1 were significantly upregulated, and miR-429-y was obviously decreased in cryptorchid tissue; NTRK2 protein was mainly distributed in the Leydig cells of the testis. In addition, the upregulation of the expression level of miR-429-y resulted in the significant downregulation of LncRNA and NTRK2 levels, while the mRNA and protein levels of CREB, CLOCK, and BMAL1 were significantly upregulated; the knockdown of miR-429-y resulted in the opposite changes. Our findings suggested that LncRNA-MSTRG.19083.1 competitively binds to miR-429-y to target NTRK2 to regulate circadian rhythm through the cAMP pathway. Taken together, the results of our study provide a comprehensive understanding of how the LncRNA-miRNA-mRNA networks operate when yak cryptorchidism occurs. Knowledge of circadian-rhythm-associated mRNAs and LncRNAs could be useful for better understanding the relationship between circadian rhythm and reproduction.
Collapse
Affiliation(s)
- Tianan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jinghong Nan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xue Huang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ruiqing Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China; (T.L.); (Q.Y.); (J.N.); (X.H.); (R.W.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
9
|
Castro-Pascual IC, Ferramola ML, Altamirano FG, Cargnelutti E, Devia CM, Delgado SM, Lacoste MG, Anzulovich AC. Circadian organization of clock factors, antioxidant defenses, and cognitive genes expression, is lost in the cerebellum of aged rats. Possible targets of therapeutic strategies for the treatment of age-related cerebellar disorders. Brain Res 2024; 1845:149195. [PMID: 39182901 DOI: 10.1016/j.brainres.2024.149195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Aging is a major risk factor for cognitive deficits, impaired locomotion, and gait disorders. Although oxidative stress and circadian disruption are involved in both normal aging and the pathogenesis of age-associated diseases, just a very few studies explore the consequences of aging on circadian rhythms in the cerebellum. Here, we investigated age-dependent changes in the circadian organization of the molecular clock, antioxidant defenses and synaptic plasticity-related factors, in the rat cerebellum, and discussed the impact of that altered temporal organization on the cognitive function of this brain area. Particularly, we examined the circadian patterns of Brain and muscle ARNT-like 1 (BMAL1) protein levels, Glutathione peroxidase 4 (GPx4) gene expression, GPx and Catalase (CAT) enzymes activity, reduced glutathione (GSH) levels, and the Brain-derived neurotrophic factor (Bdnf) and its Tyrosine kinase receptor B (TrkB) circadian expression. Endogenously-driven circadian rhythms of BMAL1, GPx4, CAT, GSH, and Bdnf/TrkB factors, were observed in the young rat cerebellum. The rhythms' acrophases show a circadian organization that might be crucial for the daily cerebellar-dependent cognitive functions. Notably, aging disrupted circadian rhythms and the temporal organization of BMAL1, antioxidant defenses, and cognitive Bdnf/TrkB gene expression. Increased oxidative stress and disruption of clock-controlled rhythms during aging, might precede and cause the loss of circadian organization in the aged cerebellum. We expect our results highlight circadian rhythms of the studied factors as new targets for the treatment of age-dependent cerebellar disorders.
Collapse
Affiliation(s)
| | - Mariana L Ferramola
- Department of Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), San Luis, Argentina; Laboratory of Chronobiology, IMIBIO-SL (CONICET-UNSL), Argentina.
| | | | - Ethelina Cargnelutti
- Department of Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), San Luis, Argentina; Laboratory of Chronobiology, IMIBIO-SL (CONICET-UNSL), Argentina
| | - Cristina M Devia
- Department of Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), San Luis, Argentina
| | - Silvia M Delgado
- Department of Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), San Luis, Argentina; Laboratory of Chronobiology, IMIBIO-SL (CONICET-UNSL), Argentina
| | - María G Lacoste
- Department of Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), San Luis, Argentina; Laboratory of Chronobiology, IMIBIO-SL (CONICET-UNSL), Argentina
| | - Ana C Anzulovich
- Department of Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), San Luis, Argentina; Laboratory of Chronobiology, IMIBIO-SL (CONICET-UNSL), Argentina.
| |
Collapse
|
10
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Luo YP, Gu XX, Liu C, Huang Y, Lu LJ, Zhang SY, Yuan YL. Association between miR-30 polymorphism and ischemic stroke in Chinese population. BMC Med Genomics 2024; 17:269. [PMID: 39538152 PMCID: PMC11562358 DOI: 10.1186/s12920-024-02041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a commonly seen cerebrovascular disease which seriously endangers the health of middle age and old people. However, its etiology and pathogenesis have not yet fully comprehended. miR-30 gene is a novel gene which may be involved in IS. However, no studies have investigated the relationship between IS and the single-nucleotide polymorphisms (SNPs) of miR-30. Therefore, this study examined the relationship between miR-30 polymorphisms (rs2222722, rs1192037, rs10095483 and rs16827546) and the risk of IS. METHODS Totally 248 IS patients and 230 age-, sex- and race-matched controls were involved in this study. Based on SNPscan technique, four polymorphisms (rs2222722, rs1192037, rs10095483 and rs16827546) were genotyped. RESULTS There exists a significant association between rs2222722 polymorphism and the risk of IS according to analyses of genotypes, models and alleles (GA vs. GG: adjusted OR = 1.616, 95% CI: 0.943-2.768, P = 0. 081); (AA vs. GG: adjusted OR = 2.447, 95% CI: 1.233-4.858, P = 0.011); dominant model: adjusted (OR = 1.806, 95% CI, 1.082-3.016, P = 0.024); (G vs. A: adjusted OR = 1.492, 95% CI: 1.148-1.939, P = 0.003). Besides, miR-30a expression was significantly higher in patients undergoing IS relative to that in controls (P < 0.05). CONCLUSIONS To conclude, the rs2222722 polymorphism of the miR-30 gene shows a significant relationship to elevate the risk of IS in Chinese population.
Collapse
Affiliation(s)
- Yan-Ping Luo
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xi-Xi Gu
- Department of Laboratory Medicine, Peking University People's Hospital ,Qingdao; Women and Children's Hospital, QINGDAO UNIVERSITY, Qingdao, Shandong, China
- Department of Laboratory Medicine, Peking University People's Hospital ,Qingdao; Women and Children's Hospital, QINGDAO UNIVERSITY, Qingdao, Shandong, China
| | - Chao Liu
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ying Huang
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li-Jiang Lu
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shu-Yu Zhang
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lin Yuan
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
12
|
Bucarey JL, Trujillo-González I, Paules EM, Espinosa A. Myokines and Their Potential Protective Role Against Oxidative Stress in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1363. [PMID: 39594505 PMCID: PMC11591161 DOI: 10.3390/antiox13111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Myokines, bioactive peptides released by skeletal muscle, have emerged as crucial regulators of metabolic and protective pathways in peripheral tissues, particularly in combating oxidative stress and inflammation. Their plasma concentration significantly increases following exercise, offering valuable insights into the role of physical activity in preventing sarcopenia and mitigating metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). This review focuses on discussing the roles of specific myokines in activating intracellular signaling pathways within the liver, which confer protection against steatosis and lipid peroxidation. We detail the mechanism underlying lipid peroxidation and highlight the liver's antioxidant defenses, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), which are pivotal in reducing ferroptosis. Furthermore, we provide an in-depth analysis of key myokines, including myostatin, brain-derived neurotrophic factor (BDNF), and irisin, among others, and their potential impact on liver function. Finally, we discuss the molecular mechanisms through which these myokines influence oxidate stress and lipid metabolism, emphasizing their capacity to modulate antioxidant responses in the liver. Finally, we underscore the therapeutic potential of exercise as a non-pharmacological intervention to enhance myokine release, thereby preventing the progression of MASD through improved hepatic antioxidant defenses. This review represents a comprehensive perspective on the intersection of exercise, myokine biology, and liver health.
Collapse
Affiliation(s)
- José Luis Bucarey
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
| | - Isis Trujillo-González
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Evan M. Paules
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Alejandra Espinosa
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, San Felipe 2172972, Chile
| |
Collapse
|
13
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
14
|
Xiao T, Yu X, Tao J, Yang L, Duan X. Metabolomics-Based Study of the Protective Effect of 4-Hydroxybenzyl Alcohol on Ischemic Astrocytes. Int J Mol Sci 2024; 25:9907. [PMID: 39337395 PMCID: PMC11432256 DOI: 10.3390/ijms25189907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Ischemic stroke is a common and dangerous disease in clinical practice. Astrocytes (ASs) are essential for maintaining the metabolic balance of the affected regions during the disease process. 4-Hydroxybenzyl alcohol (4HBA) from Gastrodia elata Bl. has potential neuroprotective properties due to its ability to cross the blood-brain barrier. In an in vitro experiment, we replicated the oxygen-glucose deprivation/reoxygenation model, and used methyl thiazoly tertrazolium, flow cytometry, kits, and other technical means to clarify the protective effect of 4HBA on primary ASs. In in vivo experiments, the 2VO model was replicated, and immunofluorescence and immunohistochemistry techniques were used to clarify the protective effect of 4HBA on ASs and the maintenance of the blood-brain barrier. Differential metabolites and related pathways were screened and verified using metabolomics analysis and western blot. 4HBA noticeably amplified AS cell survival, reduced mitochondrial dysfunction, and mitigated oxidative stress. It demonstrated a protective effect on ASs in both environments and was instrumental in stabilizing the blood-brain barrier. Metabolomic data indicated that 4HBA regulated nucleic acid and glutathione metabolism, influencing purines, pyrimidines, and amino acids, and it activated the N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway via N-methyl-D-aspartate R1/N-methyl-D-aspartate 2C receptors. Our findings suggest that 4HBA is a potent neuroprotective agent against ischemic stroke, enhancing AS cell survival and function while stabilizing the blood-brain barrier. The N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway is activated by 4HBA.
Collapse
Affiliation(s)
- Tian Xiao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xingzhi Yu
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jie Tao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
15
|
Wang X, Zhi H, Zhang Z, Li J, Guo D. REV-ERBα Mitigates Astrocyte Activation and Protects Dopaminergic Neurons from Damage. J Mol Neurosci 2024; 74:84. [PMID: 39254874 DOI: 10.1007/s12031-024-02264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is characterized by astrocyte activation and disruptions in circadian rhythm. Within the astrocyte population, two distinct reactive states exist: A1 and A2. A1 astrocytes are associated with neurotoxicity and inflammation, while A2 astrocytes exhibit neuroprotective functions. Our investigation focused on the role of REV-ERBα, a member of the nuclear receptor superfamily and a key regulator of the circadian clock, in astrocyte activation. We observed that REV-ERBα expression in A1 astrocytes was reduced to one-third of its normal level. Notably, activation of REV-ERBα prompted a transformation of astrocytes from A1 to A2. Mechanistically, REV-ERBα inhibition was linked to the classical NF-κB pathway, while it concurrently suppressed the STAT3 pathway. Furthermore, astrocytes with low REV-ERBα expression were associated with dopaminergic neurons apoptosis. Intriguingly, the opposite effect was observed when using a REV-ERBα agonist, which mitigated astrocyte activation and reduced dopaminergic neuron damage by 50%. In summary, our study elucidates the pivotal role of REV-ERBα in modulating astrocyte function and its potential implications in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Hui Zhi
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Zongqin Zhang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Jingwei Li
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| | - Dongkai Guo
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
| |
Collapse
|
16
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
17
|
Xie G, Xu Z, Li F, Kong M, Wang P, Shao Y. Aerobic Exercise Ameliorates Cognitive Disorder and Declined Oxidative Stress via Modulating the Nrf2 Signaling Pathway in D-galactose Induced Aging Mouse Model. Neurochem Res 2024; 49:2408-2422. [PMID: 38839706 DOI: 10.1007/s11064-024-04164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
The aim of this research was to explore the potential of treadmill exercise in preventing brain aging and neurodegenerative diseases caused by oxidative stress, by studying its effects on D-galactose-induced mice and the mechanisms involved. The results showed that C57BL/6 mice induced with D-gal exhibited cognitive impairment and oxidative stress damage, which was ameliorated by treadmill exercise. The Morris water maze also showed that exercise improved cognitive performance in aging mice and alleviated hippocampal and mitochondrial damage. The study also found that treadmill exercise increased the expression of nuclear factor Nrf2, p-GSK3β, HO-1, NQO1, BDNF, and Bcl-2 proteins while decreasing the expression of Bax. Furthermore, there was a substantial increase in the levels of CAT, GSH-PX and SOD in the serum, along with a decrease in MDA levels. The outcomes propose that aerobic exercise has the potential to hinder oxidative stress and cell death in mitochondria through the modulation of the Nrf2/GSK3β signaling pathway, thus improving cognitive impairment observed in the aging model induced by D-galactose. It appears that treadmill exercise could potentially serve as an effective therapeutic approach to mitigating brain aging and neurodegenerative diseases triggered by oxidative stress.
Collapse
Affiliation(s)
- Guangjing Xie
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Labortary, Wuhan, Hubei, China
| | - Zixuan Xu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Feizhou Li
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Meng Kong
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ping Wang
- Institute of Geriatrics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Labortary, Wuhan, Hubei, China.
| | - Yuping Shao
- College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Labortary, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Zhou Z, Zhang P, Ya D, Liu J, Xu Y, Zhang Y, Tang W, Zhou D, Liao R, Liu L. Withaferin A protects against epilepsy by promoting LCN2-mediated astrocyte polarization to stopping neuronal ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155892. [PMID: 39032282 DOI: 10.1016/j.phymed.2024.155892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Epilepsy is among the most frequent severe brain diseases, with few treatment options available. Neuronal ferroptosis is an important pathogenic mechanism in epilepsy. As a result, addressing ferroptosis appears to be a promising treatment approach for epilepsy. Withaferin A (WFA) is a C28 steroidal lactone that has a broad range of neuroprotective properties. Nonetheless, the antiepileptic action of WFA and the intrinsic mechanism by which it inhibits ferroptosis following epilepsy remain unknown. PURPOSE This study aimed at investigating to the antiepileptic potential of WFA in epilepsy, as well as to propose a potential therapeutic approach for epilepsy therapy. METHODS We conducted extensive research to examine the impacts of WFA on epilepsy and ferroptosis, using the kainic acid (KA)-treated primary astrocyte as an in vitro model and KA-induced temporal lobe epilepsy mice as an in vivo model. To analyze the neuroprotective effects of WFA on epileptic mice, electroencephalogram (EEG) recording, Nissl staining, and neurological function assessments such as the Morris water maze (MWM) test, Y-maze test, Elevated-plus maze (O-maze) test, and Open field test were used. Furthermore, the mechanism behind the neuroprotective effect of WFA in epilepsy was investigated using the transcriptomics analysis and verified on epileptic patient and epileptic mouse samples using Western blotting (WB) and immunofluorescence (IF) staining. In addition, WB, IF staining and specific antagonists/agonists were used to investigate astrocyte polarization and the regulatory signaling pathways involved. More critically, ferroptosis was assessed utilizing lipocalin-2 (LCN2) overexpression cell lines, siRNA knockdown, JC-1 staining, WB, IF staining, flow cytometry, electron microscopy (TEM), and ferroptosis-related GSH and MDA indicators. RESULTS In this study, we observed that WFA treatment reduced the number of recurrent seizures and time in seizure, and the loss of neurons in the hippocampal area in in epileptic mice, and even improved cognitive and anxiety impairment after epilepsy in a dose depend. Furthermore, WFA treatment was proven to enhance to the transformation of post-epileptic astrocytes from neurotoxic-type A1 to A2 astrocytes in both in vivo and in vitro experiments by inhibiting the phosphoinositide 3-kinase /AKT signaling pathway. At last, transcriptomics analysis in combination with functional experimental validation, it was discovered that WFA promoted astrocyte polarity transformation and then LCN2 in astrocytes, which inhibited neuronal ferroptosis to exert neuroprotective effects after epilepsy. In addition, we discovered significant astrocytic LCN2 expression in human TLE patient hippocampal samples. CONCLUSIONS Taken together, for the first, our findings suggest that WFA has neuroprotective benefits in epilepsy by modulating astrocyte polarization, and that LCN2 may be a novel potential target for the prevention and treatment of ferroptosis after epilepsy.
Collapse
Affiliation(s)
- Zixian Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Pengcheng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dongshan Ya
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, PR China
| | - Jiao Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yinchun Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Rujia Liao
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, PR China.
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
19
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
20
|
Guo JT, Li HY, Cheng C, Shi JX, Ruan HN, Li J, Liu CM. Isochlorogenic acid A ameliorated lead-induced anxiety-like behaviors in mice by inhibiting ferroptosis-mediated neuroinflammation via the BDNF/Nrf2/GPX4 pathways. Food Chem Toxicol 2024; 190:114814. [PMID: 38876379 DOI: 10.1016/j.fct.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Lead (Pb) is a common environmental neurotoxicant that causes behavioral impairments in both rodents and humans. Isochlorogenic acid A (ICAA), a phenolic acid found in a variety of natural sources such as tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including protective effects on the lungs, livers, and intestines. The objective of this study was to investigate the potential neuroprotective effects of ICAA against Pb-induced neurotoxicity in ICR mice. The results indicate that ICAA attenuates Pb-induced anxiety-like behaviors. ICAA reduced neuroinflammation, ferroptosis, and oxidative stress caused by Pb. ICAA successfully mitigated the Pb-induced deficits in the cholinergic system in the brain through the reduction of ACH levels and the enhancement of AChE and BChE activities. ICAA significantly reduced the levels of ferrous iron and MDA in the brain and prevented decreases in GSH, SOD, and GPx activity. Immunofluorescence analysis demonstrated that ICAA attenuated ferroptosis and upregulated GPx4 expression in the context of Pb-induced nerve damage. Additionally, ICAA downregulated TNF-α and IL-6 expression while concurrently enhancing the activations of Nrf2, HO-1, NQO1, BDNF, and CREB in the brains of mice. The inhibition of BDNF, Nrf2 and GPx4 reversed the protective effects of ICAA on Pb-induced ferroptosis in nerve cells. In general, ICAA ameliorates Pb-induced neuroinflammation, ferroptosis, oxidative stress, and anxiety-like behaviors through the activation of the BDNF/Nrf2/GPx4 pathways.
Collapse
Affiliation(s)
- Jun-Tao Guo
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Han-Yu Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China.
| |
Collapse
|
21
|
Lana JV, Rios A, Takeyama R, Santos N, Pires L, Santos GS, Rodrigues IJ, Jeyaraman M, Purita J, Lana JF. Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients 2024; 16:2476. [PMID: 39125356 PMCID: PMC11314501 DOI: 10.3390/nu16152476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutathione (GSH), a tripeptide synthesized intracellularly, serves as a pivotal antioxidant, neutralizing reactive oxygen species (ROS) and reactive nitrogen species (RNS) while maintaining redox homeostasis and detoxifying xenobiotics. Its potent antioxidant properties, particularly attributed to the sulfhydryl group (-SH) in cysteine, are crucial for cellular health across various organelles. The glutathione-glutathione disulfide (GSH-GSSG) cycle is facilitated by enzymes like glutathione peroxidase (GPx) and glutathione reductase (GR), thus aiding in detoxification processes and mitigating oxidative damage and inflammation. Mitochondria, being primary sources of reactive oxygen species, benefit significantly from GSH, which regulates metal homeostasis and supports autophagy, apoptosis, and ferroptosis, playing a fundamental role in neuroprotection. The vulnerability of the brain to oxidative stress underscores the importance of GSH in neurological disorders and regenerative medicine. Nebulization of glutathione presents a novel and promising approach to delivering this antioxidant directly to the central nervous system (CNS), potentially enhancing its bioavailability and therapeutic efficacy. This method may offer significant advantages in mitigating neurodegeneration by enhancing nuclear factor erythroid 2-related factor 2 (NRF2) pathway signaling and mitochondrial function, thereby providing direct neuroprotection. By addressing oxidative stress and its detrimental effects on neuronal health, nebulized GSH could play a crucial role in managing and potentially ameliorating conditions such as Parkinson's Disease (PD) and Alzheimer's Disease (AD). Further clinical research is warranted to elucidate the therapeutic potential of nebulized GSH in preserving mitochondrial health, enhancing CNS function, and combating neurodegenerative conditions, aiming to improve outcomes for individuals affected by brain diseases characterized by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- João Vitor Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.)
| | - Alexandre Rios
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Renata Takeyama
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India
| | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
| | - Jose Fábio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.)
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13918-110, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| |
Collapse
|
22
|
Thirupathi A, Marqueze LF, Outeiro TF, Radak Z, Pinho RA. Physical Exercise-Induced Activation of NRF2 and BDNF as a Promising Strategy for Ferroptosis Regulation in Parkinson's Disease. Neurochem Res 2024; 49:1643-1654. [PMID: 38782838 DOI: 10.1007/s11064-024-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.
Collapse
Affiliation(s)
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo A Pinho
- Faculty of Sports Science, Ningbo University, Ningbo, China.
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
| |
Collapse
|
23
|
Davinelli S, Medoro A, Savino R, Scapagnini G. Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cell Mol Neurobiol 2024; 44:52. [PMID: 38916679 PMCID: PMC11199221 DOI: 10.1007/s10571-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Sleep is a fundamental conserved physiological state across evolution, suggesting vital biological functions that are yet to be fully clarified. However, our understanding of the neural and molecular basis of sleep regulation has increased rapidly in recent years. Among various processes implicated in controlling sleep homeostasis, a bidirectional relationship between sleep and oxidative stress has recently emerged. One proposed function of sleep may be the mitigation of oxidative stress in both brain and peripheral tissues, contributing to the clearance of reactive species that accumulate during wakefulness. Conversely, reactive species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), at physiological levels, may act as signaling agents to regulate redox-sensitive transcriptional factors, enzymes, and other effectors involved in the regulation of sleep. As a primary sensor of intracellular oxidation, the transcription factor NRF2 is emerging as an indispensable component to maintain cellular redox homeostasis during sleep. Indeed, a number of studies have revealed an association between NRF2 dysfunction and the most common sleep conditions, including sleep loss, obstructive sleep apnea, and circadian sleep disturbances. This review examines the evidence of the intricate link between oxidative stress and NRF2 function in the context of sleep, and highlights the potential of NRF2 modulators to alleviate sleep disturbances.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, Viale Pinto Luigi, 1, 71122, Foggia, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| |
Collapse
|
24
|
Pang P, Si W, Wu H, Ju J, Liu K, Wang C, Jia Y, Diao H, Zeng L, Jiang W, Yang Y, Xiong Y, Kong X, Zhang Z, Zhang F, Song J, Wang N, Yang B, Bian Y. YTHDF2 Promotes Cardiac Ferroptosis via Degradation of SLC7A11 in Cardiac Ischemia-Reperfusion Injury. Antioxid Redox Signal 2024; 40:889-905. [PMID: 37548549 DOI: 10.1089/ars.2023.0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Affiliation(s)
- Ping Pang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Si
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunlei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqiong Jia
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linghua Zeng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weitao Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Xiong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Kong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengwei Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Wang W, Gao R, Yan X, Shu W, Zhang X, Zhang W, Zhang L. Relationship between plasma brain-derived neurotrophic factor levels and neurological disorders: An investigation using Mendelian randomisation. Heliyon 2024; 10:e30415. [PMID: 38707431 PMCID: PMC11068855 DOI: 10.1016/j.heliyon.2024.e30415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
Background Altered brain-derived neurotrophic factor (BDNF) concentrations have been detected in the central nervous system tissues and peripheral blood. These alterations are associated with a series of neurological disorders. Objective To investigate the potential causal relationships between genetically determined plasma BDNF levels and various neurological diseases using a two-sample Mendelian randomisation study. Methods We selected single nucleotide polymorphisms strongly related to plasma BDNF levels as instrumental variables. Within the Mendelian randomisation framework, we used summary-level statistics for exposure (plasma BDNF levels) and outcomes (neurological disorders). Results We observed suggestive evidence of a relation between higher plasma BDNF levels and less risk of nontraumatic intracranial haemorrhage (nITH) (odds ratio [OR] = 0.861, 95 % confidence interval [CI]: 0.774-0.958, P = 0.006, PFDR = 0.078), epilepsy (OR = 0.927, 95 % CI: 0.880-0.976, P = 0.004, PFDR = 0.078), focal epilepsy (OR = 0.928, 95 % CI: 0.874-0.986, P = 0.016, PFDR = 0.139), and non-lesional focal epilepsy (OR = 0.981, 95 % CI: 0.964-0.999, P = 0.041, PFDR = 0.267). Combined with the UK Biobank dataset, the association of plasma BDNF levels with nITH remained significant (OR = 0.88, 95 % CI: 0.81-0.96, P < 0.01). The combined analysis of three consortium datasets demonstrated a considerable impact of plasma BDNF on epilepsy (OR = 0.94, 95 % CI: 0.90-0.98, P < 0.01) and a suggestive impact on focal epilepsy (OR = 0.94, 95 % CI: 0.89-0.99, P = 0.02). However, there was no apparent correlation between plasma BDNF levels and other neurological disorders or related subtypes. Conclusions Our study supports a possible causal relationship between elevated plasma BDNF levels and a reduced risk of nITH, epilepsy, and focal epilepsy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Shu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjie Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
27
|
Kamel AA, Nassar AY, Meligy FY, Omar YA, Nassar GAY, Ezzat GM. Acetylated oligopeptide and N-acetylcysteine protect against iron overload-induced dentate gyrus hippocampal degeneration through upregulation of Nestin and Nrf2/HO-1 and downregulation of MMP-9/TIMP-1 and GFAP. Cell Biochem Funct 2024; 42:e3958. [PMID: 38396357 DOI: 10.1002/cbf.3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.
Collapse
Affiliation(s)
- Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yomna A Omar
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Y Nassar
- Metabolic and Genetic Disorders Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
28
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
29
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
30
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
31
|
Wu Q, Ren Q, Wang X, Bai H, Tian D, Gao G, Wang F, Yu P, Chang Y. Cellular iron depletion enhances behavioral rhythm by limiting brain Per1 expression in mice. CNS Neurosci Ther 2024; 30:e14592. [PMID: 38385622 PMCID: PMC10883092 DOI: 10.1111/cns.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
AIMS Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.
Collapse
Affiliation(s)
- Qiong Wu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular Disease, College of Basic MedicineHebei University of Chinese MedicineShijiazhuangHebei ProvinceChina
| | - Qiuyang Ren
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Xin Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Dandan Tian
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Fudi Wang
- School of Public HealthZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| |
Collapse
|
32
|
Chen J, Wang Y, Li M, Zhu X, Liu Z, Chen Q, Xiong K. Netrin-1 Alleviates Early Brain Injury by Regulating Ferroptosis via the PPARγ/Nrf2/GPX4 Signaling Pathway Following Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:219-237. [PMID: 36631632 DOI: 10.1007/s12975-022-01122-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a type of stroke with high morbidity and mortality. Netrin-1 (NTN-1) can alleviate early brain injury (EBI) following SAH by enhancing peroxisome proliferator-activated receptor gamma (PPARγ), which is an important transcriptional factor modulating lipid metabolism. Ferroptosis is a newly discovered type of cell death related to lipid metabolism. However, the specific function of ferroptosis in NTN-1-mediated neuroprotection following SAH is still unclear. This study aimed to evaluate the neuroprotective effects and the possible molecular basis of NTN-1 in SAH-induced EBI by modulating neuronal ferroptosis using the filament perforations model of SAH in mice and the hemin-stimulated neuron injury model in HT22 cells. NTN-1 or a vehicle was administered 2 h following SAH. We examined neuronal death, brain water content, neurological score, and mortality. NTN-1 treatment led to elevated survival probability, greater survival of neurons, and increased neurological score, indicating that NTN-1-inhibited ferroptosis ameliorated neuron death in vivo/in vitro in response to SAH. Furthermore, NTN-1 treatment enhanced the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4), which are essential regulators of ferroptosis in EBI after SAH. The findings show that NTN-1 improves neurological outcomes in mice and protects neurons from death caused by neuronal ferroptosis. Furthermore, the mechanism underlying NTN-1 neuroprotection is correlated with the inhibition of ferroptosis, attenuating cell death via the PPARγ/Nrf2/GPX4 pathway and coenzyme Q10-ferroptosis suppressor protein 1 (CoQ10-FSP1) pathway.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Xun Zhu
- Department of Neurosurgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuanghua Liu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
33
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
34
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
36
|
Gawargi FI, Mishra PK. Ironing out the details: ferroptosis and its relevance to diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 2023; 325:R665-R681. [PMID: 37746707 PMCID: PMC11178299 DOI: 10.1152/ajpregu.00117.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Ferroptosis is a newly identified myocardial cell death mechanism driven by iron-dependent lipid peroxidation. The presence of elevated intramyocardial lipid levels and excessive iron in patients with diabetes suggest a predominant role of ferroptosis in diabetic cardiomyopathy. As myocardial cell death is a precursor of heart failure, and intensive glycemic control cannot abate the increased risk of heart failure in patients with diabetes, targeting myocardial cell death via ferroptosis is a promising therapeutic avenue to prevent and/or treat diabetic cardiomyopathy. This review provides updated and comprehensive molecular mechanisms underpinning ferroptosis, clarifies several misconceptions about ferroptosis, emphasizes the importance of ferroptosis in diabetes-induced myocardial cell death, and offers valuable approaches to evaluate and target ferroptosis in the diabetic heart. Furthermore, basic concepts and ideas presented in this review, including glutathione peroxidase-4-independent and mitochondrial mechanisms of ferroptosis, are also important for investigating ferroptosis in other diabetic organs, as well as nondiabetic and metabolically compromised hearts.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
37
|
Li X, Hu J, Zang X, Xing J, Mo X, Hei Z, Gong C, Chen C, Zhou S. Etomidate Improves the Antidepressant Effect of Electroconvulsive Therapy by Suppressing Hippocampal Neuronal Ferroptosis via Upregulating BDNF/Nrf2. Mol Neurobiol 2023; 60:6584-6597. [PMID: 37466875 DOI: 10.1007/s12035-023-03499-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Electroconvulsive therapy (ECT) performed under general anesthesia is an effective treatment for severe depression. Etomidate is an intravenous anesthetic that shows beneficial effects on ECT. However, the potential mechanisms have rarely been reported. In this study, male rats were exposed to chronic unpredictable mild stress for 4 weeks, followed by ECT for 10 days, with or without intervention with ferrostatin-1 (2 mg/kg) or all-trans retinoic acid (ATRA, 5 mg/kg). Rats subjected to etomidate (20 mg/kg) or propofol (120 mg/kg) treatment were administered with designated anesthetic before ECT. Compared to depressive rats without ECT, those who received ECT showed increased numbers of hippocampal neurons, increased expression of negative regulators of ferroptosis including glutathione peroxidase 4, ferritin heavy chain 1, and ferroptosis suppressor protein 1, upregulation of brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor, and downregulation of acyl-CoA synthetase long-chain family member 4, a positive regulator of ferroptosis in the hippocampus. Additionally, compared with propofol, etomidate used in ECT resulted in higher upregulation of BDNF/Nrf2 and inhibited neuronal ferroptosis in hippocampus. These results showed etomidate may enhance the antidepressant effect of ECT by protecting hippocampal neurons against ferroptosis.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Jingping Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Xiangyang Zang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Jibin Xing
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Xingying Mo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Chulian Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| |
Collapse
|
38
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
39
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
40
|
Lin Z, Wang J. Taxifolin protects against doxorubicin-induced cardiotoxicity and ferroptosis by adjusting microRNA-200a-mediated Nrf2 signaling pathway. Heliyon 2023; 9:e22011. [PMID: 38053888 PMCID: PMC10694176 DOI: 10.1016/j.heliyon.2023.e22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
The chemotherapeutic agent doxorubicin (Dox) is commonly used to treat various types of cancer, even though it can cause life-threatening cardiotoxicity. Clinically, there is no particularly effective way to treat Dox-induced cardiotoxicity. Therefore, it is imperative to identify compounds that can effectively alleviate Dox-induced cardiotoxicity. Ferroptosis and oxidative stress play a key role in Dox-induced cardiotoxicity, and the inhibition of ferroptosis and oxidative stress could effectively protect against doxorubicin-induced cardiotoxicity. Taxifolin (TAX) is a flavonoid commonly found in onions and citrus fruits. In the present study, we evaluated the effects of TAX on Dox-induced cardiac injury and dysfunction and aimed to explore the mechanisms underlying these effects. Using a mouse model of Dox-induced cardiotoxicity, we administered 20 mg/kg/day of TAX by gavage for 2 weeks. A week after the first use of TAX, each mouse was administered a 10 mg/kg dose of Dox. TAX was first evaluated for its cardioprotective properties, and the outcomes showed that TAX significantly reduced the damage caused by Dox to the myocardium in terms of structural and functional damage by effectively inhibiting ferroptosis and oxidative stress. In vivo, echocardiography, histopathologic assay, serum biochemical analysis and western blotting was used to find the results that Dox promoted ferroptosis-induced cardiomyocyte death, while TAX reversed these effects. In vitro, we also found that TAX alleviated Dox-induced cardiotoxicity by using ROS/DHE staining assay, Cellular immunofluorescence and western blotting. TAX increasing expression of microRNA-200a (miR-200a) which affects ferroptosis by activating Nrf2 signaling pathway. We believe that TAX inhibits ferroptosis and is a potential phytochemical that prevents Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhihui Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jie Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
41
|
Ückert AK, Rütschlin S, Gutbier S, Wörz NC, Miah MR, Martins AC, Hauer I, Holzer AK, Meyburg B, Mix AK, Hauck C, Aschner M, Böttcher T, Leist M. Identification of the bacterial metabolite aerugine as potential trigger of human dopaminergic neurodegeneration. ENVIRONMENT INTERNATIONAL 2023; 180:108229. [PMID: 37797477 PMCID: PMC10666548 DOI: 10.1016/j.envint.2023.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The causes of nigrostriatal cell death in idiopathic Parkinson's disease are unknown, but exposure to toxic chemicals may play some role. We followed up here on suggestions that bacterial secondary metabolites might be selectively cytotoxic to dopaminergic neurons. Extracts from Streptomyces venezuelae were found to kill human dopaminergic neurons (LUHMES cells). Utilizing this model system as a bioassay, we identified a bacterial metabolite known as aerugine (C10H11NO2S; 2-[4-(hydroxymethyl)-4,5-dihydro-1,3-thiazol-2-yl]phenol) and confirmed this finding by chemical re-synthesis. This 2-hydroxyphenyl-thiazoline compound was previously shown to be a product of a wide-spread biosynthetic cluster also found in the human microbiome and in several pathogens. Aerugine triggered half-maximal dopaminergic neurotoxicity at 3-4 µM. It was less toxic for other neurons (10-20 µM), and non-toxic (at <100 µM) for common human cell lines. Neurotoxicity was completely prevented by several iron chelators, by distinct anti-oxidants and by a caspase inhibitor. In the Caenorhabditis elegans model organism, general survival was not affected by aerugine concentrations up to 100 µM. When transgenic worms, expressing green fluorescent protein only in their dopamine neurons, were exposed to aerugine, specific neurodegeneration was observed. The toxicant also exerted functional dopaminergic toxicity in nematodes as determined by the "basal slowing response" assay. Thus, our research has unveiled a bacterial metabolite with a remarkably selective toxicity toward human dopaminergic neurons in vitro and for the dopaminergic nervous system of Caenorhabditis elegans in vivo. These findings suggest that microbe-derived environmental chemicals should be further investigated for their role in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Sina Rütschlin
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Simon Gutbier
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Nathalie Christine Wörz
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria; Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Isa Hauer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Birthe Meyburg
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Ann-Kathrin Mix
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Christof Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457 Konstanz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10641 Bronx, NY, United States; Department of Neuroscience, Albert Einstein College of Medicine, 10641 Bronx, NY, United States
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany; Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria.
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
42
|
Yao ZM, Sun XR, Huang J, Chen L, Dong SY. Astrocyte-Neuronal Communication and Its Role in Stroke. Neurochem Res 2023; 48:2996-3006. [PMID: 37329448 DOI: 10.1007/s11064-023-03966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system. These cells are an important hub for intercellular communication. They participate in various pathophysiological processes, including synaptogenesis, metabolic transformation, scar production, and blood-brain barrier repair. The mechanisms and functional consequences of astrocyte-neuron signaling are more complex than previously thought. Stroke is a disease associated with neurons in which astrocytes also play an important role. Astrocytes respond to the alterations in the brain microenvironment after stroke, providing required substances to neurons. However, they can also have harmful effects. In this review, we have summarized the function of astrocytes, their association with neurons, and two paradigms of the inflammatory response, which suggest that targeting astrocytes may be an effective strategy for treating stroke.
Collapse
Affiliation(s)
- Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China.
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, China.
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, China.
| |
Collapse
|
43
|
Xu Y, Wang X, Xu Z, Sun F, Tian Y. Tbx2 knockdown alleviated sevoflurane-induced cognitive disorder and neuron damages in aged rats via suppressing oxidative stress and ferroptosis. Toxicol Sci 2023; 195:257-269. [PMID: 37494465 DOI: 10.1093/toxsci/kfad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Anesthesia with sevoflurane contributes to perioperative neurocognitive disorder (PND), which is characterized by the deficiency in study and memory. T-Box transcription factor 2 (Tbx2), which is involved in the development of hippocampus neurons, was upregulated in the hippocampus of rats exposed to sevoflurane. Our study aimed to explore the role of Tbx2 in sevoflurane-induced cognitive disorder and hippocampus neuron damages. The expression of Tbx2 in hippocampus was upregulated after sevoflurane exposure, which was accompanied by the accumulation of reactive oxygen species and lipid peroxidation, as well as the loss of neurons in hippocampus. In vitro, silencing Tbx2 suppressed oxidative stress and ferroptosis induced by sevoflurane, whereas exogenous overexpression of Tbx2 exacerbated these processes. Importantly, Tbx2 knockdown improved sevoflurane-induced cognitive disorder in aged rats, as evidenced by the increases in behavioral indexes. Mechanistically, the expression of brain-derived neurotrophic factor (BDNF), as well as the downstream nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling, was repressed by Tbx2. Mimicking the activation of BDNF with 7,8-dihydroxyflavone rescued the effects of Tbx2 overexpression on oxidative stress and ferroptosis in vitro, indicating that the BDNF/Nrf2/HO-1 signaling may mediate the role of Tbx2 in sevoflurane-induced cognitive disorder and neuron damages. In summary, Tbx2 may contribute to neuronal damages via enhancing the oxidative stress and ferroptosis caused by sevoflurane. BDNF/Nrf2/HO-1 signaling mediates the role of Tbx2 in sevoflurane-induced cognitive disorder. Knockdown of Tbx2 improves sevoflurane-induced cognitive impairment. Our finding provides a novel insight for PND treatment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xueting Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ziyang Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fengwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
44
|
Li L, Guo L, Gao R, Yao M, Qu X, Sun G, Fu Q, Hu C, Han G. Ferroptosis: a new regulatory mechanism in neuropathic pain. Front Aging Neurosci 2023; 15:1206851. [PMID: 37810619 PMCID: PMC10556472 DOI: 10.3389/fnagi.2023.1206851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by damage to the somatosensory system. It is a common progressive neurodegenerative disease that usually presents with clinical features such as spontaneous pain, touch-evoked pain, nociceptive hyperalgesia, and sensory abnormalities. Due to the complexity of the mechanism, NP often persists. In addition to the traditionally recognized mechanisms of peripheral nerve damage and central sensitization, excessive iron accumulation, oxidative stress, neuronal inflammation, and lipid peroxidation damage are distinctive features of NP in pathophysiology. However, the mechanisms linking these pathological features to NP are not fully understood. The complexity of the pathogenesis of NP greatly limits the development of therapeutic approaches for NP. Ferroptosis is a novel form of cell death discovered in recent years, in which cell death is usually accompanied by massive iron accumulation and lipid peroxidation. Ferroptosis-inducing factors can affect glutathione peroxidase directly or indirectly through different pathways, leading to decreased antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. It has been shown that ferroptosis is closely related to the pathophysiological process of many neurological disorders such as NP. Possible mechanisms involved are changes in intracellular iron ion levels, alteration of glutamate excitability, and the onset of oxidative stress. However, the functional changes and specific molecular mechanisms of ferroptosis during this process still need to be further explored. How to intervene in the development of NP by regulating cellular ferroptosis has become a hot issue in etiological research and treatment. In this review, we systematically summarize the recent progress of ferroptosis research in NP, to provide a reference for further understanding of its pathogenesis and propose new targets for treatment.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingling Guo
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengwen Yao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuntao Hu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
46
|
Lautrup S, Myrup Holst C, Yde A, Asmussen S, Thinggaard V, Larsen K, Laursen LS, Richner M, Vægter CB, Prieto GA, Berchtold N, Cotman CW, Stevnsner T. The role of aging and brain-derived neurotrophic factor signaling in expression of base excision repair genes in the human brain. Aging Cell 2023; 22:e13905. [PMID: 37334527 PMCID: PMC10497833 DOI: 10.1111/acel.13905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
DNA damage is a central contributor to the aging process. In the brain, a major threat to the DNA is the considerable amount of reactive oxygen species produced, which can inflict oxidative DNA damage. This type of damage is removed by the base excision repair (BER) pathway, an essential DNA repair mechanism, which contributes to genome stability in the brain. Despite the crucial role of the BER pathway, insights into how this pathway is affected by aging in the human brain and the underlying regulatory mechanisms are very limited. By microarray analysis of four cortical brain regions from humans aged 20-99 years (n = 57), we show that the expression of core BER genes is largely downregulated during aging across brain regions. Moreover, we find that expression of many BER genes correlates positively with the expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in the human brain. In line with this, we identify binding sites for the BDNF-activated transcription factor, cyclic-AMP response element-binding protein (CREB), in the promoter of most BER genes and confirm the ability of BDNF to regulate several BER genes by BDNF treatment of mouse primary hippocampal neurons. Together, these findings uncover the transcriptional landscape of BER genes during aging of the brain and suggest BDNF as an important regulator of BER in the human brain.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | | | - Anne Yde
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Stine Asmussen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Vibeke Thinggaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Knud Larsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Christian B. Vægter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - G. Aleph Prieto
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Instituto de NeurobiologíaUNAM‐JuriquillaJuriquillaMexico
| | - Nicole Berchtold
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Carl W. Cotman
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tinna Stevnsner
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
47
|
Wang C, Jiang H, Liu H, Chen S, Guo H, Ma S, Han W, Li Y, Wang D. Isoforsythiaside confers neuroprotection against Alzheimer’s disease by attenuating ferroptosis and neuroinflammation in vivo and in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
48
|
Tuwar MN, Chen WH, Chiwaya AM, Yeh HL, Nguyen MH, Bai CH. Brain-Derived Neurotrophic Factor (BDNF) and Translocator Protein (TSPO) as Diagnostic Biomarkers for Acute Ischemic Stroke. Diagnostics (Basel) 2023; 13:2298. [PMID: 37443691 DOI: 10.3390/diagnostics13132298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) interacts with tropomyosin-related kinase B (TrkB) to promote neuronal growth, survival, differentiation, neurotransmitter release, and synaptic plasticity. The translocator protein (TSPO) is known to be found in arterial plaques, which are a symptom of atherosclerosis and a contributory cause of ischemic stroke. This study aims to determine the diagnostic accuracy of plasma BDNF and TSPO levels in discriminating new-onset acute ischemic stroke (AIS) patients from individuals without acute ischemic stroke. A total of 90 AIS patients (61% male, with a mean age of 67.7 ± 12.88) were recruited consecutively in a stroke unit, and each patient was paired with two age- and gender-matched controls. The sensitivity, specificity, and area of the curve between high plasma BDNF and TSPO and having AIS was determined using receiver operating characteristic curves. Furthermore, compared to the controls, AIS patients exhibited significantly higher levels of BDNF and TSPO, blood pressure, HbA1c, and white blood cells, as well as higher creatinine levels. The plasma levels of BDNF and TSPO can significantly discriminate AIS patients from healthy individuals (AUC 0.76 and 0.89, respectively). However, combining the two biomarkers provided little improvement in AUC (0.90). It may be possible to use elevated levels of TSPO as a diagnostic biomarker in patients with acute ischemic stroke upon admission.
Collapse
Affiliation(s)
- Mayuri N Tuwar
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 106236, Taiwan
| | - Wei-Hung Chen
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan
| | - Arthur M Chiwaya
- CLIME Group, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, FMHS, Stellenbosch University, Francie Van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Hsu-Ling Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan
| | - Minh H Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 106236, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 106236, Taiwan
| |
Collapse
|
49
|
Peng YF, Wang LL, Gu JH, Zeng YQ. Effects of astaxanthin on depressive and sleep symptoms: A narrative mini-review. Heliyon 2023; 9:e18288. [PMID: 37539097 PMCID: PMC10393630 DOI: 10.1016/j.heliyon.2023.e18288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric condition that results in persistent feelings of sadness and loss of interest, imposing a significant economic burden on health systems and society. Impaired sleep is both a symptom and a risk factor for depression. Natural astaxanthin (AST), a carotenoid primarily derived from algae and aquatic animals, possesses multiple pharmacological properties such as anti-inflammatory, anti-apoptotic, and antioxidant stress effects. Prior research suggests that AST may have antidepressant properties. This mini-review highlights the potential mechanisms by which AST can prevent depression, providing novel insights into drug research for depression treatment. Specifically, this mechanism suggests that astaxanthin may improve sleep and thus potentially aid in the treatment of depression.
Collapse
Affiliation(s)
| | | | | | - Yue-Qin Zeng
- Corresponding author. Academy of Biomedical Engineering, Kunming Medical University, Kunming, China.
| |
Collapse
|
50
|
Barthels D, Prateeksha P, Nozohouri S, Villalba H, Zhang Y, Sharma S, Anderson S, Howlader MSI, Nambiar A, Abbruscato TJ, Das H. Dental Pulp-Derived Stem Cells Preserve Astrocyte Health During Induced Gliosis by Modulating Mitochondrial Activity and Functions. Cell Mol Neurobiol 2023; 43:2105-2127. [PMID: 36201091 PMCID: PMC11412198 DOI: 10.1007/s10571-022-01291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
Astrocytes have been implicated in the onset and complication of various central nervous system (CNS) injuries and disorders. Uncontrolled astrogliosis (gliosis), while a necessary process for recovery after CNS trauma, also causes impairments in CNS performance and functions. The ability to preserve astrocyte health and better regulate the gliosis process could play a major role in controlling damage in the aftermath of acute insults and during chronic dysfunction. Here in, we demonstrate the ability of dental pulp-derived stem cells (DPSCs) in protecting the health of astrocytes during induced gliosis. First of all, we have characterized the expression of genes in primary astrocytes that are relevant to the pathological conditions of CNS by inducing gliosis. Subsequently, we found that astrocytes co-cultured with DPSCs reduced ROS production, NRF2 and GCLM expressions, mitochondrial membrane potential, and mitochondrial functions compared to the astrocytes that were not co-cultured with DPSCs in gliosis condition. In addition, hyperactive autophagy was also decreased in astrocytes that were co-cultured with DPSCs compared to the astrocytes that were not co-cultured with DPSCs during gliosis. This reversal and mitigation of gliosis in astrocytes were partly due to induction of neurogenesis in DPSCs through enhanced expressions of the neuronal genes like GFAP, NeuN, and Synapsin in DPSCs and by secretion of higher amounts of neurotropic factors, such as BDNF, GDNF, and TIMP-2. Protein-Protein docking analysis suggested that BDNF and GDNF can bind with CSPG4 and block the downstream signaling. Together these findings demonstrate novel functions of DPSCs to preserve astrocyte health during gliosis.
Collapse
Affiliation(s)
- Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Prateeksha Prateeksha
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Sarah Anderson
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Md Sariful Islam Howlader
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Adarsh Nambiar
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|