1
|
Dong L, Wu H, Qi F, Xu Y, Chen W, Wang Y, Cai P. Non-coding RNA-mediated granulosa cell dysfunction during ovarian aging: From mechanisms to potential interventions. Noncoding RNA Res 2025; 12:102-115. [PMID: 40144342 PMCID: PMC11938093 DOI: 10.1016/j.ncrna.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
As the earliest aging organ in the reproductive system, the ovary has both reproductive and endocrine functions, which are closely related to overall female health. The exact pathogenesis of ovarian aging (OA) remains incompletely understood, with granulosa cells (GCs) dysfunction playing a significant role in this process. Recent advancements in research and biotechnology have highlighted the importance of non-coding RNAs (ncRNAs), including micro RNAs, long non-coding RNAs, and circular RNAs, in regulating the biological functions of GCs through gene expression modulation. This paper provides a comprehensive overview of the role of ncRNAs in various cellular functions such as apoptosis, autophagy, proliferation, and steroid synthesis in GCs, and explores the underlying regulatory mechanisms. Additionally, the therapeutic potential of ncRNAs, particularly those carried by exosomes derived from mesenchymal stem cells, in delaying OA is discussed. Understanding the regulatory mechanisms of ncRNAs in GC function and the current progress in this field is crucial for identifying effective biomarkers and therapeutic targets, ultimately aiding in the early diagnosis, prognostic assessment, and individualized treatment of OA.
Collapse
Affiliation(s)
- Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haicui Wu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqi Wang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Rofaeil RR, Sharata EE, Attya ME, Abo-Youssef AM, Hemeida RA, Khalaf MM. Repurposing levomilnacipran to attenuate premature ovarian insufficiency induced by cyclophosphamide in female Wistar albino rats through modulation of TLR4/p38-MAPK/NF-κB p65, caspase-3-driven apoptosis, and Klotho protein expression. Food Chem Toxicol 2025; 200:115406. [PMID: 40154831 DOI: 10.1016/j.fct.2025.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
AIM This study aims to explore the mitigative impact of levomilnacipran (LVM) against cyclophosphamide (CPA)-induced premature ovarian insufficiency by targeting TLR4/p38 MAPK/NF-κB p65, and klotho expression. METHODS Rats were allocated into five groups as follows: control, LVM, CPA, CPA + LVM, and CPA + TRI. Serum hormones and histopathological examination were performed. To assess oxidative stress, ovarian MDA, GSH, and SOD were evaluated. The ovarian contents of caspase-3 and inflammatory markers were assessed using the ELISA method. The expression of ovarian NF-κB p65 was examined using an immunohistochemical technique. RT-qPCR was used to measure Bax and Bcl-2 mRNA expression. Utilizing a Western blot, the TLR4, p38 MAPK, α-Klotho, and cleaved caspase-3 levels were estimated. The estrous cycle was also monitored. FINDINGS LVM attenuated CPA-induced ovarian toxicity by regulating hormones and alleviating histopathological aberrations. It also raised SOD and GSH levels and lowered MDA's ovarian content. Moreover, Bcl-2 levels were raised, Bax and caspase-3 expression levels were reduced, and IL-18, IL-1β, and TNF-α levels were all reduced. LVM-induced ovarian protection by diminishing TLR4/p38 MAPK/NF-κB p65 expression and boosting the protein levels of α-Klotho. SIGNIFICANCE LVM mitigated POI caused by CPA by downregulating TLR4/p38 MAPK/NF-κB p65, enhancing the α-Klotho level and attenuating caspase-3 derived apoptosis.
Collapse
Affiliation(s)
- Remon Roshdy Rofaeil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia, 61519, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia, 61519, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ramadan Am Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
3
|
Khallaf WAI, Sharata EE, Attya ME, Rofaeil RR, Khalaf MM, Hemeida RAM, Abo-Youssef AM. Buspirone ameliorates premature ovarian insufficiency evoked by cyclophosphamide in female rats; attention to AMPK/Nrf2/HO-1, α-Klotho/NLRP3/Caspase-1, and Caspase-3-mediated apoptosis interplay. Toxicol Appl Pharmacol 2025; 500:117373. [PMID: 40345558 DOI: 10.1016/j.taap.2025.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/11/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
This study aims to investigate the protective impact of buspirone (BUS) against cyclophosphamide (CPA)-induced premature ovarian insufficiency (POI) by focusing on pyroptosis, apoptosis, and the AMPK/Nrf2/HO-1 signaling pathway. POI was achieved by i.p. injection of CPA in female Wistar albino rats. CPA toxicity was evaluated using biochemical analysis of the serum hormones (AMH, FSH, inhibin B, and estrogen) and histopathological examination. Oxidative stress markers (MDA, SOD) were also evaluated. Levels of inflammatory indicators (TNF-α, IL-1β, and IL-18), apoptotic marker (caspase-3), ovarian p-AMPK, ovarian NF-κB, Nrf2, and HO-1 were evaluated. RT-qPCR was used to measure Bax and Bcl-2 mRNA expression. A western blot assay was used to determine the expression of α-Klotho, NLRP3, and caspase 1. The estrous cycle and the weights of the body and ovaries were also observed. BUS, in a dose-dependent manner, attenuated CPA-induced ovarian toxicity by regulating hormonal and estrous cycle irregularities and alleviating the histopathological aberrations. It also lowered MDA levels and increased SOD activity. Furthermore, it reduced NF-κB, TNF-α, IL-1β, and IL-18 levels, as well as BAX and caspase-3 expression, while raising Bcl-2 levels. Additionally, BUS enhanced Nrf2 and HO-1 expression and boosted the protein levels of p-AMPK and α-Klotho. As well, it diminished pyroptosis by decreasing NLRP3 and caspase-1 expression. BUS attenuated POI induced by CPA, showing potential for effective protection via increasing the activity of Nrf2/HO-1 and reducing the activity of NLRP3/Caspase-1 through the participation of α-Klotho and p-AMPK, as well as inhibiting caspase-3-driven apoptosis.
Collapse
Affiliation(s)
- Waleed A I Khallaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Remon Roshdy Rofaeil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
4
|
Zeng L, Liang Y, Huang L, Li Z, Kumar M, Zheng X, Li J, Luo S, Zhu L. Untargeted metabolomics reveals homogeneity and heterogeneity between physiological and pathological ovarian aging. J Ovarian Res 2025; 18:56. [PMID: 40098062 PMCID: PMC11912745 DOI: 10.1186/s13048-025-01625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Ovarian aging is the main cause of reduced reproductive life span, yet its metabolic profiles remain poorly understood. This study aimed to reveal the metabolic homogeneity and heterogeneity between physiological and pathological ovarian aging. METHODS Seventy serum samples from physiological ovarian aging participants, pathological ovarian aging participants (including diminished ovarian reserve (DOR), subclinical premature ovarian insufficiency (scPOI) and premature ovarian insufficiency (POI)), as well as healthy participants were collected and analyzed by untargeted metabolomics. RESULTS Five homogeneous differential metabolites (neopterin, menaquinone, sphingomyelin (SM) (d14:1/24:2), SM (d14:0/21:1) and SM (d17:0/25:1)) were found in both physiological and pathological ovarian aging. While five distinct metabolites, including phosphoglyceride (PC) (17:0/18:2), PC (18:2e/17:2), SM (d22:1/14:1), SM (d14:1/20:1) and 4-hydroxyretinoic acid were specific to pathological ovarian aging. Functional annotation of differential metabolites suggested that folate biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis pathways, were mainly involved in the ovarian aging process. Meanwhile, dopaminergic synapses pathway was strongly associated with scPOI, vitamin digestion and absorption and retinol metabolism were associated with POI. Furthermore, testosterone sulfate, SM (d14:0/28:1), PC (18:0e/4:0) and 4-hydroxyretinoic acid, were identified as potential biomarkers for diagnosing physiological ovarian aging, DOR, scPOI, and POI, respectively. Additionally, SM (d14:1/24:2) strongly correlated with both physiological and pathological ovarian aging. 4-hydroxyretinoic acid was strongly correlated with pathological ovarian aging. CONCLUSIONS Metabolic homogeneity of physiological and pathological ovarian aging was related to disorders of lipid, folate, ubiquinone metabolism, while metabolic heterogeneity between them was related to disorders of lipid, vitamin and retinol metabolism. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Lihua Zeng
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, 514056, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yunyi Liang
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, 514056, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lizhi Huang
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, 514056, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zu'ang Li
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, 514056, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Manish Kumar
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiasheng Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, 514056, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Songping Luo
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, 514056, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, 514056, China.
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Kumar N. Unveiling the Emerging Role of Klotho: A Comprehensive Narrative Review of an Anti-aging Factor in Human Fertility. Curr Protein Pept Sci 2025; 26:105-112. [PMID: 39225223 DOI: 10.2174/0113892037329291240827113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Klotho, an anti-aging protein, plays a vital role in diverse biological functions, such as regulating calcium and vitamin D levels, preventing chronic fibrosis, acting as an antioxidant and anti-inflammatory agent, safeguarding against cardiovascular and neurodegenerative conditions, as well as exerting anti-apoptotic, anti-senescence effects. Additionally, it contributes to metabolic processes associated with diabetes and exhibits anti-cancer properties. This protein is commonly expressed in organs, such as kidneys, brain, pancreas, parathyroid glands, ovaries, and testes. Recent research has highlighted its significance in human fertility. This narrative review provides insight into the involvement of Klotho protein in male and female fertility, as well as its potential role in managing human infertility in the future. In this study, a search was conducted on literature spanning from November 1997 to June 2024 across multiple databases, including PUBMED, SCOPUS, and Google Scholar, focusing on Klotho proteins. The search utilized keywords, such as "discovery of Klotho proteins," "Biological functions of Klotho," "Klotho in female fertility," "Klotho and PCOS," "Klotho and cryopreservation," and "Klotho in male infertility." Inclusion criteria comprised full-length original or review articles, as well as abstracts, discussing the role of Klotho protein in human fertility, published in English in various peer-reviewed journals. Exclusion criteria involved articles published in languages other than English. Hence, due to its anti-aging characteristics, Klotho protein presents potential roles in male and female fertility and holds promising prospects for reproductive medicine. Further, it holds the potential to become a valuable asset in addressing infertility concerns for both males and females.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar 508126, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Chico-Sordo L, García-Velasco JA. MicroRNAs as Biomarkers and Therapeutic Targets in Female Infertility. Int J Mol Sci 2024; 25:12979. [PMID: 39684688 PMCID: PMC11640832 DOI: 10.3390/ijms252312979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
The study of microRNAs (miRNAs) has emerged in recent decades as a key approach to understanding the pathophysiology of many diseases, exploring their potential role as biomarkers, and testing their use as future treatments. Not only have neurological, cardiovascular diseases, or cancer benefited from this research but also infertility. Female infertility, as a disease, involves alterations at multiple levels, such as ovarian and uterine alterations. This review compiles the latest studies published in humans that link female disorders that affect fertility with altered miRNA profiles. Studies on ovarian alterations, including diminished ovarian reserve (DOR), poor ovarian response to stimulation (POR), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are summarized and classified based on the expression and type of sample analyzed. Regarding uterine disorders, this review highlights upregulated and downregulated miRNAs primarily identified as biomarkers for endometriosis, adenomyosis, decreased endometrial receptivity, and implantation failure. However, despite the large number of studies in this field, the same limitations that reduce reproducibility are often observed. Therefore, at the end of this review, the main limitations of this type of study are described, as well as specific precautions or safety measures that should be considered when handling miRNAs.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
| | - Juan A. García-Velasco
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
- IVIRMA Global Research Alliance, IVIRMA Madrid, 28023 Madrid, Spain
- School of Health Sciences, Medical Specialties and Public Health, Obstetrics and Gynecology Area, Rey Juan Carlos University Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
7
|
Miao H, Miao C, Li N, Han J. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles harboring IGF-1 improve ovarian function of mice with premature ovarian insufficiency through the Nrf2/HO-1 pathway. J Ovarian Res 2024; 17:224. [PMID: 39543679 PMCID: PMC11566650 DOI: 10.1186/s13048-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE Premature ovarian insufficiency (POI) is a disease with medical, psychological and reproductive implications, but its common therapies have limited efficacy and a likelihood of complications. This study delves into the therapeutic role of human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUC-MSCs-EVs) in POI mice through the insulin-like growth factor 1 (IGF-1)/nuclear factor E2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/autophagy pathway. METHODS hUC-MSCs were transfected with lentiviral short hairpin RNA of IGF-1 before EV extraction. Cyclophosphamide (CTX)-induced POI mouse models were administrated with hUC-MSCs-EVs. Mouse ovarian granulosa cells (GCs) were induced with CTX, then treated with hUC-MSCs-EVs and ML385. Ovarian histopathological changes were observed, changes in follicle number at all levels were counted and serum sex hormones were evaluated, as well as LC3II/I and Beclin-1 expression. GCs were subject to detection of proliferation, deaths, oxidative stress, and Nrf2 nuclear translocation. RESULTS After CTX exposure, mice showed thinner GCs layer in the ovary, reduced number of GCs and follicles at all levels, disturbed serum sex hormones, enhanced oxidative stress and autophagy, and downregulated ovarian IGF-1; whereas, hUC-MSCs-EVs upregulated IGF-1 to improve the ovarian function. hUC-MSCs-EVs carrying IGF-1 activated Nrf2/HO-1 signaling to inhibit CTX-induced excessive autophagy of GCs, but this ameliorative effect was partially weakened by inhibiting Nrf2/HO-1 signaling. hUC-MSCs-EVs inhibited excessive autophagy of GCs and improved ovarian function of CTX-induced mice through IGF-1/Nrf2/HO-1 pathway. CONCLUSION hUC-MSCs-EVs activate the Nrf2/HO-1 signaling by carrying IGF-1, which in turn inhibits excessive autophagy and damage of GCs, thus improving ovarian function in POI mice.
Collapse
Affiliation(s)
- Hui Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Changzhi, 046000, P.R. China
- Institute of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China
- Key Laboratory of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China
- Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, 046000, P.R. China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Changzhi, 046000, P.R. China.
- Institute of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China.
- Key Laboratory of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China.
- Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, 046000, P.R. China.
| | - Na Li
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Changzhi, 046000, P.R. China
- Institute of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China
- Key Laboratory of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China
- Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, 046000, P.R. China
| | - Jing Han
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, Changzhi, 046000, P.R. China
- Institute of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China
- Key Laboratory of Reproduction and Genetics of Changzhi Medical College, Changzhi, 046000, P.R. China
- Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Changzhi, 046000, P.R. China
| |
Collapse
|
8
|
Liu T, Wen Y, Cui Z, Chen H, Lin J, Xu J, Chen D, Zhu Y, Yu Z, Wang C, Zhang B. MicroRNA-3061 downregulates the expression of PAX7/Wnt/Ca 2+ signalling axis genes to induce premature ovarian failure in mice. Cell Prolif 2024; 57:e13686. [PMID: 38831624 PMCID: PMC11533063 DOI: 10.1111/cpr.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The in-depth mechanisms of microRNA regulation of premature ovarian failure (POF) remain unclear. Crispr-cas9 technology was used to construct transgenic mice. The qPCR and Western blot was used to detect the expression level of genes. H&E staining were used to detect ovarian pathological phenotypes. We found that the expression levels of microRNA-3061 were significantly higher in ovarian granulosa cells (OGCs) of POF mouse models than in controls. The miR-3061+/-/AMH-Cre+/- transgenic mice manifested symptoms of POF. RNA-Seq and luciferase reporter assay confirmed that the PAX7 was one of the target genes negatively regulated by microRNA-3061 (miR-3061-5p). Moreover, PAX7 mediated the expression of non-canonical Wnt/Ca2+ signalling pathway by binding to the motifs of promoters to stimulate the transcriptional activation of Wnt5a and CamK2a. In contrast, specific knock-in of microRNA-3061 in OGCs significantly downregulated the expression levels of PAX7 and inhibited the expression of downstream Wnt/Ca2+ signalling pathway. We also discerned a correlation between the expression levels of mRNAs of the Wnt/Ca2+ signalling pathway and the levels of E2 and FSH in POF patients by examining gene expression in the follicular fluid-derived exosomes of women. We confirmed that overexpression of microRNA-3061 induced proliferative inhibition of OGCs and ultimately induced POF in mice by suppressing the transcription factor PAX7 and downregulating expression levels of its downstream Wnt/Ca2+ signalling pathway genes.
Collapse
Affiliation(s)
- Te Liu
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yichao Wen
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zeyu Cui
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haiyang Chen
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jianghong Xu
- Department of GynaecologyJingan Hospital of Traditional Chinese MedicineShanghaiChina
| | - Danping Chen
- Department of GynaecologyJingan Hospital of Traditional Chinese MedicineShanghaiChina
| | - Ying Zhu
- Department of GynaecologyJingan Hospital of Traditional Chinese MedicineShanghaiChina
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunxia Wang
- Department of Reproductive MedicineHenan Province Hospital of Traditional Chinese MedicineHenanChina
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Lin J, Wu Z, Zheng Y, Shen Z, Gan Z, Ma S, Liu Y, Xiong F. Plasma-derived exosomal miRNA profiles reveal potential epigenetic pathogenesis of premature ovarian failure. Hum Genet 2024; 143:1021-1034. [PMID: 38054996 DOI: 10.1007/s00439-023-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
The role of plasma-derived exosomal miRNA in premature ovarian failure (POF) remains unclear. This study aimed to investigate the epigenetic pathogenesis of POF through exosomal miRNA sequencing. Exosomes were isolated and characterized from six POF patients and four healthy individuals using nanoparticle tracking analysis, transmission electron microscopy and western blot analysis. Exosomal miRNA sequencing was performed to identify differentially expressed miRNAs with |fold change| greater than 1.5 and p value less than 0.05. Bioinformatics analysis in GSE39501 dataset and our sequencing data was conducted to investigate underlying mechanisms of POF. The functional role of hsa-miR-19b-3p was assessed using CCK8, western blot, flow cytometry and fluorescence staining. The regulatory effect of hsa-miR-19b-3p on BMPR2 was investigated through miRNA transfection, qPCR analysis, and luciferase reporter assay. Statistical significance was determined using t-tests and one-way ANOVA (p < 0.05). Exosomal miRNA sequencing revealed 18 dysregulated miRNAs in POF patients compared to healthy controls. Functional enrichment analysis demonstrated their involvement in cell growth, oocyte meiosis and PI3K-Akt signaling pathways. Moreover, the constructed miRNA-mRNA network unveiled potential regulatory mechanisms underlying POF, particularly implicating hsa-miR-19b-3p in the regulation of BMPR2. In vitro assays conducted on KGN cells confirmed that hsa-miR-19b-3p promoted apoptosis, as evidenced by reduced cell viability, decayed mitochondrial membrane potential and increased apoptotic rate, thereby supporting its role in POF. Notably, hsa-miR-19b-3p was found to significantly downregulate BMPR2 expression via targeting its 3'UTR, while co-expression analysis revealed strong associations between BMPR2 and POF-related processes. This study sheds light on the epigenetic pathogenesis of POF by investigating exosomal miRNA profiles. Particularly, hsa-miR-19b-3p emerged as a potential regulator of BMPR2 and demonstrated its functional significance in POF through modulation of apoptosis.
Collapse
Affiliation(s)
- Jiaqiong Lin
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, China
| | - Zhihong Wu
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yingchun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zongrui Shen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongzhi Gan
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shunfei Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanhui Liu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Fu Xiong
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Ye W, Xia S, Xie T, Ye H, Yang Y, Sun Y, Cai J, Luo X, Zhou L, Song Y. Klotho accelerates the progression of polycystic ovary syndrome through promoting granulosa cell apoptosis and inflammation†. Biol Reprod 2024; 111:625-639. [PMID: 38874314 DOI: 10.1093/biolre/ioae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity of polycystic ovary syndrome (PCOS) is in highly increasing rate nowadays. PCOS not only affects the fertility in women, but also threatens the health of whole life. Hence, to find the prognostic risk factors is of great value. However, the effective predictors in clinical practice of PCOS are still in blackness. In this study, we found Klotho (KL) was increased in follicular fluid (FF) and primary luteinized granulosa cells (GCs) from PCOS patients with hyperandrogenism. Furthermore, we found follicular KL was negatively correlated with numbers of mature oocytes, and positively correlated with serum testosterone, LH, and LH/FSH levels menstrual cycle and number of total antral follicles in PCOS patients. In primary luteinized GCs, the increased KL was accompanied with upregulation of cell apoptosis and inflammation-related genes. In ovaries of PCOS mice and cultured human KGN cell line, KL was up-regulated and accompanied by apoptosis, inflammation, and mitochondrial dysfunction. Therefore, our findings suggest new mechanisms for granulosa cell injury and revealed to target inhibit KL maybe a new therapeutic strategy for treatment of PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyu Xia
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Sun
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Jing Cai
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Xiaoqing Luo
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| |
Collapse
|
11
|
Zhu Q, Ma H, Wang J, Liang X. Understanding the Mechanisms of Diminished Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors. Reprod Sci 2024; 31:1521-1532. [PMID: 38347379 DOI: 10.1007/s43032-024-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 05/24/2024]
Abstract
Delaying childbearing age has become a trend in modern times, but it has also led to a common challenge in clinical reproductive medicine-diminished ovarian reserve (DOR). Since the mechanism behind DOR is unknown and its clinical features are complex, physicians find it difficult to provide targeted treatment. Many factors affect ovarian reserve function, and existing studies have shown that genetic variants, upstream regulatory genes, and changes in protein expression levels are present in populations with reduced ovarian reserve function. However, existing therapeutic regimens often do not target the genetic profile for more individualized treatment. In this paper, we review the types of genetic variants, mutations, altered expression levels of microRNAs, and other related factors and their effects on the regulation of follicular development, as well as altered DNA methylation. We hope this review will have significant implications for the future treatment of individuals with reduced ovarian reserve.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Jiang F, Hong J, Jiang J, Li L, Zheng X, Zhao K, Wu X. The Effect of Human Umbilical Cord Mesenchymal Stem Cell on Premature Ovarian Cell Senilism Through miR-10a. Int J Womens Health 2024; 16:1023-1032. [PMID: 38835833 PMCID: PMC11149645 DOI: 10.2147/ijwh.s453125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
Objective To investigate the potential protective impact of miR-10a-modified HUMSCs-derived exosomes on both premature ovarian failure and the functionality of ovarian granulosa cells in a POF model. Methods KGN cells were co-cultured with cisplatin-diaminedichloroplatinum (II) (10 μM) for 24 h to establish an in vitro POF model. The cells were distributed into three distinct groups: the control group, the POF group, and the POF + HUCMSC group. The plasmid sh-NC, sh-miR-10 a and miR-10 a mimic were transfected into KGN cells. After co-cultured with HUCMSC-EVs for 48 h, they were divided into HUCMSC group, sh-miR-10 a-HUMSCs-exosomes group and miR-10 a-HUMSCs-exosomes group. Flow cytometry was adopted to assess the impact of HUMSCs surface immune antigens and miR-10a-HUCMSCs-exosomes on KGN cell apoptosis. Additionally, the evaluation of cell proliferation was carried out through CCK-8 and EDU assays. Western blot analysis was utilized to detect the Caspase-3, Bax, and Bcl-2 proteins levels. Furthermore, the levels of TNF-α, IL-6, IL-10, MDA, SOD, and CAT were quantified using ELISA. Results Compared with the Control group, the POF group inhibited the growth of ovarian granulosa cells (P<0.01), reduced the number of EDU cells (P<0.01), and increased the protein expression of Caspase-3 (P<0.05) and Bax (P<0.01). HUMSCs treatment significantly down-regulated the expression of IL-6, TNF-α and MDA, while up-regulating the expression of IL-10, SOD and CAT (P<0.01); the overexpression of miR-10a promoted cell growth, besides, the introduction of miR-10a-HUMSCs-derived exosomes led to an elevation in the proliferation rate of OGCs affected by POF and concurrently suppressed the apoptosis rate. Conclusion HUMSCs-derived exosomes modified by miR-10a have protective effects on premature ovarian failure and ovarian granulosa cell function in POF model.
Collapse
Affiliation(s)
- Fan Jiang
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Jingzhen Hong
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Juanjuan Jiang
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Ling Li
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Xianrui Zheng
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Kun Zhao
- Fujian Heze Biotechnology Company Limited, Fuzhou, 350000, People's Republic of China
| | - Xuebin Wu
- Reproductive Medicine Center, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| |
Collapse
|
13
|
Liang Y, Shi Y, Guo R, Xu C, Fu M, Shen J, Gao X, Li W, Qin K. Wine- and stir-frying processing of Cuscutae Semen enhance its ability to alleviate oxidative stress and apoptosis via the Keap 1-Nrf2/HO-1 and PI3K/AKT pathways in H 2O 2-challenged KGN human granulosa cell line. BMC Complement Med Ther 2024; 24:189. [PMID: 38750475 PMCID: PMC11094956 DOI: 10.1186/s12906-024-04491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. METHODS In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. RESULTS The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. CONCLUSIONS The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.
Collapse
Affiliation(s)
- Yusha Liang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yun Shi
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Rong Guo
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Changli Xu
- Department of Pharmacy, Xinyi People's Hospital, Xinyi Jiangsu, 221400, China
| | - Mian Fu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jinyang Shen
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xun Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Weidong Li
- Engineering Research Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
14
|
Wang C, Wang Z, Fu L, Du J, Ji F, Qiu X. CircNRCAM up-regulates NRCAM to promote papillary thyroid carcinoma progression. J Endocrinol Invest 2024; 47:1215-1226. [PMID: 38485895 DOI: 10.1007/s40618-023-02241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/04/2023] [Indexed: 04/23/2024]
Abstract
PURPOSE Papillary Thyroid Carcinoma (PTC) is the most prevalent subtype of Thyroid Carcinoma (THCA), a type of malignancy in the endocrine system. According to prior studies, Neural Cell Adhesion Molecule (NRCAM) has been found to be up-regulated in PTC and stimulates the proliferation and migration of PTC cells. However, the specific mechanism of NRCAM in PTC cells is not yet fully understood. Consequently, this study aimed to investigate the underlying mechanism of NRCAM in PTC cells, the findings of which could provide new insights for the development of potential treatment targets for PTC. METHODS AND RESULTS Bioinformatics tools were utilized and a series of experiments were conducted, including Western blot, colony formation, and dual-luciferase reporter assays. The data collected indicated that NRCAM was overexpressed in THCA tissues and PTC cells. Circular RNA NRCAM (circNRCAM) was found to be highly expressed in PTC cells and to positively regulate NRCAM expression. Through loss-of-function assays, both circNRCAM and NRCAM were shown to promote the proliferation, invasion, and migration of PTC cells. Mechanistically, this study confirmed that precursor microRNA-506 (pre-miR-506) could bind with m6A demethylase AlkB Homolog 5 (ALKBH5), leading to its m6A demethylation. It was also discovered that circNRCAM could competitively bind to ALKBH5, which restrained miR-506-3p expression and promoted NRCAM expression. CONCLUSION In summary, circNRCAM could up-regulate NRCAM by down-regulating miR-506-3p, thereby enhancing the biological behaviors of PTC cells.
Collapse
Affiliation(s)
- C Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Z Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - L Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - J Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - F Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - X Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
15
|
Yang Y, Tang X, Yao T, Zhang Y, Zhong Y, Wu S, Wang Y, Pan Z. Metformin protects ovarian granulosa cells in chemotherapy-induced premature ovarian failure mice through AMPK/PPAR-γ/SIRT1 pathway. Sci Rep 2024; 14:1447. [PMID: 38228655 PMCID: PMC10791659 DOI: 10.1038/s41598-024-51990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Premature ovarian failure (POF) caused by chemotherapy is a growing concern for female reproductive health. The use of metformin (MET), which has anti-oxidative and anti-inflammatory effects, in the treatment of POF damaged by chemotherapy drugs remains unclear. In this study, we investigated the impact of MET on POF caused by cyclophosphamide (CTX) combined with busulfan (BUS) and M1 macrophages using POF model mice and primary granule cells (GCs). Our findings demonstrate that intragastric administration of MET ameliorates ovarian damage and alleviates hormonal disruption in chemotherapy-induced POF mice. This effect is achieved through the reduction of inflammatory and oxidative stress-related harm. Additionally, MET significantly relieves abnormal inflammatory response, ROS accumulation, and senescence in primary GCs co-cultured with M1 macrophages. We also observed that this protective role of MET is closely associated with the AMPK/PPAR-γ/SIRT1 pathway in cell models. In conclusion, our results suggest that MET can protect against chemotherapy-induced ovarian injury by inducing the expression of the AMPK pathway while reducing oxidative damage and inflammation.
Collapse
Affiliation(s)
- Yuxin Yang
- Faculty of Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Xiangting Tang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Futian, Shenzhen, People's Republic of China
| | - Ting Yao
- Faculty of Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Yiqing Zhang
- Faculty of Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Yufei Zhong
- Faculty of Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Shuqing Wu
- Faculty of Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Yurou Wang
- Faculty of Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China
| | - Zezheng Pan
- Faculty of Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang City, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
16
|
Zhylkybekova A, Koshmaganbetova GK, Rysmakhanov MS, Abenova NA, Mussin NM, Kaliyev AA, Mahdipour M, Tamadon A. Engineering of ovarian tissue for ovarian dysfunctions: A review. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2024; 13:3-11. [DOI: 10.4103/apjr.apjr_81_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/20/2023] [Indexed: 04/30/2025] Open
Abstract
This review explores tissue engineering as a potential solution for reproductive health issues in women caused by genetic or acquired diseases, such as premature ovarian failure or oophorectomy. The loss of ovarian function can lead to infertility, osteoporosis, and cardiovascular disease. Hormone replacement therapy is a common treatment, but it has limitations and risks. The review focuses on two main approaches in tissue engineering: scaffold-based (3D printing, electrospinning, decellularization) and scaffold-free (stem cell transplantation, organoid cultivation). Both approaches show promise in preclinical studies for creating functional ovarian tissue. Challenges include vascularization, innervation, long-term function, and safety. Despite these challenges, tissue engineering offers a potential avenue for restoring fertility and hormone balance in women with ovarian dysfunction.
Collapse
Affiliation(s)
- Aliya Zhylkybekova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulbakit K. Koshmaganbetova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Myltykbay S. Rysmakhanov
- Department of Surgery and Urology No.2, West Kazakhstan Medical University, Aktobe, Kazakhstan
- Department of Surgery and Transplantation, Aktobe Medical Center, Aktobe, Kazakhstan
| | | | | | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Tamadon
- Department for Scientific Work, West-Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
17
|
Zhou W, Chen A, Ye Y, Ren Y, Lu J, Xuan F, Jin R. LIPUS combined with TFSC alleviates premature ovarian failure by promoting autophagy and inhibiting apoptosis. Gynecol Endocrinol 2023; 39:2258422. [PMID: 37855244 DOI: 10.1080/09513590.2023.2258422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a major cause of infertility in female worldwide. Excessive apoptosis and impaired autophagy in ovarian granulosa cells are the main pathological mechanisms of POF. The total flavonoids from semen cuscutae (TFSC) are often used in the treatment of gynecological endocrine disorders. In addition, low intensity pulsed ultrasound (LIPUS) is report as an effective method to improve ovarian function. This study aims to investigate the protective effect of POF by the combined use of TFSC and LIPUS. METHODS POF rats model and granulosa cell model were successfully induced by tripterygium glycosides and cyclophosphamide, respectively. After that, model rats and cells received TFSC plus LIPUS administration. Then ovarian histomorphology, senescence, estrus cycle, and serum sex hormone levels were detected in rats. Ovarian tissue and granulosa cells autophagy and apoptosis levels were also assessed. RESULTS Disturbed sex hormone levels, atrophied and senescent ovaries, and abnormal estrous cycle were found in POF rats. Meanwhile, cell autophagy was inhibited and cell apoptosis was activated in POF ovarian tissue and granulosa cells. However, TFSC combined with LIPUS improved these changes, and this combination treatment exhibited synergistic effects. The abnormal expression of the cell apoptosis-, autophagy-, and PI3K/AKT/mTOR signaling pathway-related proteins were also improved by combination treatment. CONCLUSION The study found that the combination of TFSC and LIPUS can alleviate POF by modulating cell autophagy and apoptosis. The findings may provide a viable scientific basis for POF treatment.
Collapse
Affiliation(s)
- Weimei Zhou
- Department of Ultrasound, Jiaojiang Maternal and Child Health Hospital, Taizhou, China
| | - Aixue Chen
- Department of Gynecology, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Yongju Ye
- Department of gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Yuefang Ren
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jiali Lu
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Feilan Xuan
- Department of obstetrics and gynecology, Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiying Jin
- Department of Gynecology, Jiaojiang Maternal and Child Health Hospital, Taizhou, China
| |
Collapse
|
18
|
Luo J, Sun Z. MicroRNAs in POI, DOR and POR. Arch Gynecol Obstet 2023; 308:1419-1430. [PMID: 36840768 DOI: 10.1007/s00404-023-06922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE Premature ovarian insufficiency (POI) is a clinical syndrome defined by loss of ovarian activity before the age of 40 years. However, the etiology of approximately 90% patients remains unknown. Diminished ovarian reserve (DOR) and poor ovarian response (POR) are related to POI in clinic. The main purpose of this review was to evaluate the roles of microRNAs (miRNAs) in the pathogenesis and therapeutic potential for POI, DOR and POR. METHODS A literature search was conducted using six databases (PubMed, EMBASE, Web of Science, Cochrane Library, CNKI and Wangfang Data) to obtain relevant studies. RESULTS This review enlightens expression profiles and functional studies of miRNAs in ovarian insufficiency in animal models and humans. Functional studies emphasized the role of miRNAs in steroidogenesis, granulosa cell proliferation/apoptosis, autophagy and follicular development by regulating target genes in specific pathways, such as the PI3K/AKT/mTOR, TGFβ, MAPK and Hippo pathways. Differentially expressed circulating miRNAs provided novel biomarkers for diagnosis and prediction, such as miR-22-3p and miR-21. Moreover, exosomes derived from stem cells restored ovarian function through miRNAs in chemotherapy-induced POI models. CONCLUSION Differential miRNA expression profiles in patients and animal models uncovered the underlying mechanisms and biomarkers of ovarian insufficiency. Exosomal miRNAs can restore ovarian function against chemotherapy-induced POI, which needs further investigation to develop novel preventive and therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Jiali Luo
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Medical School, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Zhaogui Sun
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Zhou Y, Yuan F, Jia C, Chen F, Li F, Wang L. MiR-497-3p induces Premature ovarian failure by targeting KLF4 to inactivate Klotho/PI3K/AKT/mTOR signaling pathway. Cytokine 2023; 170:156294. [PMID: 37549487 DOI: 10.1016/j.cyto.2023.156294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/19/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Premature ovarian failure (POF), as a gynecological endocrine disease, features the manifestation of irregular menstruation, amenorrhea, infertility and perimenopausal syndrome. MicroRNAs (miRNAs) have been reported to modulate POF. However, the specific regulatory mechanism of miR-497-3p in POF remain unclear. METHODS Quantitative reverse transcription-PCR (RT-qPCR) and western blot were implemented to analyze RNA and protein levels, respectively. Comet assay was performed for the detection of DNA damage. Flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to measure apoptosis of CTX-induced KGN cell (POF cell model). Bioinformatics was utilized to screen out the downstream mRNAs potentially regulated by miR-497-3p. Chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and RNA pulldown assays were performed to demonstrate the interaction between miR-497-3p and Kruppel-like factor 4 (KLF4) or between KLF4 and Klotho (KL). Rescue assays were performed to verify the involvement of Klotho in miR-497-3p-mediated functions of POF cell model. RESULTS MiR-497-3p was upregulated in CTX-treated KGN cells. Knockdown of miR-497-3p could reverse the promoting effects of CTX on DNA damage and cell apoptosis. MiR-497-3p negatively regulated Klotho expression by directly targeting the transcription activator KLF4. KLF4 activated Klotho transcription. MiR-497-3p inactivated PI3K/AKT/mTOR signaling pathway through KLF4/Klotho axis. Klotho knockdown reversed the effects of MiR-497-3p on the functions of POF cell model. CONCLUSION MiR-497-3p promotes DNA damage and apoptosis in CTX-treated KGN cells by targeting KLF4 to downregulate Klotho and inactivate the PI3K/AKT/mTOR signaling pathway. This study unveils novel mechanisms associated with cell functional changes in POF and may enrich therapeutic strategy for POF.
Collapse
Affiliation(s)
- Yuhan Zhou
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| | - Feifei Yuan
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| | - Chunlian Jia
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| | - Fen Chen
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China.
| | - Fei Li
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China.
| | - Lingyu Wang
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China.
| |
Collapse
|
20
|
Dai W, Yang H, Xu B, He T, Liu L, Ma X, Ma J, Yang G, Si R, Pei X, Du X, Fu X. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model. J Ovarian Res 2023; 16:198. [PMID: 37777781 PMCID: PMC10542694 DOI: 10.1186/s13048-023-01278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is one of the leading causes of female infertility and is accompanied by abnormal endocrine, seriously affecting female quality of life. Previous studies have demonstrated that mesenchymal stem cells (MSCs) transplantation is a promising therapeutic strategy for POF. However, the mechanism remains obscure. This study aims to investigate the therapeutic effect of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on ovarian function in the POF rat model and explore the underlying mechanisms. METHODS The ovarian function was evaluated by ovarian morphology, histology, estrous cycle, hormone levels (AMH, E2, FSH, and LH), and fertility ability to investigate the effect of hUC-MSCs on the POF rats model. The cytokines levels were assayed in serum using protein array to explore the mechanisms of hUC-MSCs therapy for POF. The excessive autophagy levels were evaluated using a co-culture system of 3D MSCs spheroids with human ovarian granulosa cell line (KGN) or primary ovarian granulosa cells (GCs) to understand the paracrine effect of hUC-MSCs on GCs. The related proteins expression of autophagy and PI3K/AKT/mTOR pathway was detected using Western Blotting and/or in various inhibitors supplement to further demonstrate that vascular endothelial growth factor A (VEGFA) secreted by hUC-MSCs can alleviate excessive autophagy of ovarian GCs via PI3K/AKT/mTOR signaling pathway. The ovarian culture model in vitro was applied to confirm the mechanism. RESULTS The ovarian function of POF and the excessive autophagy of ovarian GCs were restored after hUC-MSCs transplantation. The protein array result demonstrated that VEGF and PI3K/AKT might improve ovarian function. in vitro experiments demonstrated that VEGFA secreted by hUC-MSCs could decrease oxidative stress and inhibit excessive autophagy of ovarian GCs via PI3K/AKT/mTOR pathway. The ovarian culture model results confirmed this mechanism in vitro. CONCLUSION The hUC-MSCs can alleviate excessive autophagy of ovarian GCs via paracrine VEGFA and regulate the PI3K/AKT/mTOR signaling pathway, thereby improving the ovarian function of POF.
Collapse
Affiliation(s)
- Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoqian Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiaxue Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Guoqin Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui Si
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
21
|
Zhang JH, Chen JH, Guo B, Fang Y, Xu ZY, Zhan L, Cao YX. Recent Insights into Noncoding RNAs in Primary Ovarian Insufficiency: Focus on Mechanisms and Treatments. J Clin Endocrinol Metab 2023; 108:1898-1908. [PMID: 36735959 DOI: 10.1210/clinem/dgad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a heterogeneous disease with an unknown underlying trigger or root cause. Recently many studies evaluated noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNA (lncRNAs), circular RNAs (circRNAs), and small interfering RNAs (siRNAs) for their associations with POI. EVIDENCE ACQUISITION In this review, we outline the biogenesis of various ncRNAs relevant to POI and summarize the evidence for their roles in the regulation of disease occurrence and progression. Articles from 2003 to 2022 were selected for relevance, validity, and quality from results obtained in PubMed and Google Scholar using the following search terms: noncoding RNAs; primary ovarian insufficiency; premature ovarian failure; noncoding RNAs and primary ovarian insufficiency/premature ovarian failure; miRNAs and primary ovarian insufficiency/premature ovarian failure; lncRNAs and primary ovarian insufficiency/premature ovarian failure; siRNAs and primary ovarian insufficiency/premature ovarian failure; circRNAs and primary ovarian insufficiency/premature ovarian failure; pathophysiology; and potential treatment. All articles were independently screened for eligibility by the authors. EVIDENCE SYNTHESIS This review summarizes the biological functions and synthesis of miRNAs, lncRNAs, siRNAs, and circRNAs in POI and discusses the findings of clinical and in vitro and in vivo studies. Although there is variability in the findings of individual studies, overall the available literature justifies the conclusion that dysregulated ncRNAs play significant roles in POI. CONCLUSION The potential of ncRNAs in the treatment of POI requires further investigation, as ncRNAs derived from mesenchymal stem cell-secreted exosomes play pivotal roles and have considerable therapeutic potential in a multitude of diseases.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, Anhui, China
| | - Jia-Hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yuan Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Zu-Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, Anhui, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, Anhui, China
| |
Collapse
|
22
|
Zhou Q, Jin X, Wang J, Li H, Yang L, Wu W, Chen W. 4-vinylcyclohexene diepoxide induces premature ovarian insufficiency in rats by triggering the autophagy of granule cells through regulating miR-144. J Reprod Immunol 2023; 157:103928. [PMID: 36889083 DOI: 10.1016/j.jri.2023.103928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
This research explored the pathological and molecular mechanisms of 4-vinylcyclohexene diepoxide (VCD)-induced POI model. QRT-PCR was exploited to detect miR-144 expression in the peripheral blood of POI patients. Rat and KGN cells were treated with VCD to construct POI rat or cell model, respectively. After miR-144 agomir or MK-2206 treatment, miR-144 level, follicle damage, autophagy level and expressions of key pathway-related proteins in rats were detected, and cell viability and autophagy in KGN cells were detected. MiR-144 was apparently down-regulated in the peripheral blood of POI patients. Decreased miR-144 was viewed in both the serum and ovary of rats, yet this trend was apparently reversed by miR-144 agomir. The increased concentration of Follicle-stimulating hormone (FSH) and Luteinizing hormone (LH), along with decreased concentration of E2 and AMH, was observed in the serum of model rats, which was conspicuously negated by control agomir or miR-144 agomir. Increased number of autophagosomes, up-regulated PTEN, and inactivated AKT/m-TOR pathway induced by VCD in ovary tissues were strikingly offset by miR-144 agomir. Results of cytotoxicity assay revealed that 2 mM VCD prominently repressed KGN cell viability. In vitro experiments confirmed that miR-144 interfered with the effect of VCD on autophagy in KGN cells through the AKT/mTOR pathway. Taken together, VCD triggers autophagy to induce POI after targeting the AKT pathway by inhibiting miR-144, it suggest that up-regulation the expression of miR-144 may have the potential to treat POI.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xin Jin
- Department of Massage, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Jiaxi Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Huifang Li
- Department of TCM Gynecology, Tongxiang Maternal and Child Health-Care Center, China
| | - Lijuan Yang
- Department of Gynecology, First School of Clinical Medicine,Yunnan University of Chinese Medicine, China
| | - Weibo Wu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Wenjun Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, China.
| |
Collapse
|
23
|
Wang X, Yang J, Li H, Mu H, Zeng L, Cai S, Su P, Li H, Zhang L, Xiang W. miR-484 mediates oxidative stress-induced ovarian dysfunction and promotes granulosa cell apoptosis via SESN2 downregulation. Redox Biol 2023; 62:102684. [PMID: 36963287 PMCID: PMC10060268 DOI: 10.1016/j.redox.2023.102684] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
Ovarian dysfunction is a common cause of female infertility, which is associated with genetic, autoimmune and environmental factors. Granulosa cells (GCs) constitute the largest cell population of ovarian follicles. Changes in GCs, including oxidative stress (OS) and excessive reactive oxygen species (ROS), are involved in regulating ovary function. miR-484 is highly expressed in 3-NP-induced oxidative stress models of ovaries and GCs. miR-484 overexpression aggravated GCs dysfunction and thereby intensified ovarian oxidative stress injury in mice. Moreover, bioinformatic analyses, luciferase assays and pull-down assays indicated that LINC00958 acted as a competing endogenous RNA (ceRNA) for miR-484 and formed a signaling axis with Sestrin2(SESN2) under oxidative stress conditions, which in turn regulated mitochondrial functions and mitochondrial-related apoptosis in GCs. Additionally, the inhibition of miR-484 alleviated GCs dysfunction under ovarian oxidative stress condition. Our present study revealed the role of miR-484 in oxidative stress of ovaries and GCs and the function of LINC00958/miR-484/SESN2 axis in mitochondrial function and mitochondria-related apoptosis.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jiahao Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Huiying Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Siying Cai
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Wuhan Huake Reproductive Hospital, 128 Sanyang Road, Wuhan, 430013, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Wuhan Huake Reproductive Hospital, 128 Sanyang Road, Wuhan, 430013, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Wuhan Huake Reproductive Hospital, 128 Sanyang Road, Wuhan, 430013, China.
| |
Collapse
|
24
|
Liang Y, Wang H, Chen J, Chen L, Chen X. Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:167-176. [PMID: 36815256 PMCID: PMC9968945 DOI: 10.4196/kjpp.2023.27.2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 02/24/2023]
Abstract
This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.
Collapse
Affiliation(s)
- Yan Liang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Huimin Wang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Lingyan Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Xiaoyong Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China,Correspondence Xiaoyong Chen, E-mail:
| |
Collapse
|
25
|
Xu C, Luo M, Liu X, Wei T, Zhou Z, Li C, He Z, Sui H. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase. Cell Tissue Res 2023:10.1007/s00441-023-03747-9. [PMID: 36781484 DOI: 10.1007/s00441-023-03747-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
The aim of this study was to investigate the effect and mechanism of action of miR-1298-5p in polycystic ovary syndrome (PCOS). Granulosa cells were isolated from follicular fluid of patients with PCOS and healthy women, and the expression of miR-1298-5p and glutathione-disulfide reductase (GSR) mRNA in these cells was evaluated using reverse transcription-quantitative polymerase chain reaction (qRT-PCR). Clinical data were obtained from all subjects, and reproductive hormones and endocrine indices were assayed to analyze the correlation between miR-1298-5p and clinicopathological characteristics of patients with PCOS. Following transfection with the miR-1298-5p mimic or inhibitor and/or pcDNA3.1-GSR, LC3 immunofluorescence and transmission electron microscopy were used to evaluate autophagy in the COV434 human granulosa cell line. Additionally, western blotting was performed to detect LC3-II, Beclin 1, and p62 protein levels in COV434 cells. The interaction between miR-1298-5p and GSR was also examined. A PCOS rat model was established and injected with the miR-1298-5p antagomir, followed by measurement of body and ovary weights, histological examination, and autophagosome observation. The protein expression levels of GSR, LC3-II, Beclin 1, and p62 were determined in rat ovaries. miR-1298-5p was expressed at a high level, and GSR was downregulated in granulosa cells from patients with PCOS. In COV434 cells, miR-1298-5p inversely mediated GSR expression, and miR-1298-5p mimic transfection promoted autophagy, whereas GSR overexpression blocked miR-1298-5p mimic-promoted autophagy. In PCOS rats, miR-1298-5p inhibition reduced autophagy and alleviated abnormalities in follicular development. Overall, miR-1298-5p enhances autophagy in granulosa cells by downregulating GSR, thereby affecting PCOS development.
Collapse
Affiliation(s)
- Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, No.13 Dancun Road, Nanning, Guangxi 530031, People's Republic of China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xiaodong Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Tao Wei
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zheng Zhou
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Changze Li
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zilin He
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China.
| |
Collapse
|
26
|
Geng Z, Liu P, Yuan L, Zhang K, Lin J, Nie X, Jiang H, Li B, Liu T, Zhang B. Electroacupuncture attenuates ac4C modification of P16 mRNA in the ovarian granulosa cells of a mouse model premature ovarian failure. Acupunct Med 2023; 41:27-37. [PMID: 35475376 DOI: 10.1177/09645284221085284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Premature ovarian failure (POF) is a type of pathological aging, which seriously interferes with the fertility of affected women. Electroacupuncture (EA) may have a beneficial effect; however, its mechanism of action is unknown. The purpose of this study was to determine the effect of EA on ovarian function in ovarian granulosa cells (OGCs) in a cyclophosphamide (CTX)-induced mouse model of POF. METHODS Mice were divided into three groups: wild type (WT) group, CTX group and CTX + EA group. EA was administered under isoflurane anesthesia at CV4, ST36 and SP6 for 30 min every 2 days, 2-3 times per week for a total of 4 weeks. Effects of EA on ovarian weight and level of estrogen were examined. The mRNA and protein expression levels of cell cycle-associated proteins were detected and mRNA modifications were analyzed. RESULTS EA significantly increased ovarian weight and reduced the proportion of atretic follicles in mice with CTX-induced POF (p < 0.05). EA increased the level of estrogen in the peripheral blood of mice and inhibited the modification of total mRNA N4-acetylcytidine (ac4C). A significant increase in the expression of P16 and N-acetyltransferase 10 (NAT10) and a significant decrease in the expression of Cyclin D (CCND1) and cyclin-dependent kinase 6 (CDK6) were observed in the OGCs of POF mice (p<0.05). After EA, P16 and NAT10 expression was decreased, and CCND1 and CDK6 expression was increased. Finally, EA reduced the ac4C modification of P16 mRNA-specific sites in the OGCs of POF mice. CONCLUSION This study demonstrated that EA promoted the repair of the ovarian microenvironment by inhibiting the ac4C modification of P16 mRNA to decrease its stability and expression intensity, and by altering the activity of the P16/CDK6/CCND1 axis in OGCs.
Collapse
Affiliation(s)
- Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liu
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Yuan
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiru Jiang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingrong Li
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
28
|
Nouri N, Shareghi-Oskoue O, Aghebati-Maleki L, Danaii S, Ahmadian Heris J, Soltani-Zangbar MS, Kamrani A, Yousefi M. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal 2022; 20:198. [PMID: 36564840 PMCID: PMC9783981 DOI: 10.1186/s12964-022-00992-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Premature ovarian failure is a to some extent unknown and intricate problem with diverse causes and clinical manifestations. The lack of ovarian sex hormones presumably is effective in the occurrence of ovarian failure. Our progress in this field has been very little despite undertaken scientific research endeavors; scholars still are trying to understand the explanation of this dilemmatic medical condition. In contrast, the practice of clinical medicine has made meaningful strides in providing assurance to the women with premature ovarian insufficiency that their quality of life as well as long-term health can be optimized through timely intervention. Very recently Scientists have investigated the regulating effects of small RNA molecules on steroidogenesis apoptosis, ovulation, gonadal, and corpus luteum development of ovaries. In this literature review, we tried to talk over the mechanisms of miRNAs in regulating gene expression after transcription in the ovary. Video abstract.
Collapse
Affiliation(s)
- Narjes Nouri
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Olduz Shareghi-Oskoue
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Leili Aghebati-Maleki
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- grid.412888.f0000 0001 2174 8913Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Amin Kamrani
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mehdi Yousefi
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
30
|
Wang F, Liu Y, Ni F, Jin J, Wu Y, Huang Y, Ye X, Shen X, Ying Y, Chen J, Chen R, Zhang Y, Sun X, Wang S, Xu X, Chen C, Guo J, Zhang D. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency. Nat Commun 2022; 13:5871. [PMID: 36198708 PMCID: PMC9534854 DOI: 10.1038/s41467-022-33323-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by premature exhaustion of primordial follicles. POI causes infertility, severe daily life disturbances and long-term health risks. However, the underlying mechanism remains largely unknown. We previously identified a Basonuclin 1 (BNC1) mutation from a large Chinese POI pedigree and found that mice with targeted Bnc1 mutation exhibit symptoms of POI. In this study, we found that BNC1 plays key roles in ovarian reserve and maintaining lipid metabolism and redox homeostasis in oocytes during follicle development. Deficiency of BNC1 results in premature follicular activation and excessive follicular atresia. Mechanistically, BNC1 deficiency triggers oocyte ferroptosis via the NF2-YAP pathway. We demonstrated that pharmacologic inhibition of YAP signaling or ferroptosis significantly rescues Bnc1 mutation-induced POI. These findings uncover a pathologic mechanism of POI based on BNC1 deficiency and suggest YAP and ferroptosis inhibitors as potential therapeutic targets for POI. Primary ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction that results in infertility. Here they show that BCN1 mutation results in premature ovarian follicle activation and atresia through dysregulation of ferroptosis.
Collapse
Affiliation(s)
- Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiani Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xilin Shen
- College of Computer Science and Technology, Zhejiang University, Zhejiang, 310027, PR China
| | - Yue Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, People's Republic of China
| | - Ruixue Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Xiao Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Chuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China. .,Clinical Research Center on Birth Defect Prevention and Intervention of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
31
|
Geng Z, Chen H, Zou G, Yuan L, Liu P, Li B, Zhang K, Jing F, Nie X, Liu T, Zhang B. Human Amniotic Fluid Mesenchymal Stem Cell-Derived Exosomes Inhibit Apoptosis in Ovarian Granulosa Cell via miR-369-3p/YAF2/PDCD5/p53 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3695848. [PMID: 35936223 PMCID: PMC9346541 DOI: 10.1155/2022/3695848] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Human amniotic fluid stem cell-derived exosome (HuAFSC-exosome) transplantation is considered a promising treatment for premature ovarian failure (POF). However, its mechanism remains unclear. In this study, exosomes were isolated and enriched from HuAFSC subsets of CD44+/CD105+, and the exosomes were transplanted into a POF model in vitro and in vivo. Our results confirmed that the exosomes produced by CD44+/CD105+ HuAFSCs could achieve therapeutic effects in a mouse POF model. Our research also showed that CD44+/CD105+ HuAFSC-exosomes carrying miR-369-3p could specifically downregulate the expression of YAF2, inhibit the stability of PDCD5/p53, and reduce the apoptosis of ovarian granulosa cells (OGCs), thereby exerting therapeutic effects on POF. Knowledge of these mechanisms demonstrates that miRNAs carried by CD44+/CD105+ HuAFSC-exosomes are critical to the therapy of POF. This will be useful for the clinical application of stem cells.
Collapse
Affiliation(s)
- Zixiang Geng
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyang Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Fangyuan Jing
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| |
Collapse
|
32
|
Wang X, Chen ZJ. A decade of discovery: the stunning progress of premature ovarian insufficiency research in China. Biol Reprod 2022; 107:27-39. [PMID: 35639630 DOI: 10.1093/biolre/ioac085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 04/13/2021] [Indexed: 11/15/2022] Open
Abstract
Premature ovarian insufficiency (POI) is one of key aspects of ovarian infertility. Due to early cession of ovarian function, POI imposes great challenges on the physiological and psychological health of women, and becomes a common cause of female infertility. In the worldwide, there has been a special outpouring of concern for about four million reproductive-aged women suffering from POI in China. Driven by advances in new technologies and efforts invested by Chinses researchers, understanding about POI has constantly been progressing over the past decade. Here, we comprehensively summarize and review the landmark development and achievements from POI studies in China spanning 2011 to 2020, which aims to provide key insights from bench to bedside.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Kabodmehri R, Sharami SH, Sorouri ZR, Gashti NG. The need to identify novel biomarkers for prediction of premature ovarian insufficiency (POI). MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
Background
Premature ovarian failure (POF)/premature ovarian insufficiency (POI) is characterized by disrupting ovarian function under 40 years old. A major health problem of this disorder is female infertility. There are no proven treatments to increase the rate of pregnancy with autologous oocytes in these patients. This review aims to summarize our present knowledge about POI-induced infertility treatments and to highlight the importance of future researches in the discovery of diagnostic biomarkers and treatment of patients with this disorder.
Methods
A literature review was carried out using PubMed and Google Scholar databases by relevant keywords, such as POI, POF, premature ovarian failure, premature ovarian insufficiency, and biomarkers.
Results
Two hundred three studies were included in the study following the search for the keywords. Titles and abstracts of the identified articles were evaluated for detecting relevant full-length articles.
Conclusion
Anti-Mullerian hormone (AMH) level appears to have considerable value as a diagnostic test for POI, but it is not reliable enough to be able to predict accurately the timing of onset of impending POI. Using an accurate biomarker, POI can be diagnosed early and infertility treatment that is concerned about can be done on time. Biomarkers in combination with other diagnostic tests could result in prediction of POI before the development of complete ovarian failure.
Collapse
|
34
|
Menstrual blood-derived endometrial stem cells ameliorate the viability of ovarian granulosa cells injured by cisplatin through activating autophagy. Reprod Toxicol 2022; 110:39-48. [PMID: 35346788 DOI: 10.1016/j.reprotox.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Although the cancer incidence showed a yearly increasing trend, the long-term survival rate of cancer patients significantly increased with the continuous improvements in cancer diagnosis and treatment. Therefore, recent strategies for cancer treatment not only focus on improving the survival rate of patients but also simultaneously consider the life quality of cancer patients, especially for those with fertility requirements. Stem cell-based therapies have exhibited promising improvement in various disease treatments, and provide hope for diseases without effective treatment. Menstrual blood-derived endometrial stem cells (MenSCs) can be noninvasively and periodically obtained from discarded menstrual blood samples and exhibit high proliferative capacity, low immunogenicity and autologous transplantation. As expected, MenSCs treatment effectively improved the viability of cisplatin-injured ovarian granulosa cells (GCs) and significantly upregulated their antiapoptotic capacity. Further results demonstrated that MenSCs treatment significantly upregulated autophagy activity in cisplatin-injured ovarian GCs, and the degree of autophagy activation was positively correlated with the viability improvement of ovarian GCs, while autophagy inhibitors significantly impaired MenSC-promoted viability improvement of cisplatin-injured ovarian GCs. Additionally, MenSCs treatment can also significantly promote the proliferation of normal GCs by activating the PI3K/Akt signaling pathway. Conclusively, MenSCs treatment not only enhanced the antiapoptotic capacity and survival of cisplatin-injured ovarian GCs by upregulating autophagy activity but also improved the viability of normal ovarian GCs by activating the PI3K/Akt signal pathway. These results provide a theoretical and experimental foundation for the clinical application of MenSCs in improving chemotherapy-induced ovarian injury and delaying ovarian senescence.
Collapse
|
35
|
Wang R, Wang L, Wang L, Cui Z, Cheng F, Wang W, Yang X. FGF2 Is Protective Towards Cisplatin-Induced KGN Cell Toxicity by Promoting FTO Expression and Autophagy. Front Endocrinol (Lausanne) 2022; 13:890623. [PMID: 35784556 PMCID: PMC9243391 DOI: 10.3389/fendo.2022.890623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
It is widely known that chemotherapy-induced apoptosis of granulosa was the main reason for premature ovarian failure (POF). In addition, accumulating evidence has demonstrated that autophagy was involved in it. Studies before have reported that fibroblast growth factor-2 (FGF2) could attenuate cell death via regulating autophagy. In our previous study, FGF2 could decrease granulosa cell apoptosis in cisplatin-induced POF mice. Furthermore, obesity-associated protein [fat mass and obesity-associated protein (FTO)], which decreased significantly in POF mice, could inhibit cell apoptosis via activating autophagy. Moreover, downregulation of FTO could decrease the expression of paracrine factor FGF2. However, the relationship between FTO and FGF2 in granulosa cell autophagy is still unknown. In the present study, Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU) assays showed that exogenous addition of FGF2 could promote cisplatin-induced injured granulosa cell proliferation. Western blotting indicated that FGF2 could inhibit apoptosis of injured granulosa cells via autophagy. Inhibition of autophagy by chemicals suppressed the effect of FGF2 and promoted injured cell apoptosis. In addition, the expression of FTO was decreased in injured cells, and FGF2 addition could reverse it. Overexpression of FTO reduced injured cell apoptosis via activating the autophagy process. Our findings indicated that FGF2 activates autophagy by regulating the expression of FTO, thereby reducing the apoptosis of the injured cells.
Collapse
Affiliation(s)
- Rongli Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xinyuan Yang,
| |
Collapse
|
36
|
Huang Y, Du X, Liu T, Liu Q. siRNA@superparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113083. [PMID: 34915219 DOI: 10.1016/j.ecoenv.2021.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNA@superparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway.
Collapse
Affiliation(s)
- Yongyi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Te Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
37
|
Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A, Solati A, Mousavi P, Shabaninejad Z, Vakili S, Behrouj H, Ghasemi H, Movahedpour A. microRNAs in female infertility: An overview. Cell Biochem Funct 2021; 39:955-969. [PMID: 34708430 DOI: 10.1002/cbf.3671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Infertility impacts a considerable number of women worldwide, and it affects different aspects of family life and society. Although female infertility is known as a multifactorial disorder, there are strong genetic and epigenetic bases. Studies revealed that miRNAs play critical roles in initiation and development of female infertility related disorders. Early diagnosis and control of these diseases is an essential key for improving disease prognosis and reducing the possibility of infertility and other side effects. Investigating the possible use of miRNAs as biomarkers and therapeutic options is valuable, and it merits attention. Thus, in this article, we reviewed research associated with female diseases and highlighted microRNAs that are related to the polycystic ovary syndrome (up to 30 miRNAs), premature ovarian failure (10 miRNAs), endometriosis (up to 15 miRNAs), uterine fibroids (up to 15 miRNAs), endometrial polyp (3 miRNAs), and pelvic inflammatory (6 miRNAs), which are involved in one or more ovarian or uterine disease-causing processes.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Roozitalab
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Behrouj
- Department of Clinical Biochemistry, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Wang CC, Zhu CC, Chen X. Ensemble of kernel ridge regression-based small molecule-miRNA association prediction in human disease. Brief Bioinform 2021; 23:6407727. [PMID: 34676393 DOI: 10.1093/bib/bbab431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in human disease and can be targeted by small molecule (SM) drugs according to numerous studies, which shows that identifying SM-miRNA associations in human disease is important for drug development and disease treatment. We proposed the method of Ensemble of Kernel Ridge Regression-based Small Molecule-MiRNA Association prediction (EKRRSMMA) to uncover potential SM-miRNA associations by combing feature dimensionality reduction and ensemble learning. First, we constructed different feature subsets for both SMs and miRNAs. Then, we trained homogeneous base learners based on distinct feature subsets and took the average of scores obtained from these base learners as SM-miRNA association score. In EKRRSMMA, feature dimensionality reduction technology was employed in the process of construction of feature subsets to reduce the influence of noisy data. Besides, the base learner, namely KRR_avg, was the combination of two classifiers constructed under SM space and miRNA space, which could make full use of the information of SM and miRNA. To assess the prediction performance of EKRRSMMA, we conducted Leave-One-Out Cross-Validation (LOOCV), SM-fixed local LOOCV, miRNA-fixed local LOOCV and 5-fold CV based on two datasets. For Dataset 1 (Dataset 2), EKRRSMMA got the Area Under receiver operating characteristic Curves (AUCs) of 0.9793 (0.8871), 0.8071 (0.7705), 0.9732 (0.8586) and 0.9767 ± 0.0014 (0.8560 ± 0.0027). Besides, we conducted four case studies. As a result, 32 (5-Fluorouracil), 19 (17β-Estradiol), 26 (5-Aza-2'-deoxycytidine) and 11 (cyclophosphamide) out of top 50 predicted potentially associated miRNAs were confirmed by database or experimental literature. Above evaluation results demonstrated that EKRRSMMA is reliable for predicting SM-miRNA associations.
Collapse
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chi-Chi Zhu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
39
|
The Role of Noncoding RNA in the Pathophysiology and Treatment of Premature Ovarian Insufficiency. Int J Mol Sci 2021; 22:ijms22179336. [PMID: 34502244 PMCID: PMC8430788 DOI: 10.3390/ijms22179336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Premature ovarian insufficiency (POI) is defined as a loss of ovarian function before the age of 40 years, with a prevalence rate estimated at approximately 1%. It causes infertility and is related to serious long-term health consequences, including reduced life expectancy, increased cardiovascular risk, decreased bone mineral density and neurological disorders. There is currently no effective therapy for POI that is widely available in clinical practice; therefore, the treatment of patients with POI is based on hormone replacement therapy. One of the recent advances in the understanding of the pathophysiology of POI has been the role of microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) in the disease. Moreover, intensive research on human folliculogenesis and reproductive biology has led to the development of novel promising therapeutic strategies with the use of exosomal miRNAs derived from mesenchymal stem cells to restore ovarian function in POI patients. This narrative review focuses on the new studies concerning the role of ncRNAs in the pathogenesis of POI, together with their potential as biomarkers of the disease and targets for therapy.
Collapse
|
40
|
Zhu X, Liu J, Pan H, Geng Z, Huang W, Liu T, Zhang B. Thymopentin treatment of murine premature ovarian failure via attenuation of immune cell activity and promotion of the BMP4/Smad9 signalling pathway. Int J Med Sci 2021; 18:3544-3555. [PMID: 34522181 PMCID: PMC8436114 DOI: 10.7150/ijms.61975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Premature ovarian failure (POF) is a typical form of pathological aging with complex pathogenesis and no effective treatment. Meanwhile, recent studies have reported that a high-fat and high-sugar (HFHS) diet adversely affects ovarian function and ovum quality. Here, we investigated the therapeutic effect of thymopentin (TP-5) as a treatment for murine POF derived from HFHS and its target. Pathological examination and hormone assays confirmed that TP-5 significantly improved murine POF symptoms. And, TP-5 could reduce oxidative stress injury and blood lipids in the murine POF derived from HFHS. Flow cytometry and qPCR results suggested that TP-5 attenuated activation of CD3+ T cells and type I macrophages. RNA-Seq results indicated somedifferences in gene transcription between the TP-5 intervention group and the control group. KEGG analysis indicated that the expression of genes involved in the mTOR signaling pathway was the most significantly different between the two groups. Additionally, compared with the control groups, the expression levels of interleukin, NFκB, and TNF families of genes were significantly downregulated in the POF+TP-5 group, whereas expression of the TGFβ/Smad9 genes was significantly upregulated. Finally, immunofluorescence staining and qPCR confirmed that TP-5 promoted the polarization of Mø2 cells in the ovary by activating the expression of the BMP4/Smad9 signalling pathway. Thus, our study confirmed that TP-5 has a significant therapeutic effect on POF by upregulating BMP4/Smad9 signalling pathway so as to promote the balance and polarization of immune cell and reducing the release of inflammatory factors and reduce lipid oxidative stress injury.
Collapse
Affiliation(s)
- Xueqin Zhu
- Geriatrics Department, Punan hospital of Shanghai, Shanghai 200031, China
| | - Jianjun Liu
- Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Hao Pan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - William Huang
- Hainan Zhonghe Pharmaceutical Co., Ltd, Hainan, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| |
Collapse
|
41
|
Liu T, Jing F, Huang P, Geng Z, Xu J, Li J, Chen D, Zhu Y, Wang Z, Huang W, Chen C. Thymopentin alleviates premature ovarian failure in mice by activating YY2/Lin28A and inhibiting the expression of let-7 family microRNAs. Cell Prolif 2021; 54:e13089. [PMID: 34180104 PMCID: PMC8349654 DOI: 10.1111/cpr.13089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Thymopentin (5TP) significantly improved typical murine premature ovarian failure (POF) symptoms induced by a high-fat and high-sugar (HFHS) diet. However, its effect and mechanism remain unclear. MATERIALS AND METHODS RNA-Seq was used to detect the differentially expressed genes among each group. HFHS-induced POF mouse model was generated and injected with siRNA using Poly (lactic-co-glycolic acid) (PLGA) as a carrier. RESULTS RNA-Seq suggested that 5TP promoted the expression of Yin Yang 2 (YY2) in mouse ovarian granulosa cell (mOGC) of HFHS-POF mice. Luciferase reporter assay indicated that 5TP promoted the binding of YY2 to the specific sequence C(C/T)AT(G/C)(G/T) on the Lin28A promoter and promoted Lin28A transcription and expression. We continuously injected PLGA-cross-linked siRNA nanoparticles targeting YY2 into HFHS-POF mice (siYY2@PLGA), which significantly reduced the therapeutic effect of 5TP. siYY2@PLGA injection also significantly attenuated the upregulation of Lin28a expression in mOGCs induced by 5TP and enhanced the expression of let-7 family microRNAs, thereby inhibiting the proliferation and division of mOGCs. qPCR results showed that there was a significant difference in the expression levels of exosome-derived Yy2 mRNAs between POF patients and normal women, and that there was a specific correlation between the expression level of exosome-derived Yy2 and the peripheral concentrations of the blood hormones pregnenolone, progesterone and oestradiol. CONCLUSIONS Thymopentin promotes the transcriptional activation of Lin28A via stimulating transcription factor YY2 expression, inhibits the activity of let-7 family microRNAs and alleviates the ageing of ovarian granulosa cells, ultimately achieving a therapeutic effect on POF in mice.
Collapse
Affiliation(s)
- Te Liu
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fangyuan Jing
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Peirong Huang
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Center for Advanced Vision ScienceUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Zixiang Geng
- Department of AcupunctureShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianghong Xu
- Department of gynaecologyJingan Hospital of Traditional Chinese MedicineShanghaiChina
| | - Jiahui Li
- Department of gynaecologyJingan Hospital of Traditional Chinese MedicineShanghaiChina
| | - Danping Chen
- Department of gynaecologyJingan Hospital of Traditional Chinese MedicineShanghaiChina
| | - Ying Zhu
- Department of gynaecologyJingan Hospital of Traditional Chinese MedicineShanghaiChina
| | - Zhenxin Wang
- Department of Laboratory Medicine of Zhongshan Hospital and institute of Biomedical ScienceFudan UniversityShanghaiChina
| | | | - Chuan Chen
- Shanghai Geriatric Institute of Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
42
|
Advanced Oxidation Protein Products Induce G1/G0-Phase Arrest in Ovarian Granulosa Cells via the ROS-JNK/p38 MAPK-p21 Pathway in Premature Ovarian Insufficiency. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634718. [PMID: 34367464 PMCID: PMC8337115 DOI: 10.1155/2021/6634718] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 01/10/2023]
Abstract
The mechanism underlying the role of oxidative stress and advanced oxidation protein products (AOPPs) in the aetiology of premature ovarian insufficiency (POI) is poorly understood. Here, we investigated the plasma AOPP level in POI patients and the effects of AOPPs on granulosa cells both in vitro and in vivo. KGN cells were treated with different AOPP doses, and cell cycle distribution, intracellular reactive oxygen species (ROS), and protein expression levels were measured. Sprague–Dawley (SD) rats were treated daily with PBS, rat serum albumin, AOPP, or AOPP+ N-acetylcysteine (NAC) for 12 weeks to explore the effect of AOPPs on ovarian function. Plasma AOPP concentrations were significantly higher in both POI and biochemical POI patients than in controls and negatively correlated with anti-Müllerian hormone and the antral follicle count. KGN cells treated with AOPP exhibited G1/G0-phase arrest. AOPP induced G1/G0-phase arrest in KGN cells by activating the ROS-c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK)-p21 pathway. Pretreatment with NAC, SP600125, SB203580, and si-p21 blocked AOPP-induced G1/G0-phase arrest. In SD rats, AOPP treatment increased the proportion of atretic follicles, and NAC attenuated the adverse effects of AOPPs in the ovary. In conclusion, we provide mechanistic evidence that AOPPs may induce cell cycle arrest in granulosa cells via the ROS-JNK/p38 MAPK-p21 pathway and thus may be a novel biomarker of POI.
Collapse
|
43
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
44
|
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Female Reproductive Diseases. Front Endocrinol (Lausanne) 2021; 12:665645. [PMID: 34248842 PMCID: PMC8261239 DOI: 10.3389/fendo.2021.665645] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female reproduction. Recently, mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have presented their potentials to cure these diseases, not only for the propensity ability they stemmed from the parent cells, but also for the higher biology stability and lower immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as mediators by transferring multiple molecules to recipient cells, such as proteins, microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have reached a consensus, several theories have been proposed, including promoting angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
| | - Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
MERTK-Mediated LC3-Associated Phagocytosis (LAP) of Apoptotic Substrates in Blood-Separated Tissues: Retina, Testis, Ovarian Follicles. Cells 2021; 10:cells10061443. [PMID: 34207717 PMCID: PMC8229618 DOI: 10.3390/cells10061443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Timely and efficient elimination of apoptotic substrates, continuously produced during one’s lifespan, is a vital need for all tissues of the body. This task is achieved by cells endowed with phagocytic activity. In blood-separated tissues such as the retina, the testis and the ovaries, the resident cells of epithelial origin as retinal pigmented epithelial cells (RPE), testis Sertoli cells and ovarian granulosa cells (GC) provide phagocytic cleaning of apoptotic cells and cell membranes. Disruption of this process leads to functional ablation as blindness in the retina and compromised fertility in males and females. To ensure the efficient elimination of apoptotic substrates, RPE, Sertoli cells and GC combine various mechanisms allowing maintenance of tissue homeostasis and avoiding acute inflammation, tissue disorganization and functional ablation. In tight cooperation with other phagocytosis receptors, MERTK—a member of the TAM family of receptor tyrosine kinases (RTK)—plays a pivotal role in apoptotic substrate cleaning from the retina, the testis and the ovaries through unconventional autophagy-assisted phagocytosis process LAP (LC3-associated phagocytosis). In this review, we focus on the interplay between TAM RTKs, autophagy-related proteins, LAP, and Toll-like receptors (TLR), as well as the regulatory mechanisms allowing these components to sustain tissue homeostasis and prevent functional ablation of the retina, the testis and the ovaries.
Collapse
|
46
|
Wu W, Geng Z, Bai H, Liu T, Zhang B. Ammonium Ferric Citrate induced Ferroptosis in Non-Small-Cell Lung Carcinoma through the inhibition of GPX4-GSS/GSR-GGT axis activity. Int J Med Sci 2021; 18:1899-1909. [PMID: 33746607 PMCID: PMC7976582 DOI: 10.7150/ijms.54860] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
The morbidity and mortality rates associated with non-small-cell lung carcinoma (NSCLC) are increasing every year, placing new demands on existing therapies and drugs. Ammonium ferric citrate (AFC) is often used as a food additive for iron supplementation; however, to our knowledge, no studies have investigated whether AFC can induce ferroptosis in NSCLC. In this study, we demonstrated that specific concentrations of AFC effectively inhibit the proliferation and invasion of lung cancer cell lines in vitro using a cell proliferation inhibition test, a transwell assay, and flow cytometry analysis of cell cycle and apoptosis. In addition, AFC significantly induced oxidative stress injury in lung cancer cell lines. A quantitative polymerase chain reaction assay showed that AFC markedly reduced the expression levels of cell growth factors, negative regulators of ferroptosis, and autophagy regulators. Lastly, a protein-protein interaction analysis revealed that glutathione peroxidase 4 (GPX4) exerted its biological role through the regulation of the GSS/GSR complex and downstream GGT family proteins. When the expression of GPX4 changes, its biological activities, such as the glutathione metabolic process, cellular biosynthetic process, cellular response to chemical stimulus, and antioxidant activity, change accordingly, thereby affecting the survival quality and physiological and biochemical activities of cells. Overall, this study verifies that AFC has the biological activity of activating oxidative stress injury in NSCLC cell lines, leading to a decrease in their autophagy and inducing ferroptosis. We also confirmed that the GPX4-GSS/GSR-GGT axis is a crucial target of AFC-induced ferroptosis.
Collapse
Affiliation(s)
- Wei Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Haoran Bai
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| |
Collapse
|
47
|
Biyik I, Ozatik FY, Albayrak M, Ozatik O, Teksen Y, Ari NS, Soysal C. The effects of recombinant klotho in cisplatin-induced ovarian failure in mice. J Obstet Gynaecol Res 2021; 47:1817-1824. [PMID: 33611838 DOI: 10.1111/jog.14700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
AIM To investigate whether recombinant klotho given concomitantly with cisplatin is effective in preventing cisplatin-induced ovarian damage. METHODS Thirty-two adult female mice were divided into four groups. Saline was given to the first group, cisplatin to the second group, recombinant mouse klotho to the third group, and recombinant mouse klotho + cisplatin to the fourth group. The removed ovarian tissues were examined and groups were compared histologically and immunohistochemical examination for antimullerian hormone (AMH), superoxide dismutase (SOD) and catalase expression were done. Glutathione peroxidase (GPx) and glutathione reductase (GR) activities were measured by ELISA. RESULTS Ovarian tissue weight, primary and secondary follicle counts were higher in cisplatin + recombinant klotho group compared to cisplatin group in our study (respectively p < 0.0001, p < 0.0001, and p = 0.010). Injury scores (stromal congestion, edema and infiltration, follicular degeneration scores and edema in corpus luteum scores) were similar between cisplatin and cisplatin + recombinant klotho groups (all p > 0.05). AMH staining intensities were similar between cisplatin and cisplatin + recombinant klotho groups (p = 0.925). There was no difference between the groups in terms of SOD, GPx, and GR (p > 0.05). CONCLUSIONS The recombinant klotho administered before cisplatin could partially protect the ovarian tissue from cisplatin-induced ovarian damage considering that there was no difference in histologic injury score parameters, AMH staining intensity and oxidative stress markers between cisplatin and cisplatin plus klotho groups except that klotho preserved follicules to some extent. The antioxidant mechanism of action of klotho may not be the primary protection mechanism in cisplatin induced ovarian injury.
Collapse
Affiliation(s)
- Ismail Biyik
- School of Medicine, Department of Obstetrics and Gynecology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Fikriye Yasemin Ozatik
- School of Medicine, Department of Medical Pharmacology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Mustafa Albayrak
- Department of Obstetrics and Gynecology, Florence Nightingale Hospital, Istanbul, Turkey
| | - Orhan Ozatik
- School of Medicine Department of Histology and Embryology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Yasemin Teksen
- School of Medicine, Department of Medical Pharmacology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Neziha Senem Ari
- Department of Histology and Embryology, Kutahya Evliya Celebi Education and Research Hospital, Kutahya, Turkey
| | - Cenk Soysal
- School of Medicine, Department of Obstetrics and Gynecology, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
48
|
Lai L, Li Y, Liu J, Luo L, Tang J, Xue J, Liu T. Bovine serum albumin aggravates macrophage M1 activation and kidney injury in heterozygous Klotho-deficient mice via the gut microbiota-immune axis. Int J Biol Sci 2021; 17:742-755. [PMID: 33767585 PMCID: PMC7975693 DOI: 10.7150/ijbs.56424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Klotho expression abnormalities induces kidney injury and chronic kidney disease, however, the underlying mechanism remains unclear. Here, Klotho+/- mice and wild-type mice were treated with low-dose bovine serum albumin (BSA). Pathological examination demonstrated that the area of glomerular collagen deposition and fibrosis in BSA-Kl-/+ mice was significantly larger than that in BSA-WT mice. The serum levels of superoxide dismutase, malondialdehyde, creatinine, and urea in BSA-Kl-/+ mice were significantly increased. Sequencing of gut microbiota 16S rRNA v3-v4 region indicated that BSA-Kl-/+ mice showed a significantly higher relative abundance of the genera Dubosiella, Akkermansia, Alloprevotella, and Lachnospiraceae and a significantly lower relative abundance of the genera Allobaculum and Muribaculaceae than BSA-WT mice. KEGG analysis revealed that the metabolic pathways of signal transduction, xenobiotic biodegradation and metabolism, and lipid metabolism increased significantly in BSA-Kl-/+ mice. Flow cytometry showed that the proportion of CD68+/CD11b+ cells in the peripheral blood was significantly higher in BSA-KL-/+ mice than that in BSA-WT mice. qPCR and western blot suggested that Klotho and Nrf2 expression in MΦ1 cells of BSA-KL-/+ mice was significantly decreased. Thus, the findings suggest during the immune activation and chronic inflammation induced by the gut microbiota imbalance in Klotho-deficient mice treated to BSA, disrupted expression of proteins in the Nrf2/NF-κB signaling pathway in monocyte-derived macrophage M1 cells leads to the aggravation of inflammation and kidney injury.
Collapse
Affiliation(s)
- Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Li
- Division of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianjun Liu
- Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Lei Luo
- Division of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianguo Tang
- Trauma-Emergency & Critical Care Medicine Center, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jun Xue
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
49
|
Liu T, Lin J, Chen C, Nie X, Dou F, Chen J, Wang Z, Gong Z. MicroRNA-146b-5p overexpression attenuates premature ovarian failure in mice by inhibiting the Dab2ip/Ask1/p38-Mapk pathway and γH2A.X phosphorylation. Cell Prolif 2020; 54:e12954. [PMID: 33166004 PMCID: PMC7791167 DOI: 10.1111/cpr.12954] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To examine the role of high-fat and high-sugar (HFHS) diet-induced oxidative stress, which is a risk factor for various diseases, in premature ovarian failure (POF). MATERIALS AND METHODS Ovarian granulosa cells (OGCs) were isolated from mice and cultured in medium supplemented with HFHS and poly (lactic-co-glycolic acid) (PLGA)-cross-linked miR-146b-5p nanoparticles (miR-146@PLGA). RNA and protein expression levels were examined using quantitative real-time polymerase chain reaction and Western blotting, respectively. HFHS diet-induced POF model mice were administered miR-146@PLGA. RESULTS The ovarian tissue of mice fed a HFHS diet exhibited the typical pathological characteristics of POF. HFHS supplementation induced oxidative stress injury in the mouse OGCs, activation of the Dab2ip/Ask1/p38-Mapk signalling pathway and phosphorylation of γH2A.X in vitro and in vivo. The results of the luciferase reporter assay revealed that miR-146 specifically downregulated p38-Mapk14 expression. Meanwhile, co-immunoprecipitation and Western blot analyses revealed that HFHS supplementation upregulated nuclear p38-Mapk14 expression and consequently enhanced γH2A.X (Ser139) phosphorylation. The HFHS diet-induced POF mouse model treated with miR-146@PLGA exhibited downregulated p38-Mapk14 expression in the OGCs, mitigated OGC ageing and alleviated the symptoms of POF. CONCLUSIONS This study demonstrated that HFHS supplementation activates the Dab2ip/Ask1/p38-Mapk signalling pathway and promotes γH2A.X phosphorylation by inhibiting the expression of endogenous miR-146b-5p, which results in OGC ageing and POF development.
Collapse
Affiliation(s)
- Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangfang Dou
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenxin Wang
- Department of Laboratory Medicine of Zhongshan Hospital and Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Zhangbin Gong
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Klotho: spinning up some new hype for decreased ovarian reserve research? Fertil Steril 2020; 114:1174. [PMID: 33041052 DOI: 10.1016/j.fertnstert.2020.08.1434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022]
|