1
|
Zhou W, Qu M, Yue Y, Zhong Z, Nan K, Sun X, Wu Q, Zhang J, Chen W, Miao C. Acetylcysteine synergizes PD-1 blockers against colorectal cancer progression by promoting TCF1 +PD1 +CD8 + T cell differentiation. Cell Commun Signal 2024; 22:503. [PMID: 39420342 PMCID: PMC11484120 DOI: 10.1186/s12964-024-01848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) blockade is essential in treating progressive colorectal cancer (CRC). However, some patients with CRC do not respond well to immunotherapy, possibly due to the exhaustion of CD8+ T cells in the tumor microenvironment. N-Acetylcysteine (NAC) can reduce CD8+ T cell exhaustion in vitro and induce their differentiation into long-lasting phenotypes, thus enhancing the anti-tumor effect of adoptive T cell transfer. However, whether NAC can be combined with PD-1 blockade in CRC treatment and how NAC regulates CD8+ T cell differentiation remain unclear. Hence, in this study, we aimed to investigate whether NAC has a synergistic effect with PD-1 blockers against CRC progression. METHODS We constructed a mouse CRC model to study the effect of NAC on tumors. The effect of NAC on CD8 + T cell differentiation and its potential mechanism were explored using cell flow assay and other studies in vitro and ex vivo. RESULTS We demonstrated that NAC synergized PD-1 antibodies to inhibit CRC progression in a mouse CRC model mediated by CD8+ T cells. We further found that NAC can induce TCF1+PD1+CD8+ T cell differentiation and reduce the formation of exhausted T cells in vitro and in vivo. Moreover, NAC enhanced the expression of Glut4 in CD8+ T cells, promoting the differentiation of TCF1+PD1+CD8+ T cells. CONCLUSIONS Our study provides a novel idea for immunotherapy for clinically progressive CRC and suggests that Glut4 may be a new immunometabolic molecular target for regulating CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Wenchang Zhou
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200438, China
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Cancer Center, Zhongshan Hospital, Fudan University, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
2
|
Qi Z, Yang W, Xue B, Chen T, Lu X, Zhang R, Li Z, Zhao X, Zhang Y, Han F, Kong X, Liu R, Yao X, Jia R, Feng S. ROS-mediated lysosomal membrane permeabilization and autophagy inhibition regulate bleomycin-induced cellular senescence. Autophagy 2024; 20:2000-2016. [PMID: 38762757 PMCID: PMC11346523 DOI: 10.1080/15548627.2024.2353548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Bleomycin exhibits effective chemotherapeutic activity against multiple types of tumors, and also induces various side effects, such as pulmonary fibrosis and neuronal defects, which limit the clinical application of this drug. Macroautophagy/autophagy has been recently reported to be involved in the functions of bleomycin, and yet the mechanisms of their crosstalk remain insufficiently understood. Here, we demonstrated that reactive oxygen species (ROS) produced during bleomycin activation hampered autophagy flux by inducing lysosomal membrane permeabilization (LMP) and obstructing lysosomal degradation. Exhaustion of ROS with N-acetylcysteine relieved LMP and autophagy defects. Notably, we observed that LMP and autophagy blockage preceded the emergence of cellular senescence during bleomycin treatment. In addition, promoting or inhibiting autophagy-lysosome degradation alleviated or exacerbated the phenotypes of senescence, respectively. This suggests the alternation of autophagy activity is more a regulatory mechanism than a consequence of bleomycin-induced cellular senescence. Taken together, we reveal a specific role of bleomycin-induced ROS in mediating defects of autophagic degradation and further regulating cellular senescence in vitro and in vivo. Our findings, conversely, indicate the autophagy-lysosome degradation pathway as a target for modulating the functions of bleomycin. These provide a new perspective for optimizing bleomycin as a clinically applicable chemotherapeutics devoid of severe side-effects.Abbreviations: AT2 cells: type II alveolar epithelial cells; ATG7: autophagy related 7; bEnd.3: mouse brain microvascular endothelial cells; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CCL2: C-C motif chemokine ligand 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; FTH1: ferritin heavy polypeptide 1; γ-H2AX: phosphorylated H2A.X variant histone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HUVEC: human umbilical vein endothelial cells; HT22: hippocampal neuronal cell lines; Il: interleukin; LAMP: lysosomal-associated membrane protein; LMP: lysosome membrane permeabilization; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NCOA4: nuclear receptor coactivator 4; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; RPS6KB/S6K: ribosomal protein S6 kinase; SA-GLB1/β-gal: senescence-associated galactosidase, beta 1; SAHF: senescence-associated heterochromatic foci; SASP: senescence-associated secretory phenotype; SEC62: SEC62 homolog, preprotein translocation; SEP: superecliptic pHluorin; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Zhangyang Qi
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weiqi Yang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baibing Xue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingjun Chen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Rong Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhichao Li
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoqing Zhao
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yang Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xiaohong Kong
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruikang Liu
- Shandong Research Institute of Industrial Technology, Jinan, Shandong, China
| | - Xue Yao
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Jia
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopaedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Chauhan N, Koli M, Ghosh R, Majumdar AG, Ghosh A, Ghanty TK, Mula S, Patro BS. A BODIPY-Naphtholimine-BF 2 Dyad for Precision Photodynamic Therapy, Targeting, and Dual Imaging of Endoplasmic Reticulum and Lipid Droplets in Cancer. JACS AU 2024; 4:2838-2852. [PMID: 39211629 PMCID: PMC11350743 DOI: 10.1021/jacsau.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
Currently, effective therapeutic modalities for pancreatic ductal adenocarcinoma (PDAC) are quite limited, leading to gloomy prognosis and ∼6-months median patient survival. Recent advances showed the promise of photodynamic therapy (PDT) for PDAC patients. Next generation photosensitizers (PS) are based on "organelle-targeted-PDT" and provide new paradigm in the field of precision medicines to address the current challenge for treating PDAC. In this investigation, we have constructed a novel PS, named as N b B, for precise and simultaneous targeting of endoplasmic reticulum (ER) and lipid droplets (LDs) in PDAC, based on the fact that malignant PDAC cells are heavily relying on ER for hormone synthesis. Our live cell imaging and fluorescence recovery after photobleaching (FRAP) experiments revealed that N b B is quickly targeted to ER and subsequently to LDs and shows simultaneous dual fluorescence color due to polar and nonpolar milieu of ER and LDs. Interestingly, the same molecule generates triplet state and singlet oxygen efficiently and causes robust ER stress and cellular lipid peroxidation, leading to apoptosis in two different PDAC cells in the presence of light. Together, we present, for the first time, a potential next generation precision medicine for ER-LD organelle specific imaging and PDT of pancreatic cancer.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Mrunesh Koli
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Rajib Ghosh
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ananda Guha Majumdar
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ayan Ghosh
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
| | - Tapan K. Ghanty
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Soumyaditya Mula
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| | - Birija Sankar Patro
- Bio-Organic
Division, Radiation
and Photochemistry Division, Laser and Plasma Technology
Division, Bio-Science
Group, Bhabha Atomic Research Centre, Mod. Lab, Trombay, Mumbai-400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
4
|
Han X, Mi Y, Ji Y, Sun M, Tang H, Dong F, Guo Z. A novel chitosan antioxidant bearing sulfhydryl group: Synthesis, characterization and activity assessment. Int J Biol Macromol 2024; 261:129816. [PMID: 38290626 DOI: 10.1016/j.ijbiomac.2024.129816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
To improve the antioxidant activity, sulfhydryl groups (-SH) were introduced into chitosan. Acylated chitosan derivatives, chitosan cationic salt derivatives, hydroxypropyl trimethylammonium chloride chitosan quaternary ammonium salt (HACC) derivatives and N,N,N-trimethyl chitosan iodine (TMC) derivatives were obtained. The chitosan derivatives were characterized by FTIR and 1H NMR to confirm the successful synthesis. Ellman's reagent was used to determine that the compound contained free sulfhydryl groups. The water solubility and thermal stability of chitosan and derivatives were evaluated. The antioxidant activities of the derivatives were verified, including DPPH radical scavenging activity, superoxide anion radical scavenging activity and reducing power activity. The novel chitosan derivatives showed excellent antioxidant activities. Toxicity assay used L929 cells proved that the derivatives had no significant toxic. The results showed that the chitosan derivatives bearing sulfhydryl groups described in this paper has a certain antioxidant effect, which provides a practical approach for further study of chitosan.
Collapse
Affiliation(s)
- Xiangru Han
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Ji
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhi Sun
- Yantai Fuhui Agricultural Technology Co., Ltd, Yantai 264100, China
| | - Hongxia Tang
- Yantai Fuhui Agricultural Technology Co., Ltd, Yantai 264100, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Muchtaridi M, Az-Zahra F, Wongso H, Setyawati LU, Novitasari D, Ikram EHK. Molecular Mechanism of Natural Food Antioxidants to Regulate ROS in Treating Cancer: A Review. Antioxidants (Basel) 2024; 13:207. [PMID: 38397805 PMCID: PMC10885946 DOI: 10.3390/antiox13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is the second-highest mortality rate disease worldwide, and it has been estimated that cancer will increase by up to 20 million cases yearly by 2030. There are various options of treatment for cancer, including surgery, radiotherapy, and chemotherapy. All of these options have damaging adverse effects that can reduce the patient's quality of life. Cancer itself arises from a series of mutations in normal cells that generate the ability to divide uncontrollably. This cell mutation can happen as a result of DNA damage induced by the high concentration of ROS in normal cells. High levels of reactive oxygen species (ROS) can cause oxidative stress, which can initiate cancer cell proliferation. On the other hand, the cytotoxic effect from elevated ROS levels can be utilized as anticancer therapy. Some bioactive compounds from natural foods such as fruit, vegetables, herbs, honey, and many more have been identified as a promising source of natural antioxidants that can prevent oxidative stress by regulating the level of ROS in the body. In this review, we have highlighted and discussed the benefits of various natural antioxidant compounds from natural foods that can regulate reactive oxygen species through various pathways.
Collapse
Affiliation(s)
- Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Farhah Az-Zahra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Hendris Wongso
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Jl. Puspiptek, Kota Tangerang 15314, Indonesia
| | - Luthfi Utami Setyawati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Jatinangor 45363, Indonesia;
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.A.-Z.); (L.U.S.); (D.N.)
| | - Emmy Hainida Khairul Ikram
- Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia;
| |
Collapse
|
6
|
Othman MA, Sivasothy Y. Acylphenols and Dimeric Acylphenols from the Genus Myristica: A Review of Their Phytochemistry and Pharmacology. PLANTS (BASEL, SWITZERLAND) 2023; 12:1589. [PMID: 37111813 PMCID: PMC10143527 DOI: 10.3390/plants12081589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The genus Myristica is a medicinally important genus belonging to the Myristicaceae. Traditional medicinal systems in Asia have employed plants from the genus Myristica to treat a variety of ailments. Acylphenols and dimeric acylphenols are a rare group of secondary metabolites, which, to date, have only been identified in the Myristicaceae, in particular, in the genus Myristica. The aim of the review would be to provide scientific evidence that the medicinal properties of the genus Myristica could be attributed to the acylphenols and dimeric acylphenols present in the various parts of its plants and highlight the potential in the development of the acylphenols and dimeric acylphenols as pharmaceutical products. SciFinder-n, Web of Science, Scopus, ScienceDirect, and PubMed were used to conduct the literature search between 2013-2022 on the phytochemistry and the pharmacology of acylphenols and dimeric acylphenols from the genus Myristica. The review discusses the distribution of the 25 acylphenols and dimeric acylphenols within the genus Myristica, their extraction, isolation, and characterization from the respective Myristica species, the structural similarities and differences within each group and between the different groups of the acylphenols and dimeric acylphenols, and their in vitro pharmacological activities.
Collapse
Affiliation(s)
- Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
7
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023; 62:e202210415. [PMID: 36650984 DOI: 10.1002/anie.202210415] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Since the insight to fuse Fenton chemistry and nanomedicine into cancer therapy, great signs of progress have been made in the field of chemodynamic therapy (CDT). However, the exact mechanism of CDT is obscured by the unique tumor chemical environment and inevitable nanoparticle-cell interactions, thus impeding further development. In this Scientific Perspective, the significance of CDT is clarified, the complex mechanism is deconstructed into primitive chemical and biological interactions, and the mechanism research directions based on the chemical kinetics and biological signaling pathways are discussed in detail. Moreover, beneficial outlooks are presented to enlighten the evolution of next-generation CDT. Hopefully, this Scientific Perspective can inspire new ideas and advances for CDT and provide a reference for breaking down the interdisciplinary barriers in the field of nanomedicine.
Collapse
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
8
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202210415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
9
|
Bauri AK, Du Y, Brodie PJ, Foro S, Kingston DGI. Anti-Proliferative Acyl Phenols and Arylnonanoids from the Fruit Rind of Myristica malabarica Lam. Chem Biodivers 2022; 19:e202200343. [PMID: 36263966 DOI: 10.1002/cbdv.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022]
Abstract
Phytochemical investigation of the methanol extract of the fruit rind of Myristica malabarica led to the isolation of eight known compounds that were identified as malabaricones A-D, promalabaricones B and C, 1-(2,6-dihydroxyphenyl)tetradecan-1-one, and ericanone by comparison with literature spectroscopic data. The structures of malabaricones A-D, promalabaricone B, and 1-(2,6-dihydroxyphenyl)tetradecan-1-one were confirmed by X-ray crystallography. In vitro assay of the isolated phenols indicated that they exhibited moderate anti-proliferative activity against the A2780 human ovarian cancer cell. Compounds (1, 3, 5, 6 and 7) had the most potent activities, whereas the anti-proliferative activities of compounds 2 and 4 were less potent.
Collapse
Affiliation(s)
- Ajoy Kumar Bauri
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 85, India
| | - Yongle Du
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Peggy Jane Brodie
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Sabine Foro
- Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
10
|
Tsukayama I, Kawakami Y, Tamenobu A, Toda K, Maruoka S, Nagasaki Y, Mori Y, Sawazumi R, Okamoto K, Kanzaki K, Ito H, Takahashi Y, Miki Y, Yamamoto K, Murakami M, Suzuki-Yamamoto T. Malabaricone C derived from nutmeg inhibits arachidonate 5-lipoxygenase activity and ameliorates psoriasis-like skin inflammation in mice. Free Radic Biol Med 2022; 193:1-8. [PMID: 36183930 DOI: 10.1016/j.freeradbiomed.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
As pro-inflammatory lipid mediators, leukotrienes have pathophysiological activities in several inflammatory diseases, including psoriasis. In the biosynthesis of leukotrienes from arachidonic acid, 5-lipoxygenase catalyzes the first two steps. In the present study, we showed that nutmeg (Myristica fragrans) strongly inhibited the catalytic activity of 5-lipoxygenase. To characterize the bioactive component(s) of nutmeg, we performed 5-lipoxygenase inhibitory activity-guided fractionation of aqueous ethanol extract of nutmeg, resulting in the isolation of malabaricone C having antioxidant activity. Malabaricone C exhibited potent competitive inhibition of 5-lipoxygenase with an IC50 value of 0.2 μM. In mice with imiquimod-induced psoriasis-like skin lesions, topical application of 2 mM malabaricone C significantly ameliorated hyperplasia and inflammatory cell infiltration, and suppressed the expression of the psoriasis-associated genes S100a9, Krt1, Il17a, and Il22. Lipid metabolome analysis of these psoriasis-like skin lesions showed that malabaricone C markedly decreased the level of leukotriene B4 but did not significantly increase the other pro-inflammatory lipid mediators. These findings suggest that malabaricone C decreases LTB4 by the 5-lipoxygenase inhibition and ameliorates the symptoms of psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Asako Tamenobu
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Saya Maruoka
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Nagasaki
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshiko Mori
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Risa Sawazumi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Kensuke Okamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Keita Kanzaki
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Hideyuki Ito
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, 2-1, Minami-jyosanjima-cho, Tokushima, 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan.
| |
Collapse
|
11
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
12
|
Gamre S, Tyagi M, Chatterjee S, Patro BS, Chattopadhyay S, Goswami D. Synthesis of Bioactive Diarylheptanoids from Alpinia officinarum and Their Mechanism of Action for Anticancer Properties in Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:352-363. [PMID: 33587631 DOI: 10.1021/acs.jnatprod.0c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient synthesis of the Alpinia officinarum-derived diarylheptanoids, viz., enantiomers of a β-hydroxyketone (1) and an α,β-unsaturated ketone (2) was developed starting from commercially available eugenol. Among these, compound 2 showed a superior antiproliferative effect against human breast adenocarcinoma MCF-7 cells. Besides reducing clonogenic cell survival, compound 2 dose-dependently increased the sub G1 cell population and arrested the G2-phase of the cell cycle, as revealed by flow cytometry. Mechanistically, compound 2 acts as an intracellular pro-oxidant by generating copious amounts of reactive oxygen species. Compound 2 also induced both loss of mitochondrial membrane potential (MMP) as well as lysosomal membrane permeabilization (LMP) in the MCF-7 cells. The impaired mitochondrial and lysosomal functions due to reactive oxygen species (ROS)-generation by compound 2 may contribute to its apoptotic property.
Collapse
Affiliation(s)
- Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Sucheta Chatterjee
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| | | | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| |
Collapse
|
13
|
Dastmalchi N, Baradaran B, Latifi-Navid S, Safaralizadeh R, Khojasteh SMB, Amini M, Roshani E, Lotfinejad P. Antioxidants with two faces toward cancer. Life Sci 2020; 258:118186. [PMID: 32768586 DOI: 10.1016/j.lfs.2020.118186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Antioxidants are essential in preventing the formation and suppressing the activities of reactive nitrogen and oxygen species. The aim of this study was to review the role of antioxidants in cancer development or prevention. Antioxidants are believed to prevent and treat various types of malignancies. Currently, natural antioxidant compounds have been generally consumed to prevent and treat cancers. Certainly, phenolic compounds extracted from medicinal plants have opened a new prospect with respect to the prevention and treatment of cancers due to having antioxidant characteristics. However, some recently published studies have revealed that antioxidant compounds do not indicate absolute anti-tumor properties. Some antioxidants are helpful in cancer initiation and progression. Taken together, antioxidants demonstrate a two-faced nature toward cancer. However, it is required to conduct further cell culture and in vivo studies to confirm the exact role of antioxidants and then use them for efficient cancer treatments.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|