1
|
Leng P, Wang Y, Xie M. Ellagic Acid and Gut Microbiota: Interactions, and Implications for Health. Food Sci Nutr 2025; 13:e70133. [PMID: 40196228 PMCID: PMC11972986 DOI: 10.1002/fsn3.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Ellagic acid (EA), a widely distributed natural polyphenolic acid existing in many kinds of plant-based foods, undergoes complex physical and chemical transformations during digestion and biotransformation. Particularly, EA is metabolized by gut microbiota and transformed into urolithins in the colon. These metabolites exhibit enhanced bioavailability and bioactivity. This review explores the intricate interactions between EA and gut microbiota, emphasizing their implications for human health. We discuss the role of gut microbiota in EA metabolism, resulting in distinct metabolic phenotypes associated with varying urolithin production profiles. EA and its gut-derived metabolites, urolithins, have been reported to have the potential to modulate the microbial community composition and function of gut microbiota, promoting beneficial bacteria while reducing harmful ones. Furthermore, EA and urolithins exhibit a spectrum of beneficial biological activities, including antioxidant, anti-inflammatory, and anticancer properties, along with enhancements to intestinal barrier function and modulatory effects on metabolic and cardiovascular systems, through molecular mechanisms such as activating Nrf2 and inhibiting NF-κB pathways. The review highlights and compares the potential of EA and its gut microbial metabolites in the prevention and treatment of various diseases. However, further studies are required to elucidate the underlying mechanisms of the interactions between EA and gut microbiota and their health benefits. Continued investigation into EA and its metabolites is essential for advancing our understanding of their role in promoting human health and developing novel therapeutic applications.
Collapse
Affiliation(s)
- Pinze Leng
- School of MedicineJiangsu UniversityZhenjiangChina
| | - Ye Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive ProcessingNanjingChina
| |
Collapse
|
2
|
Sall KK, Foldager L, Delf C, Christensen SJ, Agerley MN, Havn KT, Pedersen C. Control of Neonatal Diarrhea in Piglets with Reduced Antibiotic Use by Application of a Complementary Feed-A Randomized Controlled Farm Trial. Vet Sci 2025; 12:42. [PMID: 39852918 PMCID: PMC11769454 DOI: 10.3390/vetsci12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this farm trial was to investigate if the consumption of antibiotics could be reduced when piglets showing early signs of neonatal diarrhea were treated with an oral dose of tannin extract derived from sweet chestnut wood. The farm had a very high incidence of neonatal diarrhea among gilt litters. Gilts were randomized into test or control groups in a 1:1 ratio to compare the consumption of antibiotics used for piglets and piglet mortality during the four-week trial period. Control litters were treated with the oral antibiotic paromomycin, while test litters were treated with the complementary feed O-Nella-Protect. The farm trial included 18 gilt litters comprising 254 piglets. In the control group, 100% of the piglets received antibiotic treatment. In the test group, consumption of antibiotics used against diarrhea was reduced by 84% (p = 0.001) and consumption of antibiotics used for other illnesses was reduced by 45% (p = 0.045). In both test and control groups, six piglets died. Microbiological analysis identified both potential bacterial and viral pathogens. In conclusion, the farm trial indicates that even under the challenge of potentially serious bacterial and viral pathogens, a complimentary feed containing a tannin extract can support piglet health and reduce antibiotic consumption.
Collapse
Affiliation(s)
- Klaus K. Sall
- Sall&Sall Advisors, DK-8220 Brabrand, Denmark
- Newtrifeed ApS, DK-6372 Bylderup-Bov, Denmark; (S.J.C.); (M.N.A.); (K.T.H.)
| | - Leslie Foldager
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark;
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | - Michael N. Agerley
- Newtrifeed ApS, DK-6372 Bylderup-Bov, Denmark; (S.J.C.); (M.N.A.); (K.T.H.)
- Porcus Pig Veterinarians, DK-5220 Odense SØ, Denmark
| | - Kristian T. Havn
- Newtrifeed ApS, DK-6372 Bylderup-Bov, Denmark; (S.J.C.); (M.N.A.); (K.T.H.)
- Porcus Pig Veterinarians, DK-5220 Odense SØ, Denmark
| | | |
Collapse
|
3
|
Feng X, Chen Y, Luo L, Fang Z, Ma S, Li Z, Huang J, Pan Y, Lv H, Gong S, Zheng X, Fan F, Chen P, Zhu J, Chu Q. Liubao insect tea polyphenols ameliorate DSS-induced experimental colitis by protecting intestinal barrier and regulating intestinal microbiota. Food Chem 2024; 467:142156. [PMID: 39632169 DOI: 10.1016/j.foodchem.2024.142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Liubao insect tea (LIT) is a traditional tea produced from the excreta of Hydrillodes repugnalis that are fed with Liubao tea. In this study, LIT polyphenols (LITP) were extracted and identified, mainly consisting of brevifolin carboxylic acid, brevifolin, ellagic acid. The study aimed to explore the therapeutic potential of LITP in experimental colitis induced by dextran sulfate sodium in mice. LITP treatment effectively mitigated colitis symptoms, including body weight loss, diarrhoea and haematochezia, etc. Furthermore, LITP treatment significantly increased colon length, attenuated inflammatory cell infiltration and mucosal damage, safeguarded the integrity of the epithelial cell barrier, and reduced proinflammatory cytokines levels. Noteworthy alterations in the abundance of gut microbiota community were also observed, with increases in beneficial bacteria Akkermansia, Clostridia_UCG-014, and decreases in harmful bacteria Turicibacter and Erysipelatoclostridium. In conclusion, LITP exerted alleviative effects on colitis via fortifying intestinal barrier and modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, China; Department of Food Science, Zhejiang University, Hangzhou, China
| | - Yanwen Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China; College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Luo
- Department of Food Science, Zhejiang University, Hangzhou, China
| | - Zhoutao Fang
- Zhejiang Minghuang Natural Products Development Co., Ltd., Hangzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | | | - Jing Huang
- Tea Research Institute, Zhejiang University, Hangzhou, China; Institute of Landscape Architecture, Zhejiang University, Hangzhou, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science, Zhejiang University, Hangzhou, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- Department of Food Science, Zhejiang University, Hangzhou, China.
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Hanga-Farcas A, Fritea L, Filip GA, Clichici S, Vicas LG, Toma VA, Marian E, Gligor FG, Abu Dayyih W, Muresan ME. The Influence of Juglans regia L. Extract and Ellagic Acid on Oxidative Stress, Inflammation, and Bone Regeneration Biomarkers. Int J Mol Sci 2024; 25:12577. [PMID: 39684288 DOI: 10.3390/ijms252312577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Bone regeneration is a highly dynamic and complex process that involves hematopoietic stem cells and mesenchymal cells, collagen fibers, non-collagenous proteins and biomolecules from extracellular matrices, and different cytokines and immune cells, as well as growth factors and hormones. Some phytochemicals due to antioxidant and anti-inflammatory effects can modulate the bone signaling pathways and improve bone healing and thus can be a good candidate for osteoregeneration. The aim of this study was to analyze the impact of Juglans regia L. extract compared to ellagic acid on bone neoformation in rats. The animals with a 5 mm calvaria defect were divided into four groups (n = 10): group 1 was treated with ellagic acid 1% (EA), group 2 was treated with Juglans regia L. extract 10% (JR), group 3 was treated with a biphasic mix of hydroxyapatite and tricalcium phosphate (Ceraform), and group 4 was treated with vehicle inert gel with carboxymethylcellulose (CMC). After 3 weeks of treatment, blood samples were collected for oxidative stress and inflammation assessment. Additionally, the receptor activator of nuclear factor kappa-Β ligand (RANKL) and hydroxyproline levels were quantified in blood. The skull samples were analyzed by scanning electron microscopy in order to detect the modifications in the four groups. The results suggested that JR extract had relevant anti-oxidant effect and bone protective activity and generated the accumulation of Ca and P, demonstrating the potential therapeutic abilities in bone regeneration.
Collapse
Affiliation(s)
- Alina Hanga-Farcas
- Doctoral School of Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Laura Gratiela Vicas
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| | - Felicia Gabriela Gligor
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No 2A, 550169 Sibiu, Romania
| | - Wael Abu Dayyih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al Karak 61710, Jordan
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania
| |
Collapse
|
5
|
Mann P, Liu J, Yu LE, Wolfenden R, Li Y. Utilizing the apical-out enteroids in vitro model to investigate intestinal glucose transport, barrier function, oxidative stress, and inflammatory responses in broiler chickens. Front Physiol 2024; 15:1470009. [PMID: 39568543 PMCID: PMC11576162 DOI: 10.3389/fphys.2024.1470009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Conventional 2D intestinal epithelial cell lines have been widely used in investigating intestinal functions, yet with limitations in recapitulating the in vivo gut physiology of chickens. A recently established chicken enteroid model with apical-out nature and the presence of leukocyte components represents intestinal mucosal functions. The objectives of this study were to 1) evaluate basic gut nutrient transport and barrier functions in this model and 2) identify the model's effectiveness in studying inflammation and oxidative stress responses. Methods Enteroids were generated from individual villus units isolated from the small intestine of Cobb500 broiler embryos. Enteroid viability, morphology, and epithelial cell markers were monitored; barrier function was evaluated based on the permeability to fluorescein isothiocyanate-dextran (FD4) with or without EDTA and lipopolysaccharide (LPS) challenges; nutrient transport was evaluated by fluorescence-labeled glucose (2NBD-G) with or without transporter blockade; the oxidative status was indicated by reactive oxygen species (ROS). Inflammatory and oxidative challenges were induced by LPS and menadione treatment, respectively. Selected marker gene expressions, including tight junction proteins (CLDN-1, CLDN-2, ZO-1, and OCCL), epithelial cell markers (Lgr-5, LYZ, and MUC-2), cytokines (IL-1β, IL-6, IL-8, IL-10, TNF-α, and INF-γ), and antioxidant enzymes (Nrf-2, catalase, and SOD), were determined by using RT-qPCR. Data were analyzed by one-way ANOVA among treatment groups. Results Enteroid cell activity was stable from day (d) 2 to d 6 and declined at d 7. Epithelial cell marker and cytokine expressions were stable from d 4 to d 6. FD4 permeability was increased after the EDTA treatment (P ≤ 0.05). Transporter-mediated 2NBD-G absorption was observed, which was reduced with glucose transporter blockade (P ≤ 0.05). Enteroids showed classic responses to LPS challenges, including upregulated gene expressions of IL-1β and IL-6, downregulated gene expressions of ZO-1 and OCCL, and increased FD4 permeability (P ≤ 0.05). Enteroids showed increased ROS generation (P ≤ 0.05) in response to oxidative stress. Discussion In conclusion, this apical-out enteroid model is a stable alternative in vitro model that exhibits intestinal barrier, nutrient transport, oxidation, and inflammation functions. With this enteroid model, we developed two challenge protocols for evaluating intestinal functions under oxidative stress and inflammation conditions.
Collapse
Affiliation(s)
- Peter Mann
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Jundi Liu
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, United States
| | - Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Ross Wolfenden
- Animal Nutrition BU, Eastman Chemical Company, Kingsport, TN, United States
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
6
|
Zhu W, Cremonini E, Mastaloudis A, Oteiza PI. Glucoraphanin and sulforaphane mitigate TNFα-induced Caco-2 monolayers permeabilization and inflammation. Redox Biol 2024; 76:103359. [PMID: 39298837 PMCID: PMC11426148 DOI: 10.1016/j.redox.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Intestinal permeabilization is central to the pathophysiology of chronic gut inflammation. This study investigated the efficacy of glucoraphanin (GR), prevalent in cruciferous vegetables, particularly broccoli, and its derivative sulforaphane (SF), in inhibiting tumor necrosis factor alpha (TNFα)-induced Caco-2 cell monolayers inflammation and permeabilization through the regulation of redox-sensitive events. TNFα binding to its receptor led to a rapid increase in oxidant production and subsequent elevation in the mRNA levels of NOX1, NOX4, and Duox2. GR and SF dose-dependently mitigated both these short- and long-term alterations in redox homeostasis. Downstream, GR and SF inhibited the activation of the redox-sensitive signaling cascades NF-κB (p65 and IKK) and MAPK ERK1/2, which contribute to inflammation and barrier permeabilization. GR (1 μM) and SF (0.5-1 μM) prevented TNFα-induced monolayer permeabilization and the associated reduction in the levels of the tight junction (TJ) proteins occludin and ZO-1. Both GR and SF also mitigated TNFα-induced increased mRNA levels of the myosin light chain kinase, which promotes TJ opening. Molecular docking suggests that although GR is mostly not absorbed, it could interact with extracellular and membrane sites in NOX1. Inhibition of NOX1 activity by GR would mitigate TNFα receptor downstream signaling and associated events. These findings support the concept that not only SF, but also GR, could exert systemic health benefits by protecting the intestinal barrier against inflammation-induced permeabilization, in part by regulating redox-sensitive pathways. GR has heretofore not been viewed as a biologically active molecule, but rather, the benign precursor of highly active SF. The consumption of GR and/or SF-rich vegetables or supplements in the diet may offer a means to mitigate the detrimental consequences of intestinal permeabilization, not only in disease states but also in conditions characterized by chronic inflammation of dietary and lifestyle origin.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, USA
| | | | | | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Zhu W, Xiong L, Oteiza PI. Structure-dependent capacity of procyanidin dimers to inhibit inflammation-induced barrier dysfunction in a cell model of intestinal epithelium. Redox Biol 2024; 75:103275. [PMID: 39059205 PMCID: PMC11327484 DOI: 10.1016/j.redox.2024.103275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Diet is of major importance in modulating intestinal inflammation, as the gastrointestinal tract is directly exposed to high concentrations of dietary components. Procyanidins are flavan-3-ol oligomers abundant in fruits and vegetables. Although with limited or no intestinal absorption, they can have GI health benefits which can promote overall health. We previously observed that epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) dimers inhibit in vitro colorectal cancer cell proliferation and invasiveness. Inflammation-mediated intestinal barrier permeabilization can result in a chronic inflammatory condition and promote colorectal cancer onset/progression. Thus, this study investigated the structure-dependent capacity of ECG, EGCG and (-)-epicatechin (EC) dimers to inhibit tumor necrosis factor alpha (TNFα)-induced inflammation, oxidative stress, and loss of barrier integrity in Caco-2 cells differentiated into an intestinal epithelial cell monolayer. Cells were incubated with TNFα (10 ng/ml), in the absence/presence of ECG, EGCG and EC dimers. The three dimers inhibited TNFα-mediated Caco-2 cell monolayer permeabilization, modulating events involved in the loss of barrier function and inflammation, i.e. decreased tight junction protein levels; increased matrix metalloproteinases expression and activity; increased NADPH oxidase expression and oxidant production; activation of the NF-κB and ERK1/2 pathways and downstream events leading to tight junction opening. For some of these mechanisms, the galloylated ECG and EGCG dimers had stronger protective potency than the non-galloylated EC dimer. These differences could be due to differential membrane interactions as pointed out by molecular dynamics simulation of procyanidin dimers-cell membrane interactions and/or by differential interactions with NOX1. Results show that dimeric procyanidins, although poorly absorbed, can promote health by alleviating intestinal inflammation, oxidative stress and barrier permeabilization.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, 95618, USA
| | - Le Xiong
- Cleveland Clinic, Cleveland, OH, 44194, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, 95618, USA; Department of Environmental Toxicology, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
8
|
Hoang SH, Dao H, Lam EM. A network pharmacology approach to elucidate the anti-inflammatory effects of ellagic acid. J Biomol Struct Dyn 2024; 42:7409-7420. [PMID: 37522847 DOI: 10.1080/07391102.2023.2240417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Ellagic acid (EA) is a naturally occurring polyphenolic compound found in various fruits and vegetables like strawberries, raspberries, pomegranates, and nuts such as pecans and walnuts. With its antioxidant properties, EA has shown potential health benefits, although further research is necessary to fully comprehend its effects, mechanisms, and safe and effective application as a complementary medicine. Notably, there is accumulating evidence of EA's anti-inflammatory effects; however, the precise underlying mechanism remains unclear. To investigate the anti-inflammatory properties of EA, a network pharmacology approach was employed. The study identified 52 inflammation-related targets of EA and revealed significant signaling pathways and relevant diseases associated with inflammation through GO and KEGG analysis. Furthermore, topological analysis identified 10 important targets, including AKT1, VEGFA, TNF, MAPK3, ALB, SELP, MMP9, MMP2, PTGS2, and ICAM1. Molecular docking and molecular dynamics simulations were conducted, indicating that AKT1, PTGS2, VEGFA, and MAPK3 are the most likely targets of EA, as evidenced by their molecular mechanics Poisson-Boltzmann surface area binding energy calculations. In summary, this study not only confirmed the anti-inflammatory effects of EA observed in previous research but also identified the most probable targets of EA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H Hoang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Hue Dao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Emerson My Lam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Kruk A, Popowski D, Roszko MŁ, Granica S, Piwowarski JP. Heterogeneity of transport and metabolism of Tormentillae rhizoma constituents across human intestinal epithelium cellular model. Food Res Int 2024; 188:114326. [PMID: 38823825 DOI: 10.1016/j.foodres.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
Tormentilla erecta (L.) Raeusch is a widespread plant in Europe and Western Asia. Its rhizomes (Tormentilae rhizoma) are the main ingredient of herbal alcoholic beverages and can be used as a natural preservative in beer production. Apart from its unique taste qualities, therapeutic properties in gastrointestinal tract ailments are attributed to the tincture obtained from Tormentillae rhizoma. The presented research aimed to determine the mutual relationship between the components of Tormentillae tincture, present in popular alcoholic beverages, and intestinal epithelium (Caco-2 cell monolayers). A comprehensive qualitative and quantitative analysis of the tincture was performed, including the determination of condensed and hydrolyzable tannins as well as triterpenoids (UHPLC-DAD-MS/MS). Incubation of the tincture with Caco-2 monolayers has shown that only triterpenes pass through the monolayer, while condensed tannins are mainly bound to the monolayer surface. Ellagic acid derivatives were the only components of the Tormentillae tinctura being metabolized by cell monolayers to the compounds not previously described in the literature, which may be crucial in the treatment of intestinal diseases with inflammatory background.
Collapse
Affiliation(s)
- Aleksandra Kruk
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Dominik Popowski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland; Department of Food Analysis, Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland.
| | - Marek Ł Roszko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland.
| | - Sebastian Granica
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| |
Collapse
|
10
|
Marino M, Rendine M, Venturi S, Porrini M, Gardana C, Klimis-Zacas D, Riso P, Del Bo' C. Red raspberry ( Rubus idaeus) preserves intestinal barrier integrity and reduces oxidative stress in Caco-2 cells exposed to a proinflammatory stimulus. Food Funct 2024; 15:6943-6954. [PMID: 38855989 DOI: 10.1039/d4fo01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Growing evidence showed the capacity of (poly)phenols to exert a protective role on intestinal health. Nevertheless, the existing findings are still heterogeneous and the underlying mechanisms remain unclear. This study investigated the potential benefits of a red raspberry (Rubus idaeus) powder on the integrity of the intestinal barrier, focusing on its ability to mitigate the effects of tumor necrosis factor-α (TNF-α)-induced intestinal permeability. Human colorectal adenocarcinoma cells (i.e., Caco-2 cells) were used as a model to assess the impact of red raspberry on intestinal permeability, tight junction expression, and oxidative stress. The Caco-2 cells were differentiated into polarized monolayers and treated with interferon-γ (IFN-γ) (10 ng mL-1) for 24 hours, followed by exposure to TNF-α (10 ng mL-1) in the presence or absence of red raspberry extract (1-5 mg mL-1). The integrity of the intestinal monolayer was evaluated using transepithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran (FITC-D) efflux assay. Markers of intestinal permeability (claudin-1, occludin, and zonula occludens-1 (ZO-1)) and oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG) and protein carbonyl) were assessed using ELISA kits. Treatment with red raspberry resulted in a significant counteraction of TEER value loss (41%; p < 0.01) and a notable reduction in the efflux of FITC-D (-2.5 times; p < 0.01). Additionally, red raspberry attenuated the levels of 8-OHdG (-48.8%; p < 0.01), mitigating the detrimental effects induced by TNF-α. Moreover, red raspberry positively influenced the expression of the integral membrane protein claudin-1 (+18%; p < 0.01), an essential component of tight junctions. These findings contribute to the growing understanding of the beneficial effects of red raspberry in the context of the intestinal barrier. The effect of red raspberry against TNF-α-induced intestinal permeability observed in our in vitro model suggests, for the first time, its potential as a dietary strategy to promote gastrointestinal health.
Collapse
Affiliation(s)
- Mirko Marino
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marco Rendine
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Samuele Venturi
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Claudio Gardana
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | | | - Patrizia Riso
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Cristian Del Bo'
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
11
|
Yadav NK, Yadav R. Medicinal Effects, Phytochemistry, Pharmacology of Euphorbia prostrata and Promising Molecular Mechanisms. Chin J Integr Med 2024; 30:181-192. [PMID: 36653685 DOI: 10.1007/s11655-023-3544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 01/20/2023]
Abstract
Euphorbiaceae is a large family of dicotyledonous angiosperms with diverse genera including Euphorbia prostrata (E. prostrata). Current research has provided scientific evidence for traditional uses of E. prostrata against diverse pathological conditions such as anti-hemorrhoidal, anti-inflammatory, analgesic, wound healing, antioxidant, antibacterial, leishmanicidal, antitumor activity, and so on. The phytochemical screening has revealed the presence of glycosides, phytosterols, flavonoids, polyphenols, tannins, and anthraquinones with chemical structures elucidation of their respective compounds. The uniqueness of such multifactorial compounds present in this species endorses it as the potent therapeutic or prophylactic choice for several fatal diseases. Although ethnomedical applications served as a significant citation for pharmacology, the molecular mechanism has not been reviewed yet. The present paper provides a comprehensive review of research outcomes, pharmacology, toxicology, and molecular signaling of phytochemicals of E. prostrata species as a reference for relevant researchers. The study of bioactive compounds in crude extracts and fractions, the demonstration of primary mechanisms of pharmacology, along with the addition of toxicity, and clinical trials, should be conceded in depth. This review underlines the E. prostrata species that can be a promising phytomedicine since we are committed to excavating more intensely into their pharmacological role.
Collapse
Affiliation(s)
- Nirmala Kumari Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Rakesh Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
- National Forensic Sciences University, Tripura Campus, Agartala, 799001, Tripura, India.
| |
Collapse
|
12
|
Gao H, Bi S, Chai J, Tong Y, Tian M. ZIF-based boronic acid modified molecular imprinted polymers in combination with silver nanoparticles/glutathione coated graphene oxide adsorbent for the selective enrichment of ellagic acid. J Chromatogr A 2024; 1714:464579. [PMID: 38113580 DOI: 10.1016/j.chroma.2023.464579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
This study focuses on the extraction of ellagic acid (EA), a valued phenolic compound, from agricultural waste chestnut shell samples. A novel approach is introduced using a combination of boronic acid-modified molecularly imprinted polymer (ZIF@B@MIP) and a nanocomposite of graphene oxide-coated silver nanoparticles (GO@Ag@GSH) to enhance EA enrichment. ZIF@B@MIP precisely captured EA through boronate affinity-based molecular imprinting recognition. ZIF@B@MIP employs boronate affinity-based molecular imprinting recognition to precisely capture EA, while GO@Ag@GSH provides ample adsorption sites. The synergistic effect of ZIF@B@MIP and GO@Ag@GSH demonstrates excellent enrichment capability and selectivity for EA. High-performance liquid chromatography (HPLC) is employed for sensitive EA detection, achieving a maximum adsorption capacity of 46.25 mg g-1 and an imprinting factor of 3.01. The adsorption capacity to different structural analogue was investigated, and the selectivity coefficient was used to evaluate the selectivity, and its value was 1.16-3.01. The method successfully enriches EA in chestnut shell samples with a recovery rate of 95.6 %-110.1 %. This research presents an innovative approach for effective phenolic components enrichment from natural resources for pharmaceutical and biochemical applications.
Collapse
Affiliation(s)
- Haifeng Gao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Sheng Bi
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Jinyue Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| |
Collapse
|
13
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
14
|
Fraga CG, Oteiza PI, Hid EJ, Galleano M. (Poly)phenols and the regulation of NADPH oxidases. Redox Biol 2023; 67:102927. [PMID: 37857000 PMCID: PMC10587761 DOI: 10.1016/j.redox.2023.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are enzymes that generate superoxide anion (O2•-) and hydrogen peroxide (H2O2), and that are widely distributed in mammalian tissues. Many bioactives, especially plant (poly)phenols are being studied for their capacity to regulate NOXs. The modulation of these enzymes are of central relevance to maintain redox homeostasis and regulate cell signaling. In in vitro and ex vivo assays, and in experimental animal models, different (poly)phenols are able to modulate NOX-dependent generation of O2•- and H2O2. Mechanistically, most of the known effects of (poly)phenols and of their metabolites on NOX1, NOX2, and NOX4, include the modulation of: i) the expression of the different constituent subunits, and/or ii) posttranslational modifications involved in the assembly and translocation of the protein complexes. Very limited evidence is available on a direct action of (poly)phenols on NOX active site (electron-transferring protein). Moreover, it is suggested that the regulation by (poly)phenols of systemic events, e.g. inflammation, is frequently associated with their capacity to regulate NOX activation. Although of physiological significance, more studies are needed to understand the specific targets/mechanisms of NOX regulation by (poly)phenols, and the (poly)phenol chemical structures and moieties directly involved in the observed effects. It should be kept in mind the difficulties of NOX's studies associated with the complexity of NOXs biochemistry and the methodological limitations of O2•- and H2O2 the determinations. Studies relating human ingestion of specific (poly)phenols, with NOX activity and disease conditions, are guaranteed to better understand the health importance of (poly)phenol consumption and the involvement of NOXs as biological targets.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina; Department of Nutrition University of California, Davis, USA
| | - Patricia I Oteiza
- Department of Nutrition University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ezequiel J Hid
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Lian YZ, Liu YC, Chang CC, Nochi T, Chao JCJ. Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells. Pharmaceuticals (Basel) 2023; 16:1455. [PMID: 37895926 PMCID: PMC10610401 DOI: 10.3390/ph16101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The effects of Lycium barbarum polysaccharides (LBP) and plasmon-activated water (PAW) against IFN-γ/TNF-α induced inflammation in human colon Caco-2 cells were investigated. Cells were divided into the control, induction, LBP treatment (100-500 μg/mL), and combination groups with PAW. Inflammation was induced 24 h with 10 ng/mL IFN-γ when cell confluency reached >90%, and various doses of LBP with or without PAW were treated for 3 h, and subsequently 50 ng/mL TNF-α was added for another 24 h to provoke inflammation. Combination of LBP with PAW significantly decreased the secretion of IL-6 and IL-8. Cyclooxygenase-2 and inducible NO synthase expression was attenuated in all LBP-treated groups with or without PAW. NLRP3 inflammasome and related protein PYCARD expression were inhibited by LBP at the highest dose (500 μg/mL). All doses of LBP alone significantly decreased p-ERK expression, but combination with PAW increased p-ERK expression compared to those without PAW. Additionally, 250 and 500 μg/mL of LBP with or without PAW inhibited procaspase-3/caspase-3 expression. Therefore, LBP possesses anti-inflammation and anti-apoptosis by inhibiting the secretion of inflammatory cytokines and the expression of NLRP3 inflammasome-related protein. The combination with PAW exerts additive or synergistic effect on anti-inflammation.
Collapse
Affiliation(s)
- Yu Zhi Lian
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Cell Physiology and Molecular Image Research Center, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tomonori Nochi
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan;
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Jane C.-J. Chao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan;
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Master Program in Global Health and Health Security, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
16
|
Li X, Xu L, Peng X, Zhang H, Kang M, Jiang Y, Shi H, Chen H, Zhao C, Yu Y, Ma R, Li X, Cao Y. The alleviating effect of ellagic acid on DSS-induced colitis via regulating gut microbiomes and gene expression of colonic epithelial cells. Food Funct 2023; 14:7550-7561. [PMID: 37526638 DOI: 10.1039/d3fo01226c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The anti-inflammatory effect of ellagic acid (EA) and its possible underlying mechanism in dextran sulfate sodium (DSS)-induced mouse chronic colonic inflammation were studied. It was observed that EA administration significantly alleviated the colonic inflammation phenotypes, including decreasing the disease activity index (DAI), enhancing the body weight loss, and improving the shortened length of the colon and pathological damage of colon tissue. Additionally, EA reshaped the constitution of the gut microbiota by elevating the ratio of Bacteroidetes along with Bacteroides and Muribaculaceae, while decreasing the proportion of Firmicutes. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) revealed that the metabolic function of the gut microbiota was also changed. Furthermore, mouse colon transcriptome analysis showed that the tight junction and peroxisome proliferator-activated receptor (PPAR) signaling pathways were activated and the expressions of related genes were upregulated after EA intervention. These results showed that EA could remodel the gut bacterial composition, change the intestinal epithelial cell gene expressions in mice, and consequently improve the colonic inflammatory symptoms.
Collapse
Affiliation(s)
- Xiaoqing Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lu Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Xinan Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Huiting Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Meng Kang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Yiqi Jiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Haibo Shi
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haiyan Chen
- Guangdong Testing Institute of Product Quality Supervision (GQI), Foshan, 528300, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ruiting Ma
- Eastroc Beverage Group Co., Ltd, Shenzhen, 518057, China
| | - Xueli Li
- Eastroc Beverage Group Co., Ltd, Shenzhen, 518057, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| |
Collapse
|
17
|
Pinto D, Silva AM, Dall'Acqua S, Sut S, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Simulated Gastrointestinal Digestion of Chestnut ( Castanea sativa Mill.) Shell Extract Prepared by Subcritical Water Extraction: Bioaccessibility, Bioactivity, and Intestinal Permeability by In Vitro Assays. Antioxidants (Basel) 2023; 12:1414. [PMID: 37507953 PMCID: PMC10376477 DOI: 10.3390/antiox12071414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Chestnut shells (CSs) are an appealing source of bioactive molecules, and constitute a popular research topic. This study explores the effects of in vitro gastrointestinal digestion and intestinal permeability on the bioaccessibility and bioactivity of polyphenols from CS extract prepared by subcritical water extraction (SWE). The results unveiled higher phenolic concentrations retained after gastric and intestinal digestion. The bioaccessibility and antioxidant/antiradical properties were enhanced in the following order: oral < gastric ≤ intestinal digests, attaining 40% of the maximum bioaccessibility. Ellagic acid was the main polyphenol in the digested and undigested extract, while pyrogallol-protocatechuic acid derivative was only quantified in the digests. The CS extract revealed potential mild hypoglycemic (<25%) and neuroprotective (<75%) properties before and after in vitro digestion, along with upmodulating the antioxidant enzymes' activities and downregulating the lipid peroxidation. The intestinal permeation of ellagic acid achieved 22.89% after 240 min. This study highlighted the efficacy of the CS extract on the delivery of polyphenols, sustaining its promising use as nutraceutical ingredient.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| |
Collapse
|
18
|
Banc R, Rusu ME, Filip L, Popa DS. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut-Brain Axis. Foods 2023; 12:foods12020270. [PMID: 36673365 PMCID: PMC9858309 DOI: 10.3390/foods12020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ellagitannins (ETs) are a large group of bioactive compounds found in plant-source foods, such as pomegranates, berries, and nuts. The consumption of ETs has often been associated with positive effects on many pathologies, including cardiovascular diseases, neurodegenerative syndromes, and cancer. Although multiple biological activities (antioxidant, anti-inflammatory, chemopreventive) have been discussed for ETs, their limited bioavailability prevents reaching significant concentrations in systemic circulation. Instead, urolithins, ET gut microbiota-derived metabolites, are better absorbed and could be the bioactive molecules responsible for the antioxidant and anti-inflammatory activities or anti-tumor cell progression. In this review, we examined the dietary sources, metabolism, and bioavailability of ETs, and analyzed the last recent findings on ETs, ellagic acid, and urolithins, their intestinal and brain activities, the potential mechanisms of action, and the connection between the ET microbiota metabolism and the consequences detected on the gut-brain axis. The current in vitro, in vivo, and clinical studies indicate that ET-rich foods, individual gut microbiomes, or urolithin types could modulate signaling pathways and promote beneficial health effects. A better understanding of the role of these metabolites in disease pathogenesis may assist in the prevention or treatment of pathologies targeting the gut-brain axis.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-450-555
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Wang Q, Botchway BOA, Zhang Y, Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson's disease: A review. Biomed Pharmacother 2022; 156:113848. [PMID: 36242848 DOI: 10.1016/j.biopha.2022.113848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a familiar neurodegenerative disease, accompanied by motor retardation, static tremor, memory decline and dementia. Heredity, environment, age and oxidative stress have been suggested as key factors in the instigation of PD. The Keap1-Nrf2-ARE signaling is one of the most significant anti- oxidative stress (OS) pathways. The Keap1 is a negative regulator of the Nrf2. The Keap1-Nrf2-ARE pathway can induce cell oxidation resistance and reduce nerve injury to treat neurodegenerative diseases. Ellagic acid (EA) can inhibit the Keap1 to accumulate the Nrf2 in the nucleus, and act on the ARE to produce target proteins, which in turn may alleviate the impact of OS on neuronal cells of PD. This review analyzes the structure and physiological role of EA, along with the structure, composition and functions of the Keap1-Nrf2-ARE signaling pathway. We further expound on the mechanism of ellagic acid in its activation of the Keap1-Nrf2-ARE signaling pathway, as well as the relationship between EA in impairing the TLR4/Myd88/NF-κB and Nrf2 pathways. Ellagic acid has the potentiality of improving PD by activating the Keap1-Nrf2-ARE signaling pathway and scavenging free radicals.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
20
|
Mohammadinejad A, Mohajeri T, Aleyaghoob G, Heidarian F, Kazemi Oskuee R. Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies. Biotechnol Appl Biochem 2022; 69:2323-2356. [PMID: 34846078 DOI: 10.1002/bab.2288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Ellagic acid as a polyphenol or micronutrient, which can be naturally found in different vegetables and fruits, has gained considerable attention for cancer therapy due to considerable biological activities and different molecular targets. Ellagic acid with low hydrolysis and lipophilic and hydrophobic nature is not able to be absorbed in circulation. So, accumulation inside the intestinal epithelial cells or metabolization to other urolithins leads to the limitation of direct evaluation of EA effects in clinical studies. This review focuses on the studies which supported anticancer activity of pure or fruit-extracted ellagic acid through in vitro, in vivo, in silico, and drug delivery methods. The results demonstrate ellagic acid modulates the expression of various genes incorporated in the cancer-related process of apoptosis and proliferation, inflammation related-gens, and oxidative-related genes. Moreover, the ellagic acid formulation in carriers composed of lipid, silica, chitosan, iron- bovine serum albumin nanoparticles obviously enhanced the stable release and confident delivery with minimum loss. Also, in silico analysis proved that ellagic acid was able to be placed at a position of cocrystal ADP, in the deep cavity of the protein target, and tightly interact with binding pocket residues leading to suppression of substrate availability of protein and its activation inhibition.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Heidarian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Iglesias DE, Cremonini E, Hester SN, Wood SM, Bartlett M, Fraga CG, Oteiza PI. Cyanidin and delphinidin restore colon physiology in high fat diet-fed mice: Involvement of TLR-4 and redox-regulated signaling. Free Radic Biol Med 2022; 188:71-82. [PMID: 35691508 DOI: 10.1016/j.freeradbiomed.2022.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Consumption of high fat diets (HFD) mimics a modern or "Western style" diet pattern and can impair intestinal barrier integrity, leading to endotoxemia and associated unhealthy conditions. This study investigated if supplementation with an anthocyanin (cyanidin and delphinidin glucosides)-rich extract (CDRE) could revert or mitigate HFD-induced alterations of colonic physiology in part through the regulation of Toll-Like Receptor 4 (TLR-4)- and redox-regulated signaling. C57BL/6J male mice were fed for 4 weeks with a control or an HFD. Then, mice were divided in four groups fed either control or HFD, or these diets supplemented with CDRE for the subsequent 4 weeks. After 8 weeks on the HFD we observed in the colon: i) disruption of tight junction structure and function; ii) increased TLR-4 expression; iii) increased NADPH oxidase NOX1 expression, and iv) activation of redox-sensitive and TLR-4-triggered pathways, i.e. NF-κB, ERK1/2, JNK1/2, PI3K/Akt. All these events were prevented or reverted by CDRE supplementation. Supporting the relevance of CDRE-mediated downregulation of TLR-4 on its colon beneficial effect; in vitro (Caco-2 cell monolayers), cyanidin, delphinidin and their metabolites protocatechuic and gallic acid, mitigated lipopolysaccharide (LPS)-induced monolayer permeabilization by restoring tight junction structure and dynamics and preventing lipid/protein oxidation. The CDRE also mitigated HFD-mediated alterations in parameters of goblet cell differentiation and function, including the downregulation of markers of goblet cell differentiation (Klf4), and intestinal mucosa healing (Tff3). Results show that a short-term supplementation with cyanidin and delphinidin, protect from HFD-induced alterations in colon physiology in part through the modulation of TLR-4- and redox-regulated signaling.
Collapse
Affiliation(s)
- Dario E Iglesias
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | | | - Steven M Wood
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Mark Bartlett
- Pharmanex Research, NSE Products, Inc., Provo, UT, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, CA, USA; Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
22
|
Li X, Li Q, Xiong B, Chen H, Wang X, Zhang D. Discoidin domain receptor 1(DDR1) promote intestinal barrier disruption in Ulcerative Colitis through tight junction proteins degradation and epithelium apoptosis. Pharmacol Res 2022; 183:106368. [PMID: 35905891 DOI: 10.1016/j.phrs.2022.106368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Discoidin domain receptor 1 (DDR1) encodes a receptor tyrosine kinase involved in multiple physiological and pathological processes. DDR1 is expressed in the intestinal epithelium, but its role in Ulcerative Colitis (UC) is poorly understand. This study aimed to identify the function of DDR1 in maintaining the homeostasis of UC. METHODS The DDR1 expression level in non-inflamed and inflamed colon samples from IBD patients were assessed. DDR1 knock-out (DDR1-/-) and wild-type (WT) mice were administered dextran sulfate sodium (DSS) to induce colitis and assessed based on colitis symptoms. In addition, intestinal epithelial barrier injury was induced by TNF-α and IFN-γ incubation to cell monolayers transfected with PCDH-DDR1 or pLKO.1-sh-DDR1-1 plasmids. The effect of DDR1 in regulating barrier integrity, tight junctions (TJ) protein status, and cell apoptosis was investigated in vivo and in vitro. Furthermore, the activation of the NF-κB p65-MLCK-p-MLC2 pathway was also investigated. RESULTS Decreased DDR1 expression levels were observed at the inflamed sites compared with the non-inflamed. DDR1-/- mice had alleviated intestinal mucosal barrier injuries, upregulated TJ proteins, decreased epithelium apoptosis from DSS-induced colitis, and reduced proinflammatory cytokines production in the colon. These findings were further confirmed in vitro. DDR1 over-expression aggravated the TNF-α/IFN-γ-induced TJ disruption, while DDR1 shRNA prevented TJ damage even in the presence of JSH-23. DDR1 dependently destroyed the intestinal barrier via the NF-κB p65-MLCK-p-MLC2 pathway. CONCLUSION Our findings revealed that DDR1 regulated the intestinal barrier in colitis by modulating TJ proteins expression and epithelium apoptosis, making it a potential target of UC.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Qianqian Li
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Bin Xiong
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Huiling Chen
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China; Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
23
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
24
|
Ellagic Acid Improves Antioxidant Capacity and Intestinal Barrier Function of Heat-Stressed Broilers via Regulating Gut Microbiota. Animals (Basel) 2022; 12:ani12091180. [PMID: 35565605 PMCID: PMC9131128 DOI: 10.3390/ani12091180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) has been revealed to damage the antioxidant system and intestinal barrier function, which greatly threatens poultry production. The present study investigated the effects of dietary ellagic acid (EA) on the antioxidant system, gut barrier function, and gut microbiota of heat-stressed broilers. Arbor Acres 14-day-old broilers numbering 360 were randomly divided into six groups, including one negative control group (NC) and five experimental groups. The broilers in the NC group were supplemented with a basal diet at a normal temperature (23 ± 2 °C). The broilers in the experimental groups were supplemented with basal diets containing EA at different doses (0, 75, 150, 300, and 600 mg/kg) at HS temperature (35 ± 2 °C). The experiment lasted for 4 weeks. Results showed that dietary EA reduced the corticosterone (CORT), LPS, and diamine oxidase (DAO) levels in the serum of heat-stressed broilers. Additionally, dietary EA improved the antioxidant enzyme activity and mRNA levels of Nrf2/HO-1 in the ileum of heat-stressed broilers. The relative abundances of Streptococcus, Ruminococcus_torques, Rothia, Neisseria, Actinomyces, and Lautropia in the cecum were significantly reduced by the EA supplementation in a dose-dependent manner. Notably, the LPS, DAO, and MDA in the serum were revealed to be positively correlated with the relative abundances of Rothia, Neisseria, Actinomyces, and Lautropia, while the GSH-px, SOD, and CAT levels in the serum were negatively correlated with the relative abundances of Ruminococcus_torques, Rothia, Neisseria, Actinomyces, Streptococcus, and Lautropia. Taken together, dietary EA improved the antioxidant capacity, intestinal barrier function, and alleviated heat-stressed injuries probably via regulating gut microbiota.
Collapse
|
25
|
Iglesias DE, Cremonini E, Oteiza PI, Fraga CG. Curcumin Mitigates TNFα-Induced Caco-2 Cell Monolayer Permeabilization Through modulation of NF-κB, ERK1/2 and JNK Pathways. Mol Nutr Food Res 2022; 66:e2101033. [PMID: 35182412 DOI: 10.1002/mnfr.202101033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Indexed: 11/09/2022]
Abstract
SCOPE This work studied the capacity of curcumin to inhibit TNFα-induced inflammation, oxidative stress, and loss of intestinal barrier integrity, characterizing the underlying mechanisms. METHODS AND RESULTS Caco-2 cell monolayers were incubated with TNFα (10 ng/ml), in the absence or presence of curcumin. TNFα caused an increase in interleukin (IL)-6 and IL-8 release which was inhibited by curcumin in a dose-dependent manner (IC50 = 3.4 μM for IL-6). Moreover, TNFα led to: i) increased ICAM-1 and NLRP3 expression; ii) increased cell monolayer permeability and decreased levels of tight junction proteins; iii) increased cellular and mitochondrial oxidant production; iv) decreased mitochondrial membrane potential and complex I-III activity; v) activation of redox-sensitive pathways, i.e., NF-κB, ERK1/2 and JNK; and vi) increased MLCK expression and phosphorylation levels of MLC. Curcumin (2-8 μM) inhibited all these TNFα-triggered undesirable outcomes, mostly showing dose-dependent effects. CONCLUSION The inhibition of NF-κB, ERK1/2 and JNK activation could be in part involved in the capacity of curcumin to mitigate intestinal inflammation, oxidant production, activation of redox-sensitive pathways, and prevention of monolayer permeabilization. These results support an action of dietary curcumin in sustaining gastrointestinal tract physiology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dario E Iglesias
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Eleonora Cremonini
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Cesar G Fraga
- Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,IBIMOL, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
26
|
Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials 2022; 281:121373. [DOI: 10.1016/j.biomaterials.2022.121373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
|
27
|
Qi M, Wang N, Xiao Y, Deng Y, Zha A, Tan B, Wang J, Yin Y, Liao P. Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118572. [PMID: 34838710 DOI: 10.1016/j.envpol.2021.118572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Collapse
Affiliation(s)
- Ming Qi
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuxin Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Andong Zha
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Peng Liao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| |
Collapse
|
28
|
Kong C, Beukema M, Wang M, de Haan BJ, de Vos P. Human milk oligosaccharides and non-digestible carbohydrates prevent adhesion of specific pathogens via modulating glycosylation or inflammatory genes in intestinal epithelial cells. Food Funct 2021; 12:8100-8119. [PMID: 34286788 DOI: 10.1039/d1fo00872b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2'-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2'-FL or NDCs. Inhibition of pathogen adhesion was observed for 2'-FL, inulins, and pectins. Pre-incubation with 2'-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2'-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | | | | | | | | |
Collapse
|
29
|
Transcriptome analysis of signaling pathways targeted by Ellagic acid in hepatocellular carcinoma cells. Biochim Biophys Acta Gen Subj 2021; 1865:129911. [PMID: 33862123 DOI: 10.1016/j.bbagen.2021.129911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ellagic acid (EA) possesses prominent inhibitory activities against various cancers, including hepatocellular carcinoma (HCC). Our recent study demonstrated EA's activities in reducing HCC cell proliferation and tumor formation. However, the mechanisms of EA to exert its anticancer activities and its primary targets in cancer cells have not been systematically explored. METHODS Cell proliferation assay and flow cytometric analysis were used to examine the effects of EA treatment on viability and apoptosis, respectively, of HepG2 cells. RNA-seq studies and associated pathway analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to determine EA's primary targets. Differentially expressed genes (DEG) in EA-treated HepG2 cells were verified by RT-qPCR and Western blot. Integrative analyses of the RNA-seq dataset with a TCGA dataset derived from HCC patients were conducted to verify EA-targeted genes and signaling pathways. Interaction network analysis of the DEGs, shRNA-mediated knockdown, cell viability assay, and colony formation assay were used to validate EA's primary targets. RESULTS EA reduced cell viability, caused DNA damage, and induced cell cycle arrest at G1 phase of HepG2 cells. We identified 5765 DEGs encoding proteins with over 2.0-fold changes in EA-treated HepG2 cells by DESeq2. These DEGs showed significant enrichment in the pathways regulating DNA replication and cell cycle progression. As primary targets, p21 was significantly upregulated, while MCM2-7 were uniformly downregulated in response to EA treatment. Consistently, p21 knockdown desensitized liver cells to EA in cell viability and colony formation assays. CONCLUSION EA induced G1 phase arrest and promoted apoptosis of HCC cells through activating the p21 gene and downregulating the MCM2-7 genes, respectively. GENERAL SIGNIFICANCE The discoveries in this study provide helpful insights into developing novel strategies in the therapeutic treatment of HCC patients.
Collapse
|
30
|
Hering NA, Luettig J, Jebautzke B, Schulzke JD, Rosenthal R. The Punicalagin Metabolites Ellagic Acid and Urolithin A Exert Different Strengthening and Anti-Inflammatory Effects on Tight Junction-Mediated Intestinal Barrier Function In Vitro. Front Pharmacol 2021; 12:610164. [PMID: 33776763 PMCID: PMC7987831 DOI: 10.3389/fphar.2021.610164] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Scope: Ellagitannins are polyphenols found in numerous fruits, nuts and seeds. The elagitannin punicalagin and its bioactive metabolites ellagic acid and urolithins are discussed to comprise a high potential for therapeutically or preventive medical application such as in intestinal diseases. The present study characterizes effects of punicalagin, ellagic acid and urolithin A on intestinal barrier function in the absence or presence of the proinflammatory cytokine tumor necrosis factor-α (TNFα). Methods and Results: Transepithelial resistance (TER), fluorescein and ion permeability, tight junction protein expression and signalling pathways were examined in Caco-2 and HT-29/B6 intestinal epithelial cell models. Punicalagin had less or no effects on barrier function in both cell models. Ellagic acid was most effective in ileum-like Caco-2 cells, where it increased TER and reduced fluorescein and sodium permeabilities. This was paralleled by myosin light chain kinase two mediated expression down-regulation of claudin-4, -7 and -15. Urolithin A impeded the TNFα-induced barrier loss by inhibition of claudin-1 and -2 protein expression upregulation and claudin-1 delocalization in HT-29/B6. Conclusion: Ellagic acid and urolithin A affect intestinal barrier function in distinct ways. Ellagic acid acts preventive by strengthening the barrier per se, while urolithin A protects against inflammation-induced barrier dysfunction.
Collapse
Affiliation(s)
- Nina A Hering
- Department of General and Visceral Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germasny
| | - Julia Luettig
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Jebautzke
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg D Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rita Rosenthal
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
Dias R, Pereira CB, Pérez-Gregorio R, Mateus N, Freitas V. Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Xu H, Chen F, Liu T, Xu J, Li J, Jiang L, Wang X, Sheng J. Ellagic acid blocks RANKL-RANK interaction and suppresses RANKL-induced osteoclastogenesis by inhibiting RANK signaling pathways. Chem Biol Interact 2020; 331:109235. [PMID: 32971123 DOI: 10.1016/j.cbi.2020.109235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/29/2023]
Abstract
Ellagic acid (EA) is a naturally occurring polyphenolic compound that has been shown to exhibit diverse beneficial pharmacological activities including anti-osteoclastogenesis effect. However, the molecular mechanism by which EA inhibits osteoclastogenesis remains to be elucidated. The protein-protein interaction between receptor activator of nuclear factor (NF)-κB ligand (RANKL) and its receptor RANK contributes to osteoclast differentiation and activation in bone remodeling, and is regarded as an important therapeutic target for the treatment of osteoporosis. The current study is focused on investigating whether EA can directly bind to RANKL and/or RANK and block the interaction between RANKL and RANK, thereby inhibiting downstream signaling pathways. Interestingly, we found that EA had strong affinities to RANK and RANKL, with the estimated equilibrium dissociation constants (KD) of 2.485 × 10-11 and 1.688 × 10-9 M, respectively, and could disrupt the interaction between RANKL and RANK, thereby inhibiting RANKL-induced canonical RANK signaling pathways (p65, JNK, ERK, and p38) and expression of downstream master transcriptional factors (NFATc1 and c-Fos) and osteoclast-specific genes and proteins (TRAP, c-Src, and cathepsin K), which could ultimately suppress RANKL-induced osteoclast differentiation and F-actin ring formation. Taken together, our results revealed that EA could block RANKL-RANK interaction and suppress RANKL-induced osteoclastogenesis by inhibiting RANK signaling pathways in RAW 264.7 murine macrophages.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Fei Chen
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China
| |
Collapse
|
33
|
Iftikhar M, Iftikhar A, Zhang H, Gong L, Wang J. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Res Int 2020; 136:109240. [PMID: 32846508 DOI: 10.1016/j.foodres.2020.109240] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
Caco-2, a human intestinal carcinoma cell line, has been used to test the absorption and transport mechanism of functional foods and drugs across the intestinal epithelium in order to study their antioxidant, anticancer and anti-inflammatory activities. Caco-2 cells represent the morphological and functional characteristics of small intestinal cells and capable of expressing brush borders, tight junctions, intestinal efflux and uptake transporters which regulate permeation of drugs and functional food extracts from intestinal lumen to systemic circulation. The integrity of the Caco-2 monolayer is controlled by establishing the TEER between 200 and 1000 O per cm2. FFEs affect intestinal permeability by adjusting the tight junction proteins between the cells in order to maintain the epithelial barrier function. Because of the side effects of medicines, there is an increased interest in functional food extracts (FFEs) as drug substitutes. Functional foods undergo intricate transport processes and biotransformation after oral administration. Metabolism and transport studies of FFEs in Caco-2 cells are very important for determining their bioavailability. Functional foods and their constituents produce anti-proliferative and anti-cancer effects through apoptosis, cell cycle arrest and inhibition of various signal transduction pathways across Caco-2 cell lines. The current review has summarized the anti-inflammation, anticancer, antioxidant and cholesterol lowering potential of FFEs using Caco-2 cells through reducing local inflammatory signals, production of ROS and lipid accumulation. The transport, bioavailability, metabolism, mechanisms of actions, cellular pathways adopted by FFEs across Caco-2 cell lines are predominantly affected by their molecular weight, structures and physicochemical properties. These studies are beneficial for investigating the different mechanisms of action of FFEs in the human body.
Collapse
Affiliation(s)
- Maryam Iftikhar
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad (TUF), Faisalabad 38000, Pakistan
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|