1
|
Cocksedge SP, Infante C, Torres S, Lama C, Mantecón L, Manchado M, Acton JP, Alsharif NS, Clifford T, Wadley AJ, Ferguson RA, Bishop NC, Martin NRW, Bailey SJ. Tetraselmis chuii Supplementation Increases Skeletal Muscle Nuclear Factor Erythroid 2-Related Factor 2 and Antioxidant Enzyme Gene Expression, and Peak Oxygen Uptake in Healthy Adults: A Randomised Crossover Trial. Antioxidants (Basel) 2025; 14:435. [PMID: 40298824 DOI: 10.3390/antiox14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Superoxide dismutase-rich Tetraselmis chuii (T. chuii) is derived from marine microalgae and has been reported to increase gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and related antioxidant enzymes in myoblast tissue culture models. Human research has indicated that T. chuii supplementation can improve recovery from exercise-induced muscle damage, but its effects on endurance exercise performance and the molecular bases that may underlie any ergogenic effects are unclear. Healthy participants underwent 14 days of supplementation with 25 mg·day-1T. chuii and placebo in a randomized, double-blind, crossover experimental design. Prior to and following each supplementation period, participants completed a high-intensity cycling test to assess time to exhaustion and peak oxygen uptake (V˙O2peak). A resting skeletal muscle biopsy was collected after both supplementation periods to assess gene expression changes. Compared to pre-supplementation values, V˙O2peak was increased following T. chuii (p = 0.013) but not placebo (p = 0.66). Fold-change in glutathione peroxidase 7 [(GPX7) 1.26 ± 1.37], glutathione-disulfide reductase [(GSR) 1.22 ± 1.41], glutathione S-transferase Mu 3 [(GSTM3) 1.34 ± 1.49], peroxiredoxin 6 [(PRDX6) 1.36 ± 1.57], extracellular signal-regulated kinase 3 [(ERK3) 1.92 ± 2.42], NRF2 (1.62 ± 2.16), p38 alpha [(p38a) 1.33 ± 1.58] and sirtuin 1 [(SIRT1) 1.73 ± 2.25] gene expression were higher after T. chuii compared to placebo supplementation (p < 0.05). Short-term T. chuii supplementation increased V˙O2peak and skeletal muscle gene expression of key enzymatic antioxidants (GPX7, GSR, GSTM3, and PRDX6), signalling kinases (ERK3 and p38a), post-translational regulators (SIRT1), and transcription factors (NRF2) that may protect against cellular stress insults.
Collapse
Affiliation(s)
- Stuart P Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry CV1 5FB, UK
| | | | | | - Carmen Lama
- Fitoplancton Marino, S.L., 11500 Cádiz, Spain
| | | | - Manuel Manchado
- IFAPA Centro El Toruño (Junta de Andalucía), 11500 Cádiz, Spain
| | - Jarred P Acton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Nehal S Alsharif
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Alex J Wadley
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicolette C Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
2
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
3
|
Posnakidis G, Giannaki CD, Mougios V, Pantzaris M, Patrikios I, Calder PC, Sari DK, Bogdanis GC, Aphamis G. Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:2914. [PMID: 39275230 PMCID: PMC11397372 DOI: 10.3390/nu16172914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The aim of this study was to investigate the effects of a supplement rich in ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) and antioxidant vitamins on physical performance and body composition following a period of high-intensity functional training (HIFT). Nineteen healthy young adults (nine males, ten females) underwent an 8-week HIFT program (3 days·week-1) where they were randomized 1:1 into either the supplement group (SG)-n = 10, receiving a 20 mL daily dose of a dietary cocktail formula (Neuroaspis™ PLP10) containing a mixture of ω-3 and ω-6 PUFAs (12,150 mg), vitamin A (0.6 mg), vitamin E (22 mg), and γ-tocopherol (760 mg)-or the placebo group (PG)-n = 9, receiving a 20 mL daily dose of virgin olive oil. Body composition, cardiorespiratory fitness, muscle strength, and muscle endurance were assessed before and after the training period. Body mass did not change, but muscle mass increased by 1.7 ± 1.9% or 0.40 ± 0.53 kg in the SG (p = 0.021) and decreased by 1.2 ± 1.6% or 0.28 ± 0.43 kg (p = 0.097) in the PG, compared with baseline. VO2max, vertical jump, squat 1RM, bench press 1RM, and muscle endurance increased similarly in both groups. The effects of HIFT on physical performance parameters, muscle damage, and inflammation indices were not affected by the supplementation. In conclusion, HIFT combined with high doses of ω-3 and ω-6 PUFAs and antioxidant vitamins resulted in a small but significant increase in muscle mass and fat reduction compared with HIFT alone.
Collapse
Affiliation(s)
- Georgios Posnakidis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Christoforos D Giannaki
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marios Pantzaris
- The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Ioannis Patrikios
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Dina K Sari
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| |
Collapse
|
4
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
5
|
Kim T, Jin Y, Cho J, Kim D. Impact of Exercise Training on Survival Rate and Neural Cell Death in Sepsis Through the Maintenance of Redox Equilibrium. Int Neurourol J 2024; 28:22-32. [PMID: 38569617 PMCID: PMC10990757 DOI: 10.5213/inj.2448044.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
PURPOSE Sepsis-related deaths occur during both the early proinflammatory and the late immunosuppressive phases of the condition. The balance of pro- and anti-inflammatory responses is influenced by damaged cells that die via either proinflammatory necroptosis or anti-inflammatory apoptosis. Both forms of cell death may be mediated by reactive oxygen species (ROS) generated during the proinflammatory response. Recent evidence suggests that exercise training boosts antioxidative capacity and could offer protection against sepsis. Given these findings, we aimed to examine the impact of exercise training on neural cell death in the context of sepsis. METHODS We assessed the effectiveness of exercise in reducing ROS production and the inflammatory response using a cecal ligation and puncture (CLP)-induced sepsis model. Forty C57BL/6N male mice were randomly divided into 2 groups: control (CLP-Con; n=20) and experimental (CLP-Ex; n=20). Before the induction of sepsis by CLP, the CLP-Ex mice underwent interval training on a treadmill 3 days per week for 8 weeks. Each day involved 10 cycles of 2 minutes at 8 m/min and 2 minutes at 15 m/min. After the CLP procedure, we monitored the survival of 10 mice from each group over a 30-hour period. RESULTS The findings indicated that exercise training increased the survival rate among mice with CLP-induced sepsis by enhancing antioxidative capacity and delaying the transition from a hyperdynamic to an immunosuppressive state. CONCLUSION Exercise training may delay the progression from the hyperdynamic state to the hypodynamic phase of sepsis by increasing antioxidant capacity and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Taewan Kim
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Youngyun Jin
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, Korea
| | - Donghyun Kim
- Department of Sports and Health Science, Hanbat National University, Daejeon, Korea
| |
Collapse
|
6
|
Margaritelis NV. Personalized redox biology: Designs and concepts. Free Radic Biol Med 2023; 208:112-125. [PMID: 37541453 DOI: 10.1016/j.freeradbiomed.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Personalized interventions are regarded as a next-generation approach in almost all fields of biomedicine, such as clinical medicine, exercise, nutrition and pharmacology. At the same time, an increasing body of evidence indicates that redox processes regulate, at least in part, multiple aspects of human physiology and pathology. As a result, the idea of applying personalized redox treatments to improve their efficacy has gained popularity among researchers in recent years. The aim of the present primer-style review was to highlight some crucial yet underappreciated methodological, statistical, and interpretative concepts within the redox biology literature, while also providing a physiology-oriented perspective on personalized redox biology. The topics addressed are: (i) the critical issue of investigating the potential existence of inter-individual variability; (ii) the importance of distinguishing a genuine and consistent response of a subject from a chance finding; (iii) the challenge of accurately quantifying the effect of a redox treatment when dealing with 'extreme' groups due to mathematical coupling and regression to the mean; and (iv) research designs and analyses that have been implemented in other fields, and can be reframed and exploited in a redox biology context.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62122, Serres, Greece.
| |
Collapse
|
7
|
Nikolaidis MG, Margaritelis NV. Free radicals and antioxidants: appealing to magic. Trends Endocrinol Metab 2023; 34:503-504. [PMID: 37365057 DOI: 10.1016/j.tem.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
In biology, there are no good or evil molecules. There is limited or no evidence to support the consumption of antioxidants or (super)foods rich in antioxidants, for the intended purpose of an antioxidant effect, because there is risk of interfering with free radicals and deoptimizing the regulation of fundamental processes.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sports Science - Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science - Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Margaritelis NV, Nastos GG, Vasileiadou O, Chatzinikolaou PN, Theodorou AA, Paschalis V, Vrabas IS, Kyparos A, Fatouros IG, Nikolaidis MG. Inter-individual variability in redox and performance responses after antioxidant supplementation: A randomized double blind crossover study. Acta Physiol (Oxf) 2023; 238:e14017. [PMID: 37401190 DOI: 10.1111/apha.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
AIM We aimed to investigate the inter-individual variability in redox and physiological responses of antioxidant-deficient subjects after antioxidant supplementation. METHODS Two hundred individuals were sorted by plasma vitamin C levels. A low vitamin C group (n = 22) and a control group (n = 22) were compared in terms of oxidative stress and performance. Subsequently, the low vitamin C group received for 30 days vitamin C (1 g) or placebo, in randomized, double-blind, crossover fashion, and the effects were examined through a mixed-effects model, while individual responses were calculated. RESULTS The low vitamin C group exhibited lower vitamin C (-25 μmol/L; 95%CI[-31.7, -18.3]; p < 0.001), higher F2 -isoprostanes (+17.1 pg/mL; 95%CI[6.5, 27.7]; p = 0.002), impaired VO2max (-8.2 mL/kg/min; 95%CI[-12.8, -3.6]; p < 0.001) and lower isometric peak torque (-41.5 Nm; 95%CI[-61.8, -21.2]; p < 0.001) compared to the control group. Regarding antioxidant supplementation, a significant treatment effect was found in vitamin C (+11.6 μmol/L; 95%CI[6.8, 17.1], p < 0.001), F2 -isoprostanes (-13.7 pg/mL; 95%CI[-18.9, -8.4], p < 0.001), VO2max (+5.4 mL/kg/min; 95%CI[2.7, 8.2], p = 0.001) and isometric peak torque (+18.7; 95%CI[11.8, 25.7 Nm], p < 0.001). The standard deviation for individual responses (SDir) was greater than the smallest worthwhile change (SWC) for all variables indicating meaningful inter-individual variability. When a minimal clinically important difference (MCID) was set, inter-individual variability remained for VO2max , but not for isometric peak torque. CONCLUSION The proportion of response was generally high after supplementation (82.9%-95.3%); however, a few participants did not benefit from the treatment. This underlines the potential need for personalized nutritional interventions in an exercise physiology context.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
9
|
Thomas HJ, Ang T, Morrison DJ, Keske MA, Parker L. Acute exercise and high-glucose ingestion elicit dynamic and individualized responses in systemic markers of redox homeostasis. Front Immunol 2023; 14:1127088. [PMID: 37063903 PMCID: PMC10102861 DOI: 10.3389/fimmu.2023.1127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBiomarkers of oxidation-reduction (redox) homeostasis are commonly measured in human blood to assess whether certain stimuli (e.g., high-glucose ingestion or acute exercise) lead to a state of oxidative distress (detrimental to health) or oxidative eustress (beneficial to health). Emerging research indicates that redox responses are likely to be highly individualized, yet few studies report individual responses. Furthermore, the effects of complex redox stimuli (e.g., high-glucose-ingestion after exercise) on redox homeostasis remains unclear. We investigated the effect of acute exercise (oxidative eustress), high-glucose ingestion (oxidative distress), and high-glucose ingestion after exercise (both oxidative eu/distress), on commonly measured redox biomarkers in serum/plasma.MethodsIn a randomized crossover fashion, eight healthy men (age: 28 ± 4 years; BMI: 24.5 ± 1.5 kg/m2 [mean ± SD]) completed two separate testing conditions; 1) consumption of a high-glucose mixed-nutrient meal (45% carbohydrate [1.1 g glucose.kg-1], 20% protein, and 35% fat) at rest (control trial), and 2) consumption of the same meal 3 h and 24 h after 1 h of moderate-intensity cycling exercise (exercise trial). Plasma and serum were analyzed for an array of commonly studied redox biomarkers.ResultsOxidative stress and antioxidant defense markers (hydrogen peroxide, 8-isoprostanes, catalase, superoxide dismutase, and nitrate levels) increased immediately after exercise (p < 0.05), whereas nitric oxide activity and thiobarbituric acid reactive substances (TBARS) remained similar to baseline (p > 0.118). Nitric oxide activity and nitrate levels decreased at 3 h post-exercise compared to pre-exercise baseline levels. Depending on when the high-glucose mixed nutrient meal was ingested and the postprandial timepoint investigated, oxidative stress and antioxidant defense biomarkers either increased (hydrogen peroxide, TBARS, and superoxide dismutase), decreased (hydrogen peroxide, 8-isoprostanes, superoxide dismutase, nitric oxide activity, nitrate, and nitrite), or remained similar to pre-meal baseline levels (hydrogen peroxide, 8-isoprostanes, TBARS, catalase, superoxide dismutase and nitrite). Redox responses exhibited large inter-individual variability in the magnitude and/or direction of responses.ConclusionFindings highlight the necessity to interpret redox biomarkers in the context of the individual, biomarker measured, and stimuli observed. Individual redox responsiveness may be of physiological relevance and should be explored as a potential means to inform personalized redox intervention.
Collapse
Affiliation(s)
- Hannah J. Thomas
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale J. Morrison
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- *Correspondence: Lewan Parker,
| |
Collapse
|
10
|
Skeletal muscle and erythrocyte redox status is associated with dietary cysteine intake and physical fitness in healthy young physically active men. Eur J Nutr 2023; 62:1767-1782. [PMID: 36828945 DOI: 10.1007/s00394-023-03102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE To investigate the association between redox status in erythrocytes and skeletal muscle with dietary nutrient intake and markers of physical fitness and habitual physical activity (PA). METHODS Forty-five young physically active men were assessed for body composition, dietary nutrient intake, muscle strength, cardiorespiratory capacity and habitual PA. Blood and muscle samples were collected to estimate selected redox biomarkers. Partial correlation analysis was used to evaluate the independent relationship of each factor with redox biomarkers. RESULTS Dietary cysteine intake was positively correlated (p < 0.001) with both erythrocyte (r = 0.697) and muscle GSH (0.654, p < 0.001), erythrocyte reduced/oxidized glutathione ratio (GSH/GSSG) (r = 0.530, p = 0.001) and glutathione reductase (GR) activity (r = 0.352, p = 0.030) and inversely correlated with erythrocyte protein carbonyls (PC) levels (r = - 0.325; p = 0.046). Knee extensors eccentric peak torque was positively correlated with GR activity (r = 0.355; p = 0.031) while, one-repetition maximum in back squat exercise was positively correlated with erythrocyte GSH/GSSG ratio (r = 0.401; p = 0.014) and inversely correlated with erythrocyte GSSG and PC (r = - 0.441, p = 0.006; r = - 0.413, p = 0.011 respectively). Glutathione peroxidase (GPx) activity was positively correlated with step count (r = 0.520; p < 0.001), light (r = 0.406; p = 0.008), moderate (r = 0.417; p = 0.006), moderate-to-vigorous (r = 0.475; p = 0.001), vigorous (r = 0.352; p = 0.022) and very vigorous (r = 0.326; p = 0.035) PA. Muscle GSSG inversely correlated with light PA (r = - 0.353; p = 0.022). CONCLUSION These results indicate that dietary cysteine intake may be a critical element for the regulation of glutathione metabolism and redox status in two different tissues pinpointing the independent significance of cysteine for optimal redox regulation. Musculoskeletal fitness and PA levels may be predictors of skeletal muscle, but not erythrocyte, antioxidant capacity. TRIAL REGISTRATION Registry: ClinicalTrials.gov, identifier: NCT03711838, date of registration: October 19, 2018.
Collapse
|
11
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
12
|
Tan R, Black M, Home J, Blackwell J, Clark I, Wylie L, Vanhatalo A, Jones AM. Physiological and performance effects of dietary nitrate and N-acetylcysteine supplementation during prolonged heavy-intensity cycling. J Sports Sci 2022; 40:2585-2594. [PMID: 36759944 DOI: 10.1080/02640414.2023.2176052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
The purpose of this study was to investigate effects of concurrent and independent administration of dietary nitrate (NO3-), administered as NO3--rich beetroot juice (BR; ~12.4 mmol of NO3-), and N-acetylcysteine (NAC; 70 mg·kg-1) on physiological responses during prolonged exercise and subsequent high-intensity exercise tolerance. Sixteen recreationally active males supplemented with NO3--depleted beetroot juice (PL) or BR for 6 days and ingested an acute dose of NAC or maltodextrin (MAL) 1 h prior to performing 1 h of heavy-intensity cycling exercise immediately followed by a severe-intensity time-to-exhaustion (TTE) test in four conditions: 1) PL+MAL, 2) PL+NAC, 3) BR+MAL and 4) BR+NAC. Pre-exercise plasma [NO3-] and nitrite ([NO2-]) were elevated following BR+NAC and BR+MAL (both P < 0.01) compared with PL+NAC and PL+MAL; plasma [cysteine] was increased in PL+NAC and BR+NAC (both P < 0.01) compared to PL+MAL. Muscle excitability declined over time during the prolonged cycling bout in all conditions but was better preserved in PL+NAC compared to BR+NAC (P < 0.01) and PL+MAL (P < 0.05). There was no effect of supplementation on subsequent TTE . These findings indicate that co-ingestion of BR and NAC does not appreciably alter physiological responses during prolonged heavy-intensity cycling or enhance subsequent exercise tolerance.
Collapse
Affiliation(s)
- Rachel Tan
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Matthew Black
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Joseph Home
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Jamie Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Ida Clark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Lee Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Kruk J, Aboul-Enein BH, Duchnik E, Marchlewicz M. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J Physiol Sci 2022; 72:19. [PMID: 35931969 PMCID: PMC10717775 DOI: 10.1186/s12576-022-00845-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Extensive research has found strongly increased generation of reactive oxygen species, free radicals, and reactive nitrogen species during acute physical exercise that can lead to oxidative stress (OS) and impair muscle function. Polyphenols (PCs), the most abundant antioxidants in the human diet, are of increasing interest to athletes as antioxidants. Current literature suggests that antioxidants supplementation can effectively modulate these processes. This overview summarizes the actual knowledge of chemical and biomechanical properties of PCs and their impact as supplements on acute exercise-induced OS, inflammation control, and exercise performance. Evidence maintains that PC supplements have high potency to positively impact redox homeostasis and improve skeletal muscle's physiological and physical functions. However, many studies have failed to present improvement in physical performance. Eleven of 15 representative experimental studies reported a reduction of severe exercise-induced OS and inflammation markers or enhancement of total antioxidant capacity; four of eight studies found improvement in exercise performance outcomes. Further studies should be continued to address a safe, optimal PC dosage, supplementation timing during a severe training program in different sports disciplines, and effects on performance response and adaptations of skeletal muscle to exercise.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Al. Piastów 40b/6, 71-065, Szczecin, Poland.
| | - Basil Hassan Aboul-Enein
- Department of Health Science, Johnson & Wales University, College of Health & Wellness, 8 Abbott Park Place, Providence, RI, 02903, USA
- London School of Hygiene & Tropical Medicine, Faculty of Public Health and Policy, 15-17, Tavistock Place, London, WC1H 9SH, UK
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Mariola Marchlewicz
- Department of Dermatology and Venereology, Pomeranian Medical University, Siedlecka 2, 72-010, Police, Poland
| |
Collapse
|
14
|
Quinn KM, Roberts L, Cox AJ, Borg DN, Pennell EN, McKeating DR, Fisher JJ, Perkins AV, Minahan C. Blood oxidative stress biomarkers in women: influence of oral contraception, exercise, and N-acetylcysteine. Eur J Appl Physiol 2022; 122:1949-1964. [PMID: 35674828 PMCID: PMC9287208 DOI: 10.1007/s00421-022-04964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
Abstract
Purpose To compare physiological responses to submaximal cycling and sprint cycling performance in women using oral contraceptives (WomenOC) and naturally cycling women (WomenNC) and to determine whether N-acetylcysteine (NAC) supplementation mediates these responses. Methods Twenty recreationally trained women completed five exercise trials (i.e., an incremental cycling test, a familiarisation trial, a baseline performance trial and two double-blind crossover intervention trials). During the intervention trials participants supplemented with NAC or a placebo 1 h before exercise. Cardiopulmonary parameters and blood biochemistry were assessed during 40 min of fixed-intensity cycling at 105% of gas-exchange threshold and after 1-km cycling time-trial. Results WomenOC had higher ventilation (β [95% CI] = 0.07 L·min−1 [0.01, 0.14]), malondialdehydes (β = 12.00 mmol·L−1 [6.82, 17.17]) and C-reactive protein (1.53 mg·L−1 [0.76, 2.30]), whereas glutathione peroxidase was lower (β = 22.62 mU·mL−1 [− 41.32, − 3.91]) compared to WomenNC during fixed-intensity cycling. Plasma thiols were higher at all timepoints after NAC ingestion compared to placebo, irrespective of group (all p < 0.001; d = 1.45 to 2.34). For WomenNC but not WomenOC, the exercise-induced increase in malondialdehyde observed in the placebo trial was blunted after NAC ingestion, with lower values at 40 min (p = 0.018; d = 0.73). NAC did not affect cycling time-trial performance. Conclusions Blood biomarkers relating to oxidative stress and inflammation are elevated in WomenOC during exercise. There may be an increased strain on the endogenous antioxidant system during exercise, since NAC supplementation in WomenOC did not dampen the exercise-induced increase in malondialdehyde. Future investigations should explore the impact of elevated oxidative stress on exercise adaptations or recovery from exercise in WomenOC. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04964-w.
Collapse
Affiliation(s)
- Karlee M Quinn
- Griffith Sports Science, Griffith University, Gold Coast, QLD, 4222, Australia. .,Sport Performance Innovation and Knowledge Excellence Unit, Queensland Academy of Sport, Nathan, QLD, 4111, Australia.
| | - Llion Roberts
- Griffith Sports Science, Griffith University, Gold Coast, QLD, 4222, Australia.,Sport Performance Innovation and Knowledge Excellence Unit, Queensland Academy of Sport, Nathan, QLD, 4111, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amanda J Cox
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - David N Borg
- The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, 4102, Australia
| | - Evan N Pennell
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Daniel R McKeating
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Clare Minahan
- Griffith Sports Science, Griffith University, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
15
|
Gueboudji Z, Addad D, Kadi K, Nagaz K, Secrafi M, Yahya LB, Lachehib B, Abdelmalek A. Biological activities and phenolic compounds of olive oil mill wastewater from Abani, endemic Algerian variety. Sci Rep 2022; 12:6042. [PMID: 35410360 PMCID: PMC9001683 DOI: 10.1038/s41598-022-10052-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
The current study aimed to determination of cytotoxicity, antioxidant, anti-inflammatory, anti-hemolytic, and anticoagulant activities of phenolic compounds extracted from olive oil mill wastewater (OMW) issue from the cold extraction of olive oil from Khenchela eastern in Algeria. The LC–MS (liquid chromatography–mass spectrometry) results were revealed the presence of 20 phenolic compounds in the extract of OMW and mostly consisted of Kaempferol, 4,5-di-O-caffeoyquinic acid, quinic acid, and caffeic acid. The extracts possessed effective reducing power (FRAP) and high radical scavenging activity against DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS + (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) free radicals, and it inhibited cytochrome c reduction in a dose-dependent manner. They exert a protective effect on red blood cells, and they were found to exhibit the highest inhibitory effect anti-inflammatory activity using inhibition of protein denaturation (IPD) and membrane stabilizing potential (MSP) tests (80.46 ± 3.81 µg/mL and 87.43 ± 0.66 µg/mL) more than the standard used. The extract also showed the greatest anticoagulant activity in both the endogenous and exogenous routes (44.77 ± 0.25 s and 15.84 ± 0.12 s, respectively). Based on these findings, it is reasonable to infer that OMW is a good source of natural phenolic compounds with potential antioxidant, anti-inflammatory, and anticoagulant properties.
Collapse
|
16
|
Howatson G, Snaith GC, Kimble R, Cowper G, Keane KM. Improved Endurance Running Performance Following Haskap Berry ( Lonicera caerulea L.) Ingestion. Nutrients 2022; 14:780. [PMID: 35215430 PMCID: PMC8877138 DOI: 10.3390/nu14040780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Food high in (poly)phenolic compounds, such as anthocyanins, have the potential to improve exercise recovery and exercise performance. Haskap berries are rich in anthocyanins, but no research has examined the potential to improve human performance. The aim of this study was to determine the influence of Haskap berry on parameters of endurance running performance. METHODS Using a double-blind, placebo controlled, independent groups design, 30 male recreational runners (mean ± SD age, 33 ± 7 years; stature, 178.2 ± 7.2 cm; mass, 77.7 ± 10.6 kg; V˙O2peak, 52.2 ± 6.6 mL/kg/min) volunteered to participate. Following familiarisation, volunteers visited the laboratory twice (separated by seven days) to assess submaximal, maximal and 5 km time trial running performance. After the first visit, volunteers were randomly assigned to consume either the Haskap berry intervention or an isocaloric placebo control. RESULTS There were modest changes in heart rate and V˙O2 at submaximal intensities (p < 0.05). Time to exhaustion during the V˙O2peak test was longer in the Haskap group by 20 s (p = 0.031). Additionally, 5 km time trial performance was improved in the Haskap group by ~21 s (p = 0.016), which equated to a 0.25 km/h increase in mean running speed compared to the placebo control; this represented a >2% improvement in running performance. CONCLUSIONS The application of this newly identified functional food to athletes has the capacity to improve endurance running performance.
Collapse
Affiliation(s)
- Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2531, South Africa
| | - Gemma C. Snaith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
| | - Rachel Kimble
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Gavin Cowper
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
| | - Karen M. Keane
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
- School of Science and Computing, Galway-Mayo Institute of Technology, H91 T8NW Galway, Ireland
| |
Collapse
|
17
|
Are Antioxidants Useful in Preventing the Progression of Chronic Kidney Disease? Antioxidants (Basel) 2021; 10:antiox10111669. [PMID: 34829540 PMCID: PMC8614781 DOI: 10.3390/antiox10111669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive impairment of renal function for more than three months that affects 15% of the adult population. Because oxidative stress is involved in its pathogenesis, antioxidants are under study for the prophylaxis of CKD progression. The objective of this work was to meta-analyze the efficacy of antioxidant therapy in CKD patients and to identify the most effective candidate antioxidants. Our meta-analysis showed that, despite being quite heterogeneous, overall antioxidant therapy apparently reduced CKD progression. Pentoxifylline and bardoxolone methyl demonstrated a robust and statistically significant protection, while other products showed a favorable but non-significant tendency, due to a high interindividual variability. Off-target (i.e., antioxidant-independent) effects, such as body weight reduction and heart failure-associated blood dilution, might totally or partially explain the protection provided by effective antioxidants. This potential pleiotropy introduces uncertainty on the role of oxidative stress in CKD progression and on antioxidant therapy in its prevention, which needs to be further investigated. Independently, identification of factors determining the nephroprotective effect of each candidate on each patient is thus necessary for a prospectively personalized antioxidant therapy. Finally, pentoxifylline should be further explored for the prophylaxis of CKD progression.
Collapse
|
18
|
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021; 7:35. [PMID: 34556658 PMCID: PMC8460669 DOI: 10.1038/s41526-021-00162-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Exposure to microgravity and ionizing radiation during spaceflight missions causes excessive reactive oxygen species (ROS) production that contributes to cellular stress and damage in astronauts. Average spaceflight mission time is expected to lengthen as humanity aims to visit other planets. However, longer missions or spaceflights will undoubtedly lead to an increment in microgravity, ionizing radiation and ROS production. Strategies to minimize ROS damage are necessary to maintain the health of astronauts, future space colonists, and tourists during and after spaceflight missions. An antioxidant cocktail formulated to prevent or mitigate ROS damage during space exploration could help maintain the health of space explorers. We propose key points to consider when developing an antioxidant cocktail. We discuss how ROS damages our body and organs, the genetic predisposition of astronauts to its damage, characteristics and evidence of the effectiveness of antioxidants to combat excess ROS, differences in drug metabolism when on Earth and in space that could modify antioxidant effects, and the characteristics and efficacy of common antioxidants. Based on this information we propose a workflow for assessing astronaut resistance to ROS damage, infight monitoring of ROS production, and an antioxidant cocktail. Developing an antioxidant cocktail represents a big challenge to translate current medical practices from an Earth setting to space. The key points presented in this review could promote the development of different antioxidant formulations to maintain space explorers' health in the future.
Collapse
Affiliation(s)
- Xavier Gómez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Cornell University, Ithaca, NY, USA
- Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Samira Asquel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Mariuxi Bassantes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Julián E Morales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Gabriela Otáñez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Core Pomaquero
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Sarah Villarroel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Alejandro Zurita
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Carlos Calvache
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Kathlyn Celi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Terry Contreras
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Dylan Corrales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - María Belén Naciph
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - José Peña
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador.
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador.
- Mito-Act Research Consortium, Quito, Ecuador.
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| |
Collapse
|
19
|
Margaritelis NV, Chatzinikolaou PN, Chatzinikolaou AN, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, Nikolaidis MG. The redox signal: A physiological perspective. IUBMB Life 2021; 74:29-40. [PMID: 34477294 DOI: 10.1002/iub.2550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
A signal in biology is any kind of coded message sent from one place in an organism to another place. Biology is rich in claims that reactive oxygen and nitrogen species transmit signals. Therefore, we define a "redox signal as an increase/decrease in the level of reactive species". First, as in most biology disciplines, to analyze a redox signal you need first to deconstruct it. The essential components that constitute a redox signal and should be characterized are: (i) the reactivity of the specific reactive species, (ii) the magnitude of change, (iii) the temporal pattern of change, and (iv) the antioxidant condition. Second, to be able to translate the physiological fate of a redox signal you need to apply novel and bioplausible methodological strategies. Important considerations that should be taken into account when designing an experiment is to (i) assure that redox and physiological measurements are at the same or similar level of biological organization and (ii) focus on molecules that are at the highest level of the redox hierarchy. Third, to reconstruct the redox signal and make sense of the chaotic nature of redox processes, it is essential to apply mathematical and computational modeling. The aim of the present study was to collectively present, for the first time, those elements that essentially affect the redox signal as well as to emphasize that the deconstructing, decoding and reconstructing of a redox signal should be acknowledged as central to design better studies and to advance our understanding on its physiological effects.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Dialysis Unit, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
The Mediterranean dietary pattern for optimising health and performance in competitive athletes: a narrative review. Br J Nutr 2021; 128:1285-1298. [PMID: 34420536 DOI: 10.1017/s0007114521003202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nutrition plays a key role in training for, and competing in, competitive sport, and is essential for reducing risk of injury and illness, recovering and adapting between bouts of activity, and enhancing performance. Consumption of a Mediterranean diet (MedDiet) has been demonstrated to reduce risk of various non-communicable diseases and increase longevity. Following the key principles of a MedDiet could also represent a useful framework for good nutrition in competitive athletes under most circumstances, with potential benefits for health and performance parameters. In this review, we discuss the potential effects of a MedDiet, or individual foods and compounds readily available in this dietary pattern, on oxidative stress and inflammation, injury and illness risk, vascular and cognitive function, and exercise performance in competitive athletes. We also highlight potential modifications which could be made to the MedDiet (whilst otherwise adhering to the key principles of this dietary pattern) in accordance with contemporary sports nutrition practices, to maximise health and performance effects. In addition, we discuss potential directions for future research.
Collapse
|
21
|
Broome SC, Braakhuis AJ, Mitchell CJ, Merry TL. Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. J Int Soc Sports Nutr 2021; 18:58. [PMID: 34419082 PMCID: PMC8379793 DOI: 10.1186/s12970-021-00454-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exercise increases skeletal muscle reactive oxygen species (ROS) production, which may contribute to the onset of muscular fatigue and impair athletic performance. Mitochondria-targeted antioxidants such as MitoQ, which contains a ubiquinone moiety and is targeted to mitochondria through the addition of a lipophilic triphenylphosphonium cation, are becoming popular amongst active individuals as they are designed to accumulate within mitochondria and may provide targeted protection against exercise-induced oxidative stress. However, the effect of MitoQ supplementation on cycling performance is currently unknown. Here, we investigate whether MitoQ supplementation can improve cycling performance measured as time to complete an 8 km time trial. METHOD In a randomized, double-blind, placebo-controlled crossover study, 19 middle-aged (age: 44 ± 4 years) recreationally trained (VO2peak: 58.5 ± 6.2 ml·kg- 1·min- 1, distance cycled per week during 6 months prior to study enrollment: 158.3 ± 58.4 km) male cyclists completed 45 min cycling at 70% VO2peak followed by an 8 km time trial after 28 days of supplementation with MitoQ (20 mg·day- 1) and a placebo. Free F2-isoprostanes were measured in plasma samples collected at rest, after 45 min cycling at 70% VO2peak and after completion of the time trial. Respiratory gases and measures of rating of perceived exertion (RPE) were also collected. RESULTS Mean completion time for the time trial was 1.3% faster with MitoQ (12.91 ± 0.94 min) compared to placebo (13.09 ± 0.95 min, p = 0.04, 95% CI [0.05, 2.64], d = 0.2). There was no difference in RPE during the time trial between conditions (p = 0.82) despite there being a 4.4% increase in average power output during the time trial following MitoQ supplementation compared to placebo (placebo; 270 ± 51 W, MitoQ; 280 ± 53 W, p = 0.04, 95% CI [0.49, 8.22], d = 0.2). Plasma F2-isoprostanes were lower on completion of the time trial following MitoQ supplementation (35.89 ± 13.6 pg·ml- 1) compared to placebo (44.7 ± 16.9 pg·ml- 1 p = 0.03). CONCLUSION These data suggest that MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.
Collapse
Affiliation(s)
- S C Broome
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - A J Braakhuis
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - C J Mitchell
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - T L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
McKeegan K, Mason SA, Trewin AJ, Keske MA, Wadley GD, Della Gatta PA, Nikolaidis MG, Parker L. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biol 2021; 44:102005. [PMID: 34049222 PMCID: PMC8167146 DOI: 10.1016/j.redox.2021.102005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for their role in insulin resistance and the development of cardiometabolic disease including type 2 diabetes mellitus (T2D). Conversely, evidence supports the notion that ROS are a necessary component for glucose cell transport and adaptation to physiological stress including exercise and muscle contraction. Although genetic rodent models and cell culture studies indicate antioxidant treatment to be an effective strategy for targeting ROS to promote health, human findings are largely inconsistent. In this review we discuss human research that has investigated antioxidant treatment and glycemic control in the context of health (healthy individuals and during exercise) and disease (insulin resistance and T2D). We have identified key factors that are likely to influence the effectiveness of antioxidant treatment: 1) the context of treatment including whether oxidative distress or eustress is present (e.g., hyperglycemia/lipidaemia or during exercise and muscle contraction); 2) whether specific endogenous antioxidant deficiencies are identified (redox screening); 3) whether antioxidant treatment is specifically designed to target and restore identified deficiencies (antioxidant specificity); 4) and the bioavailability and bioactivity of the antioxidant which are influenced by treatment dose, duration, and method of administration. The majority of human research has failed to account for these factors, limiting their ability to robustly test the effectiveness of antioxidants for health promotion and disease prevention. We propose that a modern "redox screening" and "personalized antioxidant treatment" approach is required to robustly explore redox regulation of human physiology and to elicit more effective antioxidant treatment in humans.
Collapse
Affiliation(s)
- Kathryn McKeegan
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
23
|
Dahleh MMM, Araujo SM, Bortolotto VC, Pinheiro FC, Poetini MR, Musachio EAS, Meichtry LB, Couto SDF, Prigol M. Exercise associated with γ-oryzanol supplementation suppresses oxidative stress and prevents changes in locomotion in Drosophila melanogaster. Free Radic Res 2021; 55:198-209. [PMID: 33655816 DOI: 10.1080/10715762.2021.1895992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Association to early mortality and sedentarism was already demonstrated in the literature; nevertheless, some possible biochemical mechanisms around physical inactivity still need answers. The use of an invertebrate model, such as Drosophila melanogaster, can reproduce reliable responses in inducing an exercise protocol with exogenous antioxidant supplementation. This study main evaluates the effect of exercise (EXE) associated with γ-oryzanol (ORY) supplementation to improve locomotor behavior, antioxidant defenses, and survival in Drosophila melanogaster. Two-day old flies were submitted to a protocol for seven days, divided into five groups: Control, Movement-Limited Flies (MLF), EXE, ORY [25 µM], and EXE + ORY [25 µM]. The survival rate was evaluated, followed by open field and negative geotaxis. Flies were euthanized and subjected to analysis for acetylcholinesterase (AChE) and antioxidant enzymes activity, glycidic and lipid parameters, body weight, reactive species (RS), and lipid peroxidation. EXE and EXE + ORY flies showed increased survival and locomotor activity, improved glycidic and lipid parameters, with a lower RS production, and increased antioxidant defenses compared to Control, and EXE + ORY when compared to the EXE group, obtained an increase in the ratio of protein levels/body weight, decreased ratio of triglyceride levels/body weight and decreased lipid peroxidation. However, MLF showed less survival and decreased locomotor activity, possibly due to increased AChE activity and reduced antioxidant defenses. The EXE and EXE + ORY demonstrate effective results in maintaining endogenous defenses, with increased locomotor activity, supporting evidence on EXE benefits, and supplementation with antioxidant compounds face of health paradigms.HighlightsNew protocol system of exercise on Drosophila melanogaster model.ORY demonstrates synergistic effect with EXE.Exercise with ORY supplementation increases locomotor behavior.Exercise with ORY supplementation decrease oxidative damages on flies.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Franciane Cabral Pinheiro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Shanda de Freitas Couto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, LaftamBio - Federal University of Pampa, Itaqui, Brazil
| |
Collapse
|
24
|
Can Exercise-Induced Muscle Damage Be a Good Model for the Investigation of the Anti-Inflammatory Properties of Diet in Humans? Biomedicines 2021; 9:biomedicines9010036. [PMID: 33466327 PMCID: PMC7824757 DOI: 10.3390/biomedicines9010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Subclinical, low-grade, inflammation is one of the main pathophysiological mechanisms underlying the majority of chronic and non-communicable diseases. Several methodological approaches have been applied for the assessment of the anti-inflammatory properties of nutrition, however, their impact in human body remains uncertain, because of the fact that the majority of the studies reporting anti-inflammatory effect of dietary patterns, have been performed under laboratory settings and/or in animal models. Thus, the extrapolation of these results to humans is risky. It is therefore obvious that the development of an inflammatory model in humans, by which we could induce inflammatory responses to humans in a regulated, specific, and non-harmful way, could greatly facilitate the estimation of the anti-inflammatory properties of diet in a more physiological way and mechanistically relevant way. We believe that exercise-induced muscle damage (EIMD) could serve as such a model, either in studies investigating the homeostatic responses of individuals under inflammatory stimuli or for the estimation of the anti-inflammatory or pro-inflammatory potential of dietary patterns, foods, supplements, nutrients, or phytochemicals. Thus, in this review we discuss the possibility of exercise-induced muscle damage being an inflammation model suitable for the assessment of the anti-inflammatory properties of diet in humans.
Collapse
|
25
|
Martinez-Negrin G, Acton JP, Cocksedge SP, Bailey SJ, Clifford T. The effect of dietary (poly)phenols on exercise-induced physiological adaptations: A systematic review and meta-analysis of human intervention trials. Crit Rev Food Sci Nutr 2020; 62:2872-2887. [PMID: 33356471 DOI: 10.1080/10408398.2020.1860898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We performed a systematic review and meta-analysis to determine whether (poly)phenol supplementation augments the physiological adaptations to exercise training. Eligible studies administered a (poly)phenol supplement alongside ≥2 weeks of supervised exercise in adult humans. After screening, 22 studies were included in the analysis. Isoflavones and green tea (poly)phenols were administered most frequently. Quality assessments suggested most studies were free from bias. (Poly)phenols had no effect on training-induced adaptations in muscle strength, peak power output, and V̇O2max, but enhanced exercise capacity (SMD: 0.67, 95% CI: 0.25 to 1.09, p < 0.01). (Poly)phenols had no overall effect on fat loss (SMD: 0.10, 95% CI: -0.10 to 0.29; p = 0.97) or lean mass gains (SMD: 0.06, 95% CI: -0.18 to 0.30, p = 0.62) but sub-analysis suggested that isoflavones increased lean mass (SMD: 0.25, 95 CI%: -0.00 to 0.50, p = 0.05). Resveratrol impaired adaptations in two studies, although this was a non-statistically significant finding (SMD: -0.54, 95% CI: -1.15 to 0.07, p = 0.08). Our results suggest that isoflavones may augment aspects of the adaptive response to exercise training, while resveratrol may compromise training adaptations. More high-quality research is needed to resolve the effects of (poly)phenols on exercise training adaptations.
Collapse
Affiliation(s)
- Guille Martinez-Negrin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jarred P Acton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stuart P Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
26
|
Abstract
In this mini-reflection, I explain how during my doctoral work in a Botany Department I first became interested in H2O2 and later in my career in other reactive oxygen species, especially the role of "catalytic" iron and haem compounds (including leghaemoglobin) in promoting oxidative damage. The important roles that H2O2, other ROS and dietary plants play in respect to humans are discussed. I also review the roles of diet-derived antioxidants in relation to human disease, presenting reasons why clinical trials using high doses of natural antioxidants have generally given disappointing results. Iron chelators and ergothioneine are reviewed as potential cytoprotective agents with antioxidant properties that may be useful therapeutically. The discovery of ferroptosis may also lead to novel agents that can be used to treat certain diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
27
|
Ostrom EL, Traustadóttir T. Aerobic exercise training partially reverses the impairment of Nrf2 activation in older humans. Free Radic Biol Med 2020; 160:418-432. [PMID: 32866619 PMCID: PMC7704731 DOI: 10.1016/j.freeradbiomed.2020.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), is an inducible transcription factor that improves redox balance through stimulating antioxidant gene expression. In older humans the Nrf2 response to a single bout of acute exercise is blunted compared to young indicating impaired redox signaling. The purpose of this randomized controlled trial was to investigate if the signaling impairment could be reversed with exercise training in older men and women, while also comparing to young. Young (18-28y, n = 21) and older (≥60y, n = 19) men and women were randomized to 8-week aerobic exercise training (ET; 3 d/wk, 45 min/d) or a non-exercise control group (CON). Nrf2 nuclear localization, gene expression for NQO1, HO1, and GCLC, and GCLC protein were measured in PBMCs in response to acute exercise trial (AET; 30-min cycling at 70% VO2 peak pre- and post-intervention at 7 timepoints (Pre, +10 m, +30 m, +1 h, +4 h, +8 h, +24 h). Young had greater Nrf2 signaling response compared to older at pre-intervention (p = 0.05), whereas the older had significantly higher basal Nrf2 levels (p = 0.004). ET decreased basal Nrf2 expression compared to CON (p = 0.032) and improved the Nrf2 signaling response in both young and older (p < 0.05). The degree of restoration in Nrf2 signaling response was related to the degree of change in basal Nrf2 (p = 0.039), which was driven by older adults (p = 0.014). Lower basal nuclear Nrf2 levels were associated with changes seen in AET responses for Nrf2 and GCLC protein, as well as NQO1 and GCLC mRNA. Together these data demonstrate that exercise training improves Nrf2 signaling and downstream gene expression and that lower basal Nrf2 levels are associated with a more dynamic acute response. Our results provide evidence that the impaired Nrf2 signaling in sedentary older adults can be restored to a degree with moderate exercise training, albeit not to the level seen in young. CLINICALTRIALS.GOV ID: NCT03419988.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|